See below.
Preface

The text included in Specification Sections 148, 149, and 151 through 940 is written in the imperative mood (sentences often begin with commands). All commands and references in, or in connection with, these Specifications (including all text, related documents, electronic media, graphics, or photographs) are written to imply Contractor responsibility for action—unless otherwise specified.

Text placed in text boxes within a Specification does not imply any greater significance than any other text in the Specification.

The Specifications contain dual units of measurement—The United States Standard Measure (English units) and the International System of Units (SI or “metric” units). The English units are expressed first with the SI (metric) units following in parentheses. The measurements expressed in the two systems of units are not necessarily equal. In most cases the measurement in SI units is a “hard” conversion of the English measurement. That is, the SI (metric) unit is a rounded, rationalized SI measurement that is easy to work with and remember.

The Proposal will designate whether the Project was designed and is to be constructed in either English units (English project) or SI units (metric project). The dimensions, measurements, and requirements stated in the system of units designated in the Proposal are the applicable Specification requirements for the Contract. All Contractor submittals shall be prepared in the designated system of units. Pay Item quantities will be measured in the designated system of units.

Georgia Department of Transportation
No. 2 Capitol Square
Atlanta, Georgia 30334

GDOT website: www.dot.state.ga.us

General Information Phone (404) 656-5267
24-Hour Emergency Phone (404) 635-6800
(800) 635-8287
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GENERAL PROVISIONS</td>
<td></td>
</tr>
<tr>
<td>Section 101</td>
<td>Definitions and Terms</td>
<td>1</td>
</tr>
<tr>
<td>Section 102</td>
<td>Bidding Requirements and Conditions</td>
<td>8</td>
</tr>
<tr>
<td>Section 103</td>
<td>Award and Execution of Contract</td>
<td>12</td>
</tr>
<tr>
<td>Section 104</td>
<td>Scope of Work</td>
<td>14</td>
</tr>
<tr>
<td>Section 105</td>
<td>Control of Work</td>
<td>19</td>
</tr>
<tr>
<td>Section 106</td>
<td>Control of Materials</td>
<td>26</td>
</tr>
<tr>
<td>Section 107</td>
<td>Legal Regulations and Responsibility to the Public</td>
<td>32</td>
</tr>
<tr>
<td>Section 108</td>
<td>Prosecution and Progress</td>
<td>42</td>
</tr>
<tr>
<td>Section 109</td>
<td>Measurement and Payment</td>
<td>49</td>
</tr>
<tr>
<td>Section 148</td>
<td>Pilot Vehicles</td>
<td>59</td>
</tr>
<tr>
<td>Section 149</td>
<td>Construction Layout</td>
<td>59</td>
</tr>
<tr>
<td>Section 150</td>
<td>Traffic Control</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>AUXILIARY ITEMS</td>
<td></td>
</tr>
<tr>
<td>Section 151</td>
<td>Mobilization</td>
<td>63</td>
</tr>
<tr>
<td>Section 152</td>
<td>Field Laboratory Building</td>
<td>64</td>
</tr>
<tr>
<td>Section 153</td>
<td>Field Engineer’s Office</td>
<td>68</td>
</tr>
<tr>
<td>Section 155</td>
<td>Insect Control</td>
<td>73</td>
</tr>
<tr>
<td>Section 157</td>
<td>Survey Aids</td>
<td>74</td>
</tr>
<tr>
<td>Section 158</td>
<td>Training Program</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>CONSTRUCTION EROSION CONTROL</td>
<td></td>
</tr>
<tr>
<td>Section 160</td>
<td>Reclamation of Material Pits and Waste Areas</td>
<td>80</td>
</tr>
<tr>
<td>Section 161</td>
<td>Control of Soil Erosion and Sedimentation</td>
<td>86</td>
</tr>
<tr>
<td>Section 162</td>
<td>Erosion Control Check Dams</td>
<td>86</td>
</tr>
<tr>
<td>Section 163</td>
<td>Miscellaneous Erosion Control Items</td>
<td>88</td>
</tr>
<tr>
<td>Section 165</td>
<td>Maintenance of Temporary Erosion And Sedimentation Control Devices</td>
<td>94</td>
</tr>
<tr>
<td>Section 166</td>
<td>Restoration or Alteration of Lakes and Ponds</td>
<td>95</td>
</tr>
<tr>
<td>Section 167</td>
<td>Water Quality Monitoring</td>
<td>96</td>
</tr>
<tr>
<td>Section 170</td>
<td>Silt Retention Barrier</td>
<td>96</td>
</tr>
<tr>
<td>Section 171</td>
<td>Silt Fence</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>EARTHWORK</td>
<td></td>
</tr>
<tr>
<td>Section 201</td>
<td>Clearing and Grubbing Right of Way</td>
<td>101</td>
</tr>
<tr>
<td>Section 202</td>
<td>Random Clearing and Grubbing</td>
<td>106</td>
</tr>
<tr>
<td>Section 204</td>
<td>Channel Excavation</td>
<td>107</td>
</tr>
<tr>
<td>Section 205</td>
<td>Roadway Excavation</td>
<td>109</td>
</tr>
<tr>
<td>Section 206</td>
<td>Borrow Excavation</td>
<td>114</td>
</tr>
<tr>
<td>Section 207</td>
<td>Excavation and Backfill for Minor Structures</td>
<td>117</td>
</tr>
<tr>
<td>Section 208</td>
<td>Embankments</td>
<td>120</td>
</tr>
<tr>
<td>Section 209</td>
<td>Subgrade Construction</td>
<td>127</td>
</tr>
<tr>
<td>Section 210</td>
<td>Grading Complete</td>
<td>131</td>
</tr>
</tbody>
</table>
Section 211—Bridge Excavation and Backfill ... 133
Section 212—Granular Embankment ... 136
Section 214—Mitigation Site Construction .. 138
Section 215—Removal of Solid Waste .. 138
Section 216—Unpaved Shoulders .. 141
Section 217—Removal of Underground Storage Tanks .. 145
Section 218—Blanket for Fill Slopes ... 148
Section 219—Crushed Aggregate Subbase .. 149
Section 221—Special Subgrade Compaction and Test Rolling 149

Bases and Subbases

Section 222—Aggregate Drainage Courses .. 152
Section 225—Soil-Lime Construction .. 154
Section 230—Lump Sum Construction .. 163
Section 231—Miscellaneous Construction, Unpaved Roads and Streets 163
Section 232—Railroad Construction .. 163
Section 233—Haul Roads .. 163
Section 300—General Specifications for Base and Subbase Courses 165
Section 301—Soil-Cement Construction .. 173
Section 302—Sand-Bituminous Stabilized Base Course ... 182
Section 303—Topsoil, Sand-Clay, or Chert Construction ... 188
Section 304—Soil Aggregate Construction .. 193
Section 305—Cement Stabilized Soil Aggregate Construction 197
Section 307—Impermeable Membrane for Subgrades, Basins, Ditches, and Canals 198
Section 310—Graded Aggregate Construction .. 199
Section 311—Crushed Stone Base .. 203
Section 316—Cement Stabilized Graded Aggregate Construction 203
Section 317—Reconstructed Base Course .. 204
Section 318—Selected Material Surface Course ... 207
Section 319—Lime-Fly Ash Soil Construction ... 210
Section 325—Stabilized Base Material for Patching ... 210
Section 326—Portland Cement Concrete Subbase ... 212
Section 327—Mining, Crushing, and Stockpiling Aggregates 217
Section 328—Foamed Asphalt Stabilized Base Course ... 217

Pavements

Section 400—Hot Mix Asphaltic Concrete Construction .. 217
Section 401—Cold Mix for Patching .. 247
Section 402—Hot Mix Recycled Asphaltic Concrete ... 249
Section 403—Hot In-Place Recycled Asphaltic Concrete .. 253
Section 405—Hot Asphalt-Vulcanized Rubber Seal Treatment 258
Section 406—Coal Tar Emulsion Seal Coat .. 261
Section 407—Asphalt-Rubber Joint and Crack Seal ... 262
Section 408—Joint and Crack Cleaning and Seal .. 265
Section 411—Asphaltic Concrete Pavement, Partial Removal 265
Section 412—Bituminous Prime .. 267
Section 413—Bituminous Tack Coat .. 270
Section 414—Hot Asphalt—Rubber Seal Treatment for Stress Relieving Interlayer
Section 424—Bituminous Surface Treatment
Section 427—Emulsified Asphalt Slurry Seal
Section 428—Micro Surfacing
Section 429—Rumble Strips
Section 430—Portland Cement Concrete Pavement
Section 431—Grind Concrete Pavement
Section 432—Mill Asphaltic Concrete Pavement
Section 433—Reinforced Concrete Approach Slabs
Section 434—Asphalt Paved Ditches
Section 435—Rapid Setting Cement Concrete End Dams and Patches
Section 436—Asphaltic Concrete Curb
Section 437—Granite Curb
Section 438—Precast Concrete Header Curb
Section 439—Portland Cement Concrete Pavement (Special)
Section 440—Plain Portland Cement Concrete Shoulders
Section 441—Miscellaneous Concrete
Section 443—Elastomeric Profile Bridge Joint Seals
Section 444—Sawed Joints in Existing Pavements
Section 445—Waterproofing Pavement Joints and Cracks
Section 446—Placement of Pavement Reinforcement Fabric
Section 447—Modular Expansion Joints
Section 448—Portland Cement Concrete End Dams and Patches
Section 449—Bridge Deck Joint Seals
Section 450—Pressure Grouting Portland Cement Concrete Pavement
Section 451—Patching Portland Cement Concrete Pavement (Spall Repair)
Section 452—Full Depth Slab Replacement
Section 453—Portland Cement Concrete Whitetopping
Section 455—Filter Fabric for Embankment Stabilization
Section 456—Indentation Rumble Strips
Section 457—Geogrid Reinforcement
Section 461—Sealing Roadway and Bridge Joints and Cracks

BRIDGES

Section 500—Concrete Structures
Section 501—Steel Structures
Section 502—Timber Structures
Section 504—Twenty-Four Hour Accelerated Strength Concrete
Section 505—Corrugated Steel Bridge Plank
Section 506—Expanded Mortar
Section 507—Prestressed Concrete Bridge Members
Section 508—Asphalt Plank Bridge Floor
Section 509—Prestressing Concrete by Post Tensioning
Section 510—Protective Platforms
Section 511—Reinforcement Steel
Section 512—Shear Connectors
Section 513—Precast Reinforced Concrete Box Culverts Barrel Sections and End Sections
Section 514—Epoxy Coated Steel Reinforcement
MINOR DRAINAGE STRUCTURES

Section 544—Deck Drain System .. 586
Section 547—Pile Encasement ... 587
Section 550—Storm Drain Pipe, Pipe-Arch Culverts, and Side Drain Pipe 592
Section 551—Pile Protection in Earth Walls .. 596
Section 555—Tunnel Liner ... 599
Section 560—Structural Plate Pipe, Pipe-Arch and Arch Culverts 603
Section 561—Renovating Existing Pipe .. 605
Section 570—Minor Drainage Structures for Detours 608
Section 573—Underdrains .. 610
Section 574—Edgedrains .. 612
Section 576—Slope Drain Pipe .. 615
Section 577—Metal Drain Inlets .. 616

INCIDENTAL ITEMS

Section 581—Pot Bearings ... 619
Section 600—Controlled Low Strength Flowable Fill 625
Section 602—Doublewal™ Precast Wall ... 627
Section 603—Rip Rap ... 637
Section 607—Rubble Masonry .. 640
Section 608—Brick Masonry .. 643
Section 609—Removal of Portland Cement Concrete Roadway Slabs 645
Section 610—Removal of Miscellaneous Roadway Items 647
Section 700—Grassing ... 876
Section 701—Wildflower Seeding .. 887
Section 702—Vine, Shrub, and Tree Planting 891
Section 703—Tree Wells, Tree Walls, and Root Protection 900
Section 705—Transplanting Trees ... 903
Section 706—Turf Establishment ... 905
Section 708—Plant Topsoil ... 906
Section 710—Permanent Soil Reinforcing Mat 909
Section 712—Fiberglass Blanket ... 912
Section 713—Organic And Synthetic Material Fiber Blanket 914
Section 714—Jute Mesh Erosion Control 917
Section 715—Bituminous Treated Roving 919
Section 716—Erosion Control Mats (Slopes) 922
Section 718—Wood Fiber ... 923
Section 719—Silt Filter Bag .. 925
Section 720—Triangular Silt Barrier ... 926
Section 725—Weed Control ... 929

BUILDING INSTALLATIONS

Section 750—Rest Room Building .. 930
Section 751—Water Supply System .. 930
Section 752—Pneumatic Ejector Lift Station 930
Section 753—Waste Water Treatment Plant 930
Section 754—Outdoor Furniture ... 930
Section 755—Electrical Work ... 931
Section 756—Drilled Wells .. 933
Section 757—Well Pumps ... 933
Section 758—Travel Trailer Sanitary Disposal Station 933
Section 759—Water Storage Tanks ... 933
Section 760—Welcome Station Building 933
Section 761—Information Center Building 933
Section 762—Truck Weighing Station Building 933
Section 765—Flag Pole .. 933
Section 766—Irrigation System .. 934
Section 768—Truck Weigh Station Traffic Control Signs 934
Section 770—Truck Weigh Station Height Checking Device 934
Section 772—Truck Weigh Station Length Estimating Device 934
Section 774—Mobile Operations Office 934
Section 776—Check Point Shelter ... 934
Section 777—Truck Weigh Station Communications System 934
Section 778—Solar Application .. 934
Section 791—Water Intake Structure 935
Section 792—Display and Interior Furnishings 935
Section 795—Vehicle Maintenance Building 935
Section 796—Sewage Pumping Station 935
Section 797—Buildings ... 935
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>Coarse Aggregate</td>
<td>935</td>
</tr>
<tr>
<td>801</td>
<td>Fine Aggregate</td>
<td>940</td>
</tr>
<tr>
<td>802</td>
<td>Aggregates for Asphalitic Concrete</td>
<td>943</td>
</tr>
<tr>
<td>803</td>
<td>Stabilizer Aggregate</td>
<td>945</td>
</tr>
<tr>
<td>804</td>
<td>Abrasives for Blast Cleaning</td>
<td>947</td>
</tr>
<tr>
<td>805</td>
<td>Rip Rap and Curbing Stone</td>
<td>948</td>
</tr>
<tr>
<td>806</td>
<td>Aggregate for Drainage</td>
<td>951</td>
</tr>
<tr>
<td>809</td>
<td>Geogrid Materials</td>
<td>953</td>
</tr>
<tr>
<td>810</td>
<td>Roadway Materials</td>
<td>958</td>
</tr>
<tr>
<td>811</td>
<td>Rock Embankment</td>
<td>960</td>
</tr>
<tr>
<td>812</td>
<td>Backfill Materials</td>
<td>961</td>
</tr>
<tr>
<td>813</td>
<td>Pond Sand</td>
<td>964</td>
</tr>
<tr>
<td>814</td>
<td>Soil Base Materials</td>
<td>965</td>
</tr>
<tr>
<td>815</td>
<td>Graded Aggregate</td>
<td>969</td>
</tr>
<tr>
<td>816</td>
<td>Soil Aggregate Bases</td>
<td>973</td>
</tr>
<tr>
<td>817</td>
<td>Shoulder Material</td>
<td>975</td>
</tr>
<tr>
<td>818</td>
<td>Crushed Aggregate Subbase</td>
<td>975</td>
</tr>
<tr>
<td>819</td>
<td>Fiber Stabilizing Additives</td>
<td>976</td>
</tr>
<tr>
<td>820</td>
<td>Asphalt Cement</td>
<td>977</td>
</tr>
<tr>
<td>821</td>
<td>Cutback Asphalt</td>
<td>978</td>
</tr>
<tr>
<td>822</td>
<td>Emulsified Asphalt</td>
<td>982</td>
</tr>
<tr>
<td>823</td>
<td>Cutback Asphalt Emulsion</td>
<td>983</td>
</tr>
<tr>
<td>824</td>
<td>Cationic Asphalt Emulsion</td>
<td>985</td>
</tr>
<tr>
<td>825</td>
<td>Asphalt Plank</td>
<td>988</td>
</tr>
<tr>
<td>826</td>
<td>Dampproofing or Waterproofing Material</td>
<td>988</td>
</tr>
<tr>
<td>828</td>
<td>Hot Mix Asphalitic Concrete Mixtures</td>
<td>989</td>
</tr>
<tr>
<td>830</td>
<td>Portland Cement</td>
<td>996</td>
</tr>
<tr>
<td>831</td>
<td>Admixtures</td>
<td>998</td>
</tr>
<tr>
<td>832</td>
<td>Curing Agents</td>
<td>1000</td>
</tr>
<tr>
<td>833</td>
<td>Joint Fillers and Sealers</td>
<td>1002</td>
</tr>
<tr>
<td>834</td>
<td>Masonry Materials</td>
<td>1014</td>
</tr>
<tr>
<td>835</td>
<td>Aluminum Powder</td>
<td>1015</td>
</tr>
<tr>
<td>836</td>
<td>Special Surface Coating for Concrete</td>
<td>1016</td>
</tr>
<tr>
<td>837</td>
<td>Polymer Concrete</td>
<td>1018</td>
</tr>
<tr>
<td>838</td>
<td>Graffiti Proof Coating for Concrete</td>
<td>1020</td>
</tr>
<tr>
<td>839</td>
<td>Corrugated Polyethylene Underdrain Pipe</td>
<td>1020</td>
</tr>
<tr>
<td>840</td>
<td>Corrugated Aluminum Alloy Pipe</td>
<td>1021</td>
</tr>
<tr>
<td>841</td>
<td>Iron Pipe</td>
<td>1023</td>
</tr>
<tr>
<td>842</td>
<td>Clay Pipe</td>
<td>1024</td>
</tr>
<tr>
<td>843</td>
<td>Concrete Pipe</td>
<td>1024</td>
</tr>
<tr>
<td>844</td>
<td>Steel Pipe</td>
<td>1026</td>
</tr>
<tr>
<td>845</td>
<td>Smooth Lined Corrugated Polyethylene (PE) Culvert Pipe</td>
<td>1030</td>
</tr>
<tr>
<td>846</td>
<td>Polyvinyl Chloride (PVC) Profile Wall Drain Pipe</td>
<td>1030</td>
</tr>
<tr>
<td>847</td>
<td>Miscellaneous Pipe</td>
<td>1031</td>
</tr>
<tr>
<td>848</td>
<td>Pipe Appurtenances</td>
<td>1034</td>
</tr>
<tr>
<td>850</td>
<td>Aluminum Alloy Metals</td>
<td>1038</td>
</tr>
<tr>
<td>851</td>
<td>Structural Steel</td>
<td>1041</td>
</tr>
<tr>
<td>852</td>
<td>Miscellaneous Steel Materials</td>
<td>1042</td>
</tr>
</tbody>
</table>

11
Section 101—Definitions and Terms

Whenever in these Specifications or in other Contract Documents the following terms or pronouns in place of them are used, the intent and meaning shall be interpreted as follows:

101.01 Abbreviations

Wherever the following abbreviations are used in the Specifications or on the Plans, they are to be construed the same as the respective expressions represented.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAN</td>
<td>American Association of Nurserymen</td>
</tr>
<tr>
<td>AAR</td>
<td>Association of American Railroads</td>
</tr>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
</tr>
<tr>
<td>AGC</td>
<td>Associated General Contractors of America</td>
</tr>
<tr>
<td>AIA</td>
<td>American Institute of Architects</td>
</tr>
<tr>
<td>AIEE</td>
<td>American Institute of Electrical Engineers</td>
</tr>
<tr>
<td>AISC</td>
<td>American Institute of Steel Construction</td>
</tr>
<tr>
<td>AISI</td>
<td>American Iron and Steel Institute</td>
</tr>
<tr>
<td>AMS</td>
<td>Aerospace Materials Specification</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ARA</td>
<td>American Railway Association</td>
</tr>
<tr>
<td>AREA</td>
<td>American Railway Engineering Association</td>
</tr>
<tr>
<td>ASCE</td>
<td>American Society of Civil Engineers</td>
</tr>
<tr>
<td>ASLA</td>
<td>American Society of Landscape Architects</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing and Materials</td>
</tr>
<tr>
<td>AWPA</td>
<td>American Wood Preservers’ Association</td>
</tr>
<tr>
<td>AWWA</td>
<td>American Water Works Association</td>
</tr>
<tr>
<td>AWS</td>
<td>American Welding Society</td>
</tr>
<tr>
<td>CRSI</td>
<td>Concrete Reinforcing Steel Institute</td>
</tr>
<tr>
<td>DOT</td>
<td>Georgia Department of Transportation</td>
</tr>
<tr>
<td>EEO</td>
<td>Equal Employment Opportunity</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FSS</td>
<td>Federal Specifications and Standards, General Services Administration</td>
</tr>
<tr>
<td>GDT</td>
<td>Georgia Department of Transportation</td>
</tr>
<tr>
<td>IES</td>
<td>Illuminating Engineering Society</td>
</tr>
<tr>
<td>MUTCD</td>
<td>Manual on Uniform Traffic Control Devices</td>
</tr>
<tr>
<td>NEC</td>
<td>National Electrical Code</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>NESC</td>
<td>National Electrical Safety Code</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Protection Association</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>SPIB</td>
<td>Southern Pine Inspection Bureau</td>
</tr>
<tr>
<td>SSPC</td>
<td>Steel Structure Painting Council</td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters Laboratories, Inc.</td>
</tr>
</tbody>
</table>

101.02 Acceptance Plans
A defined method of taking and evaluating measurements for the purpose of determining the acceptability of a lot of material or construction.

101.03 Advertisement
The public announcement as required by law, inviting bids for work to be performed or materials to be furnished.

101.04 Available Day
Any calendar day exclusive of Saturdays, Sundays, and Legal Holidays on which the Engineer determines that the Contractor is not prevented from accomplishing at least five hours of productive work on the controlling item or items of work which would normally be in progress at that time by causes beyond his control, and not due to his fault or negligence, including but not restricted to unsuitable weather and its aftermath, suspension order of the Engineer, acts of God, acts of public enemy, fire, flood, epidemic, quarantine, strikes, or freight embargo.

101.05 Award
The formal acceptance by the Department of a Bid.

101.06 Base Course
One or more layers of specified material of designed thickness placed on a subgrade or a subbase to support a surface course.

101.07 Bid
See Proposal.

101.08 Bid Item
A specifically described unit of work for which a price is requested in the Proposal.

101.09 Bidder
A qualified individual, firm or corporation, or combination thereof, submitting a written Proposal for the Work advertised.

101.10 Board
The State Transportation Board.

101.11 Bridge
A structure, including supports, erected over a depression or an obstruction, such as water, a highway or a railway, etc., and having a track or passageway for carrying traffic, water or other moving loads and having an opening measured along the center of the roadway of more than 20 ft (6 m) between undercopings of abutments or extreme ends of openings for multiple boxes.

A. Bridge Length
The overall length of a structure measured along the center of the roadway between backs of abutment backwalls or between ends of bridge floor.

B. Bridge Roadway Width
The clear width of a structure measured at right angles to the center of the roadway between the bottom of curbs or, if curbs are not used, between the inner faces of parapet or railing.

C. Bridge Complete
An entire bridge including its substructure and superstructure.
D. Completed Bridge Site

Unless otherwise shown on the Plans or indicated in the Proposal, a Completed Bridge Site is one in which all grading is completed to subgrade elevation (except for the stage construction providing a bench for the end bent). The minimum acceptable length of completed full-depth embankment shall equal the maximum width of fill between slope stakes at the particular end of bridge. This minimum length of full-depth embankment will be measured along the roadway centerline away from the end-of-bridge station.

In cut sections, a Completed Bridge Site shall be considered to be complete when the excavation is down to the subgrade elevation and extends 50 ft (15 m) beyond the outer limits of the bridge in each direction.

In all cases, positive surface drainage shall be in place and functioning and all temporary erosion control measures shall be installed, functioning, and maintained.

101.12 Calendar Day
Every day shown on the calendar beginning at 12:00 midnight.

101.13 Chief Engineer
The Engineering Executive appointed by the State Transportation Board, or other authority as may be provided by law, and acting for the Department within the authority and scope of duties assigned.

101.14 Commissioner
The Commissioner of the Department of Transportation.

101.15 Completion Date
The calendar date by which the Contract shall be completed when such date is shown in the Proposal in lieu of the stipulation of a number of available days or calendar days.

101.16 Contract
The written agreement between the Department and the Contractor setting forth the obligations of the parties thereunder, including, but not limited to, the performance of the Work, the furnishing of labor and materials, and the basis of payment.

The Contract includes the Advertisement, Proposal, Contract Form and Contract Bond, Specifications, Supplemental Specifications, Special Provisions, general and detailed Plans, Notice to Proceed, and also any Supplemental Agreements that are required to complete the construction of the Work in an acceptable manner, including authorized extensions thereof, all of which constitute one instrument. No oral agreement or orders are to be considered as valid or as a part of the Contract.

101.17 Contract Bond (Performance and Payment Bond)
The approved form of security executed by the Contractor and his Surety or Sureties, which guarantees complete execution of the Contract and all Supplemental Agreements pertaining thereto, and the payment of all legal debts pertaining to the construction of the Project.

101.18 Contract Item (Pay Item)
A specifically described unit of work for which a price is provided in the contract.

101.19 Contract Time
The number of available days or calendar days allowed for the completion of the Contract, including authorized time extensions.

If a Completion Date is shown in the Proposal, the Contract Time then shall be the period between the issuance of the Notice to Proceed and the calendar date shown in the Proposal as the completion date.

101.20 Contractor
The individual, firm, corporation or combination thereof or governmental organization contracting with the Department for performance of prescribed work.

101.21 Culvert
Any structure under the roadway with a clear opening of 20 ft (6m) or less measured along the center of the roadway.

101.22 Department
The Department of Transportation, State of Georgia.
101.23 Easement
A right, other than the acquisition of title, acquired to use or control property for a designated purpose.

101.24 Engineer
The Chief Engineer of Georgia, acting directly or through a duly authorized representative.

101.25 Equipment
All machinery, apparatus, and tools necessary for the proper construction and acceptable completion of The Work, plus the necessary repair parts, tools, and supplies for upkeep and maintenance.

101.26 Extension Agreement
A written agreement entered into by and between the Department and the Contractor extending The Work beyond its original boundaries and prescribing additional work to be done including the basis of payment and time allowed for completion.

101.27 Extra Work
An item of work not provided for in the Contract as awarded but found essential to the satisfactory completion of the Contract within its intended scope.

101.28 Force Account
A method of payment for Extra Work when a Supplemental Agreement is not arrived at between the Engineer and the Contractor.

101.29 General Terms
Whenever the following words or similar terms appear herein, they shall be understood to imply “by or to the Engineer,” unless the context clearly indicates a different meaning:

101.30 Highway—Road—Street
Each of these words is a general term denoting a public way for the purpose of vehicular travel including the entire area within the Rights Of Way.

101.31 Holidays
In the State of Georgia, holidays occur on:

<table>
<thead>
<tr>
<th>Date</th>
<th>Holiday</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 1</td>
<td>New Year’s Day</td>
</tr>
<tr>
<td>3rd Monday in January</td>
<td>King’s Birthday</td>
</tr>
<tr>
<td>January 19</td>
<td>Lee’s birthday</td>
</tr>
<tr>
<td>3rd Monday in February</td>
<td>Washington’s birthday</td>
</tr>
<tr>
<td>April 26</td>
<td>Confederate Memorial Day</td>
</tr>
<tr>
<td>Last Monday in May</td>
<td>National Memorial Day</td>
</tr>
<tr>
<td>July 4</td>
<td>Independence Day</td>
</tr>
<tr>
<td>1st Monday in September</td>
<td>Labor Day</td>
</tr>
<tr>
<td>2nd Monday in October</td>
<td>Columbus Day</td>
</tr>
<tr>
<td>November 11</td>
<td>Veterans’ Day</td>
</tr>
<tr>
<td>4th Thursday in November</td>
<td>Thanksgiving Day</td>
</tr>
<tr>
<td>December 25</td>
<td>Christmas Day</td>
</tr>
</tbody>
</table>

If any of these Holidays fall on Sunday, the following Monday is considered to be the Holiday; if any of the Holidays fall on Saturday, the preceding Friday is considered to be the Holiday.
101.32 Inspector
The Engineer’s authorized representative assigned to make a detailed inspection of Contract performance of any or all portions of The Work or materials thereof.

101.33 Invitation for Bids
See 101.03 Advertisement.

101.34 Laboratory
The testing laboratories of the Department or any other testing laboratory that may be designated by the Engineer.

101.35 Liquidated Damages
The fixed charges assessed against the successful Bidder or the Contractor for failure to execute the Contract or to complete the Contract within the Contract Time.

101.36 Materials
Any substances specified for use in the construction of The Work.

101.37 Materials Allowance
Payment for materials on hand as defined in Subsection 109.07, not to be confused with Partial Payments for work completed.

101.38 Median
The portion of a divided highway separating the traveled ways for traffic moving in opposite directions.

101.39 Minor Structures
Any structure not defined as a bridge.

101.40 Notice to Contractors
A written Notice soliciting Proposals, mailed to Contractors, suppliers and others in the Construction Industry, which will indicate with reasonable accuracy the quantity and location of the Work to be done or the character and quantity of the material to be furnished and the time and place of the opening of Proposals.

101.41 Notice To Proceed
Written notice to the Contractor to proceed with the Contract Work.

101.42 Pavement Structure
The combination of subbase, base course, and surface course placed on a subgrade to support the traffic load and distribute it to the roadbed.

101.43 Pay Item
See 101.18 Contract Item (Pay Item).

101.44 Performance and Payment Bond
See 101.17 Contract Bond (Performance and Payment Bond).

101.45 Plans
The approved plans, profiles, typical cross sections, working drawings and supplemental drawings or exact reproductions thereof, which show the location, character, dimensions, and details of The Work.

101.46 Prequalification
The procedure established and administered by the Department by virtue of which prospective Bidders are required to establish their responsibility and competence in advance of submission of Proposals.

101.47 Project
The specific section or sections of the highway together with all appurtenances and construction to be performed thereon under the Contract.
101.48 Proposal
The offer of a Bidder, on the prescribed form, to perform The Work and to furnish the labor and materials at the prices quoted.

101.49 Proposal Guaranty
Acceptable surety furnished by a bidder as a guaranty that he will enter into a contract and will furnish contract performance and payment bonds if a contract is awarded to him.

101.50 Right-of-Way
A general term denoting land, property, or interest therein, usually, but not required to be, in a strip, acquired for or devoted to a highway and its appurtenant structures.

101.51 Roadbed
The graded portion of a highway within top and side slopes, prepared as a foundation for the pavement structure and shoulder.

101.52 Roadside Development
Those items necessary to the complete highway which provide for the preservation of landscape materials and features; the rehabilitation and protection against erosion of all areas disturbed by construction through seeding, sodding, mulching and the placing of other ground covers; such suitable planting and other improvements as may increase the effectiveness and enhance the appearance of the highway.

101.53 Roadway
The portion of a highway within the limits of construction.

101.54 Salvaged Material
Material having value that is to be removed, preserved, or stockpiled as directed for later use by the Department. Specific reference is made to Subsection 610.3.05.A.

101.55 Shall or Will, Should, May
As used in these Specifications, the following definitions apply:

SHALL or WILL—A mandatory condition. When certain requirements are described with the “shall” or “will” stipulation, it is mandatory that the requirements be met.

SHOULD—An advisory condition. Considered to be recommended but not mandatory.

MAY—A permissive condition. No requirement is intended.

101.56 Shoulder
The portion of the roadway contiguous with the traveled way for accommodations of stopped vehicles, for emergency use, and for lateral support of base and surface courses.

101.57 Sidewalk
That portion of the roadway primarily constructed for the use of pedestrians.

101.58 Skew or Skew Angle
The acute angle between the centerline of the roadway and a line parallel to a pier, bent, or abutment of a bridge or parallel to the centerline of a culvert.

101.59 Special Provisions
Additions or revisions to the Standard or Supplemental Specifications, applicable to an individual Project.

101.60 Specifications
A general term applied to all directions, provisions and requirements pertaining to performance of The Work.
101.61 Standard Specifications
A publication titled:
“DEPARTMENT OF TRANSPORTATION, STATE OF GEORGIA STANDARD SPECIFICATIONS, CONSTRUCTION OF TRANSPORTATION SYSTEMS.”
Transportation systems are defined as all modes of transportation, including but not limited to, highways, airports, rail and ports.

101.62 State Highway Engineer
See 101.13 Chief Engineer.

101.63 State
The State of Georgia.

101.64 Station
When used as a term of measurement will be 100 linear ft (1 km) measured horizontally.

101.65 Structures
Bridges, culverts, catch basins, drop inlets, retaining walls, cribbing, manholes, endwalls, buildings, sewers, service pipes, underdrains, foundation drains, and other features that may be encountered in The Work and not otherwise classified herein.

101.66 Subbase
The layer or layers of specified or selected material of designed thickness placed on a subgrade to support a base course.

101.67 Subcontractor
Any individual, firm, corporation, or combination thereof to which the Contractor with the written consent of the Department sublets any part of the Contract.

101.68 Subgrade
The top surface of a roadbed upon which the pavement structure and shoulders are constructed—generally the top 12 in (300 mm) within cuts and fills.

101.69 Subgrade Treatment
Modification of subgrade material by stabilization.

101.70 Stabilization
Modification of soils or aggregates by incorporating materials which will increase load bearing capacity, firmness, and resistance to weathering or displacement.

101.71 Substructure
All of that part of the bridge structure below the bearings of simple and continuous spans, skewbacks of arches and top of footings of rigid frames, including backwalls, wingwalls and wing protection railings.

101.72 Superintendent
The Contractor’s authorized representative directly and solely responsible for the supervision and direction of The Work.

101.73 Superstructure
The entire bridge structure except the substructure.

101.74 Supplemental Agreement
A written agreement entered into by and between the Department and the Contractor covering modifications or alterations to the original Contract, and establishing any necessary new Contract Items, any other basis of payment, and any time adjustments for The Work affected by the changes. This Agreement becomes a part of the Contract when properly executed and approved.

101.75 Supplemental Specifications
Approved additions to or revisions of the Standard Specifications.
101.76 Surety
The corporation, partnership or individual, other than the Contractor, executing a Bond furnished by the Contractor.

101.77 The Work
The Work shall mean the furnishing of all labor, materials, equipment, superintendence and other incidentals necessary or convenient to the successful completion of the Project and the carrying out of all the duties and obligations imposed by the Contract.

101.78 Titles (or Headings)
The titles or headings of the Sections and Subsections in these Specifications are intended for convenience of reference and shall not be considered as having any bearing on the interpretation of the Specifications.

101.79 Traveled Way
The portion of the roadway for the movement of vehicles, exclusive of shoulders and auxiliary lanes.

101.80 Treasurer
The Treasurer of the Department of Transportation.

101.81 Working Drawings
Any supplementary drawings or similar data which the Contractor is required to submit to the Engineer for approval including but not limited to stress sheets, shop drawings, erection plans, falsework plans, framework plans, cofferdam plans, and bending diagrams for steel.

101.82 Work Order
A written order signed by the Engineer with authority to negotiate changes in the Contract, requiring performance by the Contractor.

101.83 Related References
Listing of Specifications and documents contained in the Section are intended for convenience of reference and shall not be considered as having any bearing on the interpretation of the Specifications.

Section 102—Bidding Requirements and Conditions

102.01 Prequalification of Bidders
Before submitting a bid in excess of $500,000, the Bidder shall have prequalified with the Department and received a Certificate of Qualification in accordance with the Rules and Regulations approved and adopted by the State Transportation Board. Bidders submitting bids of $500,000 or less may be exempt from prequalification requirements. In addition, the aggregate total amount that a Non-prequalified Bidder may have under contract shall not exceed $2,000,000.

Bidders intending to consistently submit Proposals shall prequalify at least once a year. However, qualifications may be changed during that period upon the submission of additional favorable reports or upon unsatisfactory performance. In addition, the Department reserves the right at any time to require the Contractor to furnish a current financial and experience statement.

102.02 Competency of Bidders
The Department may limit the amount of work awarded to any Contractor, based on the information furnished the Department in the Prequalification process. The Department may also limit the aggregate amount of work awarded to any non-prequalified Contractor.

The Department may refuse any Contractor Proposals to bid on additional work if the Contractor is behind schedule on work he has with the Department, as determined from the Progress Schedule called for in the Specifications. This refusal will apply to all applications for Proposals, made in the name of an individual, firm, partnership, or corporation with which the delinquent Contractor is affiliated.

102.03 Contents of Proposal Forms
Upon request, the Department will furnish the prospective Bidder with a Proposal Form. This form will state the location and description of the contemplated construction and will show the approximate estimate of the various quantities and kinds of
work to be performed or materials to be furnished, and will have a schedule of Items for which Unit Bid prices are invited. The Proposal Form will state the time in which the Work must be completed, the amount of the Proposal Guaranty, and the date of the opening of Proposals. The Form will also include any Special Provisions or requirements that vary from or are not contained in the Standard Specifications. Also included with each Proposal Form will be a Certificate of Current Capacity, a report form entitled “Status of Contracts on Hand,” and a Non-Collusion Certificate. All papers bound with or attached to the Proposal Form are considered a part thereof and must not be detached or altered when the Proposal is submitted. The Plans, Specifications, and other documents designated in the Proposal Form will be considered a part of the Proposal whether attached or not. The prospective Bidder will be required to pay the Department the sum stated in the Notice to Contractors for each copy of the Proposal Form and each set of Plans.

102.04 Interpretation of Estimates
The quantities of work to be performed and materials to be furnished to complete the construction of The Work as shown on the Plans and contained in the Proposal are approximate and are to be used for comparing Bids. The Department does not guarantee that the quantities indicated on the Plans or given in the Proposal will be the actual construction quantities. The Contractor shall not plead deception or misunderstanding because of variation from these quantities or minor variations from the locations, or character of the Work. Payment to the Contractor will be made only for the actual quantities of work performed in accordance with the Plans and Specifications. If, when construction is completed, the actual quantities are more or less than the quantities given in the Proposal, the Unit Prices Bid in the Proposal will still prevail, except as otherwise provided in Subsection 104.03 and Subsection 109.05.

102.05 Examinations of Plans, Specifications, Special Provisions, and Site of the Work
The Bidder is expected to examine carefully the site of the proposed work, the Proposal, Plans, Specifications, Supplemental Specifications, Special Provisions, and Contract forms before submitting a Proposal. The submission of a Proposal shall be considered prima facie evidence that the Bidder has made such examination and is satisfied as to the conditions to be encountered in performing The Work and as to the requirements of the Plans, Specifications, Supplemental Specifications, Special Provisions, and Contract.

It is the obligation of the Bidders to make their own interpretation of all subsurface data that may be available as to the nature and extent of the materials to be excavated, graded, or driven through. Such information, if available and furnished to the Bidders by the Department, does not in any way guarantee the amount or nature of the material which may be encountered.

102.06 Preparation of Proposal
The Bidder shall submit its Proposal on the form furnished by the Department (GADOT). The blank spaces on the Proposal shall be filled in correctly for each Pay Item (except alternate items) and the Bidder shall write in ink the Unit Price or a Lump Sum Price as called for in the Proposal for each Pay Item listed therein. In addition, the Bidder shall also show the products of the respective Unit Prices and quantities and the total amount of the Bid by adding the amounts of all Bid Items. In the event of a discrepancy in any of the figures, the Unit Price will govern and the Bid will be recalculated.

In the case of Alternate items, Unit Prices shall be entered for only one alternate.

The Non-Collusion Certificate on the Department’s standard form included in the Proposal shall be executed.

The Certificate of Current Capacity shall be executed under oath and substantiated by the report of Status of Contracts on Hand.

The Bidder shall purchase from the GADOT Office of Contract Administration, a Proposal Form for each Letting Call Order Number in which the Bidder intends to submit a bid.

If the Proposal is made by an individual, its name and post office address shall be shown; if by a partnership, the name and post office address of one member of the partnership shall be shown; if by a corporation, the Proposal shall show the name, title and business address of the officer signing the Proposal. The Bidder’s Proposal shall be signed in ink or by Digital Signature by the individual, by one or more members of a partnership, or by one or more of the officers of a corporation, whichever is applicable. In the event of a joint venture, the Proposal shall be signed in ink or by Digital Signature by each individual involved, by each partnership through one or more of its members, or by each corporation through one or more officers of the corporation, whichever is applicable. Proposals not properly signed may be disqualified and rejected.

All bids in excess of $500,000 shall be submitted using the GADOT/AASHTO (American Association of State Highway and Transportation Officials) Electronic Bidding System (Expedite). When submitting a bid electronically, the Bidder’s Proposal shall consist of the Bid pages generated by the Expedite software including the Cover page, Bid Item pages, Disadvantaged Business Enterprise (DBE) pages (if applicable), Miscellaneous Data pages and the Signature page. By submitting a bid electronically, the Bidder acknowledges that all requirements included in the hard copy proposal, amendments, plans, Standard Specifications, and Supplemental Specifications are a part of the Bid and Contract.
The electronic bid shall be submitted by one of the following methods:

A. Hand delivery of the electronic bid to the Department at the place specified in the Notice To Contractors.
 The bid shall include the 3 ½ inch (90 mm) electronic diskette and the Bid pages described in paragraph seven, above.

B. Electronic Bid Submission via the Internet and Bid Express™.
 (Note: The Bidder shall secure an account and a valid Digital Signature from Bid Express™ (www.bidx.com) in order to use this method.

Instructions for preparing and submitting bids by these two methods are as follows:

A. Hand Delivery of Bid to the Department
 2. Electronic bids shall be prepared through the use of a computer controlled printer.
 3. The Bidder shall sign the electronic bid in the appropriate areas.
 4. When installing the Bid program the Bidder shall enter the vendor code in the following format: 2DO900. Before running the electronic bidding programs, the Bidder shall read the on-line help documentation for the Expedite software.
 5. Zero (0) is considered to be a valid bid. The Bidder shall not enter 0 in any Unit Price field unless zero is the intended bid for that item.
 6. All addenda shall be included in the electronic bid submitted.
 7. For “Joint Bids” the Bidder shall select tools from the Windows Expedite menu and mark the electronic bid as “Joint Bid”.
 8. The Bidder shall select tools and then check bid to check the bid and assure there are no errors prior to printing the electronic bid. After final printing, the Bidder may make changes to the electronic bid by indicating the changes in ink and initialing prior to submitting the bid.
 9. Once the Bidder has completed the bid and made all desired changes, the diskette, a printout of the Cover sheet, Bid Item pages, DBE pages (if applicable), Miscellaneous Data pages, and Signature page shall be submitted to the Department. In case of a discrepancy between the diskette and the hard copy of the Bid Item pages, the hard copy will govern.
 10. Electronic Bid pages shall be 8 ½ inch (216 mm) horizontal by 11 inch (279 mm) vertical. Bid information shall be placed across the horizontal width on each page.
 11. The paper used for an electronic bid shall be of sufficient quality and durability to maintain clear and concise images and to withstand frequent handling.
 12. If originally printed on continuous roll paper, electronic bids shall be separated before submitting the Bid to the Department.
 13. All computer printed characters shall be legible. The Electronic Bid pages shall be submitted in the bid envelope provided.
 14. The diskette shall be submitted in a separate sealed envelope from the Bid pages. The Bidder shall submit all electronic bids on one diskette. The envelope containing the diskette shall include the Bidders name and the Letting Call Order Numbers for which electronic bids are submitted.

B. Electronic Bid Submission Via The Internet And Bid Express™
 2. When installing the Bid program the Bidder shall enter the vendor code in the following format: 2DO900. Before running the electronic bidding programs, the Bidder shall read the on-line help documentation for the Expedite software.
 3. Zero (0) is considered to be a valid bid. The Bidder shall not enter 0 in any Unit Price field unless zero is the intended bid for that item.
 4. All addenda shall be included in the electronic bid submitted.
 5. “Joint Bids” are currently not allowed with Electronic Bid Submission via the Internet and Bid Express™
6. The Bidder shall select tools and then check bid from the Windows Expedite menu to check the bid and assure there are no errors prior to submitting the electronic bid. The electronic bid may be changed and resubmitted electronically to Bid Express™ as many times as desired prior to the advertised cutoff time specified in the Notice To Contractors. The last bid submitted for a given Letting Call Order Number prior to the cutoff time will be the Bid.

7. The Bidder shall make no claim against the Department in the event it is unable to submit its bid to Bid Express™ and/or Bid Express™ is unable to submit the bid(s) to the Department. The Department reserves the right to postpone the public reading of bids in the event of technical difficulties.

8. The Certificate of Current Capacity, Status of Contracts on Hand, and a fully executed Proposal Guaranty and Power of Attorney for each Letting Call Order Number bid, shall be submitted to the GADOT Office of Contract Administration, Room 223, in a sealed envelope by the close of business on the day prior to the Bid Opening. Each Proposal Guaranty shall be clearly and legibly marked with the Letting Call Order Number.

102.07 Rejection of Proposals

Proposals may be rejected as irregular if their consideration is conditioned upon the acceptance or rejection of other Proposals submitted by the same Bidder, if the Certificate of Current Capacity is not executed under Oath and substantiated, if a Unit Price is not shown for each Pay Item, or if they fail to comply with the EBS bidding requirements. In the case of alternate items, Unit Prices shall be entered for only one alternate. The Department reserves the right to disqualify and reject any Proposal that is not properly signed in accordance with the requisite of Subsection 102.06.

A. Collusion

Any and all Proposals will be rejected if the Department believes that collusion exists among the Bidders and no participant in such collusion may submit future Proposals for the same work. The Department reserves the right to review and to refuse to consider any Proposal if the Bidder fails to execute the Non-Collusion Certificate.

B. Single Proposals

Only one Proposal from any person, partnership, or corporation under the same or different names shall be submitted on any Project.

C. Unbalanced Bids

Proposals may be rejected if any of the Unit Prices are obviously unbalanced. The Department will decide whether any Unit Prices are unbalanced either excessively above or below a reasonable cost analysis value determined by the Engineer, particularly if these unbalanced amounts are substantial and contrary to the interest of the Department.

D. Omissions and Alterations

Proposals may be rejected as irregular if they show any omissions, alterations of form, additions or conditions not called for, unauthorized alternate bids, erasures or changes not initialed, or other irregularities.

E. Debts

The Department reserves the right to reject Proposals from Bidders who have not paid or satisfactorily settled all legal debts due on other Contracts at the time Proposals are received.

F. Technicalities

The Department reserves the right to reject any and all Proposals and to waive technicalities at any time before the Contract has been signed by the Department.

G. Non-Prequalified Bidders

Proposals submitted in excess of $500,000 by non-prequalified contractors under Rule 672-5-0.6 of the Department’s Rules and Regulations Governing the Prequalification of Prospective Bidders will be disqualified and rejected.

H. Failure to List Disadvantaged Business Enterprise (DBE) Participants

If the contract has an established DBE goal, the Department reserves the right to reject and disqualify any proposal if the bidder has failed to list bona fide DBE participants with sufficient participation to achieve at least the established goal. The Department may consider for award a proposal with less participation than the established goal if both:

- The bidder can demonstrate that no greater participation could be obtained and;
- The participation proposed by the low bidder is not substantially less than the participation proposed by the other bidders on the same contract.
102.08 Proposal Guaranty
No Proposal will be considered unless it is accompanied by a Proposal Guaranty of the character and in an amount not less than the amount indicated in the Proposal. Each bid submitted must be accompanied by a separate Proposal Guaranty. No Proposal Guaranty will be considered to cover any Bid except the one to which it is attached.

102.09 Delivery of Proposals
Each Proposal, together with the Proposal Guaranty, shall be submitted in a sealed envelope so marked as to identify its contents without being opened. Proposal forms are not transferable. Proposals will be received until the time and date set in the Notice to Contractors for opening and must be in the hands of the officials indicated by that time. Proposals received after the time established for opening of Bids will be returned unopened to the Bidder.

102.10 Withdrawal or Revision of Proposals
Any Bidder may withdraw his Proposal before the time set for opening by submitting a DEPARTMENT OF TRANSPORTATION BID PROPOSAL WITHDRAWAL FORM, completed by an authorized officer of the company, whose signature is legally binding upon said company, or by telegram, letter, or facsimile transmission received prior to opening and verified by the Department.

The Bidder may submit a Bid change by letter, telegram, or facsimile transmission either of which must be verified by the Department, and the fact that such change has been received will be announced when the Bid is opened.

Under no circumstances will the Department change a sealed bid prior to the time of opening.

102.11 Public Opening Of Proposals
Proposals will be opened and read publicly at the time and place stated in the Notice to Contractors. Bidders and their authorized agents are invited to be present.

102.12 Material Guaranty
The Department reserves the right before the Contract is awarded to require the Bidder to furnish a complete statement of the origin, composition, and manufacture of any or all materials to be used in the construction of The Work, together with samples, which may be subjected to the tests provided for in the Specifications to determine their quality and fitness for The Work.

102.13 Combination or Conditional Proposals
If the Department so elects, proposals may be issued for projects in combination and/or separately, so that bids may be submitted either on the combination or on separate units of the combination. The Department reserves the right to make awards on combination bids or separated bids to the best advantage of the Department. No combination of bids, other than those specifically set up in the proposals by the Department, will be considered. Separate contracts will be written for each individual project included in the combination.

Conditional proposals will be considered only when so stated in the special provisions.

102.14 Landscape Projects
Only qualified Landscape Contractors shall submit bids for Landscape Projects. Qualifications required are as follows:

1. The Contractor shall ensure that all nursery stock used on this project is obtained from a State certified nursery. All work done by the Contractor on this project shall be done under the direct supervision of a licensed nurseryman.
2. The Contractor shall have a certified pesticide operator’s license for the State of Georgia and shall furnish evidence of such with the bid.
3. The Contractor shall have satisfactorily executed landscape plantings of a similar nature and shall furnish with this bid a certified statement of such compliance.

Section 103—Award and Execution of Contract

103.01 Consideration of Proposals
After the Proposals are opened and read, the correct sum of the products of the quantities shown in the Proposal multiplied by the Unit Prices Bid will be considered the amount of the Bid. If there is a discrepancy between Unit Bid Prices and extensions, the Unit Bid Price shall govern in accordance with Subsection 102.06. In determining Unit Bid Prices, fractional
parts of a cent less than 1/1000 cent ($0.00001) will not be considered significant and will be dropped. The amounts will then be compared and the results of this comparison will immediately be made public. Until the final Award of the Contract, however, the right will be reserved to reject any and all Proposals, to waive technicalities, to advertise for new Proposals, or to proceed to do The Work otherwise if the interest of the Department will be promoted thereby.

If, prior to the award of a contract, the low bidder discovers that an obvious error was made in the preparation of the bid, a request to the Department may be made to allow the withdrawal of the bid without bid bond forfeiture. The decision whether or not to grant such a request rests entirely with the Department and in the discretion of the Department. If such a request is granted, the Department may, in its discretion, award the contract to the next lowest reliable bidder, readvertise, perform the work itself, or abandon the project.

103.02 Award of Contract

If a Contract is Awarded, it will be Awarded to the lowest reliable bidder whose Proposal shall have met all the prescribed requirements. The Contract will be Awarded, if at all, within 30 calendar days after the opening of the Proposals, unless a longer period is specified in the Proposal or the successful Bidder agrees in writing a longer period for the Award.

Single as well as multiple proposals for a project will be publicly opened and read. If only one proposal is received on a project and the amount of that proposal is equal to or less than the Department’s cost estimate for the project, as certified by the Chief Engineer, the cost estimate will be read.

If only one proposal is received and the amount of that proposal exceeds the Department’s cost estimate for the project, the Department may, at its option, award the contract, or reject the proposal and readvertise, perform the work itself, or abandon the project.

The Award of Contracts involving work financed entirely or in part by Federal funds is conditioned upon the concurrence of the Federal Agency involved. No bids will be negotiated or adjusted.

Award to the successful bidder will be made public through the publication of the Award Announcement. If the successful bidder fails to execute the Contract and file acceptable bonds within the period set forth in Subsection 103.07 thereby causing cancellation of the award and forfeiture of the Proposal Guaranty, the Department may award the Contract to the next lowest reliable bidder, readvertise, abandon the project, or perform the work itself.

103.03 Cancellation of Award

The Department reserves the right to cancel the Award of any Contract at any time before the execution of said Contract by all parties without any liability against the Department.

103.04 Return of Proposal Guaranty

All Proposal Guaranties may be retained until the Contract and the Contract Bond have been signed and approved. Early release of Proposal Guaranties will be considered if a request is made in writing. The Department reserves the right to return all Proposal Guaranties by registered or certified mail, and its responsibility pertaining to them will end when they are mailed.

103.05 Requirements of Contract Bonds

The penal sum of the Contract shall be defined as 120 percent of the Original Contract Amount. At the time of the execution of the Contract, and as a part thereof, the successful Bidder shall furnish Contract Bonds as specified below:

Georgia Resident Contractor

Georgia Resident Contractors shall furnish Performance and Payment Bonds as follows:

Performance bond in the full penal sum of the Contract and payment bond in an amount equal to 110 percent of the full amount of the Contract. The aggregate amount of the bonds shall be 210 percent of the full penal sum of the Contract.

Nonresident Contractor

Nonresident Contractors shall furnish Contract Bonds as follows:

Performance bond in the full penal sum of the Contract, payment bond in the full penal sum of the Contract, and tax bond in the amount of 10 percent of the full penal sum of the Contract. The aggregate amount of the bonds shall be 210 percent of the full penal sum of the Contract. The tax bond shall represent the nonresident contractor bond required by the Revenue Department in accordance with Sections 48-13-30 through 48-13-38 of the Official Code of Georgia Annotated.
The Bonds shall be made on forms furnished by the Department and executed by the Contractor and a Surety Company acceptable to the Department, authorized to do business in Georgia. In the event the Bond is made by an out of state agent, it shall be countersigned by a Georgia Resident Agent in accordance with the laws of Georgia.

103.06 Execution and Approval of Contract

The Contract shall be signed by the successful Bidder and returned within 15 calendar days after the date of the letter transmitting the Contract to the Bidder. If the Contract is not executed by Department within 30 calendar days following receipt from the Bidder of the signed Contract, unless a longer period is specified in the Proposal or the successful Bidder agrees in writing to a longer period, the Bidder shall have the right to withdraw his Bid without penalty. No Contract shall be considered as effective until it has been fully executed by all of the parties.

103.07 Failure to Execute Contract

Failure to execute the Contract and file acceptable Bonds within 15 calendar days after the date of the letter transmitting the Contract to the Bidder shall be just cause for the cancellation of the Award and forfeiture of the Proposal Guaranty which shall become the property of the Department, not as a penalty, but in liquidation of damages sustained.

If the Department readvertises the project, the Department may, at its discretion, not allow the bidder who refused to Execute the Contract to submit a Proposal on the readvertised project.

Section 104—Scope of Work

104.01 Intent of Contract

The intent of the Contract is to provide for the construction and completion in every detail of The Work described. The Contractor shall furnish all labor, materials, equipment, tools, transportation, and supplies required to complete The Work in accordance with the Plans, Specifications, and terms of the Contract.

104.02 Special Work

Should any construction or conditions not thoroughly or satisfactorily stipulated and set forth by the Standard Specifications and Supplements thereto be anticipated on any proposed work, Special Provisions for such work will be included in the Proposal and the Contract as a part thereof. Should any such Special Provisions contain requirements in conflict with the Standard Specifications and Supplements thereto, the Special Provisions will govern.

104.03 Alteration of Plans or Character of Work

A. Authority to Make Changes

The Department reserves the right to make, at any time during the progress of The Work, such increases or decreases in quantities and such alterations in the details of construction, including alterations in the grade or alignment of the road or structure or both, as may be found necessary or desirable. Such increases or decreases and alterations shall not invalidate the contract nor release the Surety, and the Contractor agrees to perform The Work as altered, the same as if it had been a part of the original Contract.

Whenever an alteration in character of Work involves a substantial change in the nature of the design or in the type of construction or materially increases or decreases the cost of performance, a Supplemental Agreement acceptable to both parties shall be executed before work is started on such alteration, except that in the absence of a Supplemental Agreement acceptable to both parties, the Engineer may direct that the Work be done by Force Account. Any Force Account Agreement shall be in writing, specifying the terms of payment, signed by the State Construction Engineer and agreed to in writing by the Contractor.

All work shall be performed as directed and in accordance with the Specifications.

B. No Waiver of Contract

Changes made by the Engineer will not be considered to waive any of the provisions of the Contract, nor may the Contractor make any claim for loss of anticipated profits because of the changes, or by reason of any variation between the approximate quantities and the quantities of work as done.
C. Certain Items Not Limited

The quantities of all types of excavation, embankment when a Pay Item, perforated underdrain pipe, ditch paving, subgrade treatment materials, stabilizers, extra depth of concrete including its reinforcement, piling, guard rail, asphaltic concrete leveling, erosion control items, traffic control items, slope paving, bridge rip-rap, filter fabric, or any other items that cannot conveniently be determined accurately until after the Work is in progress, and any increase or decrease in these quantities, whatever the amount, will be considered normal overruns or underruns. The Engineer has unlimited authority to increase or decrease these quantities.

D. Changes in Other Quantities

The Engineer may increase or decrease the quantities of any and all other Pay Items, without changing the Unit Prices Bid, provided that the sum total of such changes, exclusive of changes in those items covered in Subsection 104.03.C, does not increase or decrease the original Contract amount by more than 20 percent.

E. Changes to Original Length or Cost of Project

The Engineer has the authority to extend or reduce the total length or total cost of the Project by as much as 20 percent. The provisions of Subsection 104.03.C, covering overruns or underruns of certain Pay Items apply also to overruns or underruns in quantities resulting from an extension or reduction in the length of the Project. If the Project is extended in length, an Extension Agreement will be executed. If the Extension Agreement calls for Pay Items already in the Contract, the Unit Prices for such Items will not be changed except as provided in Subsections 104.03.A, 104.03.B and 104.03.D. New work for which no Unit Prices have been Bid will be paid for as Extra Work as defined in Subsection 104.04.

F. Railroad Grade Separation Structures

Changes in design or construction features of railroad grade separation structures must be submitted to the Engineer of the railroad for approval. The Department will diligently expedite all correspondence with the railroad officials, but will not be responsible to the Contractor for any delay to the Contractor’s work resulting from delay in securing the necessary approval. The Engineer will give due consideration to such delays in determining the time for completion of the Contract.

104.04 Extra Work

The Contractor shall perform unforeseen work, for which there is no price included in the Contract, whenever it is necessary or desirable in order to complete fully the work as contemplated. Such work shall be performed in accordance with the Specifications and as directed, and will be paid for as provided in Subsection 109.05.

104.05 Maintenance During Construction

A. Contractor Maintenance

The Contractor shall maintain the project from the beginning of construction operations until maintenance acceptance or final acceptance of the project, except as otherwise provided in Subsection 104.05.B. This maintenance shall constitute continuous and effective work prosecuted day by day with adequate equipment and forces to the end that the roadway or structures are kept in satisfactory condition at all times. This includes signing, pavement markings, and traffic control devices as outlined in the Manual on Uniform Traffic Control Devices, Section 150, Project Plans and Special Provisions for Traffic Control. All existing guard rail, signs, pavement, pavement markings, bridge handrail, and other safety appurtenances shall also be maintained in a safe and satisfactory condition.

The Contractor shall not allow vegetative growth at any time to obstruct signs, delineation, traffic movements, or sight distance. The Contractor shall, at intervals not to exceed 6 months, clean up and remove litter and debris; remove all weeds from around guard rail, barrier, poles, standards, utility facilities, and other structures; and cut or trim trees, bushes, or tall grass. These requirements shall apply to all areas within the project termini and lateral limits.

For projects or segments of projects with staging which requires that traffic be maintained through the project limits during the prosecution of the Work, the Contractor shall assume all responsibility for damage to the work until either maintenance acceptance or final acceptance of the section or project.

On projects constructed with traffic relocated to an alternate roadway or projects constructed on new location, the Contractor shall be responsible for all damage to the work until the Department directs that the project be opened to traffic. At that time the Contractor will no longer be responsible for traffic related damage to the work other than that attributable to the Contractor’s actions or inadequate construction. The Department may direct, however, that traffic-related damage be repaired at existing unit prices or as extra work as provided for in Subsection 104.04.
All costs for maintenance of traffic shall be as provided in Section 150. All other maintenance costs during construction and before the project is accepted will be included in the Contract Unit Prices and the Contractor will not be paid an additional amount.

B. Maintenance of Traffic During Suspension of Work

During any suspension of work ordered by the Engineer, the Contractor shall make passable and shall open to traffic such portions of the Project and temporary roadways, special detours, or portions thereof as may be agreed upon between the Contractor and the Engineer for the temporary accommodation of necessary traffic during the anticipated period of suspension. Thereafter, and until issuance of an order for the resumption of construction operations, the maintenance of the temporary route or line of travel agreed upon will be by and at the expense of the Department. When work is resumed, the Contractor shall replace or renew any work or materials lost or damaged because of such temporary use of the Project; shall remove to the extent directed by the Engineer any work or materials used in the temporary maintenance thereof by the Department; and shall complete the Project in every respect as though its prosecution had been continuous and without interferences. All additional work caused by such suspensions, for reasons beyond the control of the Contractor, will be paid for by the Department at Contract prices or by Force Account.

C. Maintenance Directed By The Engineer

If the Engineer directs special maintenance for the benefit of the traveling public, the Contractor will be paid on the basis of Unit Prices or under Subsection 104.04. The Engineer will be the sole judge of work to be classed as special maintenance.

D. Detours Outside Right-of-Way

The Department will be responsible for the construction and maintenance of detours outside the right-of-way except where otherwise provided for in the Contract.

E. Special Detours

When the Proposal contains Bid Items which provide for construction, maintenance, and removal of detour bridges or roads, the payment for such items shall cover all cost of constructing and maintaining such detour or detours, including the construction of any and all temporary bridges and accessory features and the removal of the same, and obliteraton of the detour road, except as otherwise provided in Subsection 104.05.B. Right-of-Way for temporary highways or bridges called for under this Subsection will be furnished by the Department.

F. Delays to Traffic

Two-way traffic shall be maintained at all times, unless otherwise approved. The Contractor shall not stop traffic without permission of the Engineer.

When one-way traffic is approved, the Contractor shall provide the necessary flagmen to direct such traffic. When specified in the Proposal, the Contractor shall furnish pilot vehicles.

G. Overhead Sign Lighting

Maintenance of overhead sign lighting within major construction or reconstruction Projects may be performed by the Contractor at no additional cost to the Department. All required repairs shall be made within 48 hours.

In the event such repairs are not made within the specified time, State Forces shall perform them and the cost thereof deducted from any monies due or which may become due the Contractor.

104.06 Right in and Use of Materials Found on the Project

Materials that have salvage value, as determined by the Engineer, shall remain the property of the Department and shall be utilized as directed by the Engineer. The Contractor, with the approval of the Engineer, may use on the Project such materials as may be found on the Project, and will be paid at the bid price for removal of the material. If the materials, after processing, are suitable for other items of work, the Contractor will also be paid for those items in which the material is incorporated except as otherwise provided for in these specifications. He shall replace at his own expense with other acceptable material all of that portion of the materials so removed and used which was needed for use in the embankments, backfills, approaches, or otherwise, including proper allowance for swell when applicable. When existing materials found on the Project, such as crushed stone base, are to be reused directly in the work, the Contractor will not be paid the full Contract Price for the Item, but will be paid at the Contract Price minus the equivalent cost of new materials. The Contractor shall not excavate or remove any material without written authorization from the Engineer. The Contractor shall not make any claim upon the State for damages or loss of anticipated profits because of the expected use of any materials indicated on the Plans as existing and later found to be nonexistent or unfit for use. The Department does not warrant or guarantee the existence, quality, or quantity of
materials indicated as existing on the Plans. If any sales tax is involved in materials found on the right-of-way and sold by the Contractor, the Contractor will be responsible for paying same.

Unless otherwise provided, the material from any existing old structure may be used temporarily by the Contractor in the erection of the new structure. Such material shall not be cut or otherwise damaged except with the approval of the Engineer.

Any material used by the Contractor and damaged during use shall be replaced at the Contractor’s expense.

104.07 Final Cleaning Up

Before final acceptance, the highway borrow pits and all ground occupied by the Contractor in connection with the Work shall be cleaned of all rubbish, excess materials, temporary structures, and equipment. All weeds and high grass shall be cut and disposed of. The right-of-way shall be mown when directed by the Engineer in accordance with Subsection 700.3.07. All parts of the Work shall be left in an acceptable condition.

The disposal adjacent to the right-of-way of materials cleaned from the right-of-way will not be permitted, even with the permission of the property owner. Temporary buildings or other structures built for the Contractor’s use and located within view of the right-of-way, constituting a hazard or making an unsightly appearance, shall be removed and disposed of as directed.

On specialty-type Contracts where the entire Work consists of such specialty items as resurfacing, fencing, stripe painting, signing, highway lighting, and the like, the Contractor will not be required to clean up the right-of-way beyond the limits of construction, unless such clean up work is included in the Contract as a Pay Item. However, he shall remove all of his own property and leave the remaining right-of-way in a condition at least as good as it was before The Work was begun.

As to compliance or non-compliance with these provisions, as well as the obligations of the Contractor in relation thereto, the decision of the Chief Engineer shall be final and conclusive.

104.08 Value Engineering Proposals

A. Applicability

This Section applies to those cost reduction proposals initiated and developed by the Contractor for changing the Plans, Specifications, or other requirements of the Contract. These provisions do not apply unless the proposal submitted by the Contractor is specifically identified as being presented as a Value Engineering Proposal (VEP) and the Contract amount is in excess of $50,000.

The cost-reduction Proposals contemplated are those which would require a Supplemental Agreement modifying the Contract and would produce a savings to the Department by providing less costly items or methods than those specified in the Contract without impairing essential functions and characteristics including, but not limited to: service life, reliability, economy of operations, ease of maintenance, and safety, both during and after construction.

These provisions are applicable to the prime Contract and include all subcontracts.

B. Documentation

Value Engineering Proposals (VEP) will be processed in the same manner as prescribed for any other alterations of the Contract requiring a Supplemental Agreement.

As a minimum, the following information shall be submitted by the Contractor with each Value Engineering Proposal:

1. A description of the difference between the existing Contract requirement and the proposed change and the comparative advantages and disadvantages of each.
2. An itemization of the requirements of the Contract which must be changed and a recommendation of how to make such change (e.g., a suggested revision).
3. A detailed estimate of the cost of performing the work under the Contract and under the proposed change.
4. A prediction of any effects the proposed changes would have on other costs to the Department, including cost of related items and costs of maintenance and operation.
5. A statement of the time by which an agreement for adoption of the proposed changes must be executed in order to obtain the maximum cost reduction during the remainder of the Contract, noting any effect on the Contract completion time or delivery schedule.
6. The dates of any previous or concurrent submissions of the Proposal, the Contract number(s) under which submitted, and any previous actions by the Department, if known.
NOTE: If a VEP is similar to a change in the Plans or Specifications for the Project that is under consideration by the Department at the time said VEP is submitted, or if such VEP is based upon or similar to Standard Specifications, Special Provisions, or Standard Plans adopted by the Department after the advertisement of the Contract, the Engineer will not accept such proposal and the Department reserves the right to make such changes without compensation to the Contractor under the provisions of this Section.

Proposed changes in the basic design of a bridge (i.e., concrete to steel or vice versa), or of a pavement type (i.e., rigid to flexible or vice versa), or in drainage structures (i.e., concrete to steel or vice versa), will not be considered as an acceptable Value Engineering Proposal.

C. Submission

Value Engineering Proposals submitted by the Contractor will be processed as expeditiously as possible; however, the Department will not be liable for any delay in acting upon proposals submitted. The Contractor may withdraw, wholly or in part, any VEP not accepted by the Department within the time specified in Subsection 104.08.B.5.

D. Acceptance

The decision of the Engineer as to the acceptance or rejection of a VEP shall be final and shall not be subject to the provisions of Subsection 105.13, “Claims for Adjustments and Disputes.”

The Engineer may accept, in whole or in part, before work has been completed, any VEP submitted pursuant to this Subsection and not withdrawn by the Contractor by giving the Contractor written notice thereof reciting acceptance under this Subsection.

E. Notification

The Contractor will be notified in writing of the Department’s decision or rejection of each VEP submitted under these provisions. If a proposal is accepted, the necessary Contract modifications will be effected by execution of a Supplemental Agreement. Unless and until a VEP is effected by such Supplemental Agreement, the Contractor shall remain obligated to perform The Work in accordance with the terms of the existing Contract.

Supplemental Agreements made as a result of this Subsection will state that they are made pursuant to it.

F. Sharing

In the event a VEP submitted by the Contractor under this Subsection is accepted, the Supplemental Agreement effecting the necessary modifications will establish the net savings agreed upon and will provide for an adjustment in Contract Prices that will divide the net savings between the Contractor and the Department in accordance with the following provisions:

1. Division of net savings in Contract Price Adjustment:
 - 50 percent of the net savings to the Contractor.
 - 50 percent of the net savings to the Department.

2. The Department reserves the right to include in the agreement any conditions it deems appropriate for consideration, approval, and implementation of the VEP. The Contractor’s 50 percent of the net savings shall constitute the full compensation for effecting all changes pursuant to the agreement.

Development costs incurred by the Contractor and review costs incurred by the Department shall not be considered in computing the net savings of the VEP.

3. Restrictions and Disclosures: Upon acceptance and implementation of any VEP, any restrictions imposed by the Contractor on its use or disclosure of the information submitted shall be void.

The Department shall thereafter have the right to use, duplicate, and disclose, in whole or in any part, all data necessary in the utilization of the proposal.
Section 105—Control of Work

105.01 Authority of the Engineer
The Engineer will decide all questions that may arise as to the quality and acceptability of materials furnished, work performed, and the rate of progress of The Work; the interpretation of the Plans and Specifications, and all questions as to the acceptable fulfillment of the Contract on the part of the Contractor. The Engineer will determine the quantities of the several kinds of work performed and materials furnished which are to be paid for under the Contract and his determination shall be final.

The Engineer will have the authority to suspend The Work wholly or in part due to the failure of the Contractor to correct conditions unsafe for the workmen or general public; for failure to carry out provisions of the Contract, or for failure to carry out orders; for such periods as he may deem necessary due to unsuitable weather; for conditions considered unsuitable for the prosecution of The Work; or for any other condition or reason deemed to be in the public interest.

The Contractor may request and will receive written instructions from the Engineer upon any important items.

After the Contract has been executed, and before work begins, the Engineer may designate a time and place to hold a Preconstruction Conference with the Contractor. At such time, the Contractor shall furnish the Engineer with a Progress Schedule as provided in Subsection 108.03 unless this schedule has been specifically exempted by Special Provision. The Contractor will also be given a decision on any alternate Traffic Control Plan that he may have previously submitted.

Any matters pertaining to order of work, interpretation of Plans and Specifications, traffic control, utility adjustments, or others, may be discussed at the Preconstruction Conference.

105.02 Plans and Working Drawings
Plans will show details of all structures, lines, grades, typical cross sections of the roadway, location and design of all structures, and a summary of Items appearing in the Proposal.

The Plans will be supplemented by such working drawings as are necessary to adequately control the Work. Working drawings for structures shall be furnished by the Contractor and shall consist of such detailed Plans as may be required to adequately control The Work and which are not included in the Plans furnished by the Department. They shall include stress sheets, shop drawings, erection plans, falsework plans, cofferdam plans, bending diagrams for reinforcing steel or any other supplementary plans, or similar data required of the Contractor. All working drawings must be approved by the Engineer and such approval shall not operate to relieve the Contractor of any responsibility under the contract for the successful completion of The Work. The Contract Bid Prices shall include the cost of furnishing all working drawings.

105.03 Conformity with Plans and Specifications
All Work performed and all materials furnished shall be in reasonably close conformity with the lines, grades, cross sections, dimensions, and material requirements, including tolerances, shown on the Plans or indicated in the Specifications.

Plan dimensions and contract Specification values are to be considered as the target values to be striving for and complied with as the design values from which any deviations are allowed. It is the intent of the Specifications that the materials and workmanship shall be uniform in character and shall conform as nearly as realistically possible to the prescribed target value or to the middle portion of the tolerance range. The purpose of the tolerance range is to accommodate occasional minor variations from the median zone that are unavoidable for practical reasons. When either a maximum and minimum value or both are specified, the production and processing of the material and the performance of the work shall be so controlled that material or work will not be preponderantly of borderline quality or dimension.

In the event the Engineer finds the materials or the finished product in which the materials are used not within reasonably close conformity with the Plans and Specifications, but that reasonably acceptable work has been produced, the Engineer shall then make a determination if the work shall be accepted and remain in place. In this event, except in cases where the appropriate price adjustments are provided for in the Specifications covering the materials and/or the finished product, a Supplemental Agreement will be executed documenting the basis of acceptance that will provide for an appropriate price adjustment in the Contract Price for such work or materials as the Engineer deems necessary to conform to his determination based on engineering judgement.

In the event the Engineer finds the materials or the finished product in which the materials are used or the work performed are not in reasonably close conformity with the Plans and Specifications, and have resulted in an inferior or unsatisfactory product, the work or materials shall be removed and replaced or otherwise corrected by and at the expense of the Contractor.
105.04 Coordination of Plans, Specifications, Supplemental Specifications, and Special Provisions

These Standard Specifications, the Supplemental Specifications, the Plans, Special Provisions, and all supplementary documents are essential parts of the Contract, and a requirement occurring in one is as binding as though occurring in all. They are intended to be complementary and to describe and provide for a complete work.

In cases of discrepancy, the governing descending order will be as follows:

2. Project Plans including Special Plan Details
3. Supplemental Specifications
4. Standard Plans including Standard Construction Details
5. Standard Specifications

Calculated dimensions will govern over scaled dimensions.

The Contractor shall take no advantage of any apparent error or omission in the Plans or Specifications. In the event the Contractor discovers such an error or omission, he shall immediately notify the Engineer. The Engineer will then make such corrections and interpretations as may be deemed necessary for fulfilling the intent of the Plans and Specifications.

A. Specifications of Other Organizations

When work is specified to be done or when materials are to be furnished according to the published specifications of organizations other than the Department, the latest specifications published by those organizations at the time bids are received shall apply unless otherwise specified.

AASHTO Interim Specifications and ASTM Tentative Specifications will be considered effective on date of issue.

B. Item Numbers

The first three digits of any Item Number in the itemized Proposal designates the Specification section under which the Item shall be constructed.

105.05 Cooperation by Contractor

The Contractor will be supplied with a minimum of two sets of approved Plans and Contract assemblies including Special Provisions, one set of which the Contractor shall keep available on The Work at all times.

The Contractor shall give the Work the constant attention necessary to facilitate the progress thereof, and shall cooperate with the Engineer, Inspectors, and other Contractors in every way possible.

The Contractor shall have on The Work at all times, as his agent, a competent Superintendent, capable of reading and thoroughly understanding the Plans and Specifications, and thoroughly experienced in the type of work being performed, who shall receive instructions from the Engineer or his authorized representatives. The Superintendent shall have full authority to execute orders or directions of the Engineer without delay and to promptly supply such materials, equipment, tools, labor, and incidentals as may be required. Such superintendence shall be furnished irrespective of the amount of work sublet.

The Superintendent shall notify the Engineer prior to starting any Pay Item Work. The Prime Contractor shall coordinate and be responsible to the Engineer for all activities of subcontractors.

105.06 Cooperation with Utilities

The Department will notify all utility companies, all pipeline owners, all railroad companies, or other parties affected of Award of the Contract, giving the name and address of the Contractor, and will assist the Contractor in arranging for all necessary adjustments of the public or private utility fixtures, pipe lines, and other appurtenances within or adjacent to the limits of construction.

Water lines, gas lines, wire lines, service connections, water and gas meter boxes, water and gas valve boxes, light standards, cableways, signals, railroad facilities, and all other utility appurtenances within the limits of the proposed construction which are to be relocated or adjusted are to be moved by the owners at their expense, except as otherwise provided for in the Special Provisions or as noted on the Plans.

It is understood and agreed that the Contractor has considered in his bid all of the permanent and temporary utility appurtenances in their present location or relocated positions, both as shown on the Plans, and that no additional compensation will be allowed for any delays, inconvenience, or damage sustained by him due to any interference from said
utility appurtenances or the operation of moving them. Delays and interruptions to the controlling Item or Items of The Work are covered in Subsection 107.21.G.

It shall be each utility owner’s responsibility to plan with the Contractor a schedule of operations which will clearly set forth at which stage of the Contractor’s operations the utility owner will be required to perform his removal and relocation work.

105.07 Cooperation Between Contractors

The Department reserves the right at any time to Contract for and perform other or additional work on or near The Work covered by the Contract.

When separate Contracts are let within the limits of any one Project, each contractor shall conduct his work so as not to interfere with or hinder the progress or completion of The Work being performed by other Contractors. Contractors working on the same Project shall cooperate with each other.

Each Contractor involved shall assume all liability, financial or otherwise, in connection with his Contract and shall protect and save harmless the Department from any and all damages or claims that may arise because of inconvenience, delay, or loss experienced by him because of the presence and operations of other Contractors working within the limits of the same Project.

The Contractor shall arrange his work and shall place and dispose of the materials being used so as not to interfere with the operations of the other contractors within the limits of the same Project. He shall join his work with that of the others in an acceptable manner and shall perform it in proper sequence to that of the others. At the request of the Structure Contractor, the Engineer will designate an area within the right-of-way, adjacent to each structure, to be reserved for use by the Structure Contractor for Storage of Equipment and Materials necessary to construct the particular structure. So long as he occupies this area, the Structure Contractor shall be responsible for its maintenance. The Structure Contractor must relinquish this area, however, as it becomes practical to utilize completed portions of the structure.

105.08 Construction Stakes, Lines and Grades

(Subsection 105.08 Omitted)

105.09 Authority and Duties of the Resident Engineer

The Resident Engineer, regardless of his administrative title, is the Engineer designated by the Department to be the direct representative of the Chief Engineer. The Resident Engineer has immediate charge of the engineering details of each construction Project, and is responsible for the administration and construction of the Project. Such administration includes the designation of subordinates to represent him and make routine decisions. The Resident Engineer has the authority to reject defective material and to suspend any work that is being improperly performed.

105.10 Duties of the Inspector

Inspectors employed by the Department are authorized to inspect all work done and materials furnished. Such inspection may extend to all or any part of The Work and to the preparation, fabrication, or manufacture of the materials to be used. The Inspector will not be authorized to alter or waive the provisions of the Contract. The Inspector will not be authorized to issue instructions contrary to the Plans and Specifications or to act as foreman for the Contractor.

105.11 Inspection of the Work

All materials and each part of the detail of The Work shall be subject to inspection by the Engineer.

The Engineer shall be allowed access to all parts of The Work and shall be furnished with such information and assistance by the Contractor as is required to make a complete and detailed Inspection.

Upon the Engineer’s request, the Contractor, at any time before acceptance of The Work, shall remove or uncover such portions of the finished work as may be directed. After examination, the Contractor shall restore said portions of The Work to the standard required by the Specifications. Should The Work thus exposed or examined prove acceptable, the uncovering or removing and the replacing of the covering or making good of the parts removed will be paid for as Extra Work; but should the work so exposed or examined prove unacceptable, the uncovering, or removing and the replacing of the covering or making good of the parts removed will be at the Contractor’s expense.

Any work done or materials used without supervision or inspection by an authorized Department representative may be ordered removed and replaced at the Contractor’s expense, unless the Department representative failed to inspect after having been given reasonable notice in writing that The Work was to be performed.

When any unit of government or political subdivision or any railroad corporation is to pay a portion of the cost of The Work covered by the Contract, its respective representatives shall have the right to inspect The Work. Such inspection shall in no
sense make any unit of government or political subdivision or any railroad corporation a party to the Contract and shall in no way interfere with the rights of either party hereunder.

105.12 Removal of Unacceptable and Unauthorized Work
All work that does not conform to the requirements of the Contract will be considered unacceptable unless otherwise determined acceptable under the provisions in Subsection 105.03.

Unacceptable work, whether the result of poor workmanship, use of defective materials, damage through carelessness, or any other cause found to exist prior to the Final Acceptance Of The Work, shall be removed immediately and replaced in an acceptable manner.

Except as elsewhere noted, no work shall be done without lines and grades having been given by the Engineer. Work done contrary to the instructions of the Engineer, work done beyond the lines shown on the Plans or as given, except as herein specified, or any Extra Work done without authority will be considered as unauthorized and will not be paid for under the provisions of the Contract. Work so done may be ordered removed or replaced at the Contractor’s expense.

Upon failure on the part of the Contractor to comply forthwith with any order of the Engineer made under the provisions of this section, the Engineer will have authority to cause unacceptable work to be remedied or removed and replaced and to cause unauthorized work to be removed, and to deduct the costs from any monies due or to become due the Contractor.

105.13 Claims for Adjustments and Disputes
Whenever the Contractor believes that it is or will be entitled to additional compensation, whether due to delay, extra work, breach of contract, or other causes, the Contractor shall follow the procedures set forth in this Sub-Section.

A. Claims For Acceleration
 The Department shall have no liability for any constructive acceleration. If the Department gives express written direction for the Contractor to accelerate its effort, then both parties shall execute a Supplemental Agreement as provided in Subsection 104.03.

B. Claims For Delay and All Other Claims Except Acceleration
 1. The Department shall have no liability for damages beyond those items which are specifically payable under this Sub-Section.
 2. The Department will be liable only for those delay damages caused by or arising from acts or omissions on the part of the Department which violate legal or contractual duties owed to the Contractor by the Department. The Contractor assumes the risk of damages from all other causes of delay.
 3. The parties recognize that delays caused by or arising from right of way problems, defects in plans or design, redesign, changes in the Work by the Department, the actions of suppliers or other Contractors, the shop-drawing approval process, injunctions, court orders and other such events, forces or factors are commonly experienced in highway construction work. Such delays shall not constitute breaches of the Contract. However, such delays may constitute a basis for a claim for delay damages, if found to be in accordance with Subsection 105.13.B.2 above and other provisions of the Contract, and/or a request for a time extension.
 4. The term "delay" shall be deemed to mean any event, action, force or factor which extends the Contractor’s time of performance. This Subsection is intended to cover all such events, actions, forces or factors, whether they be styled “delay,” “disruption,” “interference,” “impedance,” “hindrance,” “impact” or otherwise.
 5. Compliance with the provisions of this Subsection will be an essential condition precedent to any recovery of damages by the Contractor.
 6. The following items, and only the following items, may be recoverable by the Contractor as “damages:
 a. Additional direct hourly rates paid to employees for job site labor, including payroll taxes, welfare, insurance, benefits and all other labor burdens.
 b. Documented additional costs for materials.
 c. Additional equipment costs, as determined in accordance with this Sub-Section.
 d. Documented costs of extended job-site overhead. (Not applicable for claims other than delay claims.)
 e. An additional 15 percent of the total of Subsections 105.13.B.6. a, b, c and d, which sum includes home office overhead and profit.
 f. Bond costs.
 g. Subcontractor costs, as determined by, and limited to, those items identified as payable under Subsection 105.13.B.6. a, b, c, d, e, and f.
7. For purposes of computing additional equipment costs, rates used shall be based on the Contractor's actual experienced cost for each piece of equipment. These rates shall be supported by equipment cost records furnished by the Contractor. In no case will equipment rates be allowed in excess of those determined utilizing the "Rental Rate Blue Book," with the appropriate adjustments noted in Subsection 109.05.

8. The parties agree that, in any claim for damages, the Department will have no liability for the following items of damages or expense:
 a. Profit, in excess of that provided herein.
 b. Loss of profit.
 d. Home office overhead in excess of that provided herein.
 e. Consequential damages, including but not limited to loss of bonding capacity, loss of bidding opportunities and insolvency.
 f. Indirect costs or expenses of any nature.
 g. Attorneys fees, claims preparation expenses, or costs of litigation.
 h. Interest of any nature.

9. NOTICE OF POTENTIAL CLAIM: In any case in which the Contractor believes that it will be entitled to additional compensation, the Contractor shall notify the Engineer in writing of its intent to claim such additional compensation. Such notice shall be given in order that the Department can assess the situation, make an initial determination as to who is responsible, and institute appropriate changes or procedures to resolve the matter.
 a. Claims for Delay - The Department shall have no liability for any delay which occurred more than one week prior to the filing of such written notice. Failure of the Contractor to give such written notice in a timely fashion will be grounds for denial of the claim.
 b. All Other Claims Except Acceleration and Delay - If the Contractor does not file such written notice before beginning the work out of which such claim arises, then the Contractor hereby agrees that it shall have waived any additional compensation for that work and the Contractor shall have no claim thereto.

10. RECORDS: After filing a "Notice of Potential Claim", the Contractor shall keep daily records of all labor, material, and equipment costs incurred for operations affected. These daily records shall identify each operation affected and the specific locations where work is affected. The Department will also keep records of all labor, material, and equipment used on operations affected. At the time and place, as designated by the Engineer, on Monday, or the first work day, of each week following the date of filing a "Notice of Potential Claim", the Contractor shall meet with the Department's representative and present the daily records for the preceding week. If the Contractor's records indicate costs greater than those kept by the Department, the Department will present its records to the Contractor. The Contractor shall notify the Engineer in writing within three (3) work days of any inaccuracies noted in, or disagreements with, the Department's records. Refusal or repeated failure by the Contractor to attend these weekly meetings and present its records will constitute a waiver by the Contractor of any objections as to the accuracy of the Department's records. When the Contractor makes an objection as to the accuracy of the Department's records, the Engineer shall review the matter, and correct any inaccuracies he finds in the Department's records. For purposes of computing damages, the Department's records will control.

 In the event the Contractor wishes to contest the accuracy of the Department's records, it may file a petition pursuant to Rule 672-1-.05 of the Official Rules and Regulations of the Department of Transportation. The decision of the Engineer, or, if contested, the decision of the Agency, will be final and binding upon the parties as to any objections to the accuracy of the Department's records, subject to the Contractor's right to judicial review under O.C.G.A. Section 50-13-19.

11. On a weekly basis after filing a "Notice of Potential Claim" for delay damages, the Contractor shall prepare and submit to the Engineer written reports providing the following information:
 a. Potential effect to the schedule caused by the delay.
 b. Identification of all operations that have been delayed, or are to be delayed.
 c. Explanation of how the Department's act or omission delayed each operation, and estimation of how much time is required to complete the project.
 d. Itemization of all extra costs being incurred, including:
 1) An explanation as to how those extra costs relate to the delay and how they are being calculated and measured.
 2) Identification of all project employees for whom costs are being compiled.
 3) Identification of all manufacturer's numbers of all items of equipment for which costs are being compiled.
C. Required Contents of Claims

All claims shall be submitted in writing, and shall be sufficient in detail to enable the Engineer to ascertain the basis and the amount of each claim. The claim submission shall include six (6) copies. All information submitted to the Department under this Subsection will be used exclusively for analyzing the claim, resolving the claim or any litigation which might arise from the claim. At a minimum, the following information shall be provided:

1. A description of the operations that were delayed, the reasons for the delay, how they were delayed, including the report of all scheduling experts or other consultants, if any. (Not applicable for claims other than delay claims)
2. An as-built chart, CPM scheme or other diagram depicting in graphic form how the operations were adversely affected. (Not applicable for claims other than delay claims except where an extension of time is sought)
3. A detailed factual statement of the claim providing all necessary dates, locations and items of work affected by the claim.
4. The date on which actions resulting in the claim occurred or conditions resulting in the claim became evident.
5. A copy of the "Notice of Potential Claim" filed for the specific claim by the Contractor.
6. The name, function, and activity of each Department official, or employee, involved in, or knowledgeable about facts that gave rise to such claim.
7. The name, function, and activity of each Contractor or Subcontractor official, or employee, involved in, or knowledgeable about facts that gave rise to such claim.
8. The identification of any pertinent documents, and the substance of any material oral communication relating to such claim.
9. A statement as to whether the additional compensation or extension of time sought is based on the provisions of the Contract or an alleged breach of Contract.
10. The specific provisions of the Contract which support the claim, and a statement of the reasons why such provisions support the claim.
11. The amount of additional compensation sought and a break-down of that amount into the categories specified as payable under Subsection 105.13.B.6, above.
12. If an extension of time is also sought, the specific days for which it is sought and the basis for such request.

D. Required Certification of Claims

When submitting the claim, the Contractor shall certify in writing, under oath in accordance with the formalities required by Georgia law, as to the following:

1. That the claim is made in good faith.
2. That supportive data are accurate and complete to the Contractor's best knowledge and belief that the amount of the claim accurately reflects what the Contractor in good faith believes to be the Department's liability.

The Contractor shall use the CERTIFICATE OF CLAIM form, which can be obtained from the Department, in complying with these requirements.

E. Auditing of Claims

All claims filed against the Department shall be subject to audit at any time following the filing of such claim, whether or not such claim is part of a suit pending in the courts of this State. The audit may be performed by employees of the Department or by an independent auditor on behalf of the Department. The audit may begin on ten days notice to the Contractor, Subcontractor, or Supplier. The Contractor, Subcontractor, or Supplier shall make a good faith effort to cooperate with the auditors. Failure to cooperate with the auditor shall constitute a waiver by the Contractor of the claim in its entirety. Failure of the Contractor, Subcontractor, or Supplier to maintain and retain sufficient records to allow the Department's auditor to verify the claim shall constitute a waiver of that portion of such claim that cannot be verified and shall bar recovery thereunder. If the claim is part of a suit pending in a court of this state or if the claim becomes a part of a suit in a court of this state, the questions of whether the Contractor has cooperated with the auditor or failed to maintain and retain sufficient records to allow the auditor to verify the claim shall be questions for determination by the judge without the assistance of a jury.

Without limiting the generality of the foregoing, and as a minimum, the auditors shall have available to them the following documents:

1. Daily time sheets and foreman's daily reports.
2. Project payroll register.
3. Profit and loss statements for the Project.
4. Payroll tax returns.
5. Material invoices, purchase orders, and all material and supply acquisition contracts for the Project.
6. Material cost distribution worksheet for the Project.
7. Equipment records (list of company equipment, rates, etc.)
8. Vendor rental agreements, and subcontractor invoices.
9. Subcontractor payment certificates.
10. Canceled checks (payroll and vendors) for the Project.
12. Job payroll ledger for the Project.
13. General ledger, general journal, (if used) and all subsidiary ledgers and journals together with all supporting documentation pertinent to entries made in these ledgers and journals.
15. Certified financial statements for all years reflecting the operations on this project.
16. Depreciation records on all company equipment whether such records are maintained by the company involved, its accountant, or others.
17. If a source other than depreciation records is used to develop costs for the Contractor's internal purposes in establishing the actual cost of owning and operating equipment, all such other source documents.
18. All documents which relate to each and every claim together with all documents which support the amount of damages as to each claim.
19. Worksheets used to prepare the claim establishing the cost components for items of the claim including, but not limited to, labor, benefits and insurance, materials, equipment, subcontractors, and all documents which establish the time periods, individuals involved, the hours and the rates for the individuals.

F. Mediation

After compliance by the Contractor with parts B., C., D. and E. of Subsection 105.13 and if the Contractor's claim has been disallowed in whole or in part, then the Contractor may, within 30 calendar days from receipt of the ruling of the Engineer, make a written request to the Engineer that the claim or claims be referred to mediation.

If requested in accordance with this specification, mediation shall be granted by the Department. In which case, within 30 days of receipt by the Department of the Contractor's request for mediation, the Contractor and the Department will meet to select a mediator. The mediator will then schedule the mediation at a place, time, and earliest date agreeable to the Contractor and the Department.

The Contractor and the Department mutually agree that mediation shall be a condition precedent to the filing of any lawsuit concerning claims or alleged breaches of the Contract. The costs and expenses of the mediator, selected by mutual agreement of the parties, will be divided equally between the Department and the Contractor. Each party to the mediation shall bear its own costs of preparing for and participating in the mediation.

G. Remedies Exclusive

In the event any legal action is instituted against the Department by the Contractor on account of any claim for additional compensation, whether on account of delay, acceleration, breach of contract, claimed extra work, or otherwise, the Contractor agrees that the Department's liability will be limited to those items which are specifically identified as payable in this Sub-Section.

105.14 Maintenance During Construction

The Contractor shall maintain the project during construction and until the Project is accepted. This maintenance shall constitute the continuous and effective work prosecuted day by day, with adequate equipment and forces to the end that all areas of the project are kept in satisfactory condition at all times.

The Contractor’s area of responsibility for maintenance is confined to the physical construction limits plus any areas affected by the Contractor’s activities. Once maintenance acceptance or final acceptance has been made, the Contractor is no longer responsible for damage to The Work other than that attributable to the Contractor’s actions or inadequate construction.

In case of separate contracts, each Contractor shall be responsible for any damage to the completed work of others caused by his actions or negligence. Where the work of one Contractor has been accepted by the Department, the Contractor performing subsequent work in the area shall be responsible for the maintenance and protection of all work previously completed.

If separate bridge contracts are let within the limits of a Roadway Project and the Bridge Contractor completes his Contract before the Roadway Contractor, the Bridge Contract may be accepted and the Roadway Contractor will be responsible for maintenance of the new bridge until it is opened to traffic. If the Roadway Contractor hauls materials across the bridge the Roadway Contractor shall protect the endposts, deck surface, deck edges, joints, and all other vulnerable features of the bridge by use of adequate timber or earth cushions as directed by the Engineer. The Roadway Contractor shall repair all damage caused by such use, including resealing of joints and rerubbing of finish at his own expense.
All cost of maintenance work during construction and before the Project is accepted shall be included in the Unit Prices Bid on the various Pay Items and the Contractor will not be paid an additional amount for such work except as provided in Subsection 104.05.B.

The Contractor shall not allow vegetative growth at any time to obstruct signs, delineation, traffic movements, or sight distance. The Contractor shall at intervals not to exceed six months, clean up and remove litter and debris; remove weeds from around guardrail, barrier, poles, standards, utility facilities, and other structures; and cut or trim trees, bushes or tall grass. These requirements shall apply to all areas within the project termini and lateral limits.

105.15 Failure to Maintain Roadway or Structures
If at any time, the Contractor fails to comply with the provisions of Subsection 105.14, the Engineer will immediately notify the Contractor of such noncompliance. If the Contractor fails to remedy the unsatisfactory maintenance within 48 hours after receipt of such notice, the Engineer may immediately proceed to maintain The Work, and the entire cost of this maintenance will be deducted from monies due or to become due the Contractor under the Contract. As an alternative to the Engineer’s maintaining the Work, all the Items and quantities of work done, but not properly maintained, may be deducted from the current progress estimate, even if such Items have been paid for in a previous estimate.

105.16 Final Inspection and Acceptance
Upon due written notice from the Contractor of substantial completion of the entire Project, the Engineer will determine if the Project is ready for a Final Inspection. The Engineer will have the final decision on when the Project is substantially complete and thereby ready for a Final Inspection. If the Engineer finds the Project substantially complete the Engineer will schedule the Final Inspection. If all construction provided for and contemplated by the Contract is found completed to the Engineer’s satisfaction and all documents required in connection with the Project have been submitted by the Contractor, the Engineer will make the Final Acceptance and notify the Contractor in writing of this acceptance.

If, however, the Final Inspection discloses any work, in whole or part, as being unsatisfactory, the Engineer will provide the Contractor with a written punch-list that includes the necessary instructions for correction of same. The punch-list will also include any remaining work to be completed and any final reports and other documentation required to be submitted by the Contractor. The Contractor shall immediately comply with and execute such instructions. When all construction provided for and contemplated by the Contract is found completed to the Engineer’s satisfaction, including submission of any required documentation, the Engineer will make the Final Acceptance and notify the Contractor in writing of this acceptance.

When the Contractor has finished a major portion of the Contract, the Contractor may request that a semi-final inspection be made. At the discretion of the Engineer, who shall be sole judge as to making the inspection, if the work is satisfactory, as described in the first paragraph of this Section, that portion of the Contract may be accepted, opened to traffic, if not already carrying traffic, and the Contractor relieved of the maintenance obligations as described elsewhere in these Specifications.

Such partial acceptance shall in no way relieve the Contractor of responsibility for satisfactory completion of the Contract, or for failure of any portion of the accepted work prior to Final Acceptance of the Project.

Section 106—Control of Materials

106.01 Source of Supply and Quantity of Materials
The materials used in The Work shall meet all quality requirements of the Contract. Materials will not be considered as finally accepted until all tests, including any to be taken from the finished Work have been completed and evaluated. To expedite the inspection and testing of materials, the Contractor shall notify the Engineer in writing of his proposed sources of materials at least 2 weeks before delivery, or earlier if blend determinations or mix designs are required. When required, representative preliminary samples of the character and quality prescribed shall be submitted for examination and testing. The approval of preliminary samples does not obligate the Engineer to accept materials from the same source delivered later. If, after trial, it is found that sources of supply for previously approved materials do not produce uniform and satisfactory products, or if the product from any source proves unacceptable at any time, the Contractor shall furnish materials from other sources. The Engineer shall have the right to reject the entire output of any source from which he finds it is impractical to secure a continuous flow of uniformly satisfactory material.

Upon request by the Department, the Contractor shall furnish formal written invoices from the materials suppliers. The invoice shall show the date shipped, the quantities, and the unit prices.

The Contractor shall purchase materials from suppliers who are willing for the Contractor to furnish the Department copies of invoices as noted herein upon request by the Department.
Materials used and operations performed under Section 400- Hot Mix Asphaltic Concrete Construction, shall be controlled and tested by the Contractor. This shall be done in such a manner as to produce a uniform product that meets Specification requirements. In the event the Contractor’s quality control procedures do not achieve the desired objective, operations shall be suspended until satisfactory results are obtained.

The Contractor’s quality control personnel shall be properly instructed and trained to perform all tests and make calculations, and shall be competent to control all processes so that the requirements are met.

106.02 Unacceptable Material
All material not conforming to the requirements of the Specifications will be considered as unacceptable. All unacceptable materials, whether in place or not, will be rejected and shall be removed immediately from the site of The Work unless otherwise directed by the Engineer. In case of failure by the Contractor to comply promptly with any order by the Engineer to remove rejected materials, the Engineer shall have authority to have such rejected materials removed by other means and to deduct the expense of such removal from any monies due, or to become due, to the Contractor. No rejected materials, the defects of which have been corrected, shall be used until the Engineer has given approval.

106.03 Samples, Tests, Cited Specifications
All materials will be inspected, tested, and approved by the Engineer before incorporation into The Work. Samples will be taken by a qualified representative of the Department. Unless otherwise designated, tests will be made by and at the expense of the Department and in accordance with methods of AASHTO, ASTM, or the published Specifications of any other designated organization that are current on the date of advertisements for bids. Copies of all tests will be furnished to the Contractor’s representative at his request. Sampling and testing by the Department will be performed in accordance with the Sampling, Testing and Inspection Manual.

For Work performed under Section 400- Hot Mix Asphaltic Concrete Construction all materials shall be inspected and tested by the Contractor before incorporation into the Work. The Contractor’s Quality Control Technician shall sample and test all quality control samples. The Contractor’s quality control tests may be used as acceptance tests at the discretion of the Engineer. Sampling and testing by the Contractor shall be performed according to the Sampling, Testing, and Inspection Manual. Copies of all tests performed by the Contractor shall be furnished to the Engineer and will become a part of the project records. The Department will be responsible only for determining the acceptability of the construction and materials incorporated therein. The Contractor shall be responsible for the quality of the construction and materials incorporated therein. The Department will monitor the Contractor’s Quality Assurance Acceptance Program to verify test accuracy.

A. Testing and Acceptance Plans
1. A Lot: Work will be accepted on a Lot-to-Lot basis in accordance with the requirements specified in the Acceptance Plans specified in Section 400- Hot Mix Asphaltic Concrete Construction. Lot sizes will normally be specified. In the event, however, that operational conditions cause work to be interrupted, or only partially completed before the Lot size specified has been achieved, the Lot may be redefined by the Engineer as being either the amount of work accomplished within the day, or he may combine that work with the next Lot of work. A Lot is set forth in these Specifications as a defined quantity of a specified material from a single source or a measured amount of specified construction assumed to be produced by the same process.

2. Acceptance Plans: The Acceptance Plan for a material, product, or an Item of construction, or completed work will be as specified hereinafter in Section 400 and Section 430 of these Specifications. However, in addition to the following conditions, the Department reserves the right to test any additional material for Work that appears defective and to require correction if necessary prior to acceptance.

3. Resampling of Lots: It is the intent of these Specifications that Lots of materials, products, Items of construction, or completed construction will meet Specification requirements at the time of submission. Resampling of deficient Lots as a basis for check tests may be done by the Engineer at his option.

Non-conforming Lots, which can be corrected by reworking, will not be re-sampled before such corrective action is taken. Sampling and testing of reworked areas shall be at the expense of the Contractor.

4. Acceptance or Rejection: Nonconforming Lots, materials, products, or Items of construction that are not adaptable to correction by reworking shall be removed and replaced, accepted without payment, or accepted at an adjusted price as stated in the Specifications, or if not stated, as directed by the Engineer.

Following the application of the Acceptance Plan, the decision of the Engineer shall be final as to the acceptance, rejection, or acceptance at an adjusted price of the Lots unless the Contractor elects to remove and replace any deficient materials or Work at his expense.
5. Adjusted Payment:
 a. Single Deficiency: A single deficiency is defined as a deficiency involving one characteristic of a material within a Lot. In the case of single-characteristic deficiency, it shall be used directly to determine an adjusted Contract Price.
 b. Multiple Deficiency: A multiple deficiency is defined as deficiencies involving more than one characteristic of construction within a Lot. In the case of multiple deficiencies, the related adjusted percentage of Contract Price for each characteristic shall be determined and the greatest reduction in price shall be used to determine the Contract Unit Price to be paid. Should the total adjustment for any individual Lot be 50 percent or more, the Engineer will determine whether the deficient Lot should be removed and replaced or allowed to remain in place. No payment will be made for the original Lot or for its removal. Replacement of the Lot will be paid for in accordance with the provisions for the Item.

106.04 Plant Inspection
At the option of the Engineer, materials may be sampled and tested at the source of supply. In the event plant inspection is undertaken, the following conditions shall be met:
A. The Engineer shall have the cooperation and assistance of the Contractor as well as the Contractor’s material supplier.
B. The Engineer shall have full entry at all times to such parts of the plant as may concern the manufacture or production of the materials being furnished.
C. If specified in the Proposal, the Contractor shall arrange for an approved building for the use of the inspector; such building to be located conveniently near the plant, independent of any building used by the material producer, and conforming to the requirements of Subsection 106.11 and Section 152.
D. Adequate safety measures shall be provided and maintained. This shall include sampling valves on storage tanks for bituminous materials and safety stands for use in sampling from truck beds.
E. It is understood that the Department reserves the right to retest all materials which, prior to incorporation into the Work, have been tested and accepted at the source of supply and after the same have been delivered. The Department further reserves the right to reject all materials which, when retested, do not meet the requirements of the Contract Specifications.

106.05 Materials Certification
For certain products, assemblies, and materials, in lieu of normal sampling and testing procedures by the Contractor and the Department, the Engineer may accept from the Contractor the manufacturer’s certification with respect to the product involved, under the conditions set forth in the following paragraphs:
A. The certification shall state that the named product conforms to the Department’s requirements and that representative samples thereof have been sampled and tested as specified.
B. The certification shall either:
 1. Be accompanied with a certified copy of the test results, or
 2. Certify that such test results are on file with the manufacturer and will be furnished to the Engineer upon demand.
C. The certification shall give the name and address of the manufacturer and the testing agency and the date of tests, and shall set forth the means of identification which will permit field determination of the product delivered to the project as being the product covered by the certification.
D. The certification shall be in duplicate with one copy to be sent with the shipment of the covered product to the Department’s Project Engineer, and with one copy sent to the Department’s Materials Engineer at Atlanta, Georgia.
 No Certificate will be required for Portland Cement when furnished from a manufacturer approved by the Department.
E. The Department will not be responsible for any costs of certification or for any costs of the sampling and testing of products in connection therewith.
F. The Department reserves the right to require samples and to test products for compliance with pertinent requirements irrespective of prior certification of the products by the manufacturer. Any materials that fail to meet specification requirements will be rejected.

106.06 Agricultural Lime and Fertilizer
The sale and distribution of Fertilizers and Agricultural Lime are governed by Acts of the Georgia General Assembly and Rules and Regulations of the State Department of Agriculture.

Therefore, either of these materials may be sampled by authorized representatives of the State Commissioner of Agriculture. The Contractor may use these materials in The Work without sampling provided he notifies the Engineer 48 hours in advance.
of anticipated delivery to the job site. The Engineer reserves the right to request random sampling by a representative of the State Department of Agriculture.

The Contractor will not be expected to withhold application pending completion of tests, but will not be relieved of the responsibility for the quality of the material furnished. In the event a sample fails to meet the requirements of the Georgia Law as evidenced by a report furnished by the Commissioner of Agriculture, the Engineer will deduct from monies due to the Contractor a sum equal to the penalty authorized by the above referenced Act.

106.07 Sample Holes
All holes dug or drilled for the purpose of taking samples or determining thickness any time before final acceptance of The Work shall be repaired by the Contractor.

The material replaced shall be compacted and finished to the satisfaction of the Engineer. Costs of this work shall be included in the appropriate Bid Items.

106.08 Storage of Materials
Portions of the right-of-way, approved by the Engineer, may be used for material storage purposes and for the placing of the Contractor’s plant and equipment. Additional space required must be provided by the Contractor at no additional expense to the Department. Private property shall not be used for storage purposes without written permission of the owner or lessee, and if requested by the Engineer, copies of such written permission shall be furnished.

Materials shall be stored to assure the preservation of their quality and fitness for The Work, and shall be located so as to facilitate their prompt inspection. Stored materials, even though approved before storage, may again be inspected before their use in The Work.

All storage sites shall be restored to their original condition by the Contractor at no additional expense to the Department.

No inflammable materials or harmful chemicals shall be stored within 200 ft (60 m) of a structure nor within 200 ft (60 m) of a roadway open to traffic. Such materials shall be stored in accordance with directions from the manufacturer.

106.09 Handling Materials
All materials shall be handled in such a manner as to preserve their quality and fitness for The Work. Aggregates, and mixtures of aggregates with other materials, shall be transported from the storage site to The Work in tight vehicles so constructed as to prevent loss or segregation of materials after loading and measuring in order that there may be no inconsistency in the qualities of the materials intended for incorporation into The Work as loaded and the qualities as actually received at the place of operation. The actual incorporation of the material in The Work shall be such that the quality and fitness of the material is retained and no segregation results.

106.10 Local Material Sources
A. Sources Shown on the Plans

Possible sources of local materials and/or disposal areas may be designated on the Plans. The quality of materials in such deposits will be acceptable in general but the Department does not warrant either the quality or the quantity of materials shown on the Plans. The Contractor shall determine the amount of equipment and work required to produce a material meeting the Specifications. Pit mixing, selective excavation, and other such operations shall be expected and the Contractor shall determine the extent of these activities. It shall be understood that it is not feasible to ascertain from samples the limits for an entire deposit and that variations in quality and quantity shall be considered as usual and are to be expected.

1. When easements to secure local materials and/or disposal areas are obtained by the Department, the Plans will show the locations of the pits or areas, the amount of royalties and other costs and conditions of acquisition of the material. In all cases where the Department has secured easements for material pits and/or disposal areas, these easements will be assigned to the Contractor who shall make prompt payment to the owners of such pits for all royalty and crop damage costs for materials and/or areas, and who shall further fulfill all of the terms of the Easement. The Department does not warrant the title or any interest of the property owner in such Easements.

2. If the Contractor elects to use only a portion of the materials or area estimated to be available in any pit or disposal area, or only clears or partially clears the pit or area, and does not remove or deposit any material, he shall make a minimum payment to the property owner of at least 33-1/3 percent of the estimated value of the pit or area as shown in the Easement, plus any crop damage costs called for by the Easement.

The Contractor shall, before receiving final payment from the Department, submit to the Engineer a written statement signed by the owner stating that the owner has been paid in full and that all conditions agreed to have been fulfilled to the satisfaction of the owner. The Department will not take any separate payment to the Contractor for
these material acquisition costs except that reclamation of the pit or area, if required, will be paid for in accordance with Section 160.

Should the Contractor fail to pay the property owner within 60 days after ceasing to use the pit or area, the Department may pay directly to the property owner any amounts due and deduct same from any funds due the Contractor. This provision does not affect the obligation of the Contractor under his Bond or the rights of the property owner or the Department under the Bond.

B. Substitution of Sources of Materials

1. If, after the Contract is awarded, the Contractor wishes to substitute other sources for sources designated on the Plans, he may do so provided the material to be substituted conforms to the Specifications. The Contractor shall make all necessary arrangements with the property owners for removal of the material from substituted pits. Payment will be made for Clearing and Grubbing, Stripping Excavation, Pit Reclamation, and Ditch Excavation only to the extent required for pits shown in the Plans. This does not relieve the Contractor from planting a satisfactory cover crop of the type called for on the Plans or required by the Specifications on all scarred areas created by the removal of materials.

In the event the Contractor substitutes a source for soil-cement, soil-bituminous, or other material to be stabilized, and the Engineer determines that the substitute source requires more stabilizing agent than the Plan pit, no payment will be made for the additional stabilizing agent required.

2. Substitution sources will not be allowed where the resulting scars will present an unsightly appearance from any State or Federal highway.

C. Material Pits Furnished By the Contractor

When sources of any, or all, local materials are not shown on the Plans, or when location maps of possible sources of materials are shown on the Plans for information but no Easements are obtained, the Contractor shall provide sources of material meeting Contract requirements and acceptable to the Engineer. The Contractor shall make arrangements with the property owner regarding rights to remove material from the pits but prior to final acceptance by the State, the Contractor shall furnish the Engineer documentary proof of payment to the property owner for all materials as stated in Subsection 106.10.A.2 above. Under these circumstances, no separate payment will be made for Clearing and Grubbing, or Reclamation of Pits. Material sources shall not be excavated at locations where the resulting scars will present an unsightly appearance from any State or Federal highway. No payment will be made for material obtained in violation of this provision.

The Contractor shall provide a survey and sketch for all contractor-furnished material pits and haul road routes in accordance with the following:

The pit boundaries and haul road routes shall be selected and staked at 200 ft (60 m) intervals or as required by the Engineer. Minimum work shall include measurement of pit boundaries and haul road routes using a chain or stadia and measurement of angles or bearings using a transit or a Brunton Compass. Pit boundaries and haul road routes shall be adequately marked and referenced to a centerline station number on the project.

D. Haul Roads

Unless specifically provided, no separate payment will be made to the Contractor for construction or maintenance of any roads constructed for hauling materials. The cost of constructing, maintaining, and revegetating, if necessary, these haul roads shall be included in the prices bid for the Pay Items pertaining to the part of The Work in which the materials are used. Other designated Haul Roads will be paid for in accordance with Section 233.

106.11 Field Laboratory

The Contractor may be required to provide a field laboratory on or near the Project consisting of a suitable building in which to house and use the equipment necessary to perform the required tests. The building, if required, will meet the requirements of and be paid for in accordance with Section 152.

At all permanent plants producing asphaltic concrete, Portland cement concrete or cement stabilized base course materials, a fully equipped plant laboratory shall be furnished at no expense to the Department.

106.12 Inspection for Non-Domestic Materials

A. Materials Manufactured Outside the United States

Materials which are manufactured outside the United States shall be delivered to a distribution point in the United States, where the materials shall be retained for a sufficient period of time to permit inspection, sampling, and testing. The Contractor, at no cost to the Department, shall furnish facilities and arrange for all testing as required by the Engineer to ensure that the materials comply with the Specifications. All such tests shall be made in the presence of the Engineer or
his representative, and if the tests are performed outside of the boundaries of the State of Georgia and its contiguous area, the Contractor shall reimburse the Department for the expenses actually incurred by the Engineer or his representative in attending the tests.

B. Certified Mill Test Reports

Certified mill test reports shall be furnished for all materials obtained from foreign manufacturers. Such reports shall be printed in English and shall be clearly identifiable to the lot of material tested.

C. Materials from Foreign Manufacturers

Materials shall be furnished only from those foreign manufacturers who have previously established, to the satisfaction of the Engineer, the sufficiency of their in-plant quality control which will give satisfactory assurance of the manufacturer’s ability to furnish material uniformly and consistently in compliance with the Specifications. Such sufficiency shall be established by detailed written evidence to the Engineer’s satisfaction, or, if deemed necessary, through in-plant inspection by the Engineer or his representative; the cost of such inspection to be reimbursed by the Contractor.

D. Structural Steel Fabricated Outside the State of Georgia

In the event the Contractor elects to have items of structural steel fabricated outside the boundaries of the State of Georgia and its contiguous area, the Contractor shall reimburse the Department for the actual cost of the shop inspection of such fabrication in excess of the average inspection cost for shop inspection of fabrication within the State of Georgia and its contiguous area. Such actual costs of shop inspection may include the actual expenses incurred by the Engineer or his representative in making an in-plant inspection, arranging for an approved inspection agency to make the shop inspection, and the cost of the shop inspection by the approved inspection agency.

E. Department Reimbursement

In the event the Contractor fails to reimburse the Department promptly for any of the costs established by this provision, the Contractor agrees that the amount of such costs may be deducted from amounts of money owing to the Contractor on Monthly Estimates or Final Estimate.

F. Definitions

The following definitions shall apply to Subsection 106.12.

United States: The geographical area of the United States of America excluding its territories and possessions.

State of Georgia and Contiguous Area: The geographical area within the State of Georgia and those states which share a common border with the State of Georgia.

Average Inspection Cost: The average of the actual expenses incurred in making an inspection within the area designated as determined by the Engineer.

Foreign Manufacturer: A manufacturer of materials where the materials are manufactured outside the geographical area of the United States.

106.13 Out of State Materials Payment

Materials payments to Contractors who elect to have materials fabricated and stored outside the boundaries of the State of Georgia shall be made under the following guidelines.

The Contractor shall submit a written request to the Engineer for an inspection of out-of-state materials. This request shall state that the Contractor agrees to reimburse the Department for the actual cost of travel, subsistence, and extra expense incurred by the Department in the execution of this inspection and any subsequent inspection that may be necessary. This request shall be signed by a person legally responsible to bind the company and shall be notarized.

In the event the Contractor fails to reimburse the Department promptly for any of the costs established by this provision, the Contractor agrees that the amount of such costs may be deducted from amounts of money owing to the Contractor on Monthly Estimates or Final Estimate.

The above requirements are not applicable to the fabrication and materials payment for structural steel, prestress beams, precast bridge units, and piling for bridge construction within the states which share a common border with the State of Georgia.
107.01 Laws to Be Observed
The Contractor shall keep fully informed of all Federal and State laws, all local laws, ordinances, codes, and regulations and all orders and decrees of bodies or tribunals having any jurisdiction or authority, which in any manner affect those engaged or employed on The Work, or which in any way affect the conduct of The Work. The Contractor shall at all times observe and comply with all such laws, ordinances, codes, regulations, orders and decrees; and shall protect and indemnify the Department and its representatives against any claim or liability arising from or based on the violation of any such law, ordinance, code, regulation, order, or decree, whether by himself, his employees, subcontractors, or agents.

107.02 Permits and Licenses
The Contractor shall procure all permits and licenses, pay all charges, taxes, and fees, and give all notices necessary and incidental to the due and lawful prosecution of The Work.

107.03 Patented Devices
If the Contractor employs any design, device, material, or process covered by letters of patent or copyright, he shall provide for such use by suitable legal agreement with the patentee or owner. The Contractor and the Surety shall indemnify and save harmless the Department from any and all claims for infringement by reason of the use of any such patented design, device, material, or process, or any trademark or copyright, and shall indemnify the Department for any costs, expenses, and damages which it may be obliged to pay by reason of any infringement, at any time during the prosecution or after the completion of The Work.

107.04 Restoration of Surfaces Opened By Permit
The right to construct or reconstruct any utility service in the highway or street and to grant permits for the same at any time, is expressly reserved by the Department for the proper authorities of the municipality or county in which The Work is done and the Contractor shall not be entitled to any damages either for the digging up of the street or highway, or for any delay occasioned thereby.

Any individual, firm, or corporation wishing to make an opening in the street or highway must secure a permit from the Department. The Contractor shall allow parties bearing such permits, and only those parties, to make openings in the street or highway. When ordered by the Engineer, the Contractor shall make in an acceptable manner all necessary repairs due to such openings and such necessary work will be paid for as Extra Work, or as provided in the Specifications, and will be subject to the same conditions as original work performed.

107.05 Federal-Aid Provisions
When the United States Government pays all or any part of the cost of a project, the Federal laws and the rules and regulations made pursuant to such laws must be observed by the Contractor, and The Work shall be subject to the inspection of the appropriate Federal agency. Such inspection shall in no sense make the Federal Government a party to this Contract and will in no way interfere with the rights of either party hereunder.

107.06 Sanitary Provisions
The Contractor shall provide and maintain in a neat, sanitary condition such accommodations for the use of his employees as may be necessary to comply with the requirements of the State Department of Health and other authorities having jurisdiction, and shall permit no public nuisance.

107.07 Public Convenience and Safety
The Contractor shall at all times so conduct The Work as to assure the least possible obstruction of traffic. The safety and convenience of the general public and the residents along the highway and the protection of persons and property shall be provided for by the Contractor as specified under Subsection 104.05, Subsection 107.09, Section 150, the Project Plans, and Special Provisions.

Traffic whose origin and destination is within the limits of the Project shall be provided ingress and egress at all times unless otherwise specified in the Plans or Special Provisions. The ingress and egress includes entrance and exit via driveways at the various properties, and access to the intersecting roads and streets. The Contractor shall maintain sufficient personnel and equipment on the project at all times, particularly during inclement weather, to ensure that ingress and egress are provided when and where needed.

Two-way traffic shall be maintained at all times unless otherwise specified or approved. The Contractor shall not stop traffic without permission granted by the Engineer.
All equipment used on The Work shall come equipped with factory-installed mufflers, or manufacturer’s recommended equivalent, in good condition. These mufflers shall be maintained in good condition throughout the construction period.

107.08 Railroad-Highway Provisions

All work to be performed by the Contractor on a railroad company’s right-of-way or property shall be done in a manner satisfactory to the chief engineer of the railroad company, or his authorized representative, and shall be performed at such times and in such manner as not to unnecessarily interfere with the movement of trains or traffic upon the track of the railroad company. The Contractor shall use all reasonable care and precaution in order to avoid accidents, damage, or unnecessary delay or interference with the railroad company’s trains or other property, or property of tenants of railroad company.

The Contractor shall notify the railroad company and obtain its approval before commencing work on the railroad company’s right-of-way or property.

The Contractor shall determine what measures are required by the railroad company to protect its operations and right-of-way or property during construction. Such protection may include the use of a flagger or flaggers provided by the railroad company. The Contractor shall be responsible for ensuring that the required protection is provided and shall pay the railroad company directly for any and all such services which may be required to accomplish the construction unless otherwise specified.

Any temporary grade crossings or other means needed during construction by the Contractor for transporting materials of any nature and/or equipment across the railroad tracks will be the responsibility of the Contractor to handle directly with the railroad company and bear all costs incidental to such crossings including flagging services provided by the railroad company.

Special Provisions for the protection of the interests of the railroad company may be included in the proposal to stipulate insurance and other requirements.

107.09 Barricades and Danger, Warning, and Detour Signs

The Contractor shall furnish, install, and maintain all necessary and required barricades, signs, and other traffic control devices in accordance with these Specifications, Project Plans, Special Provisions, and the MUTCD, and take all necessary precautions for the protection of the work and safety of the public.

Unless otherwise specified, all traffic control devices furnished by the Contractor shall remain the property of the Contractor.

107.10 Forest Protection

In carrying out work within or adjacent to State or National Forests, or any other forests, parks, or other public or private lands, the Contractor shall obtain necessary permits and comply with all of the regulations of the appropriate authorities having jurisdiction over such forest, park, or lands. The Contractor shall keep the areas in an orderly condition, dispose of all refuse, obtain permits for the construction and maintenance of all construction camps, stores, warehouses, residences, latrines, cesspools, septic tanks, and other structures in accordance with the requirements of the appropriate authority.

The Contractor shall take all reasonable precautions to prevent and suppress forest fires and shall require his employees and subcontractors, both independently and at the request of forest officials, to do all reasonably within their power to prevent and suppress and to assist in preventing and suppressing forest fires; to notify a forest official at the earliest possible moment of the location and extent of any fire seen by them; and to extinguish or aid in extinguishing nearby fires.

107.11 Bridges Over Navigable Waters

A. Navigation to Be Protected

Since navigable waterways are under the jurisdiction of the United States Coast Guard, all work done in such waters shall comply with their requirements. Free navigation shall not be impeded, and navigable depths shall be maintained.

B. Obstructions to be Removed

When the construction has progressed enough to permit removal, all falsework, piling and other obstructions shall be removed to the satisfaction of the Commander of the Coast Guard District having jurisdiction. In all cases such clearing must be done thoroughly before The Work will be accepted by the Department.

107.12 Use of Explosives

When the use of explosives is necessary for the prosecution of The Work, the Contractor shall exercise the utmost care not to endanger life or property, and shall obey all State, Federal and other Governmental regulations applying to transportation, storage, use, and control of such explosives. The Contractor shall be completely responsible for any and all damage resulting from the transportation, storage, use, and control of explosives in the prosecution of The Work by the Contractor, the
Contractor’s agents, or employees; and shall hold the Department harmless from all claims of damages resulting in any manner therefrom.

The Contractor shall notify each public utility owner having structures or other installations, above or below ground, near the site of The Work of his intention to use explosives. Such notice shall be given sufficiently in advance to enable the utility owners to take such steps as they may deem necessary to protect their property from injury. Such notice shall not relieve the Contractor of responsibility for all damages resulting from his blasting operations.

All explosives shall be stored securely in compliance with all laws and ordinances, and all such storage places shall be clearly marked DANGEROUS EXPLOSIVES. Explosives and detonators shall be stored in separate storage facilities in separate areas. Where no laws or ordinances apply, locked storage shall be provided satisfactory to the Engineer, never closer than 1,000 ft (300 m) from any travel-road, building, or camping area.

In all cases where the transport, storage, or use of explosives is undertaken, such activities shall be controlled and directed by fully qualified representatives of the Contractor.

Whenever electric detonators are used, all radio transmitters shall be turned off within a radius of 500 ft (150 m). No blasting supplies shall be transported in vehicles with two-way radio unless the transmitter is turned off, or extra shielding precautions are taken. Appropriate signs shall be placed so as to give ample warning to anyone driving a vehicle equipped with two-way radio. Electrical detonators will not be used within 500 ft (150 m) of a railroad.

107.13 Protection and Restoration of Property and Landscape

A. General Provisions

The Contractor shall be responsible for the preservation of all public and private property, crops, fish ponds, trees, monuments, highway signs and markers, fences, grassed and sodded areas, etc. along and adjacent to the highway, and shall use every precaution necessary to prevent damage or injury thereto, unless the removal, alteration, or destruction of such property is provided for under the Contract. The Contractor shall use suitable precaution to prevent damage to all underground structures, whether shown on the Plans or not, and shall protect carefully from disturbance or damage, all land monuments and property marks until the Engineer has witnessed or otherwise referenced their location and shall not move them until directed. The Contractor shall not willfully or maliciously injure or destroy trees or shrubs, and he shall not remove or cut them without proper authority.

The Contractor shall be responsible for all sheet piling, shoring, underpinning, etc., as may be required for the protection of abutting property, nearby buildings, streets, and the like.

The Contractor shall be responsible for all damage or injury to property of any character, during the prosecution of The Work, resulting from any act, omission, neglect, or misconduct in his manner or method of executing The Work, or at any time due to defective work or materials, and said responsibility will not be released until the Project shall have been completed and accepted.

When the Contractor’s excavating operations encounter remains of prehistoric people’s dwelling sites or artifacts of historical or archeological significance, the operations shall be temporarily discontinued. The Engineer will contact archeological authorities and the Office of Environment and Location to determine the disposition thereof. When directed by the Engineer, the Contractor shall excavate the site in such a manner as to preserve the artifacts encountered and shall remove them for delivery to the custody of the proper authorities. Such excavation will be considered and paid for as Extra Work.

When the Contractor’s normal operations are delayed by such stoppage or extra work, an appropriate time extension will be granted.

The Contractor shall plan, coordinate, and prosecute the work so that disruption to personal property and business is held to a practical minimum.

No resident or business shall be denied vehicular access to their property for any length of time other than as determined by the Engineer is absolutely necessary. Where two or more existing driveways are present for a business, only one existing driveway shall be closed at any time. All construction areas abutting lawns and yards of residential or commercial property shall be restored promptly. Backfilling of each drainage structure or section of curb and gutter, sidewalk, or driveway shall be accomplished as soon as adequate strength is obtained. Finishing, dressing, and grassing shall be accomplished immediately thereafter as a continuous operation within each area being constructed with emphasis placed on completing each individual yard or business frontage. Care shall be taken to provide positive drainage to avoid ponding or concentration of runoff.

Handwork, including raking and smoothing, shall be required to ensure that roots, sticks, rocks, and other debris are removed in order to provide a neat and pleasing appearance. Grassing, when in season, shall immediately follow in order
to establish permanent cover at the earliest date. If grassing is not in season, proper erosion control shall be installed and maintained.

The work described above shall be in addition to that required by Subsection 104.07, “Final Cleaning Up” and Subsection 105.16, “Final Inspection and Acceptance”.

B. Erosion and Siltation Control

The Contractor shall take all necessary measures throughout the life of the Project to control erosion and silting of rivers, streams, and impoundments (lakes, reservoirs, etc.). Construction of drainage facilities as well as performance of other Contract work which will contribute to the control of erosion and silting shall be carried out in conjunction with clearing and grubbing, and earthwork operations as stipulated in Section 161.

C. Pollution

The Contractor shall exercise every reasonable precaution throughout the life of the Contract to prevent pollution of rivers, streams or impoundments. Pollutants such as chemicals, fuels, lubricants, bitumens, raw sewage and other harmful waste shall not be discharged into or alongside rivers, streams, and impoundments, or into natural or manmade channels leading thereto. The Contractor shall also comply with the applicable regulations of other State and Federal departments and to all governmental statues relating to the prevention and abatement of pollution.

D. Insect Control Regulations

The Plant Pest Control Division of the U.S. Department of Agriculture and the Georgia State Department of Agriculture restrict the movement of certain items from areas infested with Japanese Beetles or Imported Fire Ants so as to prevent the spread of these pests to non-infested areas. Where insect infested areas are shown on the Plans, Contractors will control their operations in such a manner as to comply fully with the requirements of Section 155.

E. Reclamation of Material Pits and Waste Disposal Areas

Whenever or wherever the Contractor obtains material from a source or wastes material on an area other than within the Right-of-Way, regardless of the fashion, manner or circumstances for which the source or area is obtained, it shall be reclaimed in accordance with the requirements of Section 160.

F. Mailboxes

The property owner shall have the responsibility for removing and relocating the mailbox to an area outside construction limits.

The Engineer will mark a point for the relocation of the box. The stake should be set so that the location of the box will be convenient to both the mail carrier and the patron, yet not interfering with the proposed work. It may be necessary for the Engineer to confer with the Post Office serving the area.

The Contractor shall notify each affected owner, in writing, that their mailbox is in conflict with the proposed construction, that they have ten days to relocate the box and that, after the expiration of the 10 days notice, if the owner has not relocated the box, it shall be removed by the Contractor and laid upon the owner’s property, clear of the Right-of-Way.

Any cost to the Contractor for removing the mailboxes as stated above shall be included in the price bid for other items.

G. Failure to Comply

Failure of the Contractor to comply with any of the above provisions or to install erosion prevention items included in the Contract at the time specified, will be evidence of omission and neglect, and the Contractor will be liable for damages as outlined in Subsection 107.13.H below. Furthermore, the Engineer shall withhold payment on all Contract Items until such time as the Contractor complies in full with all of the aforesaid provisions.

H. Payment for Damages

When or where any direct or indirect damage or injury is done to public or private property by or on account of any act, omission, neglect, or misconduct in the execution of the Work, or in consequence of the nonexecution thereof by the Contractor, the Contractor shall restore, at his own expense, such property to a condition similar or equal to that existing before such damage or injury was done, by repairing, rebuilding or otherwise restoring as may be directed, or shall make good such damage or injury in an acceptable manner.

I. Compensation

All costs pertaining to any requirement contained herein shall be included in the overall Bid submitted unless such requirement is designated as a separate Pay Item in the Proposal.
107.14 Load Restrictions

It is hereby agreed between the Department and the Contractor that in the performance of The Work under the Contract, the following load restrictions and stipulations shall be in full force and effect during the life of the Contract:

A. Parties Affected

The load restrictions and stipulations contained herein shall be applicable to the equipment of the Contractor; each agent or subcontractor employed by the Contractor; and each person or persons, firm, partnership, corporation or any combination thereof, hauling materials, supplies or equipment to or on the Project, by or for the Contractor.

B. Within Project Limits

No hauling equipment which is loaded beyond those limits provided by State Law shall be permitted on any portion of the new or existing pavement structure except that such loads will be permitted on nonstabilized bases and subbases prior to placing roadway paving subject to the provisions of Subsection 107.17.

Axle loads and gross weight limits will be evaluated in accordance with current Georgia Law.

All damage caused by any equipment to any permanent installation or portion of The Work shall be promptly repaired by the Contractor at his expense. When it becomes necessary to cross existing pavement with excessive loads, the Contractor shall provide and remove, at his own expense, proper cushioning by means of earth blanket or otherwise as directed.

C. Outside Project Limits

All equipment users included in Subsection 107.14.A, above, operating equipment on roads outside the Project limits shall be governed by the following regulations:

1. No vehicle shall carry any load in excess of that specified by Georgia Law.
2. On County System roads the maximum total gross weight shall not exceed 56,000 lbs (25,400 kg) unless a vehicle is making a pickup or delivery on such roads.
3. For a specific individual trip the above weight limitations may be exceeded provided a special permit is obtained from the Department for each such movement. A special permit will not relieve the Contractor of liability for damage that may result from such a movement.
4. Authorized personnel of the Office of Permits and Enforcement of the Department shall be permitted to weigh each truck hauling material to the Project whenever the Department so desires. The owner of each truck shall instruct his operators to cooperate with and assist the truck weighers in every way possible.
5. A Certified Public Weigher operating under the provisions of Standard Operating Procedure 15 shall not dispatch any vehicle loaded with material to be incorporated into the Project when the gross vehicle weight exceeds the limit established by law.
6. Ready Mix Concrete trucks shall comply with load restrictions as specified in Laboratory Standard Operating Procedure 10, “Quality Assurance for Ready-Mixed Concrete Plants in Georgia.”
7. The guidelines illustrated in Figure 1 for gross weights on vehicles will be utilized to limit the maximum weights accepted on this project by the Engineer for materials hauled on public roads, unless the Contractor can satisfactorily demonstrate that a particular vehicle falls within the lawful axle limits. This will not apply where the law is more restrictive on the maximum weight limits, in which case the lesser gross weights will be the limit accepted. The bidder should be aware that this Provision does not grant permission for hauling with weights in excess of that allowed by the law on any of our road systems, excluding the Interstate Highway System. For hauling on the Interstate Highway System the Federal weight laws will apply, including the Federal Bridge Formula.
Figure 1

Guidelines for Gross Weights on Vehicles
Based on 20,340 Pounds (9226 kilograms) Legal Weight On Any Axle

Two Axle Trucks

Note: Maximum acceptable Gross Weight = 40,680 lbs. (18,452 kg).

Tandem Axle Trucks (3 or more axles)

Note: Maximum acceptable gross weight is 61,020 lbs. (24,947 kg). No lift axle may be used in computing the maximum total gross weight.

Four Axle Trucks

Legal Gross Weight = 70,000 lbs. (31,751 kg)

Note: 70,000 lbs. (31,751 kg) is estimated by Law as the maximum legal gross weight for 4-axle trucks.

*Note: If this is less than 216 in. (5486 mm), the truck will be considered a tandem axle truck.

Five or More Axles

Note: The centers of any axles within a 216 in. (5486 mm) distance (except the steering axle) will be considered a tandem axle.

<table>
<thead>
<tr>
<th>Distance A—Ft. (m)</th>
<th>Maximum Gross Weights—Lbs. (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5—Axles</td>
</tr>
<tr>
<td>33 (10.1)</td>
<td>73,280 (33,239)</td>
</tr>
<tr>
<td>34 (10.4)</td>
<td>73,280 (33,239)</td>
</tr>
<tr>
<td>35 (10.7)</td>
<td>73,280 (33,239)</td>
</tr>
<tr>
<td>36 (11.0)</td>
<td>73,280 (33,239)</td>
</tr>
<tr>
<td>37 (11.3)</td>
<td>73,280 (33,239)</td>
</tr>
<tr>
<td>38 (11.6)</td>
<td>73,280 (33,239)</td>
</tr>
<tr>
<td>39 (11.9)</td>
<td>73,280 (33,239)</td>
</tr>
<tr>
<td>40 (12.2)</td>
<td>73,280 (33,239)</td>
</tr>
<tr>
<td>41 (12.5)</td>
<td>73,500 (33,339)</td>
</tr>
<tr>
<td>42 (12.8)</td>
<td>74,000 (33,566)</td>
</tr>
<tr>
<td>43 (13.1)</td>
<td>75,000 (34,019)</td>
</tr>
<tr>
<td>44 (13.4)</td>
<td>75,500 (34,246)</td>
</tr>
<tr>
<td>45 (13.7)</td>
<td>76,000 (34,473)</td>
</tr>
<tr>
<td>46 (14.0)</td>
<td>76,500 (34,700)</td>
</tr>
<tr>
<td>47 (14.3)</td>
<td>77,500 (35,153)</td>
</tr>
<tr>
<td>48 (14.6)</td>
<td>78,000 (35,380)</td>
</tr>
<tr>
<td>49 (14.9)</td>
<td>78,500 (35,607)</td>
</tr>
<tr>
<td>50 (15.2)</td>
<td>79,000 (35,834)</td>
</tr>
<tr>
<td>51 (15.5)</td>
<td>80,000 (36,287)</td>
</tr>
</tbody>
</table>
D. Responsibilities

It will be the responsibility of the Contractor to advise his personnel, and all equipment users included in Subsection 107.14.A, as to the load restrictions and stipulations contained herein.

E. Excess Loads and Violations

Any load that exceeds the legal limits specified herein may be accepted at the Engineer's discretion for use in the Work; however, weight exceeding the legal limits will be deducted from the total weight and the Contractor will not receive payment for the deducted portion of materials. (For items not measured for payment by weight, the excess weight will be correlated to the appropriate pay quantity and this amount will be deducted from the payment.) The loads of haulers who refuse to have their vehicles weighed will be rejected.

If multiple violations assignable to a given Certified Public Weigher are occurring, that Certified Public Weigher may be suspended from weighing materials dispatched to Department of Transportation projects.

107.15 Responsibility for Damage Claims

The Contractor shall indemnify and save harmless the Department, its officers and employees, from all suits, actions, or claims of any character brought because of any injuries or damage received or sustained by any person, persons, or property on account of the operations of the said Contractor; or on account of or in consequence of any neglect in safe-guarding the Work; or through use of unacceptable materials in constructing the Work; or because of any act of omission, neglect or misconduct of said Contractor; or because of any claims or amounts recovered from any infringements of patent, trademark, or copyright; or from any claims or amounts arising or recovered under the Workmen's Compensation Act, or any other law, ordinance, order, or decree; and so much of the money due the said Contractor under and by virtue of his Contract as may be considered necessary by the Department for such purpose may be withheld for the use of the State; or, in case no money is due, his surety may be held until such suit or suits, action or actions, claim or claims for injuries or damages as aforesaid shall have been settled and suitable evidence to that effect furnished to the Department; except that money due the Contractor will not be withheld when the Contractor produces satisfactory evidence that he is adequately protected by public liability and property damage insurance.

107.16 Opening Sections of Project to Traffic

Whenever any bridge or section of roadway is in acceptable condition for travel, the Engineer may direct that it be opened to traffic, whether or not the opening was originally provided for, and such opening shall not be held to be in any way an acceptance of the bridge or roadway, or any part thereof, or as a waiver of any of the provisions of the Contract. Necessary repairs or renewals made on any section of the roadway or bridge thus opened to traffic under instructions from the Engineer, due to defective material or work, or to any cause other than ordinary wear and tear, pending completion and acceptance of the roadway, bridge, or other work, shall be done by the Contractor, without additional compensation. Also, the Contractor shall not receive additional compensation for completing the Work except as specified in Subsection 104.03.

If the Contractor is dilatory in completing shoulders, drainage structures, or other features of work, the Engineer may so notify him in writing and establish therein a reasonable period of time in which the Work should be completed. If the Contractor is dilatory, or fails to make a reasonable effort toward completion in this period of time, the Engineer may then order all or a portion of the Project opened to traffic. On such sections which are so ordered to be opened, the Contractor shall conduct the remainder of his construction operations so as to cause the least obstruction to traffic and shall not receive any added compensation due to the added cost of the Work by reason of opening such section to traffic.

On any section opened to traffic under any of the above conditions, whether stated in the Special Provisions or opened by necessity of Contractor’s operations, or unforeseen necessity, any damage to the highway not attributable to traffic which might occur on such section (except slides) shall be repaired by the Contractor at his expense. The removal of slides shall be done by the Contractor on a basis agreed to prior to the removal of such slides.

107.17 Contractor’s Responsibility for the Work

From the first day the Contractor begins work, or from the date Contract Time commences, whichever occurs first, until written final acceptance of the project by the Engineer, the Contractor shall have the charge and care thereof and shall take every precaution against injury or damage to any part thereof by the action of the elements or from any other cause, whether arising from the execution or from the non-execution of the Work. The Contractor shall rebuild, repair, restore, and make good all injuries or damages to any portion of the Work occasioned by any of the above causes before final acceptance and shall bear the expense thereof except that the Department may, in its discretion, reimburse the Contractor for the repair of damage to the Work due to unforeseeable causes beyond the control of and without the fault or negligence of the Contractor, including but not restricted to acts of God, of the public enemy or of governmental authorities. The Contractor’s responsibility for damages and injuries is defined in Subsection 104.05.A.
In case of suspension of work from any cause whatsoever, the Contractor shall be responsible for the Project and shall take such precautions as may be necessary to prevent damage to the Project, provide for normal drainage and shall erect any necessary temporary structures, signs, or other facilities at his expense.

107.18 Acquisition of Right-of-Way

Rights of Way for the project will be obtained by the Department, in coordination with local governments and others. However, the Contractor’s access to the portions of the right-of-way may be restricted. Where such restrictions are known in advance to the Department they will be listed in the bid proposal. Delays to the progress of the Work may be encountered because of restricted access to portions of the right-of-way. When such delays occur, whether caused by restrictions listed in the bid proposal or restrictions that develop after the Contract is signed, the parties agree in executing the Contract that such delays do not constitute breach of the Contract. Delays in availability of right-of-way beyond those listed in the bid proposal, or that develop after the Contract has been signed, that impact the controlling Item or Items of the Work will not be charged against the Contract Time. Additional compensation for such delays shall not be paid, except as provided in Subsection 105.13, “Claims for Adjustments and Disputes,” or Subsection 109.09, “Termination Clause.” In the event the Department is unable to acquire right-of-way needed for the project, resulting in delay to or termination of the project, such situation will also be controlled by this Section, and will not constitute a breach of the Contract by the Department.

107.19 Personal Liability of Public Officials

In carrying out any of the provisions of the Contract or in exercising any power or authority granted to the Board, Commissioner, Chief Engineer, their agents and employees, by the Contract, there shall be no liability, either personally or as officials or representatives of the Department, it being understood that in all such matters they act solely as agents and representatives of the Department.

107.20 No Waiver of Legal Rights

Upon completion of The Work, the Department will expeditiously make final inspection and notify the Contractor of acceptance. Such final acceptance, however, shall not preclude or estop the Department from correcting any measurement, estimate, or certificate made before or after completion of The Work, nor shall the Department be precluded or estopped from recovering from the Contractor or his Surety, or both, such over-payment as it may sustain, or by failure on the part of the Contractor to fulfill his obligations under the Contract. A waiver on the part of the Department of any breach of any part of the Contract shall not be held to be a waiver of any other or subsequent breach.

The Contractor, without prejudice to the terms of the Contract, shall be liable to the Department for latent defects, fraud, or such gross mistakes as may amount to fraud, or as regards the Department’s rights under any warranty or guaranty.

107.21 Contractor’s Responsibility for Utility Property and Services

A. Overhead or Underground Utility Facilities

At points where the Contractor’s operations are adjacent to or conflict with overhead or underground utility facilities, or are adjacent to other property, damage to which might result in considerable expense, loss, or inconvenience, work shall not be commenced until all arrangements necessary for the protection thereof have been made.

B. Utility Facility Owners

The names of known utility owners and the location of known utility facilities will be shown on the Plans or in the Special Provisions, and the Contractor shall give 24-hour notice to such utility owners before commencing work adjacent to said utility facilities which may result in damage thereto. Contractor shall further notify utility owners of any changes in his work schedules affecting required action by the utility owners to protect or adjust their facilities. Notice to the utility companies by the Department of the Award of Contract, under Subsection 105.06, shall not be deemed to satisfy the notice required by this paragraph.

C. Cooperation with Facility Owners

The Contractor shall cooperate with the owners of any underground or overhead utility facilities in their removal and rearrangement operations in order that these operations may progress in a reasonable manner, that duplication of rearrangement work may be reduced to a minimum, and that services rendered by those parties will not be unnecessarily interrupted.

D. Interruption of Services

In the event of interruption to water or other utility services as a result of accidental breakage or as a result of being exposed or unsupported, the Contractor shall promptly notify the proper authority and shall cooperate with the said authority in the restoration of service. If utility service is interrupted, repair work shall be continuous until the service is
restored. No work shall be undertaken around fire hydrants until provisions for continued service have been approved by
the local fire authority.

E. Facilities Supported on Bridges

If the utility facilities are to be supported on bridges, the following provisions shall apply:

1. The Plans will show the location of the facility and the auxiliary items necessary to support the facility.

2. The Contractor who constructs the bridge shall install anchor bolts, thimbles, inserts, or other auxiliary items that are
attached to the bridge as a part of the support for the utility facility. The Utility owner, at his or her expense, shall
furnish these auxiliary items, unless the Contract indicates that these items are to be furnished by the Contractor as a
part of the bridge.

3. The Agency constructing the utility facility shall install hanger rods, pipe rolls, and other attachments necessary for
the support of the utility facility as indicated on the Plans. The Utility owner, at his expense, shall furnish these
attachments unless otherwise specified. This work shall also include:
 a. Caulking the openings around the utility where it passes through endwalls to prevent the passage of
 undesirable materials.
 b. Painting the exposed portions of utility supports unless such supports are corrosion resistant. Painting shall be
done in accordance with the applicable portions of Section 535, unless otherwise specified.

4. The sequence of bridge construction work may be set forth in the Plans and/or the Special Provisions and will show
at what stage of the Work a utility owner will be allowed to make the utility installation. Further, all or any portion
of The Work under Subsection 107.21.E.3 may be included in the bridge Contract by the Plans and/or the Special
Provisions.

5. Any damage to the bridge structure caused by the utility installation shall be repaired to the satisfaction of the
Engineer at the expense of the agency installing the utility facility.

F. Clearances

The Plans provide for at least minimum clearance of utilities as required by the National Electrical Safety Code, U.S.
Department of Commerce, National Bureau of Standards. Any additional clearance the Contractor may desire or require
in performing The Work shall be arranged by the Contractor with the utility owner. The Department will pay no extra
compensation for such additional clearances.

G. Delays

Delays and interruptions to the controlling Item or Items of The Work caused by the adjustment or repair of water, gas,
or other utility appurtenances and property will not be charged against the Contract Time unless such delays are due to
the negligence of the Contractor.

H. Compensation

There will be no direct compensation for complying with the above. Any additional cost to the Contractor for the above
services, interruptions, or special procedures, shall be included in the over-all Bid submitted.

107.22 Hazardous and/or Toxic Waste

When the Contractor’s operations encounter or expose any abnormal condition which may indicate the presence of a
hazardous and/or toxic waste, such operations shall be discontinued in the vicinity of the abnormal condition and the
Engineer shall be notified immediately. The presence of barrels, discolored earth, metal, wood, or visible fumes, abnormal
odors, excessively hot earth, smoke, or anything else which appears abnormal may be indicators of hazardous and/or toxic
wastes and shall be treated with extraordinary caution as they are evidence of abnormal conditions.

The Contractor’s operations shall not resume until so directed by the Engineer.

Disposition of the hazardous and/or toxic waste will be made in accordance with the requirements and regulations of the
Department of Human Resources and the Department of Natural Resources. Where the Contractor performs work necessary
to dispose of hazardous and/or toxic waste, payment will be made at the unit prices for pay items included in the contract
which are applicable to such work or, where the contract does not include such pay items, payment will be as provided in
Subsection 109.05, “Extra Work.”
107.23 Environmental Considerations

A. Roadway Construction

Erosion control measures shall be installed, to the greatest practical extent, prior to clearing and grubbing. Particular care shall be exercised along stream banks, wetlands and other environmentally sensitive areas to insure that these areas are not adversely affected.

Construction equipment shall not cross streams, rivers, or other waterways except at temporary stream crossing structures approved by the Engineer.

Construction activities within wetland areas are prohibited except for those within the construction limits as shown on the Plans.

All sediment control devices (except sediment basins) installed on a project shall, as a minimum, be cleaned of sediment when one half the capacity, by height, depth or volume, has been reached. Sediment basins shall be cleaned of sediment when one-third the capacity by volume has been reached.

B. Bridge Construction Over Waterways

Construction waste or debris, from bridge construction or demolition, shall be prevented from being allowed to fall or be placed into wetlands, streams, rivers or lakes.

Excavation, dewatering, and cleaning of cofferdams shall be performed in such a manner as to prevent siltation. Pumping from cofferdams to a settling basin or a containment unit will be required if deemed necessary by the Engineer.

Operations required within rivers or streams, i.e. jetting or spudding, shall be performed within silt containment areas, cofferdams, silt fence, sediment barriers or other devices to minimize migration of silt off the project.

C. Borrow and Excess Material Pits

Specific written environmental clearance from the Engineer will be required for any sites not included in the Plans as excess material or borrow areas. No work other than testing shall be started at any potential excess material or borrow site not shown on the plans prior to receiving said environmental clearance from the Engineer.

The Engineer will require a written notice from the Contractor requesting environmental clearance studies and written permission from the property owner at least six weeks prior to intended use of the site. The Department will not begin studies on such sites before a Notice to Proceed is issued.

The Engineer will inform the Contractor in writing as to the granting or denial of environmental clearance. If denied, the Contractor may, at no expense to the Department, seek to obtain permits or pursue other remedies that might otherwise render the site(s) acceptable.

Sites included in the Plans have environmental clearance and shall be used only for the purpose(s) specified in the Plans or other contract documents. Should the Contractor wish to expand or utilize said sites for any purpose other than that provided for in the Plans or other contract documents, specific written environmental clearance as noted above shall be obtained.

D. Control of Pollutants

Pollutants or potentially hazardous materials, such as fuels, lubricants, lead paint, chemicals or batteries, shall be transported, stored, and used in a manner to prevent leakage or spillage into the environment. The Contractor shall also be responsible for proper and legal disposal of all such materials.

Equipment, especially concrete or asphalt trucks, shall not be washed or cleaned-out on the Project except in areas where unused product contaminants can be prevented from entering waterways.

E. Temporary Work in Wetlands

Temporary work in wetlands in order to facilitate construction will be subject to the following requirements:

1. Temporary work in wetlands shall be accomplished by using temporary structures, timber, concrete, soil with geotextile fabric, or other suitable matting.

2. Soil matting shall be protected from erosion in accordance with the Specifications.

3. Whenever temporary work is required in Saltwater Marsh Wetlands, all temporary structures and/or matting shall be removed in their entirety prior to Final Acceptance of the Project. Matt ed and compressed soils shall be backfilled to their original ground elevation with material meeting the requirements of Section 212 – Granular Embankment.
4. Whenever temporary work is required in Freshwater Wetlands, all temporary structures and/or matting (exclusive of soil matting to be retained in the final roadway section) shall be removed in their entirety prior to Final Acceptance of the Project.

Once the temporary materials have been removed, the area shall be covered by Excelsior or Straw blankets in accordance with Section 713 of the Specifications. The grassing and ground preparation referenced in Subsection 713.3.03, “Preparation”, will not be applicable to this Work.

5. The Contractor shall notify the Engineer so that a field inspection may be conducted to certify that the temporary materials were properly removed and that the area was properly restored. The Contractor shall be responsible for any corrective action required to complete this Work.

6. There will be no separate measurement or payment for this Work. The cost associated with this Work shall be included in the overall Bid submitted.

107.24 Closing of Roadways Without On-Site Detours

When existing roadways are to be closed to through traffic and on-site detours are not provided, the Contractor shall submit a written notice to the Engineer for approval 14 days prior to the closure of the existing roadways.

After receiving approval from the Engineer for the closure, the Contractor shall install signs at each closure site, in accordance with the MUTCD, to inform the traveling public of the proposed closure, including the date of closure. The sign shall be placed 5 days prior to the closure, at the direction of the Engineer.

Prior to the closure, the Area Engineer will inform local government officials and agencies, local news media, and the DOT Public Information Office of the proposed closure of the roadways.

107.25 Disruption to Residential and Commercial Property

The Contractor shall plan, coordinate, and prosecute the work such that disruption to personal property and business is held to a practical minimum.

All construction areas abutting lawns and yards of residential or commercial property shall be restored promptly. Backfilling of each drainage structure or section of curb and gutter, sidewalk, or driveway shall be accomplished as soon as adequate strength is obtained. Finishing, dressing and grassing shall be accomplished immediately thereafter as a continuous operation within each area being constructed with emphasis placed on completing each individual yard or business frontage. Care shall be taken to provide positive drainage to avoid ponding or concentration of runoff.

Handwork, including raking and smoothing, shall be required to ensure that roots, sticks, rocks, and other debris is removed in order to provide a neat and pleasing appearance. Grassing, when in season, shall immediately follow in order to establish permanent cover at the earliest date. If grassing is not in season, proper erosion control shall be installed and maintained.

The work described herein shall be in addition to that required by Subsection 104.07 “Final Cleaning Up” and Subsection 105.16 “Final Inspection and Acceptance.”

Section 108—Prosecution and Progress

108.01 Subletting of Contract

The Contractor shall not sublet, sell, transfer, assign, or otherwise dispose of the Contract or Contracts, or any portion thereof, or of his/her right, title, or interest therein, without written consent of the Engineer. For Subcontracts, consent of the Engineer will not be considered until after award of the Contract.

In case such consent is given, the Contractor will be permitted to sublet a portion thereof, but shall perform, with his/her own organization, work amounting to not less than thirty percent (30%) of the total Contract cost, including materials, equipment, and labor.

As further exception, any items designated as Specialty Items may be performed by Subcontract and the cost of any such Specialty Items so performed by Subcontract may be deducted from the total cost before computing the amount of work required to be performed by the Contractor with his/her own organization.

Purchase of materials by the Prime Contractor for use by a Subcontractor will not be allowed when computing the 30% requirement.
No Subcontracts, or transfer of Contract, shall in any case release the Prime Contractor of his/her liability under the Contract and Bonds. No Subcontractor shall commence work in advance of the written approval of the Subcontract by the Department. Except for certain items exempted by the State Transportation Board, or for Subcontracts totaling $250,000 or less, each Subcontractor shall be prequalified or registered with the Department. Each Subcontract for a Registered Subcontractor shall not exceed $1,000,000 and Subcontracts for Prequalified Contractors shall not exceed their current capacity. Prequalified or Registered Subcontractors shall be qualified or registered with the Department in accordance with Chapter 672-5 of the Rules and Regulations Governing the Prequalification of Prospective Bidders adopted by the State Transportation Board.

In the event any portion of a Subcontract is further sublet, all of the provisions governing subletting, including registration and written approval by the Engineer, shall apply.

This Sub-Section shall not apply to Contracts between the Department and counties, municipalities, or other State agencies.

All subcontract agreements between the Prime Contractor and subcontractor shall be in writing and shall contain all of the Federal-Aid requirements and pertinent provisions of the Prime Contract. The Prime Contractor shall, upon request by the Engineer, furnish copies of any subcontract agreement to the Department within ten (10) days of such request. This provision applies to all subcontracts, including second or multi-tier subcontracts.

According to the provisions stated above, the following items are designated Specialty Items for general transportation system construction and building construction whenever they appear in the Contract:

General Transportation System Contracts
- Grassing items
- Fencing items
- Highway lighting items
- Sign items
- Guardrail items (except bridge handrail)
- Utility items
- Comfort and convenience items in rest areas
- Landscaping items
- Pressure grouting, slab removal and replacement
- Permanent traffic markings
- Signal systems
- Railroad track work above sub-ballast
- Drilled caisson foundations
- Construction layout
- Asphaltic concrete leveling and asphalt concrete patching (when used on surface treatment and slurry seal resurfacing contracts)

Building Contracts
- Structural Steel
- Plumbing
- Heating, ventilation, and air conditioning (HVAC)
- Electrical
- Telephone service
- Masonry
- Glass work
- Drywall
- Ceiling installation
- Roofing
- Carpentry
- Floor covering
- Raised flooring
108.02 Notice to Proceed

The delivery to the Contractor of a notice, stating that construction is authorized, constitutes Notice to Proceed. The Contractor shall do no work under the Contract until receipt of the Notice to Proceed, and the Department will not be obligated to pay for work done prior to receipt of the Notice to Proceed.

Within 10 calendar days after the Notice to Proceed has been issued, the Contractor shall begin the Work. Contract Time charges for Available Day and Calendar Day projects will begin on the date the Contractor starts to work, or 10 days after the Notice to Proceed, whichever occurs first. For Completion Date projects Contract Time charges shall begin on the day after the Notice to Proceed.

Where the Contractor’s access to part of the right-of-way is restricted, either the Special Provisions in the Contract or the Conditional Notice to Proceed will indicate such restrictions. The Department may, at its option, issue a Conditional Notice to Proceed if, in the opinion of the Engineer, a sufficient portion of the right-of-way is available to the Contractor to allow construction to proceed.

108.03 Prosecution and Progress

The Contractor shall provide sufficient materials, equipment, and labor to guarantee the completion of the Project in accordance with the Plans and Specifications within the time set forth in the Proposal. Unless otherwise required by the Engineer, each operation shall begin as soon after the Contract is awarded as conditions will permit. Each class of work will be expected to continue from the date it is begun until it is completed.

The Contractor shall furnish the Engineer, for approval, a Progress Schedule immediately following the receipt of the Notice to Proceed. Unless otherwise specified, the schedule shall be prepared on forms furnished by the Department or an acceptable critical path schedule will be used as the basis for establishing the controlling items of work and as a check on the progress of The Work. This Schedule will not be required on resurfacing projects.

Approval of the Progress Schedule shall not be construed to imply approval of any particular method or sequence of construction or to relieve the Contractor of providing sufficient materials, equipment, and labor to guarantee the completion of the Project in accordance with the Plans, Specifications, and Special Provisions within the time set forth in the Proposal. Contract Time as shown in the Proposal is the allowable time. The Contractor’s proposed Progress Schedule may indicate a completion date in advance of the Contract Specified Completion Date; however, the Department will not be liable in any way for the Contractor’s failure to complete the project prior to the Contract Specified Completion Date.

At least 48 hours before commencing The Work, the Contractor shall notify the Engineer of his intention to begin so that proper inspection may be provided. Should the prosecution of The Work be discontinued for any reason, the Contractor shall notify the Engineer at least 24 hours in advance of resuming operations.

If the Contractor’s operations are materially affected by changes in the Plans or in the amount of work, or if he has failed to comply with the approved schedule, the Contractor shall submit a revised Progress Schedule, if requested by the Engineer, which schedule shall show how he proposes to prosecute the balance of The Work. The Contractor shall submit the revised Progress Schedule within 10 days after the date of the request. The Contractor shall incorporate into every Progress Schedule submitted, any contract requirements regarding the order of performance of portions of The Work.

No payments will be made to the Contractor while he is delinquent in the submission of a Progress Schedule or a revised Progress Schedule.
108.04 Limitation of Operations
The Contractor shall conduct The Work at all times in such a manner and in such sequence as will assure the least interference with traffic and shall provide for smooth and safe traffic flow. It shall be the decision of the Engineer as to what will assure the least interference with traffic and smooth, safe traffic flow. Also, the Engineer may require the Contractor to finish a section on which work is in progress before work is started on any additional sections if the opening of such section is essential to public convenience.

108.05 Character of Workers, Methods and Equipment
The Contractor shall at all times employ sufficient labor and equipment for prosecuting the several classes of work to full completion in the manner and time required by these Specifications.

All workers shall have sufficient skill and experience to perform properly the work assigned to them. Workers engaged in special or skilled work shall have sufficient experience in such work and in the operation of the equipment required to perform all work properly and satisfactorily.

Any person employed by the Contractor or by any Subcontractor who the Engineer determines does not perform work in a proper and skilled manner or is intemperate or disorderly shall, at the written request of the Engineer, be removed forthwith by the Contractor or Subcontractor employing such person, and shall not be employed again in any portion of The Work without the approval of the Engineer.

Should the Contractor fail to remove such person or persons as required above, or fail to furnish suitable and sufficient personnel for the proper prosecution of The Work, the Engineer may suspend The Work by written notice until such orders are complied with.

All equipment that is proposed to be used on The Work shall be of sufficient size and in such mechanical condition as to meet the requirements of The Work and to produce a satisfactory quality of work. Equipment used on any portion of the Project shall be such that no injury to the roadway, adjacent property, or other highways will result from its use.

When the methods and equipment to be used by the Contractor in accomplishing the construction are not prescribed in the Contract, the Contractor is free to use any methods or equipment that he demonstrates to the satisfaction of the Engineer will accomplish The Work in conformity with the requirements of the Contract.

When the Contract specifies that the construction be performed by the use of certain methods and equipment, such methods and equipment shall be used unless others are authorized by the Engineer. If the Contractor desires to use a method or type of equipment other than those specified in the Contract, he may request authority from the Engineer to do so. The request shall be in writing and shall include a full description of the methods and equipment proposed to be used and an explanation of the reasons for desiring to make the change. If approval is given, it will be on the condition that the Contractor will be fully responsible for producing construction work in conformity with Contract requirements. If, after trial use of the substituted methods or equipment, the Engineer determines that the work produced does not meet Contract requirements, the Contractor shall discontinue the use of the substitute method or equipment and shall complete the remaining construction with the specified methods and equipment. The Contractor shall remove the deficient work and replace it with work of specified quality, or take such other corrective action as the Engineer may direct. No change will be made in basis of payment for the construction items involved nor in Contract Time as a result of authorizing a change in methods or equipment under these provisions.

108.06 Temporary Suspension of Work
The Engineer has the authority to suspend The Work wholly or in part, for as long as he may deem necessary, because of unsuitable weather, or other conditions considered unfavorable for continuing The Work, or for as long as he may deem necessary by reason of failure of the Contractor to carry out orders given, or to comply with any provisions of the Contract. No additional compensation will be paid the Contractor because of suspension. If it becomes necessary to stop The Work for an indefinite period, the Contractor shall store all materials in such a way that they will not impede the traveling public unnecessarily or become damaged in any way, and he shall take every precaution to prevent damage or deterioration of The Work done; provide suitable drainage of the roadway, and erect temporary structures where necessary. The Work shall be resumed when conditions are favorable or when corrective measures satisfactory to the Engineer have been applied; when, and as ordered by the Engineer in writing. The Contractor shall not stop The Work without authority.

If The Work is stopped by any temporary or permanent injunction, court restraining order, process or judgment of any kind, directed to either of the parties hereto, then such period or delay will not be charged against the Contract Time nor shall the Department be liable to the Contractor on account of such delay or termination of work.
108.07 Determination of Contract Time

The definition of Contract Time and when Contract Time officially begins is stated in Subsection 101.19. After the Contract has been signed by all parties, Contract Time becomes the specified period of time, agreed upon by the Contractor, the Surety, and the Department, during which all Items and quantities of work set forth in the Proposal and included in the original Contract will be completed.

A. Available Day Contracts

An available day is defined in Subsection 101.04. The Engineer will furnish the Contractor a written monthly statement showing the total number of available days charged through the preceding month. The Contractor will be allowed one week in which to file a written protest setting forth in what respect said statement is incorrect, otherwise the statement shall be deemed to have been accepted by the Contractor as correct.

B. Calendar Day Contracts

When the Contract Time is on a calendar day basis it shall consist of the number of calendar days stated in the Contract counting from the date Contract Time starts as defined in Subsection 108.02, including all Sundays, holidays, and non-work days.

C. Completion Day Contracts

When the Contract completion time is a fixed date, it shall be the date on which all work on the Project shall be completed.

D. Settlement Periods

Settlement Periods shall be computed in calendar days unless otherwise stated in the contract documents.

E. Extension of Contract Time

If satisfactory fulfillment of the Contract requires performance of work in greater quantities than those set forth in the Proposal, the Contract Time allowed for performance shall be extended on a basis commensurate with the amount and difficulty of the added work as determined by the Engineer, whose decision shall be final and conclusive.

If the estimated time for the consolidation of embankments at bridge ends is extended, the Contract Time will be extended as provided in Subsection 208.3.05.B.3.

If the normal progress of The Work is delayed for reasons beyond his control, the Contractor shall, within 15 days after the start of such delay, file a written request to the Engineer for an extension of time setting forth therein the reasons and providing complete documentation for the delay which he believes will justify the granting of his request. The Contractor’s plea that insufficient time was specified is not a valid reason for extension of time. If the Engineer finds that The Work was delayed because of conditions beyond the control and without the fault of the Contractor, he may extend the time for completion in such amount as the conditions justify.

Any authorized extension of the Contract Time will be in full force and effect the same as though it was the original Contract Time.

F. Suspension of Time Charges

If the Engineer suspends the Work by reason of failure of the Contractor to carry out written orders given, or to comply with any provision of the Contract, Time Charges will continue through the period of such suspension.

If the Contractor is declared in default, Time Charges will continue.

Except on Completion Date Contracts, Time Charges will not be made against the Contract when the only remaining controlling items of work are shut down by the Engineer because of seasonal limitations or temperature controls.

G. When Time Charges Cease

Time charges will cease when all work on Contract Items have been completed to the satisfaction of the Engineer. The only exception to this requirement is that a satisfactory growth of vegetative cover and application(s) of nitrogen will not be required when Time Charges are stopped, provided all filling of washes and repairs to planted areas have been accomplished. Maintenance of planted areas in order to produce a satisfactory growth after Time Charges have stopped will be performed without assessment of liquidated damages provided this work is diligently prosecuted. If, during this waiting period, maintenance of any part of the Project is inadequate, the Engineer may resume Time Charges 10 days after written notification to the Contractor and will continue Time Charges until the unsatisfactory conditions are corrected.
108.08 Failure or Delay in Completing Work on Time

Time is an essential element of the Contract, and any delay in the prosecution of The Work may inconvenience the public, obstruct traffic, or interfere with business. In addition to the aforementioned inconveniences, any delay in completion of The Work will always increase the cost of engineering. For this reason, it is important that The Work be pressed vigorously to completion. Should the Contractor or, in case of default, the Surety fail to complete The Work within the time stipulated in the Contract or within such extra time that may be allowed, charges shall be assessed against any money due or that may become due the Contractor in accordance with the following schedule:

<table>
<thead>
<tr>
<th>Schedule of Deductions for Each Day of Overrun in Contract Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Contract Amount</td>
</tr>
<tr>
<td>From More Than</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$50,000</td>
</tr>
<tr>
<td>$100,000</td>
</tr>
<tr>
<td>$500,000</td>
</tr>
<tr>
<td>$1,000,000</td>
</tr>
<tr>
<td>$2,000,000</td>
</tr>
<tr>
<td>$5,000,000</td>
</tr>
<tr>
<td>$10,000,000</td>
</tr>
<tr>
<td>$20,000,000</td>
</tr>
<tr>
<td>$40,000,000</td>
</tr>
</tbody>
</table>

When the Contract Time is on either the calendar day or completion date basis, the schedule for calendar days shall be used. When the Contract Time is based on an available day basis, the schedule for available days shall be used.

For each Calendar Day or Available Day, as specified, that any work shall remain uncompleted after the contract time specified for the completion of the Work required by the Contract, the sum specified in the Contract will be deducted from any money due the Contractor, not as a penalty, but as liquidated damages; provided however, that due account shall be taken of any adjustment of the contract time for completion of the work granted under the provisions of Subsection 108.07.E.

The Department may waive such portions of the liquidated damages as may accrue after the work is in condition for safe and convenient use by the traveling public.

A. Liquidated Damages

The amount of such charges is hereby agreed upon as fixed liquidated damages due the Department after the expiration of the time for completion specified in the Contract. The Contractor and his Surety shall be liable for liquidated damages in excess of the amount due the Contractor on the final payment.

These fixed liquidated damages are not established as a penalty but are calculated and agreed upon in advance by the Department and the Contractor due the uncertainty and impossibility of making a determination as to the actual and consequential damages which are incurred by the Department, the State, and the general public as a result of the failure on the part of the Contractor to complete The Work on time.

1. Deduction From Partial Payments: Liquidated damages, as they accrue, will be deducted from periodic partial payments.

2. Deduction From Final Payment: The full amount of liquidated damages will be deducted from final payment to the Contractor and/or his Surety.

3. No Liquidated Damages Charged for Delay by the Department: In case of default of the Contract and the subsequent completion of The Work by the Department as hereinafter provided, the Contractor and his Surety shall be liable for the liquidated damages under the Contract, but no liquidated damages shall be chargeable for any delay in the final completion of The Work by the Department due to any unreasonable action, negligence, omission, or delay of the Department. In any suit for the collection of or involving the assessment of liquidated damages, the reasonableness of the amount shall be presumed. The liquidated damages referred to herein are intended to be and
are cumulative and shall be in addition to every other remedy now or hereafter enforceable at law, in equity, by statute, or under the Contract.

B. No Waiver of Department’s Rights

Permitting the Contractor to continue and finish The Work or any part of it after the expiration of the time allowed for completion or after any extension of time, shall not operate as a waiver of the rights of the Department under the Contract.

108.09 Default of Contract

If the Contractor fails to begin The Work within the time specified, or fails to perform The Work with sufficient workers, equipment, or materials to ensure its prompt completion, or performs The Work unsuitably, or neglects or refuses to remove materials or perform anew such work as shall be rejected as defective and unsuitable, or discontinues the prosecution of The Work, or from any other cause whatsoever does not carry on The Work in an acceptable manner, or becomes insolvent or is adjudicated a bankrupt, or commits any act of bankruptcy or insolvency, or allows any final judgement to stand against him unsatisfied for a period of 10 days, or makes an assignment for the benefit of creditors, or fails to comply with the contract requirements regarding wage payments or EEO requirements, or fails to sign the standard release form as stipulated in Subsection 109.08 “Final Payment,” the Engineer may give notice in writing by registered or certified mail to the Contractor and the Surety, stating the nature of the deficiencies and directing that The Work including its progress be remedied and made satisfactory.

If, within 10 days after such notice, the Contractor or his Surety does not proceed in satisfactory way to remedy the faults specified in said notice, the Engineer will notify the Contractor and his Surety by registered or certified mail that the Contractor is in default and, by the same message, direct the Surety to take over The Work including all of the obligations pertaining to the Contract. If the Surety takes over the work in a satisfactory way within 10 days after such notice of default, the Department will thenceforth pay to the Surety the amounts due and to become due under the Contract, less all deductions provided herein including liquidated damages. The Department shall not be liable for any sums not due under the Contract and shall not be made a party to any dispute between the Contractor and the Surety.

If the Contractor is declared in default and The Work and other Contract obligations are taken over by the Surety as required by its Bond, and when all parts of The Work have been completed and found to be satisfactory by the Engineer, as provided for in Subsection 105.16 “Final Inspection and Acceptance,” the said Surety is hereby constituted the attorney in fact of the Contractor for the purpose of executing such final releases as may be required by the Department or to do any other act or thing, including the execution of any documents, necessary to the completion of the Contract and a final settlement of same, including but not limited to those documents required by the provisions regarding final payment and release as set forth in Subsection 109.08.

For all purposes, as herein set out and defined, including the execution of documents necessary to the final completion and settlement of the Contract, the Surety, under such circumstances, is hereby authorized and directed by the Contractor to perform such acts and execute such documents as fully and completely as though the same were performed or executed by such contractor, and to be lawfully binding upon such Contractor as though such acts had been performed or such documents executed by him in person.

If the Surety does not take over The Work in a satisfactory way within 10 days after the notice of default, or does not proceed to finish The Work according to the Contract, the Department shall have full power and authority, without impairing the obligation of the Contract or the Contract Bond, to take over the completion of The Work; to appropriate or use any or all material and equipment on the ground that may be suitable, to enter into agreements with others for the completion of the Contract according to the terms and provisions thereof; or to use such other methods as may be required for the completion of the Contract. In so assuming the obligations of the Contractor, the Department does so as the agent of the Contractor. Assumption of these duties and obligations by the Department will not act as a release of the Contractor or his Surety from any of the provisions of this Contract. The Contractor and his Surety shall be liable for all costs incurred by the Department in completing The Work and also for all liquidated damages in conformity with the terms of the Contract. If the sum of such liquidated damages and the expense so incurred by the Department is less than the sum which would have been payable under this Contract if it had been completed by the Contractor or his Surety, the Contractor, or his Surety, shall be entitled to receive the difference; and if the sum of such expense and such liquidated damages exceeds the sum that would have been payable under the Contract, the Contractor and his Surety shall be liable and shall pay to the Department the amount of such excess. Notice to the Contractor shall be deemed to have been served when delivered to the person in charge of any office used by the Contractor, his representative at or near The Work or by registered or certified mail addressed to the Contractor at the last known place of business.

Time Charges shall continue through a period of a default in compliance with the provisions of Subsection 108.07.F.
108.10 Termination of Contractor’s Responsibility
Except as specified in the Contract Bond and in Subsection 107.20, the Contractor’s responsibility for The Work shall terminate upon final acceptance of The Work by the Department.

Section 109—Measurement and Payment

109.01 Measurement and Quantities
The method of measurement and computations to be used in determination of quantities of material furnished and of work performed under the Contract will be those methods generally recognized as conforming to good engineering practice.

Unless otherwise specified, longitudinal measurements for area computations will be made along the surface, and no deductions will be made for individual fixtures having an area of 9 ft² (1 m²) or less. Unless otherwise specified, transverse measurements for area computations will be the net dimensions shown on the Plans or ordered in writing by the Engineer.

Where payment is to be made by the square yard (square meter) for a specified thickness, the length will be measured on the surface along the centerline and the pay width shall be that width specified on the plans for the Final surface of the completed section. Intermediate courses shall be placed at a width sufficient to support successive courses with no detriment to the stability of the successive courses. The width of material required beyond the pay width will not be eligible for payment and shall be considered incidental to the work.

Structures will be measured according to neat lines shown on the Plans or as altered to fit field conditions.

All items which are measured by the linear foot (linear meter), such as pipe culverts, guard rail, underdrains, etc., will be measured parallel to the base or foundation upon which such structures are placed, unless otherwise shown on the Plans.

In computing volumes of excavation, the average end area method or other acceptable methods will be used.

The term “gage,” when used in connection with the measurement of steel plates, will mean the U.S. Standard Gage.

When the term “gage” refers to the measurement of electrical wire it will mean the wire gage specified in the National Electrical Code.

The term “ton” will mean the short ton consisting of 2,000 pounds avoirdupois. The term “megagram” will mean one metric ton, equivalent to 1,000 kg. Any commodity paid for by weight shall be weighed on scales that have been approved as specified below and which are furnished at the expense of the Contractor or Supplier. Weighing and measuring systems including remote controls shall be subject to type-approval by the Department of Transportation. The manufacture, installation, performance, and operation of such devices located in Georgia shall conform to, and be governed by, the Official Code of Georgia, Annotated, Section 10-2-5 of the Georgia Weights and Measures Act, the Georgia Weights and Measures Regulations, as amended and adopted, the current edition of the National Bureau of Standards Handbook 44, and these Specifications. Weighing and measuring systems located outside Georgia which are utilized for weighing materials to be used in Department work shall be manufactured, installed, approved, and operated in accordance with applicable laws and regulations for the state in which the scales are located.

All weighing, measuring, and metering devices used to measure quantities for payment shall be suitable for the purpose intended and will be considered to be “commercial devices.” Commodity scales located in Georgia shall be certified before use for accuracy, condition, etc., by the Weights and Measures Division of the Georgia Department of Agriculture, its authorized representative, or the Georgia Department of Transportation Office of Materials and Research. Scales located outside Georgia shall be certified in accordance with applicable laws and regulations for the state in which the scales are located. The Georgia Department of Transportation Office of Materials and Research may certify the scales. This certification shall have been made within a period of not more than one year prior to date of use for weighing commodity.

All equipment and all mechanisms and devices attached thereto or used in connection therewith shall be constructed, assembled, and installed for use so that they do not facilitate the perpetration of fraud. Any scale component or mechanism, which if manipulated would alter true scale values (including manual zero setting mechanisms) shall not be accessible to the scale operator. Such components and mechanisms that would otherwise be accessible to the scale operator shall be enclosed. Provisions shall be made for security seals where appropriate on equipment and accessories. A security seal shall be affixed to any adjustment mechanism designed to be sealed. Scale or accessory devices shall not be used if security seals have been broken or removed.

Any certified scale or scale component which has been repaired, dismantled, or moved to another location shall again be tested and certified before it is eligible for weighing.
Whenever materials that are paid for based on weight are from a source within the State, the scales shall be operated by and the weights attested to by signature and seal of a duly authorized Certified Public Weigher in accordance with Standard Operating Procedure 15 and the Official Code of Georgia, Annotated, Section 10-2-5 of the Georgia Weights and Measures Act as amended and adopted. When such materials originate from another state that has a certified or licensed weigher program, the scales shall be operated by a weigher who is certified by that state in accordance with applicable laws, and weight ticket recordation shall be in accordance with Standard Operating Procedure 15.

When materials are paid for based on weight and originate from another state which has no program for certifying or licensing weighers, the materials shall be weighed on scales located in the State of Georgia by a Certified Public Weigher in accordance with Standard Operating Procedure 15 and the Official Code of Georgia, Annotated, Section 10-2-5 of the Georgia Weights and Measures Act as amended and adopted.

No scale shall be used to measure weights greater than the scale manufacturer’s rated capacity. A digital recorder shall be installed as part of any commodity scale. The recorder shall produce a printed digital record on a ticket with the gross, tare, and net weights of the delivery trucks, along with the date and time printed for each ticket. Provisions shall be made so that the scales or recorders may not be manually manipulated during the printing process. The system shall be so interlocked as to allow printing only when the scale has come to rest. Either the gross or net weight shall be a direct scale reading. Printing and recording systems that are capable of accepting keyboard entries shall clearly and automatically differentiate a direct scale weight value from any other weight values printed on the load ticket.

All scales used to determine pay quantities shall be provided to attain a zero balance indication with no load on the load receiving element by the use of semi-automatic zero (push-button zero) or automatic zero maintenance.

Vehicle scales shall have a platform of sufficient size to accommodate the entire length of any vehicle weighed and shall have sufficient capacity to weigh the largest load. Adequate drainage shall be provided to prevent saturation of the ground under the scale foundation.

The Engineer, at his discretion, may require the platform scales to be checked for accuracy. For this purpose the Contractor shall load a truck with material of his choosing, weigh the loaded truck on his scales, and then weigh it on another set of certified vehicle scales. When the difference exceeds 0.4 percent of load, the scales shall be corrected and certified by a registered scale serviceman registered in the appropriate class as outlined in the Georgia Weights and Measures Regulations or in accordance with applicable requirements of the state in which the scales are located. A test report shall be submitted to the appropriate representative of the Department of Agriculture.

Materials to be measured by volume in the hauling vehicle shall be hauled in approved vehicles and measured therein at the point of delivery. Vehicles for this purpose may be of any size or type acceptable to the Engineer, provided that the body is of such shape that the actual contents may be readily and accurately determined. All vehicles shall be loaded to their water level capacity as determined by the Engineer, provided that the body is of such shape that the actual contents may be readily and accurately determined.

Cement and lime will be measured by the ton (megagram). Whenever cement or lime is delivered to the Project in tank trucks, a certified weight shall be made at the shipping point by an authorized Certified Public Weigher who is not an employee of the Department. Whenever cement and lime are from a source within the State, the scales shall be operated by the weights attested to by signature and seal of a duly authorized Certified Public Weigher in accordance with Standard Operating Procedure 15 and the Official Code of Georgia, Annotated, Section 10-2-5 of the Georgia Weights and Measures Act as amended and adopted. When such materials originate from another state that has a certified or licensed weigher program, the scales shall be operated by a weigher who is certified by that state in accordance with applicable laws, and the weight ticket recordation shall be in accordance with Standard Operating Procedure 15. When cement and lime originate from another state that has no program for certifying or licensing weighers, the materials shall be weighed on scales located in the State of Georgia by a Certified Public Weigher in accordance with Standard Operating Procedure 15 and the Official Code of Georgia, Annotated, Section 10-2-5 of the Georgia Weights and Measures Act as amended and adopted.

The shipping invoice shall contain the certified weights and the signature and seal of the Certified Public Weigher. A security seal shall also be affixed to the discharge pipe cap on the tank truck before leaving the shipping point. The number on the security seal shall also be recorded on the shipping invoice. The shipping invoice for quicklime shall also contain a certified lime purity percentage. Unsealed tank trucks will require reweighing by a Certified Public Weigher.

Timber will be measured by the thousand feet board measure (MBFM) (cubic meter) actually incorporated in the structure. Measurements will be based on nominal widths and thickness and the actual length in place. No additional measurement will be made for splices except as noted for overlaps as shown on the Plans.

The term “Lump Sum” when used as an item of payment will mean complete payment for the Work described in the Contract.
When a complete structure or structural unit (in effect, “Lump Sum” work) is specified as the unit of the measurement, the unit will be construed to include all necessary fittings and accessories.

Rental of equipment will be measured as defined in Subsection 109.05.B.4.

When standard manufactured items are specified as fence, wire, plates, rolled shapes, pipe conduits, etc., and these items are identified by gage, unit weight, section dimensions, etc., such identification will be considered to be nominal weights or dimensions. Unless more stringently controlled by tolerance in cited Specifications, manufacturing tolerances established by the industries involved will be accepted.

109.02 Measurement of Bituminous Materials

A. By Weighing the Material

The Department prefers this method whenever it is practicable. This method will be considered acceptable under the following conditions:

1. Weighed On Project: If the weights of the bituminous materials delivered by tank trucks are to be determined on the Project, weights shall be determined on scales that have been previously checked by the Department with standard weights for accuracy. The scale platform shall be large enough to accommodate the entire vehicle at one time. Under no conditions will truck scales be used to measure weights greater than their rated capacity. All weights not determined in the presence of an authorized representative of the Department shall be made by a Certified Public Weigher who is not an employee of the Department of Transportation and who is in good standing with the Georgia Department of Agriculture. The weight tickets shall carry both the signature and seal of the Certified Public Weigher.

2. Weighed At Shipping Point: A certified weight made at the shipping point by an authorized Certified Public Weigher who is not an employee of the Department of Transportation and who is registered with the Georgia Department of Agriculture, will be acceptable provided all openings in the tank have been sealed by the producer and when, upon inspection on the Project, there is no evidence of any leakage. The shipping ticket in this case must carry the signature and seal of the Certified Public Weigher. If the tank is not completely emptied the amount of material remaining in the tank truck will be measured by either weight or volume and the amount so determined, as verified by the Engineer, will be deducted from the certified weight.

3. By Extraction Analysis: The weight of bituminous material used will be determined by extraction tests made by the field laboratory. The average asphalt content for each Lot will be used to compute the weight of the Asphalt Cement to be paid for in accordance with the following formula:

English:

\[P = \% \text{ AC} \times T \]

Where:

- \(P \) = Pay Tons of Asphalt Cement
- \(\% \text{ AC} \) = Lot average of \% Asphalt Cement by weight of total mix as determined by extraction
- \(T \) = Actual accepted tons of mixture as weighed

Metric:

\[P = \% \text{ AC} \times T \]

Where:

- \(P \) = Pay megagrams of Asphalt Cement
- \(\% \text{ AC} \) = Lot average of \% Asphalt Cement by weight of total mix as determined by extraction
- \(T \) = Actual accepted megagrams of mixture as weighed

4. By Digital Recording Device: The amount of bituminous material as shown on the printed tickets will be the Pay Quantity.

B. By Volume

The volume will be measured and corrected for the difference between actual temperature and 60 °F (15 °C). Containers shall be level when measured, and one of the following methods shall be used, whichever is best suited to the circumstances:

1. Tank Car Measurement: If the material is shipped to the Project in railroad tank cars, the Contractor shall furnish the Engineer a certified chart showing the dimensions and volume for each inch (25 mm) of depth for each tank. The Engineer will make outage and temperature measurements before unloading is begun and after it is finished. The measurements will be taken when the bituminous material is at a uniform temperature and free from air bubbles. The Contractor shall not remove any bituminous material from any tank until necessary measurements have been made.
nor shall he release the car until final outage has been measured. The total number of gallons (liters) allowed for any tank car shall not be more than the U.S. Interstate Commerce Commission rating for that car, converted to gallons at 60 °F (15 °C).

2. Truck Measurement: If bituminous materials are delivered to the Project in tank trucks, distributor tanks, or drums, the Contractor shall not remove any bituminous material from the transporting vehicle or container until necessary measurements have been made, nor shall the transporting vehicle or container be released until final outage has been measured. If weighing is not convenient, the Contractor shall furnish the Engineer with a certified chart showing the dimensions and volume of each container together with a gauge or calibrated measuring rod which will permit the volume of the material to be determined by vertical measurement.

3. Metering: The volume may be determined by metering, in which case the metering device used and the method of using it shall be subject to the approval of the Engineer.

4. Time of Deliveries: The arrival and departure of vehicles delivering bituminous materials to the Project site shall be so scheduled that the Engineer is afforded proper time for the measurements of delivered volume and final outage. The Engineer will make the necessary measurements only during the Contractor’s normal daily working hours.

C. Production for Multiple Projects

When a Contractor is producing Asphaltic Concrete from one plant, which is being placed on two or more jobs, public or private, the amount of bituminous material used may be determined by extraction tests in accordance with Subsection 109.02.A.3 or digital recording device in accordance with Subsection 109.02.A.4.

D. Tack Coat

When the same storage facility is utilized for Bituminous Materials to be used in Hot Mix Asphaltic Concrete, Bituminous Tack Coat, and/or Surface Treatment, the quantity used for Tack Coat shall be converted to tons (megagrams) and deducted from the quantities for the Bituminous Material used in the Hot Mix Asphaltic Concrete and Surface Treatment.

E. Corrections

When the volume and temperature have been determined as defined above, the volume will be corrected by the use of the following formula:

\[
V_{\text{English}} = \frac{V_1}{K (t-60) + 1} \quad V_{\text{metric}} = \frac{V_1}{K (t-15) + 1}
\]

Where:

\(V = \) Volume of bituminous material at 60 °F (15 °C)

\(V_1 = \) Volume of hot bituminous material

\(t = \) Temperature of hot bituminous material in degrees Fahrenheit (Celsius)

\(K = \) Coefficient of Expansion of bituminous material (correction factor)

The correction factors \(K \) for various materials are given below:

- 0.00035 (0.00063) per °F (°C) for petroleum oils having a specific gravity of 60 °F/60 °F (15 °C/15 °C) above 0.966
- 0.00040 (0.00072) per °F (°C) for petroleum oils having a specific gravity of 60 °F/60 °F (15 °C/15 °C) between 0.850-0.966
- 0.00030 (0.00054) per °F (°C) for Tar
- 0.00025 (0.00045) per °F (°C) for Emulsified Asphalt
- 0.00040 (0.00072) per °F (°C) for Creosote Oil

109.03 Scope of Payment

The Contractor shall receive and accept the compensation provided for in the Contract as full payment for furnishing all materials, labor, tools, equipment, superintendence and incidentals, and for performing all work contemplated and embraced under the Contract in a complete and acceptable manner, for any infringement of patent, trademark or copyright, for all loss or damage arising from the nature of The Work, or from the action of the elements, for all expenses incurred by or in consequence of the suspension or discontinuance of The Work, or from any unforeseen difficulties which may be encountered during the prosecution of The Work and for all risks of every description connected with the prosecution of The Work until its Final Acceptance by the Engineer, except as provided in Subsection 107.16.
The payment of any partial estimate prior to Final Acceptance of the Project as provided in Subsection 105.16 shall in no way affect the obligation of the Contractor to repair or renew any defective parts of the construction or to be responsible for all damages due to such defects.

109.04 Payment and Compensation for Altered Quantities
When alteration in Plans or quantities of work not requiring Supplemental Agreements as herein before provided for are ordered and performed, the Contractor shall accept payment in full at the Contract Unit Bid Prices for the actual quantities of work done, and no allowance will be made for increased expense, loss of expected reimbursement, or loss of anticipated profits suffered or claimed by the Contractor, resulting either directly from such alterations, or indirectly from unbalanced allocation among the Contract Items of overhead expense on the part of the Bidder and subsequent loss of expected reimbursement therefore, or from any other cause.

Compensation for alterations in Plans or quantities of work requiring Supplemental Agreements shall be as stipulated in such agreement, except that when the Contractor proceeds with the Work without change of price being agreed upon, he shall be paid for such increased or decreased quantities at the Contract Unit Prices Bid in the Proposal for the Items of the Work.

109.05 Extra Work
Extra work, as defined in Subsection 101.27, when ordered in accordance with Subsection 104.04, will be authorized in writing by the Engineer. The authorization will be in the form of a Supplemental Agreement or a Force Account.

A. Supplemental Agreement
In the case of a Supplemental Agreement, the work to be done will be stipulated and agreed upon by both parties prior to any extra work being performed.

Payment based on Supplemental Agreements shall constitute full payment and settlement of all additional costs and expenses including delay and impact damages caused by, arising from or associated with The Work performed.

B. Force Account
When no agreement is reached for Extra Work to be done at Lump Sum or Unit Prices, such work may be authorized by the Department to be done on a Force Account basis. A Force Account estimate that identifies all anticipated costs shall be prepared by the Contractor on forms provided by the Engineer. Work shall not begin until the Force Account is approved. Payment for Force Account work will be in accordance with the following:

1. Labor: For all labor, equipment operators and supervisors, excluding superintendents, in direct charge of the specific operations, the Contractor shall receive the rate of wage agreed upon in writing before beginning work for each and every hour that said labor, equipment operators and supervisors are actually engaged in such work. The Contractor shall receive the actual costs paid to, or in behalf of, workers by reason of subsistence and travel allowances, health and welfare benefits, pension fund benefits, or other benefits, when such amounts are required by collective bargaining agreement or other employment contract generally applicable to the classes of labor employed on The Work.
An amount equal to 15% of the sum of the above items will also be paid the Contractor.

2. Bond, Insurance, and Tax: For property damage, liability, and worker's compensation insurance premiums, unemployment insurance contributions, and Social Security taxes on the Force Account work, the Contractor shall receive the actual cost, to which cost no percentage will be added. The Contractor shall furnish satisfactory evidence of the rate or rates paid for such bond, insurance, and tax.

3. Materials: For materials accepted by the Engineer and used, the Contractor shall receive the actual cost of such material incorporated into The Work, including Contractor paid transportation charges (exclusive of machinery rentals as hereinafter set forth), to which cost 10% will be added.

4. Equipment: For any machinery or special equipment (other than small tools) including fuel and lubricant, plus transportation costs, the use of which has been authorized by the Engineer, the Contractor shall receive the rental rates indicated below for the actual time that such equipment is in operation on The Work or the time, as indicated below, the equipment is directed to stand by.
Equipment rates shall be based on the latest edition of the Rental Rate Blue Book for Construction Equipment or Rental Rate Blue Book for Older Construction Equipment, whichever applies, as published by EquipmentWatch using all instructions and adjustments contained therein and as modified below.

Allowable Equipment Rates shall be established as defined below:

- Allowable Hourly Equipment Rate = Monthly Rate/176 x Adjustment Factors x 70%.
- Allowable Hourly Operating Cost = Hourly Operating Cost x 70%.
Allowable Rate Per Hour = Allowable Hourly Equipment Rate + Allowable Hourly Operating Cost.

Standby Rate = Allowable Hourly Equipment Rate x 35%

NOTE: The monthly rate is the basic machine plus any attachments.

Standby rates shall apply when equipment is not in operation and is directed by the Engineer to standby for later use. In general, Standby rates shall apply when equipment is not in use, but will be needed again to complete The Work and the cost of moving the equipment will exceed the accumulated standby cost. Payment for standby time will not be made on any day the equipment operates for 8 or more hours. For equipment accumulating less than 8 hours operating time on any normal workday, standby payment will be limited to only that number of hours which, when added to the operating time for that day equals 8 hours. Standby payment will not be made on days that are not normally considered workdays.

The Department will not approve any rates in excess of the rates as outlined above unless such excess rates are supported by an acceptable breakdown of cost.

Payable time periods will not include:
- Time elapsed while equipment is broken down
- Time spent in repairing equipment, or
- Time elapsed after the Engineer has advised the Contractor the equipment is no longer needed

If a piece of equipment is needed which is not included in the above Blue Book rental rates, reasonable rates shall be agreed upon in writing before the equipment is used. All equipment charges by persons or firms other than the Contractor shall be supported by invoices.

Transportation charges for each piece of equipment to and from the site of the Work will be paid provided:
- The equipment is obtained from the nearest approved source
- The return charges do not exceed the delivery charges
- Haul rates do not exceed the established rates of licensed haulers, and
- Such charges are restricted to those units of equipment not already available and not on or near the Project

No additional compensation will be made for equipment repair.

5. Miscellaneous: No additional allowance will be made for general superintendence, the use of small tools, or other costs for which no specific allowance is herein provided.

6. Compensation: The Contractor's representative and The Engineer shall compare records and agree on the cost of work done as ordered on a Force Account basis at the end of each day on forms provided by the Department.

7. Subcontract Force Account Work: For work performed by an approved Subcontractor or Second-tier Subcontractor, all provisions of this Section (109.05) that apply to the Prime Contractor in respect to labor, materials and equipment shall govern. The prime Contractor shall coordinate the work of his Subcontractor. The prime Contractor will be allowed an amount to cover administrative cost equal to 5% of the Subcontractor's amount earned but not to exceed $5,000.00 per Subcontractor. Markup for Second-tier Subcontract work will not be allowed.

Should it become necessary for the Contractor or Subcontractor to hire a firm to perform a specialized type of work or service which the prime Contractor or Subcontractor is not qualified to perform, payment will be made at reasonable invoice cost. To each invoice cost a markup to cover administrative cost equal to 5% of the total invoice but not to exceed $5,000.00 will be allowed the Contractor or Subcontractor but not both.

8. Statements: No payment will be made for work performed on a Force Account basis until the Contractor has furnished the Engineer with duplicate itemized statements of the cost of such Force Account work detailed as follows:
a. Name, classification, date, daily hours, total hours, rate, and extension for each laborer, equipment operator, and supervisor, excluding superintendents.
b. Designation, dates, daily hours, total hours, rental rate, and extension for each unit of machinery and equipment.
c. Quantities of materials, prices, and extensions.
d. Transportation of materials.
e. Cost of property damage, liability, and worker's compensation insurance premiums, unemployment insurance contributions, and Social Security tax.

Statements shall be accompanied and supported by invoices for all materials used and transportation charges. However, if materials used on the Force Account work are not purchased specifically for such work but are taken from the Contractor's stock, then, in lieu of the invoices, the Contractor shall furnish an affidavit certifying that such
materials were taken from his stock, that the quantity claimed was actually used, and that the price and transportation claimed represent the actual cost to the Contractor.

Payment based on Force Account records shall constitute full payment and settlement of all additional costs and expenses including delay and impact damages caused by, arising from or associated with The Work performed.

109.06 Eliminated Items
Should any Items contained in the Proposal be found unnecessary for the proper completion of The Work, the Engineer may, upon written order to the Contractor, eliminate such Items from the Contract, and such action shall in no way invalidate the Contract. When a Contractor is notified of the elimination of Items, he will be reimbursed for actual work done and all costs incurred, including mobilization of materials prior to said notifications.

109.07 Partial Payments
A. General
At the end of each calendar month, the total value of Items complete in place will be estimated by the Engineer and certified for payment. Such estimate is approximate only and may not necessarily be based on detailed measurements. Value will be computed on the basis of Contract Item Unit Prices or on percentage of completion of Lump Sum Items.

When so requested by the Contractor and approved by the Engineer, Gross Earnings of $150,000 or more for work completed within the first 15 days of any month will be certified for payment on a semi-monthly basis subject to the conditions and provisions of Subsection 109.07.A, Subsection 109.07.B.6, Subsection 109.07.C, Subsection 109.07.D, Subsection 109.07.E, and Subsection 109.07.F.

B. Materials Allowance
Payments will be made on delivered costs, or percentage of bid price if otherwise noted, with copies of paid invoices provided to the Department for the materials listed below which are to be incorporated into the Project provided the materials:

- Conform to all Specification requirements.
- Are stored on the Project Right-of-Way or, upon written request by the Contractor and written approval of the Engineer, they may be stored off the Right-of-Way, but local to the Project, provided such storage is necessary due to lack of storage area on the Right-of-Way, need for security, or need for protection from weather.

As a further exception to on-Project storage, upon written request by the Contractor, the Engineer may approve off-the-Project storage items uniquely fabricated or precast for a specific Project, such as structural steel and precast concrete, which will be properly marked with the Project number and stored at the fabrication or precast facility.

The Engineer may approve out-of-state storage for structural steel and prestressed concrete beams uniquely fabricated for a specific Project stored at the fabrication facility.

1. Paid invoices should accompany the materials allowance request, but in no case be submitted to the Project Engineer later than 30 calendar days following the date of the progress payment report on which the materials allowance was paid.
 In case such paid invoices are not furnished within the established time, the materials allowance payment will be removed from the next progress statement and no further materials allowance will be made for that item on that Project.

2. Materials allowances will be paid for those items which are not readily available, and which can be easily identified and secured for a specific project and for which lengthy stockpiling periods would not be detrimental. Some exclusions are as follows:
 a. No payments will be made on living or perishable plant materials until planted.
 b. No payments will be made on Portland Cement, Liquid Asphalt, or Grassing Materials.
 c. No payment will be made for aggregate stockpiled in a quarry. Payment for stockpiled aggregate will be made only if the aggregate is stockpiled on or in the immediate vicinity of the project and is held for the exclusive use on that project. The aggregate must be properly secured. If the aggregate stockpiled is to be paid for per-ton (megagram) it must be reweighed on approved scales at the time it is incorporated into the Project.
 d. No payments will be made on minor material items, hardware, etc.

3. No materials allowance will be made for materials when it is anticipated that those materials will be incorporated into the Work within 30 calendar days.

4. No materials allowance will be made for a material when the requested allowance for such material is less than $10,000.
5. Where a storage area is used for more than one project, material for each project shall be segregated from material for other projects, identified, and secured. Adequate access for auditing shall be provided. All units shall be stored in a manner so that they are clearly visible for counting and/or inspection of the individual units.

6. The Commissioner may, at his discretion, grant waiver to the requirements of this Section when, in his opinion, such waiver would be in the public interest.

Subsequently, in the event the material is not on-hand and in the quantities for which the materials allowance was granted, the materials allowance payment will be removed from the next progress statement and no further materials allowance will be made for those items on that Project. If sufficient earnings are not available on the next progress statement, the Contractor agrees to allow the Department to recover the monies from any other Contract he may have with the Department, or to otherwise reimburse the Department.

Payments for materials on hand shall not exceed the invoice price or 75 percent of the bid prices for the pay items into which the materials are to be incorporated, whichever is less.

C. Minimum Payment
 No partial payment will be made unless the amount of payment is at least $1000.00.

D. Liquidated Damages
 Accrued liquidated damages will be deducted in accordance with Subsection 108.08.

E. Other Deductions
 In addition to the deductions provided for above, the Department has the right to withhold any payments due the Contractor for items unpaid by the Contractor for which the Department is directly responsible, including, but not limited to, royalties (see Section 106).

F. Amount of Payment
 The balance remaining after all deductions provided for herein have been made will be paid to the Contractor. Partial estimates are approximate and are subject to correction on subsequent progress statements. If sufficient earnings are not available on the subsequent progress statement, the Contractor agrees to allow the Department to recover the monies from any other Contract he may have with the Department, or to otherwise reimburse the Department. The Engineer is responsible for computing the amounts of all deductions herein specified, for determining the progress of the Work and for the items and amounts due to the Contractor during the progress of the Work and for the final statement when all Work has been completed.

G. Interest

H. Insert the Following in Each Subcontract
 The Contractor shall insert the following in each Subcontract entered into for work under this Contract:
 “The Contractor shall not withhold any retainage on Subcontractors. The Contractor shall pay the Subcontractor 100% percent of the gross value of the Completed Work by the Subcontractor as indicated by the current estimate certified by the Engineer for payment.”

Neither the inclusion of this Specification in the Contract between the Department and the Prime Contractor nor the inclusion of the provisions of this Specification in any Contract between the Prime Contractor and any of his Subcontractors nor any other Specification or Provision in the Contract between the Department and the Prime Contractor shall create, or be deemed to create, any relationship, contractual or otherwise, between the Department and any Subcontractor.

109.08 Final Payment
 When Final Inspection and Final Acceptance have been made by the Engineer as provided in Subsection 105.16, the Engineer will prepare the Final Statement of the quantities of the various classes of work performed. All prior partial estimates and payments shall be subject to correction in the Final Statement. The District Engineer will transmit a copy of the Statement to the Contractor by Registered or Certified Mail. The Contractor will be afforded 20 days in which to review the Final Statement in the District Office before it is certified for payment by the Engineer. Any adjustments will be resolved by the District Engineer or in case of a dispute referred to the Chief Engineer whose decision shall be final and conclusive. After approval of the Final Statement by the Contractor, or after the expiration of the 20 days, or after a final ruling on disputed
items by the Chief Engineer, the Final Statement shall be certified to the Treasurer by the Chief Engineer stating the Project has been accepted and that the quantities and amounts of money shown thereon are correct, due and payable.

The Treasurer, upon receipt of the Engineer’s certification, shall in turn furnish the Contractor with the Department’s Standard Release Form to be executed in duplicate. The aforesaid Release Form, showing the total amount of money due the Contractor, shall be sent to the Contractor by Registered or Certified Mail, to be delivered to such Contractor upon the signing of a return receipt card, to be returned to the Department in accordance with the provision of Federal law in respect to such matters and such return receipt card shall be conclusive evidence of a tender of said sum of money to the Contractor. Upon receipt of the properly executed Standard Release Form, the Treasurer shall make final payment jointly to the Contractor and his Surety. The aforesaid certification, executed release form, and final payment shall be evidence that the Commissioner, the Engineer, and the Department have fulfilled the terms of the Contract, and that the Contractor has fulfilled the terms of the Contract except as set forth in his Contract Bond.

The Standard Release Form is to be executed by the Contractor within 120 days after delivery thereof, as evidenced by the Registered or Certified Mail Return Receipt. Should the Contractor fail to execute the Standard Release Form because he disputes the Final Payment as offered, or because he believes he has a claim for damages or additional compensation under the Contract, the Contractor shall, within 120 days after delivery to the Contractor of the Standard Release Form, as evidenced by the Registered or Certified Mail Return Receipt, enter suit in the proper court for adjudication of his claim. Should the Contractor fail to enter suit within the aforesaid 120 days, then by agreement hereby stipulated, he is forever barred and stopped from any recovery or claim whatsoever under the terms of this Contract.

Should the Contractor fail to execute the Standard Release Form or file suit within 120 days after delivery thereof, then the Surety on the Contractor’s Bond is hereby constituted the attorney-in-fact of the Contractor for the purpose of executing such final releases as may be required by the Department, including but not limited to the Standard Release Form, and for the purpose of receiving the Final Payment under this Contract.

The Department reserves the right as defined in Subsection 107.20, should an error be discovered in any estimates, to claim and recover from the Contractor or his Surety, or both, such sums as may be sufficient to correct any error of overpayment. Such overpayment may be recovered from payments due on current active Projects or from any future State work done by the Contractor.

The foregoing provisions of this Section shall be applicable both to the Contractor and the Surety on his Bond; and, in this respect, the Surety shall be bound by the provisions of Subsection 108.09 of these Specifications in the same way and manner as the Contractor.

A. Interest

In the event the Contractor fails to execute the Standard Release Form as prepared by the Treasurer because he disputes the amount of the final payment as stated therein, the amount due the Contractor shall be deemed by the Contractor and the Department to be an unliquidated sum and no interest shall accrue or be payable on the sum finally determined to be due to the Contractor for any period prior to final determination of such sum, whether such determination be by agreement of the Contractor and the Department or by final judgement of the proper court in the event of litigation between the Department and the Contractor. The Contractor specifically waives and renounces any and all rights it may have under Section 13-6-13 of the Official Code of Georgia and agrees that in the event suit is brought by the Contractor against the Department for any sum claimed by the Contractor under the Contract, for delay damages resulting from a breach of contract, for any breach of contract or for any extra or additional work, no interest shall be awarded on any sum found to be due from the Department to the Contractor in the final judgement entered in such suit. All final judgements shall draw interest at the legal rate, as specified by law. Also, the Contractor agrees that notwithstanding any provision or provisions of Chapter 11 of Title 13 of the Official Code of Georgia that the provisions of this contract control as to when and how the Contractor shall be paid for The Work. Further, the Contractor waives and renounces any and all rights it may have under Chapter 11 of Title 13 of the Official Code of Georgia.

B. Termination of Department’s Liability

Final payment will be in the amount determined by the statement as due and unpaid. The acceptance of the final payment or execution of the Standard Release Form or failure of the Contractor to act within 120 days as provided herein after tender of payment, or final payment to the Contractor’s Surety in accordance with the provisions stipulated herein, shall operate as and be a release to the Department, the Commissioner, and the Engineer from all claims of liability under this contract and for any act or neglect of the Department, the Commissioner, or the Engineer.
109.09 Termination Clause

A. General

The Department may, by written notice, terminate the Contract or a portion thereof for the Department’s convenience when the Department determines that the termination is in the State’s best interest, or when the Contractor is prevented from proceeding with the Contract as a direct result of one of the following conditions:

1. An Executive Order of the President of the United States with respect to the prosecution of war or in the interest of national defense.
2. The Engineer and Contractor each make a determination, that, due to a shortage of critical materials required to complete the Work which is caused by allocation of these materials to work of a higher priority by the Federal Government or any agency thereof, it will be impossible to obtain these materials within a practical time limit and that it would be in the public interest to discontinue construction.
3. An injunction is imposed by a court of competent jurisdiction which stops the Contractor from proceeding with the Work and causes a delay of such duration that it is in the public interest to terminate the Contract and the Contractor was not at fault in creating the condition which led to the court’s injunction.
 The decision of the Engineer as to what is in the public interest and as to the Contractor’s fault, for the purpose of Termination, shall be final.
4. Orders from duly constituted authority relating to energy conservation.

B. Implementation

When, under any of the conditions set out in Subsection A of this Section, the Contract, or any portion thereof, is terminated before completion of all Items of Work in the Contract, the Contractor shall be eligible to receive some or all of the following items of payment:

1. For the actual number of units of Items of Work completed, payment will be made at the Contract Unit Price.
2. Reimbursement for organization of the Work and moving equipment to and from the job will be considered where the volume of work completed is too small to compensate the Contractor for these expenses under the Contract Unit Prices. However, the Engineer’s decision as whether or not to reimburse for organization of the Work and moving equipment to and from the job, and in what amount, shall be final.
3. Acceptable materials, obtained by the Contractor for the Work, that have been inspected, tested, and accepted by the Engineer, and that are not incorporated in the Work will, at the request of the Contractor, be purchased from the Contractor at actual cost as shown by receipted bills and actual cost records at such points of delivery as may be designated by the Engineer. This will include any materials that have been delivered to the project site or that have been specifically fabricated for the project and are not readily usable on other projects. It will not include materials that may have been ordered, but not delivered to the project site and that are readily usable on other projects (e.g., guard rail, stone, lumber, etc.).
4. For Items of Work partially completed, payment adjustments including payments to afford the Contractor a reasonable profit on work performed, may be made as determined by the Engineer based upon a consideration of costs actually incurred by the Contractor in attempting to perform the Contract.
5. No payment will be made, and the Department will have no liability, for lost profits on Work not performed. In particular, the Department will not be liable to the Contractor for all profits the Contractor expected to realize had the Project been completed, nor for any loss of business opportunities, nor for any other consequential damages.
6. In order that the Department may make a determination of what sums are payable hereunder, the Contractor agrees that, upon termination of the Contract, it will make all of its books and records available for inspection and auditing by the Department.

To be eligible for payment, costs must have been actually incurred, and must have been recorded and accounted for according to generally accepted accounting principles, and must be items properly payable under Department policies. Where actual equipment costs cannot be established by the auditors, payment for unreimbursed equipment costs will be made in the same manner as is provided in Subsection 109.05 for Force Account Work. Idle time for equipment shall be reimbursed at standby rates. In no case will the Contractor be reimbursed for idle equipment after the Engineer has advised the Contractor the equipment is no longer needed on the job. Refusal of the Contractor to allow the Department to inspect and audit all of the Contractor’s books and records shall conclusively establish that the Department has no liability to the Contractor for any payment under this provision, and shall constitute a waiver by the Contractor of any claim for damages allegedly caused by breach or termination of the Contract. The amount payable under this provision, if any, is to be determined by the Engineer, whose determination will be final and binding.
7. The sums payable under this Subsection shall be the Contractor’s sole and exclusive remedy for termination of the Contract.

C. Termination of a Contract
 Termination of a Contract or a portion thereof shall not relieve the Contractor of his responsibilities for any completed portion of the Work, nor shall it relieve his Surety of its obligation for and concerning any just claims arising out of the Work performed.

109.10 Interest
In the event any lawsuit is filed against the Department alleging the Contractor is due additional money because of claims or for any breach of contract, the Contractor hereby waives and renounces any right it may have under O.C.G.A. Section 13-6-13 to prejudgment interest. Also, the Contractor agrees that notwithstanding any provision or provisions of Chapter 11 of Title 13 of the Official Code of Georgia that the provisions of this contract control as to when and how the Contractor shall be paid for the Work. Further, the Contractor waives and renounces any and all rights it may have under Chapter 11 of Title 13 of the Official Code of Georgia.

Section 148—Pilot Vehicles

148.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 149—Construction Layout

149.1 General Description
Perform construction layout to guide and control performance of items of the work according to this Specification.

This work includes:
- Placing, replacing (if necessary), and maintaining construction layout points.
- Preparing construction layout drawings, sketches, and computations.
- Recording data in field books such as alignment, slope stake, blue top, drainage layout, bridge, and other books used for layout for this Project.

149.1.01 Definitions
General Provisions 101 through 150

149.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150

B. Referenced Documents
 General Provisions 101 through 150

149.1.03 Submittals
Submit the following documentation to the Department:

A. Project Construction Records
 These records detail information that the Department uses to determine the template line for the as-built cross sections, which defines the computation line for unclassified excavation. These records include:
 - Survey records
 - Bound field notebooks
 - Computer printouts that record the Project’s construction

Prepare the records as directed by the Engineer.
149.2

B. Survey Documents

Furnish the Engineer with a copy of survey documents that relate to construction layout. Provide these documents when the Engineer requests or as they are completed. The Engineer may check the documents for accuracy and may require revisions where necessary. The documents become Department property and will be included in the permanent Project records.

C. Drainage Structure Sketches

Profile both inlet and outlet ends of proposed drainage structures for at least 100 ft (30 m) in the existing ditch line or stream bed. Adjust flowline elevations, if necessary, to enhance the hydraulics and to reduce silting, scouring, or backwater.

Calculate the length of each structure and provide sketches of the structure to the Engineer for review and approval at least 24 hours before beginning the work.

D. Bridge Layout Sketch

Furnish a layout sketch before staking on bridges. After staking, submit a revised sketch for the Engineer’s review and approval before beginning construction. Include in the layout sketch relevant stations, angles, dimensions, and redundant checks including exterior beam dimensions in each span. Also include all horizontal and vertical clearances with calculations that verify the clearances shown.

Submit for the Engineer’s review and approval survey data and calculations with the layout sketch and information required for bent construction.

Verify the Plan elevations for all bridge bearing seats on the substructure.

E. Wall Layout Sketches

Submit sketch and other data verifying either that the wall will fit the final field conditions, or indicate where revisions are necessary. Submit these sketches well before the wall construction begins so the Engineer can make any necessary structural design changes.

149.2 Materials

General Provisions 101 through 150

149.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150

149.3 Construction Requirements

General Provisions 101 through 150

149.3.01 Personnel

Furnish personnel capable of establishing line and grade points necessary to complete the the work. Establish these points within the generally accepted surveying tolerances, and ensure that they are acceptable for the the work being performed.

149.3.02 Equipment

Furnish surveying equipment, stakes, and all materials necessary to perform the the work, subject to the Engineer’s approval.

149.3.03 Preparation

A. General Pre-Construction

Before beginning construction:

1. Ensure that plan dimensions, alignment, and elevations are compatible with existing field conditions. Make adjustments where necessary.

2. Ensure alignment tie-ins by coordinating construction layout with that of other Contractors whose work abuts any portion of the work. All adjustments are subject to the Engineer’s approval.

B. Widening and Reconstruction

Before beginning construction where existing pavement is to be retained either for widening or for reconstruction:

1. Take three-point levels of the pavement throughout the length to be retained.

 Normally, the three-point levels will be required at 50 ft (15 m) intervals. However, the Engineer may adjust these intervals according to existing field conditions.
2. From the three-point levels, prepare a graphic grade plot that “best fits” the existing pavement to minimize the leveling requirements (if any) of the existing roadway. Cross slopes may be varied within the ranges shown on the Plans or adjusted by the Engineer to produce the “best fit.”

3. On passing lane or widening Projects where existing pavement is not to be overlaid:
 a. Profile and plot the outside edge of the existing pavement to obtain a smooth profile grade.
 b. Transfer this grade to the new edge of paving using the proper cross slope.

4. Furnish data to the Engineer for approval before beginning widening and reconstruction.

5. On widening, reconstruction, or passing lane projects, obtain the Engineer’s approval of the “best fit” profile. Ensure that grade stakes are set to control the construction of any required widening based upon the “best fit” profile and cross slope. Construct proposed widening flush with the existing edge of paving. Provide positive drainage in all cases.

C. Existing Bridge Widening or Modification

To widen or modify existing bridges, do the following before ordering materials or beginning construction:

1. Verify existing elevations and dimensions as well as confirm or determine required new cap elevations.
2. Profile the removal line and cross section the existing deck.
3. Use this profile information to determine a “best fit” finished grade for the widened portion.
4. Compute the new cap elevations based on this “best fit” information.
5. Furnish survey data, layout sketch, and calculations to the Engineer for approval.

D. Retaining Wall Construction Layout

Set stakes, take necessary cross sections, and perform necessary calculations at each wall before beginning wall construction to ensure that the geometric design of the retaining wall conforms to actual conditions.

149.3.04 Fabrication

General Provisions 101 through 150

149.3.05 Construction

A. Verify Plan Elevations

Verify plan elevations for all bridge bearing seats on the substructure.

B. Verify Bent Layout

After bent construction has begun, verify bent layout at each major phase of the construction to ensure that the bent is properly positioned in relation to adjacent bents.

C. Establish the Centerline

Establish the centerline as follows:

1. Establish or reestablish the centerline from the monuments and/or reference points the Department will provide.
2. On widening or reconstruction Projects, establish the horizontal and vertical alignment of the existing roadway and bridges.
3. Modify the Plan horizontal and vertical alignment to conform to the existing alignment as necessary.

D. Verify the Accuracy of the Bench Mark(s)

The Department will furnish at least one bench mark that the Contractor shall preserve, and if necessary, relocate as follows:

1. Verify the accuracy of the bench mark(s) and report discrepancies to the Engineer.
2. Establish additional benchmarks needed for construction.
3. Maintain the bench marks for necessary Department checks.

E. Flag In-Place Survey Control Monuments

Flag and protect in-place survey control monuments and reference points, including Right-of-Way/property line intersections, as follows:

1. Pay for and replace destroyed or disturbed stakes or monuments.
2. When included as Pay Items, stake Right-of-Way markers.
F. Line, Grades, and Stakes
 Set other line and grade stakes needed to construct the job, including stakes needed to relocate utilities and re stake flattened slopes, minor grade or alignment changes, and other incidentals.

G. Stake Centerline Control Alignments
 Stake centerline control alignments shown on the Plans or adjusted as described above when the Department needs accurate measurement of quantities for payment. Stake these control alignments as follows:
 1. Stake the alignments to an accuracy of 1:5000.
 2. Stake the alignments just before the Department takes aerial photography or field cross sections for both original and final cross sections.
 3. Provide the Department with elevations of positions staked for the Department’s quantity measurements. Ensure that these elevations are of third order accuracy, or better. Determine them using the differential leveling method.
 4. Take intermediate cross sections required because of stage construction, detours, or other reasons.

H. Provide Graphic Sketches
 Prepare and use graphic sketches of superelevation runout on curves on multi-lane roadways and of tie-ins of ramps to mainline on freeways and expressways to help provide positive drainage, adequate superelevation, and a pleasing appearance. Prepare and use similar sketches for street or roadway intersections.

I. Maintain the Stakes
 After construction has begun in any segment of the Project, maintain the stakes that identify construction station numbers and locations as follows:
 1. Ensure that stakes are placed at intervals not to exceed 200 ft (60 m) and use even, 100 ft (30 m) stations.
 Mark and flag stakes so that they are visible to DOT Project personnel in that segment of the Project until construction is complete.
 2. During grading activities in fills or cuts over 20 ft (6 m), extend slope stakes up or down the slopes in intervals of 10 ft (3 m) or less to achieve an accurate cross section.

J. Traffic Markings
 When traffic markings are to be placed by either the Contractor or others, furnish the layout and clean and preline the surface to allow the placement of permanent pavement markings on the Project.
 When traffic markings are not included in the Project plans, the Department will provide striping plans and/or standard drawings for the Contractor’s use.

K. Provide Bridge Construction Layout
 Provide alignment control, grade control, and calculations to set these controls for bridge construction.
 For new bridges, the Department will furnish the necessary input data forms for the Department’s “Bridge Geometry” computer program upon the Contractor’s request. The Department will process the data to help the Contractor obtain finished deck elevations.
 Data processing is available only as an alternate service to determine elevations. If this service is elected for use, prepare the input data and the Department will furnish the output data. The following limitations apply:
 - The Department will not assume liability for the accuracy of either input or output data.
 - The Department will limit this service to two programs per bridge.
 - This service is not available for existing bridges that are to be widened. Finished deck elevations for bridges that are to be widened will not be furnished.

149.3.06 Quality Acceptance
 The Engineer’s acceptance of all or any part of the Contractor’s layout shall not relieve the Contractor of responsibility to secure proper dimensions for the completed work. Correct at the Contractor’s expense work incorrectly located due to layout error.

149.3.07 Contractor Warranty and Maintenance
 General Provisions 101 through 150

149.4 Measurement
 This item is not measured for payment.
149.4.01 Limits
General Provisions 101 through 150

149.5 Payment
This work is not paid for separately. The costs for performing layout work as described in this Specification are included in the bid for the items of work to which the layout is incidental.

Any unnecessary work, overruns, costs, etc., resulting from inaccurate data submitted by the Contractor will be deducted from Contractor payments.

149.5.01 Adjustments
General Provisions 101 through 150

Section 150—Traffic Control

150.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 151—Mobilization

151.1 General Description
Mobilization, when listed as a pay item in the Proposal, includes preparatory work and operations, including but not limited to, moving personnel, equipment, supplies, and incidentals to the Project site. Mobilization also includes all other work and operations that shall be performed or costs incurred before beginning work on the various items on the Project site.

151.1.01 Definitions
General Provisions 101 through 150.

151.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 General Provisions 101 through 150.

151.1.03 Submittals
General Provisions 101 through 150.

151.2 Materials
General Provisions 101 through 150.

151.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

151.3 Construction Requirements
General Provisions 101 through 150.

151.3.01 Personnel
General Provisions 101 through 150.

151.3.02 Equipment
General Provisions 101 through 150.

151.3.03 Preparation
General Provisions 101 through 150.
151.3.04

151.3.04 Fabrication
General Provisions 101 through 150.

151.3.05 Construction
General Provisions 101 through 150.

151.3.06 Quality Acceptance
General Provisions 101 through 150.

151.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

151.4 Measurement
This item of work is not measured separately for payment.

151.4.01 Limits
The total sum of payments shall not exceed the original Contract amount bid for this item.

151.5 Payment
The Department will make partial payments as follows:

1. The first regular payment is 50 percent of the amount bid for mobilization, or 3 percent of the original Contract amount, whichever is less.
2. When 5 percent of the original contract amount is earned, the next progress payment is 100 percent of the amount bid for mobilization, or 3 percent of the total original contract amount, whichever is less, minus any previous payments.
3. Any amount bid for mobilization in excess of 3 percent of the original Contract amount is paid when work on the Project is complete.
4. The total sum of the payments shall not exceed the original Contract amount bid for this item.

Payment includes all costs for mobilization, demobilization, and remobilization as required to complete the work.

Payments will be made under:

<table>
<thead>
<tr>
<th>Item No. 151</th>
<th>Mobilization</th>
<th>Per lump sum</th>
</tr>
</thead>
</table>

151.5.01 Adjustments
General Provisions 101 through 150.

Section 152—Field Laboratory Building

152.1 General Description
This work includes furnishing and maintaining field laboratory buildings, if required by the Contract. The building is reserved for the Engineer’s exclusive use as long as the Engineer deems necessary.

152.1.01 Definitions
General Provisions 101 through 150.

152.1.02 Related References
A. Standard Specifications
 Section 400—Hot Mix Asphalitic Concrete Construction
 Section 402—Hot Mix Recycled Asphalitic Concrete

B. Referenced Documents
 AASHTO TP4
 AASHTO T166

64
152.3.05

AASHTO T209
AASHTO T309
GDT 125, “Method of Test for Determining Asphalt Content by Ignition”
NFPA–10A

152.1.03 Submittals
General Provisions 101 through 150.

152.2 Materials
General Provisions 101 through 150.

152.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

152.3 Construction Requirements
General Provisions 101 through 150.

152.3.01 Personnel
General Provisions 101 through 150.

152.3.02 Equipment
General Provisions 101 through 150.

152.3.03 Preparation
General Provisions 101 through 150.

152.3.04 Fabrication
General Provisions 101 through 150.

152.3.05 Construction

A. Field Laboratory Physical Requirements

Provide a laboratory using a structure approved by the Engineer, such as a:

- Building
- Trailer
- Fixed building erected on the site
- Vacated house at an approved location

Each field laboratory shall house the required testing equipment and meet the minimum requirements for dimensions, space, and facilities.

Each building or trailer shall be at least 7 ft (2.1 m) wide and 7 ft (2.1 m) high inside and contain not less than 120 ft² (11 m²) of floor space. Each unit shall be floored, roofed, and weather tight and contain the following:

- At least one hinged or sliding window on each side with each window having at least 6.5 ft² (0.6 m²) of openings
- An entrance door that can be securely locked
- Built-in work table with at least two drawers (one lockable)
- Lighting and ventilation
- Heating with necessary fuel
- Potable running water
- Electric current
- Sheds and platforms required for special testing equipment
- Sanitary Facilities—Include in each field laboratory sanitary facilities that meet the requirements of the local or State Health Departments.
Fire Extinguisher—Equip each building with at least one approved fire extinguisher that meets the following requirements:
 1) Multipurpose dry chemical type extinguisher
 2) Underwriters Laboratory rating of 4A-40BC

Mount the extinguisher(s) in a convenient and conspicuous place that is easily accessible from any part of the building. Maintain the extinguisher(s) in working condition according to the requirements of NFPA–10A.

B. Plant Laboratory Physical Requirements

Provide laboratory buildings at asphalt, concrete, or base plants. Place the buildings so that the plant is in full view from one of the windows.

C. Number of Laboratories Required

The number of laboratories shown in the Proposal is based on estimated job requirements. Actual conditions may require more or fewer. Provide the quantity as required by the Engineer at the Unit Price Bid for the facility.

D. Asphaltic Concrete Plant Laboratory Requirements

1. Laboratory Building. Provide a laboratory building that meets the minimum requirements for a Field Laboratory as described in Subsection 152.3.05.A.

2. Ventilation System. Equip the laboratory so that when the windows and doors are closed and the ventilation system is functioning as required, the temperature can be maintained between 65 °F and 80 °F (18 °C and 27 °C).

3. Enclosures. Provide enclosures in laboratories for procedures where extracting solvent vapors are emitted. After the asphalt is extracted, dry samples under an enclosure or inside an oven that is vented outside the lab. Provide enclosures as follows:
 - Equip each enclosure with the following:
 - A hood, glass, or other doors capable of enclosing the extracting solvent vapors from the ambient air in the lab
 - An exhaust fan located in the rear or top of the hood for each work compartment
 - Replacement air provided through an open window or other opening to achieve the specified exchange of air
 - Ventilation system capable of exchanging air at the rate of 100 ft³/ft²/min (30 m³/m²/min) over the entire open door area of each enclosure

Locate the laboratory ventilation, heating, and cooling systems so that the exhausted extracting solvent vapors do not re-enter the laboratory through either the heating or cooling systems.

Ensure that the extracting solvent is supplied to the laboratory through a closed-system opening only under the enclosures.

Mount the storage containers for the extracting solvent outside the laboratory and run a feed line from the container to a cut-off valve located in the enclosures. Ensure that all parts of the enclosures, hoods, and other related equipment are functional during testing.

4. Platform. Provide a safe platform to the proper height for the Inspector to use to obtain asphalt mix or base samples and to inspect mixes in the truck beds.

5. Testing Equipment. Furnish and maintain in good condition at the field laboratory the following testing equipment. All testing equipment is subject to the Engineer’s approval.
 a. One each—Oven (mechanical convection, range to 400 °F (204 °C). Comparable to Blue M Model OV-560A-2.

 NOTE: Vent the oven exhaust outside the laboratory.

 b. One each—Sieve Shaker (Ro-Tap design or approved equal). Designed for Standard 8 in (203 mm) diameter sieve.

 c. One each—
 - Computer, IBM or IBM Compatible
 - 540 Megabyte Hard Disk Drive (Minimum)
 - 3 ½ inch (90 mm) High Density Floppy Disk Drive
 - CD-ROM Drive (4X Minimum)
Mouse
- Modem 9600 Baud (Minimum)
- 1 Parallel and 2 Serial Ports
- 16 Megabyte Random Access Memory Expandable to at Least 32 Megabytes
- VGA Monitor
- 486 Microprocessor Operating at 33 Megahertz (Minimum)

d. One each—Printer (Desk Jet HP Letter Quality Printer)
e. One each—Electronic balance with weighing capacity of at least 26.45 lb. (12,000 grams) with digital display, and sensitivity to meet requirements of AASHTO T166 and AASHTO T209. The weighing device shall have a suspension apparatus which meets requirements of AASHTO T166.
f. *One each—Superpave Gyratory Compactor (SGC) Equipment—A Superpave Gyratory Compactor and appurtenances, including a calibration kit, which meets equipment requirements and testing protocol of a nationally recognized Superpave Center and AASHTO TP 4. The SGC shall be equipped with:
 - A printer to provide a real-time printout of the date and time of compaction, number of gyrations, and specimen height for each gyration during the compaction cycle.
 - At least two mold assemblies
 - A specimen extruder
g. *One each—Vacuum pump flasks or bowls, fittings and other accessories as required by AASHTO T209. (A corelok device with related accessories may be substituted if approved by the Department).
h. *One each—Asphalt Ignition Oven which meets requirements of GDT 125 and AASHTO T309.
 *Required only for interstate Projects involving mainline traveled way that include pay items under Section 400 or Section 402.

E. Portland Cement Concrete Plant Laboratory Requirements

For Portland cement concrete plants, provide a plant laboratory building and testing and curing equipment meeting the following minimum requirements.

1. Laboratory Building. Provide a laboratory building that contains:
 - Combined office/workspace measuring 300 ft² (28 m²)
 - Heating and air conditioning equipment capable of maintaining an interior temperature of 70 °F (21 °C)
 - Separate office space with enough space for a desk and at least two chairs
 - A work table at least 2.5 ft (750 mm) wide, 5 ft (1500 mm) long, and 3 ft (900 mm) high to prepare concrete cylinders for testing
 - An outside work area of at least 10 ft by 10 ft (3 m by 3 m) consisting of a concrete slab constructed level and true, with a light broom finish

2. Testing and Curing Equipment. Provide the following testing and curing equipment:
 - Concrete cylinder capping equipment including molds, melting pot with ventilation and accessories, and a sufficient supply of capping compound, all meeting applicable ASTM Specifications.
 - Concrete cylinder compression testing machine with a minimum capacity of 250,000 lbs (1112 kN) that meets applicable ASTM Specifications.
 - Concrete cylinder curing tanks capable of maintaining 200 cylinders at 73 °F ± 3 °F (23 °C ± 1.7 °C) for a 28-day curing period.
 - Concrete cylinder warm water curing tank capable of maintaining 18 cylinders at 95 °F ± 5 °F (35 °C ± 2.8 °C) for a 24-hour curing period.

Maintain the equipment in good condition and to the Engineer’s approval.

152.3.06 Quality Acceptance

The dimensions specified above are minimum requirements. Minor dimensional and detail deviations are not cause for rejection if the Engineer approves of the deviation.

152.3.07 Contractor Warranty and Maintenance

Maintain each building, appurtenance, and sanitary facility as required by this Specification. Furnish electricity, water, and heating as required by this Specification.
Ownership of the building(s) remains with the Contractor. Maintaining and furnishing the buildings(s) after the date of Final Acceptance of the Project is not required.

152.4 Measurement

The actual number of field laboratories furnished according to this Specification is measured separately for each laboratory. There will be no measurement or payment for laboratories furnished at base, asphaltic concrete, or Portland cement concrete central mix plants.

152.4.01 Limits

General Provisions 101 through 150.

152.5 Payment

Each field laboratory measured for payment as described in Subsection 152.4, is paid at the Contract Unit Price bid for each laboratory.

Payment is full compensation for the cost of all foundations, buildings, sheds, platforms, utilities, maintenance, sanitary facilities, removal, razing, heat, electricity, water, and site preparation and cleanup according to this Specification.

Payment for each field laboratory is made in two installments:

- Sixty-five percent of the contract price is paid when the Laboratory is ready for occupancy.
- Thirty-five percent of the contract price is paid when the Department finishes using the laboratory.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 152</th>
<th>Field laboratory</th>
<th>Per each</th>
</tr>
</thead>
</table>

152.5.01 Adjustments

General Provisions 101 through 150.

Section 153—Field Engineer’s Office

153.1 General Description

This work includes providing, furnishing, and maintaining field office buildings, when the Contract requires, before beginning construction and according to this Specification. The Contractor shall possess the building while the Department uses it. See Subsection 153.3.07, “Contractor Warranty and Maintenance.”

The Engineering personnel will use the building exclusively for as long as they consider necessary, but no longer than the date of Final Acceptance of the Project.

153.1.01 Definitions

General Provisions 101 through 150.

153.1.02 Related References

A. Standard Specifications

- Section 636—Highways Signs
- Section 643—Fence
- Section 910—Sign Fabrication
- Section 911—Sign Posts
- Section 912—Sign Blanks and Panels
- Section 913—Reflectorizing Materials

B. Referenced Documents

- NFPA-10A
153.1.03 Submittals
Before installing Project Office signs, submit a signage plan for this work to the Engineer for approval.

153.2 Materials
Ensure that all materials are of commercial grade. Sampling and testing is not required.

153.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

153.3 Construction Requirements

153.3.01 Personnel
General Provisions 101 through 150.

153.3.02 Equipment
General Provisions 101 through 150.

153.3.03 Preparation
General Provisions 101 through 150.

153.3.04 Fabrication
Install a sign at the Department of Transportation Project Office in the format shown in Figure 1. This sign shall be plainly visible from the Project roadway. Fabricate and install the sign according to Section 636, Section 910, Section 911, Section 912, and Section 913.

![Figure 1](image-url)
If the Project Office is not located adjacent to the Project roadway, install a second sign on the Project according to these specifications and as directed by the Engineer and enough guide signs to direct the traveling public to the Project Office. Guide signs shall be 24 in (600 mm) high by 42 in (1050 mm) wide with 4 in (100 mm) high lettering and shall include a directional arrow. The guide sign shall have a white legend with a blue background. Refer to Figures 2 and 3.

Before installing the signs, submit a signage plan to the Engineer for this work.

153.3.05 Construction

A. Field Engineer’s Office Location

Field office buildings are designated as Type 1 or Type 3.

1. Office Building Type 1: Place this office within or near the project limits as directed by the Engineer. As the work progresses the offices may be moved to other locations at the Engineer’s direction.

2. Office Building Type 3: Place this office either within the Project limits or near the Project at the Engineer’s direction. When electric current is required, place the building within 1000 ft (300 m) of a power line if possible. If power lines are farther than 1000 ft (300 m) away, payment is made according to Subsection 153.5.

If the office buildings cannot be placed within the Project limits, acquire sites outside the Project limits.

B. Building Requirements

The Field Engineer’s office may be a building, house, mobile office, or trailer if it is approved and conforms closely with this Specification. Ensure that the office building meets the following minimum requirements:

1. Dimensions: All measurements shown are clear inside dimensions.

<table>
<thead>
<tr>
<th></th>
<th>Constructed on Project</th>
<th>Commercially Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In Linear Feet (Meters)</td>
<td>In Linear Feet (Meters)</td>
</tr>
<tr>
<td>Building</td>
<td>Width</td>
<td>Length</td>
</tr>
<tr>
<td>Type 1</td>
<td>8 (2.44)</td>
<td>10 (3.05)</td>
</tr>
<tr>
<td>Type 3</td>
<td>12 (3.66)</td>
<td>50 (15.24)</td>
</tr>
</tbody>
</table>

2. Doors and Windows: Ensure that each building has at least one standard height solid entrance door with a lock and a self-closing screen door. Type 3 buildings shall have at least two doors and screens.

Each wall, unless predominately occupied by a door, shall have at least one hinged, jalousied, or sliding window that is glazed, screened, and fitted with venetian blinds. Each window shall measure at least 6.5 ft² (0.6 m²), except the window in the toilet area which may be 3.25 ft² (0.3 m²).

The window requirements for each office building type include:

- At least 3 windows for Type 1 buildings.
- At least 10 windows for Type 3 buildings.

3. Walls and Roof: If the building is constructed on the Project, construct the walls and roofs of all building types with studs and rafters measuring 2 in by 4 in (38 mm by 89 mm).
Include in the walls and ceilings insulating material that is at least 1 1/4 in (32 mm) thick and made of rock wool, fiberglass, or other non-flammable material. Ensure that this material is in all inner wall and ceiling cavities.

a. Walls: Cover both sides of the walls with 3/8 in (10 mm) plywood (exterior grade on the outside). No open cracks or knotholes are permitted. Standard wall construction is accepted if the walls are commercially produced.

b. Roof: Ensure that the roof is watertight and has a minimum slope of 1:12 in one direction, away from the door. Ensure that the roof’s eaves are at least 12 in (300 mm). If the building is commercially produced, an arched roof without eaves is acceptable.

4. Ceiling: Cover the ceiling on all building types on the inside of the roof rafters with 3/8 in (10 mm) plywood if constructed on the project. A standard ceiling will be accepted if the building is commercially produced.

5. Floor: Ensure that the floor is a minimum of 12 in (300 mm) above the ground on 2 in by 6 in (38 mm by 152 mm) joists. The floor may be timber. No open cracks or knotholes are permitted.

6. Heater: Provide an oil fired, gas, or electric heater. But ensure that the heater can maintain an inside minimum temperature of 72 °F (22 °C). Properly vent oil and gas units to the outside, provide adequate outside fuel storage, and connect with suitable feed lines. Gas units may be connected to a commercial gas main, if available.

7. Work Table: Construct stable work tables with 3/4 in (19 mm) plywood. Cover the table tops with smooth masonite. The table top shall measure at least 3 ft by 7.5 ft (900 mm by 2250 mm) and be approximately 3 ft (900 mm) above the floor. Provide a Type 1 building with one table and a Type 3 building with at least three tables.

8. Stools: Equip each work table with two stools of the proper height for the table.

9. Miscellaneous Storage Shelves: Provide 6 linear ft (1800 linear mm) of storage shelves for books, etc. If two 3 ft (900 mm) shelves are furnished, place them at least 1 ft (300 mm) apart vertically. Provide Type 3 buildings with 6 ft (1800 linear mm) of shelves in each end.

10. Toilet Facilities: For Type 3 buildings, provide indoor toilet facilities that meet local sanitary codes. Type 1 buildings do not have toilet facilities.

11. Utilities: Connect all utilities including water, sewage, gas, electricity, and telephone service to their service source, ready for use, before the Engineer’s occupancy. Type 1 buildings do not have utilities.

12. Electric Service: When noted on the Plans, provide electric service that is 120/240 volt, 1Ø, 3 wire.

13. Air Conditioner: For Type 3 buildings, provide an air conditioning unit capable of cooling the building to maintain an inside temperature at least 20 °F (7 °C) cooler than the outside temperature. Type 1 buildings do not have air conditioners.

14. Fire Extinguisher: Equip each building with at least one approved fire extinguisher that meets the following requirements:
 - Multipurpose dry chemical type extinguisher
 - Underwriters Laboratory rating 4A-40BC

 Mount the extinguisher(s) in a convenient and conspicuous location that is easily accessible from any part of the building.

 Maintain the extinguisher(s) according to the requirements of NFPA–10A.

15. Telephone: Provide in each Type 3 building, one telephone line with two handsets (located on either end of the office). Install and maintain these lines for the life of the Project. Provide telephone access to the Local Area Telephone Service (LATS) only for outgoing, credit card, collect, and toll free calls. Ensure that the telephone can receive incoming non-collect long distance calls. Type 1 buildings do not have telephone service.

 Provide with the telephone an automatic answering system that can give a greeting message, record incoming messages, and activate remotely.

C. Type 3 Offices

In addition to the requirements in Section B, furnish Type 3 offices with the following:

1. Project Sign—Complete as shown in Subsection 153.3.04, “Fabrication.” Install at the Department of Transportation Project Office at a location plainly visible from the Project roadway.

2. Locking File Cabinet—Four-drawer, letter size, steel, fireproof, lockable, and must have at least two keys.

3. Plan Racks—Capable of holding two complete sets of Project Plans (not more than 100 sheets per hanger).

4. One Enclosed Closet—At least 3 ft by 3 ft (900 mm by 900 mm) with a lockable door and at least two keys.
5. Potable Water and Water Cooler—May be bottled water.

6. Outside Electrical Receptacle—When shown on the Plans, a weather-proof, exterior 220-volt electrical receptacle attached to a power source, or provisions to place a 2 ft by 2 ft by 5 ft (600 mm by 600 mm by 1500 mm) water tank will be supplied by the Department inside the Field Engineer’s Office.

7. Chain Link Fence—When shown on the Plans, a 6 ft (1.8 m) high chain link fence with an extension arm and barbed wire (as specified in Section 643). Equip the fence with a matching gate according to Plan details. Include a positive-type locking device, padlock, and keys.

8. Security Light—When shown on the Plans, a 175-watt mercury security light with a photoelectric control where indicated by the Engineer.

9. Copier—Equip all Type 3 field offices with a black and white plain paper copier with paper and all chemicals or cassettes necessary for operation. Furnish the copier in good operating condition and maintain it throughout the life of the Contract. The copier shall remain the property of the Contractor.

153.3.06 Quality Acceptance

General Provisions 101 through 150.

153.3.07 Contractor Warranty and Maintenance

Whether the building is owned, leased, or rented, the Contractor who provides the building retains possession of each office building.

The Engineer will control the use, location, relocation, and removal of the building. When the building is no longer needed, remove each building from the Project at the Engineer’s direction.

153.4 Measurement

Field Engineer’s offices Types 1 and 3, as required by the Engineer, will be paid for per each; provided each was moved to or constructed on the Project according to the Specifications.

153.4.01 Limits

The offices are measured for payment on each project one time only regardless of the number of times they are moved at the Engineer’s direction.

153.5 Payment

The use of each office building (Types 1 and 3) eligible for payment is paid for at the Contract Unit Price bid. Payment is full compensation for the cost of the location, materials, design, construction, furnishings, maintenance, fuel, water, sewage disposal, electricity, telephone service (when required), movements within the Project, and movement to and from the Project.

When electric current is required, the cost of necessary transformers is included in the price bid for Type 3 office buildings. Any cost incurred for carrying electric current over 1000 ft (300 m) from a power line is paid for by Force Account.

Payment for each Field Engineer’s office is made in two installments:

- 65 percent of the Contract Price is paid when the office is ready for occupancy.
- 35 percent is paid when the Department has finished using the office.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 153</th>
<th>Field Engineer’s office type 1</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 153</td>
<td>Field Engineer’s office type 3</td>
<td>Per each</td>
</tr>
</tbody>
</table>
Section 155—Insect Control

155.1 General Description
The Plant Pest Control Division of the U.S. Department of Agriculture and the Georgia State Department of Agriculture restricts the movement of certain items (see Subsection 155.3.05.A, “Do Not Move Material from an Infested Area”) from areas infested with Japanese Beetles or Imported Fire Ants to prevent the spread of these pests to non-infested areas.

155.1.01 Definitions
General Provisions 101 through 150.

155.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 General Provisions 101 through 150.

155.1.03 Submittals
General Provisions 101 through 150.

155.2 Materials
General Provisions 101 through 150.

155.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

155.3 Construction Requirements
General Provisions 101 through 150.

155.3.01 Personnel
General Provisions 101 through 150.

155.3.02 Equipment
General Provisions 101 through 150.

155.3.03 Preparation
General Provisions 101 through 150.

155.3.04 Fabrication
General Provisions 101 through 150.

155.3.05 Construction
The project is in an infested area unless noted otherwise.

A. Do Not Move Material from an Infested Area
 Do not move the following materials from an infested area into a noninfested area without the approval of the Department of Agriculture Inspector in Charge:
 - Soil, mulch, or sod
 - Plants with soil attached
 - Stump wood or timber with soil attached
 If the Plans show limits within which infested materials may be placed, do not haul materials beyond these limits without the Inspector’s approval.

B. Clean Earth-Moving Equipment
 Clean soil deposits from earth-moving equipment including crawler-type tractors before moving them from an infested area into a noninfested area.
When cleaning equipment, furnish the scraping tools, brooms, water when required, and the labor. Water generally will be required to clean crawler-type tractors.

Have the earth-moving equipment inspected by the Department of Agriculture Inspector in Charge before moving it from the infested area.

C. Notify the Department of Agriculture Inspector in Charge

Notify the Department of Agriculture Inspector in Charge in advance concerning the movement of infested articles or equipment in order to plan the work and prevent operation delays.

Obtain the name, address, and telephone number of the Department of Agriculture Inspector(s) in Charge of the project from:

Georgia State Dept. of Agriculture
Division of Entomology and Pesticides
Agriculture Building
State Capitol
Atlanta, GA
Phone: (404) 656-3641

USDA-APHIS
Plant Protection and Quarantine
1498 Klondike Road- Suite 200
Conyers, GA 30094
Phone: (770)922-9894

155.3.06 Quality Acceptance
General Provisions 101 through 150.

155.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

155.4 Measurement
This item of work is not measured separately for payment.

155.4.01 Limits
General Provisions 101 through 150.

155.5 Payment
This work is not paid for separately.

155.5.01 Adjustments
General Provisions 101 through 150.

Section 157—Survey Aids

157.1 General Description
This work includes constructing, maintaining, and removing (when specified by the Engineer) survey aids required at the locations shown on the Plans or modified Plans, or at locations designated by the Engineer. Survey aids may be required when line and distance control for excavation, embankment, and/or bridges require triangulation.

This work also includes disposing of survey aids, unless the Engineer directs to leave the aids in place.

157.1.01 Definitions
General Provisions 101 through 150.

157.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 TT-E543
 TT-529A

157.1.03 Submittals
General Provisions 101 through 150.

157.2 Materials
Comply with the following survey aid requirements:

A. General
 The materials used to construct these expendable items do not require pre-inspection or sampling and testing. Replace, repair, or strengthen defective, worn, deteriorated, corroded, or unsatisfactory materials according to Subsection 157.3.07, “Contractor Warranty and Maintenance.”

B. Timber and Piles
 Timber and piles may be untreated; however all piles shall be peeled. Timber may be of any commercial grade and species.
 For triangulation stations, ensure that the center pile for the instrument mounting has a minimum diameter of 1 ft (300 mm) at a distance of 4 ft (1.2 m) from the butt. The minimum diameter of other piles in the station shall be 10 in (250 mm).
 Use piles for survey targets that conform to the requirements of the Specifications. The butt diameter for timber walkway piles shall be at least 8 in (200 mm). Use piles that will maintain safe walkways for the duration of the Project.

C. Plywood
 Use marine-type plywood for survey targets that is 0.75 in (19 mm) thick. Paint the plywood with coats that meet the requirements of the Federal Specification noted:
 Apply an undercoat to all surfaces and edges (TT-E543); second and third coats—apply to all surfaces and edges (TT-E529A, color number 27875); fourth and fifth coats—apply to colored areas (TT-529A, color number 21105).

D. Sheet Metal Caps
 Use galvanized sheet metal caps for pile heads, galvanized large-headed roofing nails to attach the caps, and galvanized cable to wrap the pile clusters.

E. Other Hardware for Connections
 Use bolts, nuts, washers, etc. of any commercial grade. They do not need to be galvanized.

157.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

157.3 Construction Requirements
General Provisions 101 through 150.

157.3.01 Personnel
General Provisions 101 through 150.

157.3.02 Equipment
General Provisions 101 through 150.

157.3.03 Preparation
General Provisions 101 through 150.

157.3.04 Fabrication
General Provisions 101 through 150.
157.3.05

157.3.05 Construction

A. Location of Base Lines, Triangulation Stations, and Survey Targets

Possible locations of base lines, triangulation stations, and survey targets are shown on the Plans. Timber walkways are included as a bid item, but their locations may not be shown on the Plans. Actual and final locations of survey aids are based upon Contractors’ own procedures and equipment methods.

The Contractor and the Engineer must agree on the most effective means to control the line and distance during construction. At the Preconstruction Conference, discuss with the Subcontractors the plan of operation for reaching this consensus.

After the conference, the Plans will be modified to show the locations of base lines and the number and locations of triangulation stations and survey targets. Timber walkway locations may not be shown on the modified Plans. After receiving the modified plans, make survey aids construction the first operation, including the installation of timber walkways if needed to provide access.

B. Location of Survey Points

After the Contractor constructs survey aids, the Engineer places instrument mountings and performs field checks and office calculations necessary to provide the location of the survey points.

Even though electronic data methods are used to calculate the point locations, the Engineer may not be able to designate survey point locations immediately. Time Charges will not be suspended during this period.

C. Clearing and Grubbing

The Engineer must be satisfied with the method and the location of all clearing and grubbing necessary for survey aid construction as a part of this work. Dispose of removed materials as directed by the Engineer.

D. Framing

Perform all framing and construct survey aids according to the Plan details, unless the Engineer permits alternate details.

E. Triangulation Stations

Drive pile clusters into the underlying firm material to provide instrument mountings. Ensure that these mountings are steady enough to use during wind and wave conditions.

F. Survey Targets

Drive the piling into the firm material to provide and maintain accuracy of the targets under weather and construction conditions specific to the Project area.

G. Timber Walkways

Drive piling deep enough to provide stability under weather and construction conditions specific to the Project area.

Walkways may be required to provide access to triangulation stations, to provide access to boats located at the edge of marsh or swamp areas at low water or low tide periods, or for other purposes as designated on the Plans or by the Engineer.

Alternate designs will be considered if they have equal strength, width, and safety.

H. Height Control

Regardless of elevations stated or implied on the Plans or in the Contract, the Engineer can determine how high to construct the survey aids.

Construct items above the extreme high-tide mark. The Engineer may require triangulation stations used initially for roadway item control to be built higher. These higher stations may be used in bridge control that may be in the initial or subsequent Contracts.

Constructing railing ladders and other vertical means of access are considered incidental to constructing survey aids.

157.3.06 Quality Acceptance

General Provisions 101 through 150.

157.3.07 Contractor Warranty and Maintenance

Maintain the survey aids as follows:
A. Promptly replace, repair, or strengthen defective, unduly worn, corroded, deteriorated, or otherwise unsatisfactory material at the Engineer’s request. Such maintenance is incidental to survey aid construction.
B. Maintain survey aids to the Engineer’s satisfaction to ensure that they are safe, have longevity, and perform accurately.
C. If a survey aid will be used to control the work under another Contract:
 1. Do not remove that aid.
 2. Before moving off the Project or before relinquishing maintenance to another Contractor, perform the maintenance required to leave the aid in serviceable use for the future Work. The Engineer must approve of the maintenance. The additional maintenance is considered incidental to survey aid construction.

The subsequent Contractor’s maintenance period will conclude when the survey aids no longer are needed for the duration of the Contract. The subsequent Contractor shall maintain the survey aids to the Engineer’s satisfaction needed for Work, as provided in Subsection 105.05, “Cooperation by Contractor” as incidental to the work.

When the aids no longer are needed the Engineer will advise the responsible Contractor. The Contractor who used the aids last shall remove and dispose of the material to the Engineer’s satisfaction. Removal and disposal is incidental to the work.

157.4 Measurement
This work is measured for payment in the units shown in Subsection 157.5, “Payment,” for accepted triangulation stations, survey targets, and timber walkways. Walkway measurements are horizontal and along center lines.
No separate measurements for payment are made to maintain, remove, or dispose of survey aids or to provide material, labor, or equipment required of a subsequent Contractor who does not originally construct the aids. All costs incidental to the work shall be included in other Contract Items.

157.4.01 Limits
General Provisions 101 through 150.

157.5 Payment
This work is paid for at the Contract Price per unit of measurement, complete in place, and when maintained and removed as directed.

These payments are full compensation for costs, direct and indirect, of complying with the requirements of this Specification. Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 157</th>
<th>Triangulation station</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 157</td>
<td>Survey target</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 157</td>
<td>Timber walkway</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

157.5.01 Adjustments
General Provisions 101 through 150.

Section 158—Training Program

158.1 General Description
The Contractor’s Equal Employment Opportunity Affirmative Action Program includes on-the-job training aimed at fully qualifying trainees in the trade or job classification involved.

The Proposal specifies the number of trainees to be trained under this Specification.

This training specification is in implementation of 23 USC 140(a). As a part of the Contractor’s Equal Employment Opportunity Affirmative Action Program, provide training as specified in this specification.

158.1.01 Definitions
General Provisions 101 through 150.
158.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Reference Documents
 Georgia On-the-Job Training Program Manual

158.1.03 Submittals
Submit an acceptable training program to the Department for review and approval within 30 days after the Notice to Proceed is issued. Failure to submit an acceptable training program, as determined by the Engineer, will result in the withholding of all Contractor progress payments.
Specify the starting time for training in each of the classifications.

158.2 Materials
General Provisions 101 through 150.

158.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

158.3 Construction Requirements

158.3.01 Personnel
A. Number of Trainees
 If the Contract Work is subcontracted, determine how many trainees, if any, the Subcontractor shall train. However, retain the primary responsibility for meeting the training requirements of this Specification. Ensure that this Specification applies to the Subcontract.
 Where feasible, have 25 percent of the apprentices or trainees in each occupation be in their first year of apprenticeship or training.
 Distribute the number of trainees among the work classifications based on needs and the availability of trainees in each classification (within a reasonable area of recruitment).

B. Types of Trainees in Attendance
 1. Construction Crafts. Provide training in the construction crafts. Training may also be provided for lower-level management positions if training is oriented toward construction applications such as office engineers, estimators, time-keepers, etc.
 2. Laborers. Training may be provided in the laborer classification if the training is meaningful and if significance is proven and approved by the Division Office.
 3. Clerks and Secretaries. Do not provide training for clerk-typists or secretarial-type positions.
 4. Minorities and Women. Conduct systematic and direct recruitment through public and private sources likely to yield minority and women trainees. Recruit minorities and women within a reasonable area of recruitment. Demonstrate the steps taken to recruit minorities and women for training to comply with this Specification. This training commitment is not intended to nor will it be used to discriminate against any applicant for training, whether or not the applicant is a member of a minority group.

158.3.02 Equipment
General Provisions 101 through 150.

158.3.03 Preparation
Give each trainee a copy of the program that is followed during training. Provide each trainee with certification showing the type and length of training satisfactorily completed.
The State will approve of or accept the training program before beginning work on the classification covered by the training program.

158.3.04 Fabrication
General Provisions 101 through 150.
158.3.05 Construction

An employee who completes a training course or is employed as a journeyman cannot receive training in that area of expertise. Satisfy this requirement by including questions in the employee application or by using other means to disclose the trainee’s status. Keep records of the findings of each case.

Some off-site training is permissible provided the training is an integral part of an approved training program and does not comprise a significant part of the overall training.

158.3.06 Quality Acceptance

The selected training program approved by the Department and the Federal Highway Administration establishes the minimum length and type of training for each classification. The Department and the Federal Highway Administration will approve a program if it is calculated to meet Equal Employment Opportunity obligations and qualify the average trainee for journeyman status in a classification by the end of the training period.

Acceptable apprenticeship programs include:

- Programs registered with U.S. Department of Labor
- Programs registered with the Bureau of Apprenticeship and Training
- Programs registered with a State apprenticeship agency recognized by the Bureau
- Training programs approved but not necessarily sponsored by the U.S. Department of Labor, Manpower Administration, Bureau of Apprenticeship and Training if administered in a manner consistent with the Equal Employment obligations of Federal-Aid highway construction contracts

158.3.07 Contractor Warranty and Maintenance

Maintain and furnish periodic records (form FHWA 1409) that document performance under this Specification.

158.4 Measurement

Except as otherwise noted in Subsection 158.4.01, “Limits,” the Contractor will be reimbursed 80 cents for every hour an employee is trained in an approved training program on this Contract. If the number of trainees exceeds the number specified in this Training Specification, reimbursement will be at the Engineer’s approval. The Contractor will receive the reimbursement even though additional training program funds are received from other sources (only if the other sources do not specifically prohibit the Contractor from receiving other reimbursement).

The Contractor will not receive any progress payment under any one of these conditions:

- Failure to provide an acceptable training program to the Department within 30 days after the Notice to Proceed is issued
- The Contractor fails to provide the required training
- The trainee fails to be hired as a journeyman at the fault of the Contractor
- The Contractor fails to show good faith to meet the requirements of this Training Specification

158.4.01 Limits

The Contractor is credited for each trainee that is employed on the Contract Work and that is currently enrolled or becomes enrolled in an approved program. Reimbursement for such trainees is as follows:

1. The Contractor receives reimbursement for off-site training only if trainees are concurrently employed on a Federal-aid project and the Contractor does one or more of the following:
 - Contributes to the cost of the training
 - Provides instruction to the trainee or pays the trainee’s wages during the off-site training

2. The Contractor provides acceptable training to the number of trainees specified on the Contract.

3. A trainee begins training on the project as soon as feasible after the work that uses the trained skill has begun.

4. The trainee remains on the project as long as training opportunities exist in the work classification or until the trainee has completed the training program. Trainees do not need to be employed for the entire length of the Contract.

5. Trainees are paid at least 60 percent of the appropriate minimum journeyman’s rate specified on the Contract for the first half of the training period, 75 percent for the third quarter of the training period, and 90 percent for the last quarter of the training period.
158.5

If apprentices or trainees in an approved existing program are enrolled as trainees in the same classification on this Project, the appropriate rates approved by the Departments of Labor or Transportation for the existing program shall apply to the trainees.

158.5 Payment

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 158</th>
<th>Training hours</th>
<th>$0.80 per hour</th>
</tr>
</thead>
</table>

158.5.01 Adjustments

General Provisions 101 through 150.

Section 160—Reclamation of Material Pits and Waste Areas

160.1 General Description

This work includes reclaiming material pits and waste areas by vegetative planting and applies to areas outside of the right-of-way.

The vegetative requirements of this section apply when the Contractor obtains material from a source or wastes material on an area other than within the Right of Way. These requirements apply regardless of how the source or area is obtained. Exceptions to the vegetative requirements of this section include:

- A material source where the Engineer determines not to drain water that accumulates after the material is removed. Only the slopes above water will be planted.
- An area composed of rock or other materials that the Engineer determines are not satisfactory for permanent vegetative cover.
- An area that has been exempted in writing by the Georgia Surface Mined Land Use Board.
- An area where the owner or Contractor, (whichever is designated as the Operator) secures a license from the Surface Mined Land Use Board for surface mining. The Operator will be responsible only to the Surface Mined Land Use Board for reclamation of the affected area.

160.1.01 Definitions

General Provisions 101 through 150.

160.1.02 Related References

A. Standard Specifications

Section 700—Grassing
Section 702—Vine, Shrub and Tree Planting
Section 890—Seed and Sod

B. Referenced Documents

General Provisions 101 through 150.

160.1.03 Submittals

The Engineer must:

- Approve the planting type if the Contractor furnishes a material pit or waste area that requires vegetation under the provisions of this Specification.
- Approve all modified mixtures before planting begins.

The property owner may change the plant material types specified in the Plans to a type not shown in the Planting Table in Subsection 160.2, “Planting Table”, below. If a change is made, the mixture shall cost approximately the same and shall produce an equal amount of protective covering as the mixture contained in this Specification.

160.2 Materials

Materials shall conform to the requirements of Sections 700 and 702 as applicable.
If the Plans or the Proposal do not specify the vegetation type to be planted on State-optioned areas, the Engineer will select the type to be used on each area from the Planting Table.

The State is divided into planting zones as shown on the Planting Zones Map in Sections 700. Consult the Planting Table when planting and follow these points:

- Do not use giant bermuda seed (cynodon species) including NK-37.
- Do not use Italian rye grass seed—perennial or annual.
- Apply the entire combination of seeds specified for each group in the amounts specified. If the property owner does not make a specific choice, use planting groups A, B, C, G, H, or N-1.
- Increase all seed quantities 50 percent on slopes that are too steep for soil preparation and cannot be dug at least 6 in (150 mm) deep.
- Air dry sericea lespedeza seed hay and ensure that it contains mature seed.

Planting Table

<table>
<thead>
<tr>
<th>Planting Groups</th>
<th>Species</th>
<th>Rates per Acre/Hectare</th>
<th>Planting Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lbs. (kg) (except as noted)</td>
<td>Zone 1</td>
</tr>
<tr>
<td></td>
<td>Interstate Lespedeza (HS)*</td>
<td>50 (56)</td>
<td>3/1-7/15</td>
</tr>
<tr>
<td></td>
<td>A-1 Interstate Lespedeza (HS)*</td>
<td>60 (67)</td>
<td>3/1-7/15</td>
</tr>
<tr>
<td></td>
<td>B Tall Fescue</td>
<td>30 (33.5)</td>
<td>3/1-5/1</td>
</tr>
<tr>
<td></td>
<td>Interstate Lespedeza (HS)*</td>
<td>50 (56)</td>
<td>3/1-5/1</td>
</tr>
<tr>
<td></td>
<td>C Pensacola Bahia</td>
<td>10 (11)</td>
<td>3/1-7/1</td>
</tr>
<tr>
<td></td>
<td>D-1 Hulled Common Bermuda</td>
<td>15 (17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unhulled Common Bermuda</td>
<td>5 (5.5)</td>
<td>3/1-6/1</td>
</tr>
<tr>
<td></td>
<td>Korean Lespedeza</td>
<td>25 (28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E Tall Fescue</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>White Dutch Clover</td>
<td>6 (6.5)</td>
<td>2/1-4/1</td>
</tr>
<tr>
<td></td>
<td>Korean Lespedeza</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F Tall Fescue</td>
<td>30 (33.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korean Lespedeza</td>
<td>20 (22.5)</td>
<td>2/1-4/1</td>
</tr>
<tr>
<td></td>
<td>F-1 Tall Fescue</td>
<td>50 (56)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korean Lespedeza</td>
<td>20 (22.5)</td>
<td>2/1-6/1</td>
</tr>
<tr>
<td></td>
<td>F-2 Tall Fescue</td>
<td>60 (67)</td>
<td>2/1-4/1</td>
</tr>
<tr>
<td>Summer Planting</td>
<td>G Hulled Common Bermuda</td>
<td>10 (11)</td>
<td>7/1-9/1</td>
</tr>
<tr>
<td></td>
<td>Pensacola Bahia</td>
<td>50 (56)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H Weeping Love Grass</td>
<td>4 (4.5)</td>
<td>7/1-9/1</td>
</tr>
<tr>
<td></td>
<td>Interstate Lespedeza (HS)</td>
<td>50 (56)</td>
<td></td>
</tr>
<tr>
<td>Planting Groups</td>
<td>Species</td>
<td>Rates per Acre/Hectare</td>
<td>Planting Zones</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lbs. (kg) (except as noted)</td>
<td>Zone 1</td>
</tr>
<tr>
<td>I</td>
<td>Hulled Common Bermuda</td>
<td>15 (17)</td>
<td>7/1-9/1</td>
</tr>
<tr>
<td></td>
<td>Pensacola Bahia</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korean Lespedeza</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reseeding Crimson Clover</td>
<td>30 (33.5)</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Weeping Love Grass</td>
<td>4 (4.5)</td>
<td>7/1-9/1</td>
</tr>
<tr>
<td></td>
<td>Korean Lespedeza</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reseeding Crimson Clover</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Hulled Common Bermuda</td>
<td>5 (5.5)</td>
<td>7/1-9/1</td>
</tr>
<tr>
<td></td>
<td>Pensacola Bahia</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reseeding Crimson Clover</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Tall Fescue</td>
<td>20 (22.5)</td>
<td>7/1-9/1</td>
</tr>
<tr>
<td></td>
<td>Pensacola Bahia</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korean Lespedeza</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reseeding Crimson Clover</td>
<td>30 (33.5)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Weeping Love Grass</td>
<td>5 (5.5)</td>
<td>7/1-9/1</td>
</tr>
<tr>
<td></td>
<td>Tall Fescue</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korean Lespedeza</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reseeding Crimson Clover</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Tall Fescue</td>
<td>30 (33.5)</td>
<td></td>
</tr>
<tr>
<td>N-1</td>
<td>Tall Fescue</td>
<td>30 (33.5)</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Tall Fescue</td>
<td>50 (56)</td>
<td>8/1-11/1</td>
</tr>
<tr>
<td>O-1</td>
<td>Tall Fescue</td>
<td>60 (67)</td>
<td>8/1-10/ 15</td>
</tr>
<tr>
<td>P</td>
<td>Tall Fescue</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pensacola Bahia</td>
<td>40 (45)</td>
<td>8/1-10/ 15</td>
</tr>
<tr>
<td>P-1</td>
<td>Tall Fescue</td>
<td>20 (22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pensacola Bahia</td>
<td>60 (67)</td>
<td>8/1-10/ 15</td>
</tr>
<tr>
<td>Q</td>
<td>Tall Fescue</td>
<td>40 (45)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korean Lespedeza</td>
<td>20 (22.5)</td>
<td>9/1-11/1</td>
</tr>
<tr>
<td>Q-1</td>
<td>Tall Fescue</td>
<td>50 (56)</td>
<td>9/1-11/1</td>
</tr>
<tr>
<td>Q-2</td>
<td>Reseeding Crimson Clover</td>
<td>50 (56)</td>
<td>8/15-11/ 1</td>
</tr>
<tr>
<td>Special</td>
<td>R Unhulled Common Bermuda</td>
<td>8 (9)</td>
<td></td>
</tr>
</tbody>
</table>
160.3.05

<table>
<thead>
<tr>
<th>Planting Groups</th>
<th>Species</th>
<th>Rates per Acre/Hectare</th>
<th>Planting Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lbs. (kg) (except as noted)</td>
<td>Zone 1</td>
</tr>
<tr>
<td>Planting</td>
<td>Sericea Lespedeza Seed Hay</td>
<td>3 tons (6.7Mg)</td>
<td>10/1-3/15</td>
</tr>
<tr>
<td>S</td>
<td>Pine Seedlings, Native to Georgia @ 6' x 8' (1.8 m x 2.4 m) spacing</td>
<td>900 (2224) seedlings</td>
<td>10/15-3/15</td>
</tr>
<tr>
<td>T</td>
<td>Costal Bermuda Sprigs</td>
<td>Omit Over seeding</td>
<td>3/1-9/1</td>
</tr>
</tbody>
</table>

*(HS) = Hull and Scarified
Note: Sericea Lespedeza or Seral Lespedeza may be substituted for Interstate Lespedeza

160.2.01 Delivery, Storage, and Handling
If the sprigs are stockpiled, cover the sprigs and keep them moist.

160.3 Construction Requirements

160.3.01 Personnel
General Provisions 101 through 150.

160.3.02 Equipment
Equipment shall conform to the requirements of Section 700 and Section 702 as applicable.

160.3.03 Preparation
Seed or sprig areas that are subject to erosion. If the Engineer feels the borrow pit or waste area will be subject to erosion, grass and mulch areas that require pine seedlings before planting the seedlings.

160.3.04 Fabrication
General Provisions 101 through 150.

160.3.05 Construction
Comply with the construction methods in Section 700 for this work with the following exceptions:

A. Prepare the Ground
 1. Complete the excavation.
 2. Have the Engineer examine the slopes to ensure that planting is not done on areas composed of rock or other materials that the Engineer determines unsatisfactory for permanent vegetation.
 3. Plow areas that are to be planted to a depth of 6 in (150 mm) unless the areas are exempted in this Specification or in Section 700.

B. Apply Lime and Fertilizer
 1. Spread agricultural lime uniformly at the rate shown on the Plans or determined by the Engineer.
 2. Apply fertilizer grade 4-12-12, 6-12-12, or 5-10-15 uniformly at approximately 1,200 lbs/acre (1350 kg/ha).
 3. Mix the lime and fertilizer into the top 2 in (50 mm) of soil, including the areas to be planted with pine seedlings.
 4. Hydroseed slopes steeper than 2 to 1 as defined in Subsection 700.3.05.F, “Hydroseeding.” The mixing may be eliminated.

C. Seed
 Sow seeds at the rates specified in the Subsection 160.2, “Planting Table”.

D. Mulch
 1. Use any mulch type listed in Subsection 700.3.05.G, “Mulching.”
 2. Mulch all seeded and sprigged areas.
E. Plant Pine Seedlings
 1. Use a dibble or other approved planter to dig holes for the pine seedlings after seeding or sprigging and mulching.
 2. Set the plants slightly deeper than they were planted in the nursery. When hand planting, compact the bottom of the hole before setting the plants.

F. Apply Nitrogen
 1. Apply nitrogen according to Subsection 700.3.05.I, “Application of Nitrogen.”
 2. Do not apply nitrogen directly over the seedlings.

G. Harvest Sprigs
 1. Observe sprigging seasonal limitations. See Subsection 160.2, “Planting Table”.
 2. Inspect harvesting sites. Ensure inspection is according to Subsection 890.2.02.C, “Acceptance.”
 3. Harvest sprigs as follows:
 a. Harvest the sprigs using a sod cutter, turning plow, or other approved equipment so that at least 3 in (75 mm) of the root system is lifted intact.
 b. Immediately load the harvested sprigs and cover them with wet burlap or canvas to prevent weather damage.
 c. Transport the sprigs to where they will be immediately planted or stockpiled.
 d. Plant sprigs within 48 hours after they are harvested. Never allow sprigs to dry out or freeze.

H. Apply Sprigs
 Apply sprigs using either the broadcast or row method. However, do not perform broadcast sprigging on steep slopes or narrow areas where results will not be satisfactory.

 During sprigging, ensure that the soil moisture content is at least the optimum for soil sprigging.
 1. Broadcast Sprigging
 Perform broadcast sprigging as follows:
 a. Apply the sprigs mechanically or by hand in a uniform layer over the prepared surface placing at least 4 viable sprigs to each square foot (43 viable sprigs to each square meter).
 b. Place the sprigs 2 to 3 in (50 to 75 mm) deep by disc harrowing or by other satisfactory means.
 2. Row Sprigging
 Perform row sprigging as follows:
 a. Open furrows spaced at least 1 ft (300 mm) apart to at least 4 in (100 mm) deep.
 b. Immediately place the sprigs in the furrows by hand or by planting machines and overlap them in the furrows.
 c. Do not expose sprigs more than 15 minutes before filling in the furrows.

I. Restore Line and Grade, and Roll
 After the sprigging is done, do the following:
 1. Return the impaired sections back to the line and grade as established by the Engineer.
 2. Roll the area at right angles to the direction of the slope incline.

J. Mulch Sprigged Areas
 Mulch sprigged areas within the construction limits according to Subsection 700.3.05.G, “Mulching.”
 1. Mulch with Binder
 When applying mulch with binder, apply immediately after the overseeding and rolling are complete.
 2. Mixed-in-Place Mulch
 When applying mixed-in-place mulch, apply immediately after sprigging.

160.3.06 Quality Acceptance
Before Final Acceptance, each planted area shall meet the requirements for satisfactory growth and development as defined in Subsection 160.5.01.A, “Plant Establishment.” Except as otherwise specified in this Specification, all seeding shall conform to Section 700, and pine seedling planting shall conform to Section 702.

160.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.
160.4 Measurement
The following will be measured in acres (hectares) horizontal measurement:
- Area reclamation—seeding or sprigging
- Area reclamation—pine seedlings including fertilizer and mulch
Reclamation items that are completed, accepted, and eligible for measurement and payment are subject to the following conditions:
- Each work item shall be done for the Department according to the Specifications and terms of the Contract.
- Areas where the work is done shall be shown on the Plans as possible sources of materials or waste areas.
- If the Contractor furnishes a substitute area, measurement of reclamation terms eligible for payment shall not exceed Plan quantities.

160.4.01 Limits
Some reclamation items are not eligible for measurement and payment by the Department. These include but are not limited to:
- Items performed for or paid for by another agency
- Items performed on areas, other than substitute areas, secured by the Contractor but not shown on the Plans
- Items performed on any area excluded under Subsection 160.1, “General Description.”

160.5 Payment
Items of area reclamation will be paid for if complete in place and accepted.
The following will be paid for at the Contract Unit Price per acre (hectare):
- Area reclamation—seeding or sprigging
- Area reclamation—pine seedlings measured for payment
Payment shall be full compensation for:
- Preparing the ground
- Seeding or planting
- Applying fertilizer, including nitrogen
- Watering
- Mulching
- Providing other work and incidentals necessary to complete the Item except lime, which will be measured and paid for according to Section 700.

The Contractor will be allowed full measurement and payment on his regular monthly estimates for all reclamation items at the time they are first completed, provided the work has been done in strict compliance with the Specifications.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 160</td>
<td>Area reclamation, seeding</td>
<td>Per acre (hectare)</td>
</tr>
<tr>
<td>Item No. 160</td>
<td>Area reclamation, sprigging</td>
<td>Per acre (hectare)</td>
</tr>
<tr>
<td>Item No. 160</td>
<td>Area reclamation, pine seedlings</td>
<td>Per acre (hectare)</td>
</tr>
<tr>
<td>Item No. 700</td>
<td>Agricultural lime</td>
<td>Per ton (megagram)</td>
</tr>
</tbody>
</table>

160.5.01 Adjustments
A. Plant Establishment
Perform plant establishment according to Subsection 700.3.07.A, “Plant Establishment” except that mowing is not required.

B. Pine Tree Seedlings
The area covered with pine tree seedlings will not be considered satisfactory until 85 percent or more of the growth has survived 90 days after planting with no fail spots exceeding 0.25 acre (0.1 ha).
161.1

If the survival rate is less than 85 percent, but greater than 75 percent, and fail spots do not exceed 0.25 acre (0.1 ha), the affected area will be measured for payment at half the Contract price unless the Contractor replants the deficient area to meet the requirements for full growth and coverage.

Areas that do not meet the minimum 75 percent requirement shall be replanted in full at the Contractor’s expense. All replanting shall be done within the allowable planting season for pine seedlings as shown in Subsection 160.2, “Planting Table”.

Section 161—Control of Soil Erosion and Sedimentation

161.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 162—Erosion Control Check Dams

162.1 General Description
This work includes furnishing, constructing, and maintaining erosion control check dams.

162.1.01 Definitions
General Provisions 101 through 150.

162.1.02 Related References
A. Standard Specifications
 Section 810—Roadway Materials

B. Referenced Documents
 General Provisions 101 through 150.

162.1.03 Submittals
General Provisions 101 through 150.

162.2 Materials
A. Erosion Control Materials
 Use these materials as needed to control erosion on check dams:
 1. Where required, use any commercial type of woven wire minimum 14 ½ gauge.
 2. Obtain other materials such as logs, brush, stakes, etc., from the Right-of-Way where available.
 3. Place Number 57 stone, where required, at the location and depth indicated on the Plans.
 4. Ensure that material in the earth dams meets the requirements of Subsection 810.2.01.A.1, “Classes” for Class II soils.

162.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

162.3 Construction Requirements

162.3.01 Personnel
General Provisions 101 through 150.

162.3.02 Equipment
General Provisions 101 through 150.

162.3.03 Preparation
General Provisions 101 through 150.
162.3.04 Fabrication
General Provisions 101 through 150.

162.3.05 Construction
A. Check Dam Construction

Construct check dams as follows:

1. Construct check dams before roadway clearing, grubbing, or grading is done in the affected drainage area. Construct according to the Plans.

2. Remove the trees, logs, brush, etc., within the Right-of-Way and the affected area that may be used to construct the check dams. Do not disturb other natural ground cover.

NOTE: Use only rubber-tired equipment to work in the affected drainage area until after the check dam is in place and completed.

3. Obtain the embankment material for the earth dams from outside the area draining into the protected pond or stream.

4. Immediately after completing the earthwork on the earth dams, place a layer of Number 57 stone on the downstream side of the dam. Immediately grass the remaining portions (top and upstream slopes) of the earth dams.

5. Immediately after grading, grass or stabilize with straw mulch roadway cut and fill slopes that drain toward the check dam drainage area.

6. Leave check dams in place after construction is complete unless otherwise directed by the Engineer.

162.3.06 Quality Acceptance
General Provisions 101 through 150.

162.3.07 Contractor Warranty and Maintenance
Repair the check dams as needed during the life of the Contract.

The estimated number of check dams required is shown on the Plans. Additional check dams may be necessary and shall be constructed when directed by the Engineer.

162.4 Measurement
The number of erosion control check dams measured for the payment is the actual number completed and accepted.

162.4.01 Limits
General Provisions 101 through 150.

162.5 Payment
Erosion control check dams, as measured in Subsection 162.4, “Measurement,” are paid for at the Contract Unit Price.

Payment is full compensation for:

- Earth dam construction and compaction
- Required grassing, mulching, and Number 57 stone
- Log dams and dissipaters
- Removal if ordered by the Engineer

Payment for this Item is made as follows:

- 75 percent of the Contract Price is paid when each erosion control check dam is complete in place.
- 25 percent is paid when the Engineer instructs the Contractor that the check dam is no longer required but will remain in place or be removed, whichever applies.

NOTE: Temporary devices will be left in place at the Engineer’s discretion without a change in cost.

Payment will be made under:

| Item No. 162 | Erosion control check dam—type___ | Per each |

162.5.01 Adjustments
General Provisions 101 through 150.
Section 163—Miscellaneous Erosion Control Items

163.1 General Description
This work includes constructing and removing:
- Silt control gates
- Temporary erosion control slope drains shown on the Plans or as directed
- Sediment basins
- Baled straw erosion checks
- Other temporary erosion control structures shown on the Plans or directed by the Engineer
This work also includes applying temporary mulch and temporary grass.

163.1.01 Definitions
Retrofit Device—A temporary sediment filter placed in front of an existing or proposed detention pond being used as a temporary sediment basin during the construction of the Project

163.1.02 Related References
A. Standard Specifications
 - Section 109—Measurement and Payment
 - Section 161—Control of Soil Erosion and Sedimentation
 - Section 171—Temporary Silt Fence
 - Section 500—Concrete Structures
 - Section 603—Rip Rap
 - Section 700—Grassing
 - Section 715—Bituminous Treated Roving
 - Section 822—Emulsified Asphalt
 - Section 860—Lumber and Timber
 - Section 863—Preservative Treatment of Timber Products
 - Section 890—Seed and Sod
 - Section 893—Miscellaneous Planting Materials
B. Referenced Documents
 - AASHTO M252
 - AASHTO M294

163.1.03 Submittals
Provide written documentation to the Engineer as to the average weight of the bales of mulch.

163.2 Materials
Provide materials shown on the Plans, such as pipe, spillways, wood baffles, and other accessories including an anti-seep collar, when necessary. The materials shall remain the Contractor’s property after removal, unless otherwise shown on the Plans.

Materials may be new or used; however, the Engineer shall approve previously used materials before use.

Materials shall meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulch</td>
<td>893.2.02</td>
</tr>
<tr>
<td>Temporary Silt Fence</td>
<td>171</td>
</tr>
</tbody>
</table>
163.3.05 Table

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Aprons and Footings shall be Class A</td>
<td>500</td>
</tr>
<tr>
<td>Rip Rap</td>
<td>603</td>
</tr>
<tr>
<td>Temporary Grass</td>
<td>700</td>
</tr>
<tr>
<td>Bituminous Treated Roving</td>
<td>715</td>
</tr>
<tr>
<td>Lumber and Timber</td>
<td>860.2.01</td>
</tr>
<tr>
<td>Preservative Treatment of Timber Products</td>
<td>863.1</td>
</tr>
<tr>
<td>Corrugated Polyethylene Temporary Slope Drain Pipe</td>
<td>AASHTO M252 or M294</td>
</tr>
</tbody>
</table>

Additional requirements:
- Use 40d nails.
- To tack the lining material to earth flumes, use grade RS-2h or SS-1h asphaltic material that meets the requirements of Section 822.
- Use rectangular, standard size baled straw in mechanically produced bales.

163.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

163.3 Construction Requirements

163.3.01 Personnel
General Provisions 101 through 150.

163.3.02 Equipment
General Provisions 101 through 150.

163.3.03 Preparation
General Provisions 101 through 150.

163.3.04 Fabrication
General Provisions 101 through 150.

163.3.05 Construction

A. Silt Control Gates

If silt control gates are required or are directed by the Engineer, follow these guidelines to construct them:

1. Clear and grade only that portion of the roadway within the affected drainage area where the drainage structure will be constructed.
2. Construct the drainage structure and backfill.
3. Install the silt control gate at the inlet of the structure. Use the type indicated on the Plans.
4. Vary the height of the gate as required or as shown on the Plans.
5. Finish grading the roadway in the affected drainage area. Grass and mulch slopes and ditches that will not be paved. Construct the ditch paving required in the affected area.
6. Keep the gate in place until the work in the affected drainage area is complete and the erodible earth is stabilized.
7. Remove the silt gate assembly by sawing off the wood posts flush with the concrete apron. Leave the concrete apron between the gate and the structure inlet in place. The gate shall remain the property of the Contractor.

B. Temporary Slope Drains

If temporary slope drains are required, conduct the roadway grading operation according to Section 161 and follow these guidelines:

1. Place temporary pipe slope drains with inlets and velocity dissipaters (straw bales, silt fence, or aprons) according to the Plans.
2. Securely anchor the inlet into the slope to provide a watertight connection to the earth berm. Ensure that all connections in the pipe are leak proof.

3. Place the temporary slope drains as shown on the Uniform Code System for Erosion and Sediment Control Sheet for temporary items or as directed by the Engineer. Keep the slope drains in place until the permanent grass has grown enough to control erosion.

4. Remove the slope drains and grass the disturbed area with permanent grass. However, the temporary slope drains may remain in place to help establish permanent grass if approved by the Engineer.

C. Sediment Basins

Construct sediment basins according to the Plans at the required location, or as modified by the Engineer.

1. Construct the unit complete as shown, including:
 - Grading
 - Drainage
 - Rip rap
 - Spillways
 - Anti-seep collar
 - Temporary mulching and grassing on external slopes
 - Accessories to complete the basin

2. When the sediment basin is no longer needed, remove and dispose of the remaining sediment.

3. Remove the sediment basin. Grade to drain and restore the area to blend with the adjacent landscape.

4. Mulch and permanently grass the disturbed areas according to Section 700.

D. Baled Straw Erosion Checks

Construct baled straw erosion checks according to the Plan details. Substitute temporary silt fence Type B as specified in Section 171 for baled straw erosion checks at the Engineer’s direction or the Contractor’s option.

E. Other Temporary Structures

When special conditions occur during the design stage, the Plans may show other temporary structures for erosion control with required materials and construction methods.

F. Temporary Grass

Use a quick growing species of temporary grass such as rye grass, millet, or a cereal grass suitable to the area and season.

Use temporary grass in the following situations:

 - To control erosion where permanent grassing cannot be planted. The Engineer will direct the planting.
 - To protect an area for longer than temporary mulch is expected to last (60 calendar days).

Plant temporary grass as follows:

1. Use seeds that conform to Subsection 890.2.01, “Seed.” Perform seeding according to Section 700; except use the minimum ground preparation required to provide a seed bed if further grading is required.

2. Prepare areas that require no further grading according to Subsection 700.3.05.A, “Ground Preparation.” Omit the lime unless the area will be planted with permanent grass without further grading. In this case, apply the lime according to Section 700.

3. Apply mixed grade fertilizer at 400 lbs/acre (450 kg/ha). Omit the nitrogen. Mulch temporary grass according to Section 700.

4. Before planting permanent grass, thoroughly plow and prepare areas where temporary grass has been planted according to Subsection 700.3.05.A, “Ground Preparation.”

G. Temporary Mulch

When stage construction or other conditions prevent completing a roadway section continuously, apply temporary mulch to control erosion for 60 calendar days or less.

Use temporary mulch on erodible areas on or off the Right of Way, including borrow pits, temporary haul roads, or waste areas. Apply mulch as follows:
1. Plant temporary grass on areas stabilized only with temporary mulch. Mulch the area again after 60 calendar days.

2. Uniformly spread the mulch over the designated areas from 2 in to 4 in (50 mm to 100 mm) thick.

3. After spreading the mulch, walk in the mulch by using a tracked vehicle (preferred method), empty sheep foot roller, light discing, or other means that preserves the finished cross section of the prepared areas. The Engineer will approve of the method.

4. Place temporary mulch on slopes as steep as 2:1 by using a tracked vehicle to imbed the mulch into the slope. Where specified, bituminously treat temporary mulch according to Subsection 700.3.05.G.1, “Mulch with Binder.”

5. When grassing operations begin, leave the mulch in place and plow the mulch into the soil during seed bed preparation. The mulch will become beneficial plant food for the newly planted grass.

6. Place mulch to protect the newly planted grass. This mulch is required in addition to the mulch specified in step 5.

H. Miscellaneous Erosion Control Not Shown on the Plans

When conditions develop during construction that were unforeseen in the design stage, the Engineer may direct the Contractor to construct temporary devices such as but not limited to:

- Bulkheads
- Wooden ditch checks
- Sump holes
- Half round pipe for use as ditch liners
- U-V resistant plastic sheets to cover critical cut slopes

The Engineer and the Contractor will determine the placement to ensure erosion control in the affected area.

I. Diversion Channels

When constructing a culvert or other drainage structure in a live stream requires diverting a stream, construct a diversion channel. Protect the bottom and sides of the channel with plastic sheeting, rip rap (either stone or sandbag), geotextile fabric, or other materials approved by the Engineer. Cement may be omitted in sandbag rip rap used to line diversion channels.

J. Temporary Ditch Checks

Temporary ditch checks shall be constructed and placed according to Plan details. Temporary ditch checks may be constructed of stone plain rip rap according to Section 603 or of sand bags as in Section 603 without Portland cement.

Place plastic filter fabric on ditch section before placing rip rap.

Temporary ditch checks shall be cleaned of sediment when 1/2 the height of the temporary ditch check has been reached. They remain in place until the permanent ditch protection is in place or being installed and the removal is approved by the Engineer.

These ditch checks may remain in place to aid in establishing permanent grass in vegetated waterways, if approved by the Engineer.

K. Construction Exits

Locate construction exits at any point where vehicles will be leaving the project onto a public roadway. Install construction exits at the locations shown in the plans and in accordance with plan details.

L. Retrofit

Add the retrofit device to the permanent outlet structure as shown on the Plan details.

When all land disturbing activities that would contribute sediment-laden runoff to the basin are complete, clean the basin of sediment and stabilize the basin area with vegetation.

When the basin is stabilized, remove the retrofit device from the permanent outlet structure of the detention pond.

M. Inlet Sediment Trap

Inlet sediment traps consist of a temporary device placed around a storm drain inlet to trap sediment. An excavated area adjacent to the sediment trap will provide additional sediment storage.

Inlet sediment traps may be constructed of Type C silt fence, plastic frame and filter, hay bales, baffle box, or other filtering materials approved by the Engineer.

Construct inlet sediment traps according to the appropriate specification for the material selected for the trap.
163.3.06

Place inlet sediment traps as shown on the Plans or as directed by the Engineer.

163.3.06 Quality Acceptance

General Provisions 101 through 150.

163.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

163.4 Measurement

A. Silt Control Gates

Silt control gates are measured for payment by the entire structure constructed at each location complete in place and accepted. Silt control gates constructed at the inlet of multiple lines of drainage structures are measured for payment as a single unit.

B. Temporary Slope Drains

Temporary slope drains are measured for payment by the linear foot (meter) along the pipe including the inlet spillway and outlet apron or other dissipation devices, when required.

C. Sediment Basins

Sediment basins are measured for payment by the entire structure complete, including construction, maintenance, and removal. Measurement also includes:

- Earthwork
- Drainage
- Spillways
- Baffles
- Rip rap
- Final cleaning to remove the basin

Permanent and temporary grassing for sediment basins is measured separately for payment.

D. Diversion Channels

Diversion channels are not measured for payment. Costs for the entire structure complete, including materials, construction (including earthwork), and removal is included in the price bid for the drainage structure or for other Contract items.

E. Temporary Grass

Temporary grass is measured for payment by the pound (kilogram). Lime, when required, is measured by the ton (megagram).

F. Temporary Mulch

Temporary mulch is measured for payment by the ton (megagram). The weight for measurement will be the product of the number of bales used and the average weight per bale as determined on scales provided by the contractor or state certified scales. The contractor shall provide written documentation to the Engineer as to the average weight of the bales.

G. Baled Straw Erosion Checks

Baled straw erosion checks are measured by the linear foot (meter). Type “B” temporary silt fence is measured as baled straw when substituted by the Contractor or the Engineer.

H. Temporary Ditch Checks

Temporary ditch checks are measured for payment per each ditch check, which will include the entire structure at each location.

I. Construction Exits

Construction exits are measured per each which will include all work necessary to construct the exit including the required geotextile fabric placed beneath the aggregate.
J. Retrofit
Retrofit will be measured for payment per each. The construction of the detention pond and permanent outlet structure will be measured separately under the appropriate items.

K. Inlet Sediment Trap
Inlet sediment traps, regardless of the material selected, are measured per each which includes all work necessary to construct the trap including any incidentals and providing the excavated area for sediment storage.

163.4.01 Limits
General Provisions 101 through 150.

163.5 Payment
A. Silt Control Gates
The specified silt control gates are paid for at the Contract Unit Price per each. Payment is full compensation for:

- Furnishing the material and labor
- Constructing the concrete apron as shown on the Plans
- Excavating and backfilling to place the apron
- Removing the gate

B. Temporary Slope Drains
Temporary slope drains are paid for by the linear foot (meter). Payment is full compensation for materials, construction, removal (if required), inlet spillways, velocity dissipaters, and outlet aprons.

When temporary drain inlets and pipe slope drains are removed, they remain the Contractor’s property and may be reused or removed from the Project as the Contractor desires. Reused pipe or inlets are paid for the same as new pipe or inlets.

C. Sediment Basin
201.3.05 Sediment basins, measured according to Subsection 163.4, “Measurement,” are paid for by the unit, per each, for the type specified on the Plans. Price and payment are full compensation for work and supervision to construct, and remove the sediment basin, including final clean-up.

D. Diversion Channel
Diversion channels are not paid for separately; they are included in the price bid for the drainage structure or for other Contract Items.

E. Temporary Grass
Temporary Grass is paid for by the pound. Payment is full compensation for all equipment, labor, ground preparation, materials, fertilizer, mulch, and other incidentals except Lime. Lime (when required) is paid for by the ton.

F. Temporary Mulch
Temporary mulch is paid for by the ton. Payment is full compensation for all materials, labor, maintenance, equipment and other incidentals.

G. Baled Straw Erosion Checks
Baled straw erosion checks, complete in place and accepted is paid for at the Contract Unit Price bid. Payment is full compensation for constructing, and removing (when directed) the straw checks.

When the Contractor substitutes a Type “B” silt fence for baled straw erosion checks, or when the Engineer directs this substitution, payment is made at the bid price per linear foot (meter) for baled straw erosion checks.

H. Temporary Ditch Checks
Temporary ditch checks are paid for per each. Payment is full compensation for all materials, construction, and removal. Reused stone plain rip rap or sandbags are paid for on the same basis as new items. Filter fabric required under rip rap ditch checks is included in the price bid for each ditch check.
I. Construction Exits

Construction exits are paid for per each. Payment is full compensation for all materials including the required geotextile, construction, and removal.

J. Retrofit

This item is paid for at the Contract Unit Price per each. Payment is full compensation for all work, supervision, materials (including the stone filter), labor and equipment necessary to construct and remove the retrofit device from an existing or proposed detention pond outlet structure.

K. Inlet Sediment Trap

Inlet sediment traps are paid for per each. Payment is full compensation for all materials, construction, and removal.

If temporary erosion control measures are required due to Contractor negligence, carelessness, or failure to install permanent controls as part of the work as scheduled, the Contractor shall perform such work at no additional expense to the Department. Perform the work according to Subsection 107.13.

Erosion control work on approved borrow pits or approved haul roads to borrow pits measured for payment will include only items specifically provided for in the Plans and determined not to be maintenance work as stated in Subsection 106.10.D. If the Contractor secures his or her own pit, erosion control measures will be at his or her expense. If a pit is approved and the Contractor elects to use another pit, the Department will pay only up to the contract amount.

The Items in this Section (except temporary grass and temporary mulch) are made as partial payments as follows:

- When the item is installed and put into operation the Contractor will be paid 75 percent of the Contract price.
- When the Engineer instructs the Contractor that the Item is no longer required and is to remain in place or is removed, whichever applies, the remaining 25 percent will be paid.

Temporary devices may be left in place at the Engineer’s discretion at no change in cost. Payment for temporary grass and temporary mulch is shown in Section 161.

Payment is made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 163</td>
<td>Construct and remove silt control gate, type__</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 163</td>
<td>Construct and remove temporary pipe slope drains__</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 163</td>
<td>Construct and remove baled straw erosion check__</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 163</td>
<td>Construct and remove sediment basin type__. Requires Sta. No.</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 163</td>
<td>Construct and remove temporary ditch checks__</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 163</td>
<td>Construct and remove construction exits</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 163</td>
<td>Construct and remove retrofit, Sta. No.__</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 163</td>
<td>Construct and remove inlet sediment trap</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 163</td>
<td>Temporary Grass</td>
<td>Per pound (kilogram)</td>
</tr>
<tr>
<td>Item No. 163</td>
<td>Temporary Mulch</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>Item No. 700</td>
<td>Agricultural lime</td>
<td>Per ton (megagram)</td>
</tr>
</tbody>
</table>

163.5.01 Adjustments

General Provisions 101 through 150.

Section 165—Maintenance of Temporary Erosion And Sedimentation Control Devices

165.1 General Description

Specifications for this work will be included elsewhere in the Contract.

94
Section 166—Restoration or Alteration of Lakes and Ponds

166.1 General Description
This Specification gives the Contractor responsibility for altering or restoring a lake or pond and adjoining property. Refer to Subsection 107.13, “Protection and Restoration of Property and Landscape.”

166.1.01 Definitions
In this Specification, “lake” means “lake or pond,” regardless of its shape or size. Use the method indicated on the Plans and in the Proposal.

166.1.02 Related References
A. Standard Specifications
 Section 107—Legal Regulations and Responsibility to the Public

B. Referenced Documents
 General Provisions 101 through 150.

166.1.03 Submittals
General Provisions 101 through 150.

166.2 Materials
Materials required to complete the work are shown on the Plans or used as directed.

166.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

166.3 Construction Requirements
166.3.01 Personnel
General Provisions 101 through 150.

166.3.02 Equipment
Provide equipment necessary to complete the work or as directed.

166.3.03 Preparation
General Provisions 101 through 150.

166.3.04 Fabrication
General Provisions 101 through 150.

166.3.05 Construction
A. Restore Lakes and Dams

 When indicated on the Plans and in the Proposal, use the lake or pond area as a settling basin to contain silt, debris, or other foreign matter during the construction period.

 Before the work begins, the Engineer will establish the condition of the lake and dam and determine the existing contours of the lake bottom. Restore lakes and dams as follows:

 1. Remove, at no additional cost to the Department, the silt, etc., as often as necessary to avoid polluting the downstream area.

 2. When roadway work progresses enough that a normal stand of grass can prevent erosion and pollution of the lake, excavate and clean the lake of foreign matter. Return the lake to the original contour and condition or proposed contour, if different than the original.

 3. Dispose of material removed in a manner satisfactory to the Engineer.

 4. After removing the deleterious materials from the lake, grade and grass disturbed areas not under water.
166.3.06

B. Alter Lakes or Ponds

If alteration is shown as a Pay Item, work shall include activities to change the physical size, shape, or depth of the lake; or to change the high-water level, or elevation of the dam or portions of it. This work shall be done according to the Plan details.

166.3.06 Quality Acceptance
General Provisions 101 through 150.

166.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

166.4 Measurement
Alteration or restoration of a lake is measured by the unit as indicated on the Plans and in the Proposal. Payment is full compensation for all necessary labor, equipment, tools, materials and incidentals required to complete the work to the satisfaction of the Engineer.

166.4.01 Limits
General Provisions 101 through 150.

166.5 Payment
Alteration or restoration of a lake is paid for at the Contract Unit Price bid per each for the specified operation as defined in Subsection 166.3.05, “Construction.” Payment is full compensation for furnishing all labor, equipment, materials, tools and incidentals, and performing the work.

A. Restoration of a Lake

When the lake or pond is used as a settling basin, the work is paid for on the following schedule:

☐ Ten percent of the bid amount will be paid each time the lake or pond is cleaned of silt and debris during the construction period up to four occurrences.

☐ The remaining amount will be paid when the final cleaning and restoration are complete and accepted.

B. Alteration of a Lake

Alteration is paid on a pro-rata basis of the bid amount as the work progresses.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 166</th>
<th>Restoration of lake, sta._</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 166</td>
<td>Alteration of lake, sta._</td>
<td>Per each</td>
</tr>
</tbody>
</table>

166.5.01 Adjustments
General Provisions 101 through 150.

Section 167—Water Quality Monitoring

167.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 170—Silt Retention Barrier

170.1 General Description
This work includes controlling water pollution where embankment construction or material removal may cause stream pollution.

Requirements of Sections 161, 162, and 163 apply to this Item. However, payment will not be made for erosion control items in those sections used with this work.
170.1.01 Definitions
General Provisions 101 through 150.

170.1.02 Related References
A. Standard Specifications
 Section 161—Control of Soil Erosion and Sedimentation
 Section 162—Erosion Control Check Dams
 Section 163—Miscellaneous Erosion Control Items
 Section 171—Temporary Silt Fence
B. Referenced Documents
 General Provisions 101 through 150.

170.1.03 Submittals
General Provisions 101 through 150.

170.2 Materials
Use suitable permeable or impermeable materials. These materials include canvas duck, clear or black polyethylene film, or fabric that meets the requirements of Type C, temporary silt fence, found in Section 171.

Alternate solutions and materials may be used if Engineer approves.

Use barriers long enough and wide enough to control turbidity.

170.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

170.3 Construction Requirements

170.3.01 Personnel
General Provisions 101 through 150.

170.3.02 Equipment
General Provisions 101 through 150.

170.3.03 Preparation
General Provisions 101 through 150.

170.3.04 Fabrication
General Provisions 101 through 150.

170.3.05 Construction
Install a silt retention barrier as follows:

1. Confine dredged materials to ponding areas or settlement basins using standpipes or weirs.
2. Place the barrier approximately 25 ft (7.5 m) outside the affected construction area, and at a depth within 5 ft (1.5 m) of the bottom.
3. If the body of water has a significant current, place the barrier parallel to the water flow. Ensure that the fabric is permeable. In smaller streams, place the barrier close to the construction area.
4. Vary the dimensions and methods to suit the conditions and to meet the requirements of other local and State water control agencies to ensure that silt dispersion is effectively controlled.
5. Barriers shall be either staked or floating depending upon current, tides, water depth, and other variables.

If a staked barrier is used to protect a stream being relocated or widened, ensure that the fabric:

 - Extends to the bottom of the stream and is weighted to prevent it from floating
 - Is permeable and not trenched in at the bottom
 - Extends 2 ft (600 mm) above normal water from the top of the fabric
170.3.06
170.3.06 Quality Acceptance
General Provisions 101 through 150.
170.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

170.4 Measurement
Silt retention barriers, either floating or staked, are measured by the linear foot (meter) of barrier required to prevent siltation and pollution.

170.4.01 Limits
General Provisions 101 through 150.

170.5 Payment
The applicable requirements of Sections 161, 162, and 163 apply to this Item, except that the erosion control items contained in those sections will not be paid for when used in conjunction with this work.

Silt retention barriers will be paid for at the Contract Unit Price for each barrier, complete in place and accepted. Payment is full compensation for furnishing materials, erecting the barrier, removing, and disposing of the barrier when no longer required.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 170</th>
<th>Floating silt retention barrier</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 170</td>
<td>Staked silt retention barrier</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

170.5.01 Adjustments
General Provisions 101 through 150.

Section 171—Silt Fence

171.1 General Description
This work includes furnishing, installing, and removing a water permeable filter fabric fence to remove suspended particles from drainage water.

171.1.01 Definitions
General Provisions 101 through 150.

171.1.02 Related References
A. Standard Specifications
 Section 163—Miscellaneous Erosion Control Items
 Section 700—Grassing
 Section 862—Wood Posts and Bracing
 Section 881—Fabrics
 Section 894—Fencing
B. Referenced Documents
 ASTM D 3786
 ASTM D 4355
 ASTM D 4632
 ASTM D 4751
171.3.05

GDT 87
QPL 36

171.1.03 Submittals
General Provisions 101 through 150.

171.2 Materials
Materials shall meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Fabrics</td>
<td>881</td>
</tr>
<tr>
<td>Fencing</td>
<td>894</td>
</tr>
<tr>
<td>Wood Posts and Bracing</td>
<td>862</td>
</tr>
</tbody>
</table>

Conditions during Project construction will affect the quantity of the silt fence to be installed.

The Engineer may increase, decrease, or eliminate the quantity at his or her direction. Variations in quantity are not changes in details of construction or in the character of the work.

For Type A, B, and C fences, use fabric as specified in Subsection 881.2.07, “Silt Fence Filter Fabric.”

171.2.01 Delivery, Storage, and Handling
During shipment and storage, wrap the fabric in a heavy-duty covering that will protect the cloth from sunlight, mud, dust, dirt, and debris. Do not expose the fabric to temperatures greater than 140 °F (60 °C).

When installed, the Engineer will reject the fabric if it has defects, rips, holes, flaws, deterioration, or damage incurred during manufacture, transportation, or storage.

171.3 Construction Requirements

171.3.01 Personnel
General Provisions 101 through 150.

171.3.02 Equipment
General Provisions 101 through 150.

171.3.03 Preparation
General Provisions 101 through 150.

171.3.04 Fabrication
General Provisions 101 through 150.

171.3.05 Construction
Install the silt fence according to this Specification, as shown on the Plans, or as directed by the Engineer.

A. Install Silt Fence

1. Install silt fence by either of the following methods:
 a. Excavated Trench Method
 Excavate a trench 4 to 6 in (100 to 150 mm) deep using equipment such as a trenching machine or motor grader. If equipment cannot be operated on the site, excavate the trench by hand.
 b. Soil Slicing Method
 Create a mechanical slice in the soil 8 to 12 in (200 to 300 mm) deep to receive the silt fence. Ensure that the width of the slice is not more than 3 in (75 mm). Mechanically insert the silt fence fabric into the slice in a simultaneous operation with the slicing that ensures consistent depth and placement.

2. Install the first post at the center of the low point (if applicable). Space the remaining posts a maximum of 6 ft (1.8 m) apart for Types A and B fence and 4 ft (1.2 m) apart for Type C fence.

3. Bury the posts at least 18 in (450 mm) into the ground. If this depth cannot be attained, secure the posts enough to prevent the fence from overturning from sediment loading.
4. Attach the filter fabric to the post using wire, cord, staples, nails, pockets, or other acceptable means.
 a. Staples and Nails (Wood Posts): Evenly space staples or nails with at least five per post for Type A fence and four per post for Type B fence.
 b. Pockets: If using pockets, and they are not closed at the top, attach the fabric to a wood post using at least one additional staple or nail, or to a steel post using wire. Ensure that the additional attachment is within the top 6 in (150 mm) of the fabric.
 c. Install the filter fabric so that 6 to 8 in (150 to 200 mm) of fabric is left at the bottom to be buried. Provide a minimum overlap of 18 in (450 mm) at all splice joints.
 d. For Type C fences, attach the filter fabric to the top of a woven wire support fence at the midpoint between posts.
5. Install the fabric in the trench so that 4 to 6 in (100 to 150 mm) of fabric is against the side of the trench with 2 to 4 in (50 to 100 mm) of fabric across the bottom in the upstream direction.
6. Backfill and compact the trench to ensure that flow cannot pass under the barrier. When the slice method is used, compact the soil disturbed by the slice on the upstream side of the silt fence first, and then compact the downstream side.

B. Remove the Silt Fence
1. Keep the silt fence in place unless the Engineer directs. A removed silt fence may be used at other locations if the Engineer approves of its condition.
2. After removing the silt fence, return the area to a pleasing appearance. Seed and mulch the area according to Section 700.
3. When installing a silt fence across a waterway that produces significant runoff, place a settling basin in front of the fence to handle the sediment load, if required. Construct a suitable sump hole or storage area according to Section 163.

171.3.06 Quality Acceptance
Approved silt fence is listed in QPL 36. Approved fabrics must consistently exceed the minimum requirements of this Specification as verified by the Office of Materials and Research. The Office of Materials and Research will remove fabric that fails to meet the minimum requirements of this specification from the QPL until the products’ acceptability has been reestablished to the Department’s satisfaction.

At the time of installation, the Engineer will reject the fabric if it has defects, rips, holes, flaws, deterioration, or damage incurred during manufacture, transportation, or storage.

171.3.07 Contractor Warranty and Maintenance
Maintain the silt fence until the Project is accepted or until the fence is removed. Also, remove and dispose of the silt accumulations at the silt fence.

Remove and replace any deteriorated filter fabric that reduces the effectiveness of the silt fence.

Repair or replace any undermined silt fence at no additional cost to the Department.

171.4 Measurement
The quantity of silt fence to be paid for is the actual number of linear feet (meters) of silt fence, measured in place from end post to end post of each separate installation. The silt fence must be complete and accepted.

171.4.01 Limits
General Provisions 101 through 150.

171.5 Payment
Silt fence Type A, B, or C measured as defined in Subsection 171.4. “Measurement,” is paid for at the Contract Unit Price bid per linear foot (meter).

Payment is full compensation for the following:
- Furnishing materials
- Erecting and maintaining the fence
- Removing accumulated silt as described in Subsection 171.3.07, “Contractor Warranty and Maintenance”
- Dressing and grassing, when required
Removing the fence, when required

Payment for this Item is made as follows:

- Seventy-five percent of the Contract Price bid per linear foot (meter) is paid when each fence is complete in place.
- Twenty-five percent is paid at removal or acceptance.

If the silt fence must be repaired or removed, perform the work at no additional cost to the Department.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 171</th>
<th>Silt fence, type</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
</table>

171.5.01 Adjustments
General Provisions 101 through 150.

Section 201—Clearing and Grubbing Right of Way

201.1 General Description

This work includes clearing, grubbing, removing, and disposing vegetation and debris within the limits of construction and easement areas adjacent to the Right-of-Way as shown on the Plans or as designated by the Engineer. Except, do not remove objects designated to remain or removed according to other sections of these Specifications. This work also includes preserving (from injury and defacement) vegetation and objects designated to remain in place.

201.1.01 Definitions

Clearing: Removing and disposing trees, brush, stumps, logs, grass, weeds, roots, decayed vegetable matter, poles, stubs, rubbish, refuse dumps, sawdust piles, and loose boulders of 1 yd³ (1 m³) or less existing outside of the construction limits, debris resting on or protruding through the ground surface, or appearing on the Right-of-Way before final acceptance of the work.

Clearing also includes removing and disposing of obstructions, such as fences, bridges, buildings, and other incidental structures within the Right-of-Way unless the work or a portion of the work is:

- Removed as excavation
- Shown in the Proposal as a separate Pay Item
- Performed by others

Grubbing: Removal from the Right-of-Way and proper disposal of all objectionable matter defined above under clearing, which is embedded in the underlying soil.

Grubbing also includes removing and properly disposing of sidewalks, driveways, catch basins, drop inlets, manholes, curbing, retaining walls, utilities, foundations, paved floors, underground tanks (for removal of underground tanks see Section 217), and other structures within the Right-of-Way unless the work or portions of the work are:

- Obstructions removed as one of the excavation items
- Shown in the Proposal as separate Pay Items
- Removed by others

Objectionable Roots: Any of the following types of roots:

- Matted trees and brush roots (regardless of the size of the roots).
- Individual roots more than 0.75 in (20 mm) diameter.
- Individual roots more than 3 ft (1 m) long regardless of size.
- Large quantities of smaller roots present in the top 1 ft (300 mm) of the finished subgrade or road surface when detrimental to the work as determined by the Engineer.

Stumps: The butt of a tree with a diameter of 4 in (100 mm) or more. Measure the stump 6 in (150 mm) above the ground line.
201.1.02 Related References

A. Standard Specifications
 - Section 107—Legal Regulations and Responsibility to the Public
 - Section 109—Measurement and Payment
 - Section 160—Reclamation of Material Pits and Waste Areas
 - Section 161—Control of Erosion and Sedimentation
 - Section 208—Embankments
 - Section 215 – Removal of Solid Waste
 - Section 217—Removal of Underground Storage Tanks

B. Referenced Documents
 - General Provisions 101 through 150.

201.1.03 Submittals
 - General Provisions 101 through 150.

201.2 Materials
 - General Provisions 101 through 150.

201.2.01 Delivery, Storage, and Handling
 - General Provisions 101 through 150.

201.3 Construction Requirements

201.3.01 Personnel
 - General Provisions 101 through 150.

201.3.02 Equipment
 - General Provisions 101 through 150.

201.3.03 Preparation
 - General Provisions 101 through 150.

201.3.04 Fabrication
 - General Provisions 101 through 150.

201.3.05 Construction

A. General

 The Engineer will establish Right-of-Way and construction lines and designate which trees, shrubs, and plants will remain in the ground. Preserve things designated to remain.

 Apply the requirements of Subsection 107.22, and Section 161 to clearing and grubbing operations.

 Strip grass immediately ahead of grading.

 To prevent the spread of “Introduced Invasive Pest Species”, do the following:

 1. Adhere to the restrictions of Section 155.3.05.A for moving soil, mulch, sod or plants, stump wood or timber with soil attached.
 2. Adhere to the requirements of Section 155.3.05.B for cleaning of equipment, except that the USDA inspection will not be required for vegetative matter.
 3. Dispose of vegetative parts of plants that may reproduce (roots and aboveground parts that bear fruit) by burning on site (where permitted) or bury with a minimum cover of 3 feet (1 meter) at an approved site. Obtain the Engineer’s approval for any other methods of disposal.
B. Clearing

Clear objects within the Right-of-Way as follows:

1. Choose a method of clearing that prevents damage to property, trees, or retained shrubbery in or outside of the Right-of-Way.
2. Remove stumps that are part of the clearing operations as specified under Subsection 201.3.05.C, “Grubbing.”
3. Cut the stumps not grubbed as specified in this section.
4. Dispose of cleared materials as specified in Subsection 201.3.05.E.

C. Grubbing

Grubbing consists of removing and disposing objectionable matter embedded in the underlying soil (defined in Subsection 201.3.05.B, “Clearing”) from the Right-of-Way.

1. Grubbing Operations

When grubbing, remove abandoned obstructions referenced in Subsection 201.1.01Definitions to the following depths:

a. Under Pavements: Remove to a depth of at least 3 ft (1 m) below the finished subgrade.

b. Underneath Other Structures: Remove to at least 3 ft (1 m) below the foundations of any proposed structure, including installations such as guard rail posts and utility poles.

c. Elsewhere in the Right-of-Way: Remove as follows:
 1) Remove to at least 3 ft (1 m) below the finished surface of slopes and shoulders and 1 ft (300 mm) below natural ground outside construction lines.
 2) Thoroughly crack or break abandoned structures that may impound water. These structures include concrete floors, basements, and catch basins within 10 ft (3 m) of finished grade.
 3) Break floors so that no section greater than 10 ft² (1 m²) remains intact.

Except as modified under Subsection 201.3.05.D, use the following procedure to perform grubbing:

a. Remove stumps and other matter that cannot be removed by a root rake. Remove stumps to a minimum depth of 2 ft (600 mm) below the ground line.

b. Rake areas containing objectionable roots to a depth of at least 6 in (150 mm) below the surface.

c. Remove remaining objectionable matter by hand or other suitable means. When necessary, remove small roots (see Subsection 201.1.01 “Objectionable Roots”) detrimental to the work.

d. Backfill stump holes and compact backfill to the approximate density of the surrounding soil.

e. Harrow the area with a heavy-duty disc harrow that penetrates and turns the ground to at least 6 in (150 mm) deep.

f. Remove objectionable matter exposed by the harrowing.

g. Level the harrowed areas with blading equipment. Leave the grubbed areas smooth enough for a power mower.

D. Modifications of Clearing and Grubbing

Modify clearing and grubbing as follows:

1. In Excavation Areas

Modify clearing and grubbing in excavation areas as follows:

a. Harrowing and leveling may be omitted.

b. Do not fill stump holes except when the bottom of any stump hole extends below the elevation of the finished subgrade. In this case, fill the portion of each hole below subgrade elevation with suitable material compacted to at least the density of the surrounding soil.

2. In Embankment Areas

Modify clearing and grubbing in embankment areas as follows:

a. Under 4.5 ft (1.4 m)

Clear and grub areas without modification where the original ground and finished grade differ in elevation 4.5 ft (1.4 m) or less.

b. Over 4.5 ft (1.4 m)

Clear, but do not grub areas covered by embankments exceeding the 4.5 ft (1.4 m) elevation difference specified in step (a) above. Except the removal of unsound or decayed stumps.
Remove and backfill stumps according to Subsection 201.3.05.C.2. When leaving sound stumps in place, cut them off to no more than 6 in (150 mm) above the original ground line.

c. Embankment Areas Over Old Roads
Clear and grub without modification ditches and slopes of old roads to a depth that removes all objectionable matter to provide a firm foundation.

3. Areas Outside of Roadway
Except as specified in this section, clear and grub the entire Right-of-Way outside construction limits and leave it smooth and free from loose boulders and debris that would interfere with power mowers. Exceptions to the above requirements are as follows:

a. Selective Clearing
When the Engineer directs to preserve certain trees and plants, protect them from injury. Trees to be removed shall be felled to prevent injury to standing trees, plants, and improvements to be preserved. Cut off tree branches overhanging the roadway within 20 ft (6 m) of the finished grade close to the holes. Also, remove other branches to create a balanced appearance. Treat scars from branch removal with a heavy coat of asphaltic tree paint. Grub areas adjacent to selected trees and shrubs without damage to living roots of the selected trees or shrubs.

b. Special Treatment Areas
Clear special treatment areas according to the Plan notes.

c. Steep Slopes
Clear or selectively clear slopes that are too steep for power mowers or that are subject to excessive erosion. Do not grub in these areas.

d. Grassed Areas
Do not grub (if the Engineer approves) reasonably large areas outside construction limits covered with grasses and smooth enough for power mowers. Remove stumps, trees, and other objectionable matter.

4. Bridge Sites
Modify clearing and grubbing at bridge sites as follows:

a. Stream Bridges
Clear the Right-of-Way for stream bridges for the full length of the proposed structure. Cut stumps and brush flush with the ground line.

The Engineer will require a second cutting if high water prevents cutting stumps flush with the ground. If the Engineer requires more than two cuttings, see Subsection 201.5 for payment.

Remove drift and stumps where necessary to permit installation of rip rap, piling, piers, abutments, wing walls, and bents. Properly backfill the holes.

Preserve stump and brush root systems at river and stream banks when they have been cut flush with the ground line.

b. Other Bridges
Clear and grub bridges (other than stream bridges) as specified within this specification for roadway areas and areas outside of the roadway.

E. Removal and Disposal of Materials

1. Merchantable Timber and Buildings
The Department may dispose of merchantable timber and buildings, or may allow a property owner to remove them from the land granted for Right-of-Way before the Contractor begins operation. Therefore, the Department does not guarantee that merchantable timber or buildings will be on the Right-of-Way when the work begins.

Material salvaged from removing timber or buildings becomes the property of the Contractor.

2. Combustible Material
Abide by Federal, State, or local codes when the Right-of-Way (or any portion of the Right-of-Way) lies within an area where burning is restricted. All combustible material except sawdust piles may be burned on the Right-of-Way except where prohibited by local air pollution control regulations.

a. Prevent fire from spreading to adjacent areas and damaging living trees and shrubs designated to remain on the Right-of-Way.
b. Prevent damage to public and private installations either within or adjacent to the Right-of-Way and prevent damage to traveling public.

c. Obtain suitable areas for burning or disposing of the combustible material when necessary (at the Contractor’s expense). The Engineer shall approve these disposal areas.

d. Dispose of material according to Subsection 201.3.05.E.3. If the disposal area is located on private property, present written authority to the Engineer (signed by the property owner) granting the Contractor and the Department permission to use the area for the purpose intended. Reclaim the disposal area according to Section 160.

e. Completely remove sawdust within the construction limits. Haul the sawdust to approved disposal areas, or deposit it on the Right-of-Way in a layer less than 3 in (75 mm) deep. Immediately mix the sawdust with the underlying soil by discing and harrowing. Leave the harrowed surface smooth.

3. Solid Waste Material

Place solid waste material either in the embankment (provided the material is satisfactory for embankment construction) or in a Department-approved solid waste disposal site.

The classification of non-regulated and regulated solid waste materials are defined by the Environmental Protection Division (EPD) of the Georgia Department of Natural Resources (GDNR) rules and regulations. Dispose of these materials using the following procedures.

a. Nonregulated Solid Waste Material

1) Excess material such as soil, rock, brick, concrete (with and without reinforcement), and cured asphalt may be placed within the Right-of-Way, provided there is available room. Place these materials according to Section 208 and directed by the Engineer.

 1) Common fill such as soil, rock, brick, and concrete (with and without reinforcement) may be placed outside the Right-of-Way. Place the material in uniform layers 3 ft (1 m) thick or less and distributed to avoid pockets.

 2) Fill voids with finer material. Cover the last layer of fill with at least 2 ft (600 mm) of soil.

 3) Construct the fill according to Section 208, except compact it to at least 90 percent of the maximum laboratory dry density.

 4) Materials that may be recycled or reused such as asphallic concrete, Portland Cement concrete, plastic, metal, and materials that qualify under EPD regulations for sale or use may be reclaimed by the Contractor.

b. Regulated Material

 1) If not properly layered and compacted, dispose of inert waste (organic debris) such as stumps, limbs and leaves, cured asphalt disposed off the Right-of-Way, and items listed in Subsection 201.3.05.E.3.a using an inert landfill permit according to GDNR/EPD rules. Or, take the material to a permitted solid waste landfill. Take other regulated construction/demolition and nonhazardous solid waste, such as forms, barrels, plastic, and other by-products of construction to a construction/demolition landfill or to a municipal solid waste landfill.

 2) Dispose of oils, solvents, fuels, untreated lead paint residue, and other solid hazardous waste through a properly licensed hazardous waste disposal facility.

 Remove municipal solid waste discovered during construction or shown on the Plans according to Section 215.

201.06 Quality Acceptance

General Provisions 101 through 150.

201.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

201.4 Measurement

The Department does not measure clearing and grubbing separately for payment. The area is considered the full Right-of-Way width for the length of the Project including slope and construction easement areas shown on the Plans.

201.4.01 Limits

General Provisions 101 through 150.
201.5 Payment

Payment for this Item, completed and accepted, will be made at the lump sum price bid. The payment will be full compensation for all work specified in this Section including final cleanup as required.

If the Engineer requires more than two cuttings to clear the Right-of-Way for stream bridges (according to Subsection 201.3.05.D.4.a), the additional cuttings are paid for as a Force Account according to Subsection 109.05.

Include the cost of waste disposal for solid waste materials in the bid price of other Pay Items.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 201</th>
<th>Clearing and grubbing</th>
<th>Per lump sum</th>
</tr>
</thead>
</table>

201.5.01 Adjustments

General Provisions 101 through 150.

Section 202—Random Clearing and Grubbing

202.1 General Description

This work includes clearing and grubbing borrow and material pits. See Subsection 107.23. It also includes such ditch inlets, outlets, channel changes, and easement areas where clearing and grubbing are required but not shown on the Plans.

202.1.01 Definitions

General Provisions 101 through 150.

202.1.02 Related References

A. Standard Specifications

 Section 107—Legal Regulations and Responsibility to the Public

 Section 201—Clearing and Grubbing Right-of-Way

B. Referenced Documents

 General Provisions 101 through 150.

202.1.03 Submittals

General Provisions 101 through 150.

202.2 Materials

General Provisions 101 through 150.

202.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

202.3 Construction Requirements

202.3.01 Personnel

General Provisions 101 through 150.

202.3.02 Equipment

General Provisions 101 through 150.

202.3.03 Preparation

General Provisions 101 through 150.

202.3.04 Fabrication

General Provisions 101 through 150.

202.3.05 Construction

Perform the work according to Section 201.
202.3.06 Quality Acceptance
General Provisions 101 through 150.

202.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

202.4 Measurement
The area of completed and accepted clearing and grubbing is measured in acres (hectares). Only the area cleared and grubbed as shown on the Plans or as designated by the Engineer is measured.

The Department will make no separate payment for removing grass, weeds, debris, small underbrush, other vegetation from cultivated lands, and isolated trees or stumps. Include the cost for removing these items in the price bid for other Pay Items.

202.4.01 Limits
General Provisions 101 through 150.

202.5 Payment
The Department will pay for Clearing and Grubbing and Clearing at the Contract Unit Price per acre (hectare), which is full compensation for all work specified.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 202</th>
<th>Clearing and grubbing</th>
<th>Per acre (hectare)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 202</td>
<td>Clearing</td>
<td>Per acre (hectare)</td>
</tr>
</tbody>
</table>

202.5.01 Adjustments
General Provisions 101 through 150.

Section 204—Channel Excavation

204.1 General Description
This work includes excavating and properly disposing of material encountered when changing, cleaning, or widening waterway channels. Excavation for inlet ditches, outlet ditches, tail ditches, and take-off, intercepting, side, or berm ditches will not be classified as channel excavation. This work is included in Section 205.

204.1.01 Definitions
General Provisions 101 through 150.

204.1.02 Related References
A. Standard Specifications
 Section 205—Roadway Excavation

B. Related Documents
 General Provisions 101 through 150.

204.1.03 Submittals
General Provisions 101 through 150.

204.2 Materials
General Provisions 101 through 150.

204.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.
204.3 Construction Requirements

204.3.01 Personnel
General Provisions 101 through 150.

204.3.02 Equipment
General Provisions 101 through 150.

204.3.03 Preparation
General Provisions 101 through 150.

204.3.04 Fabrication
General Provisions 101 through 150.

204.3.05 Construction
Excavate channel to the lines, grades, typical sections, and details shown on the Plans or established by the Engineer.
Coordinate the work with grading, constructing drainage structures, and performing other work on the project.

1. Maintain the channel to ensure continued adequate drainage until Final Acceptance of the Project.
2. Use suitable excavated material as defined in the Plans, or permitted by the Engineer, when constructing roadway embankments.
3. Waste and deposit all surplus excavated material as follows:
 a. Do not deposit material from channel excavation within 3ft (1 m) of the channel edge.
 b. Do not deposit excavated material within jurisdictional wetlands, either on or off the Right-of-Way.
 c. The Engineer may permit surplus material to be wasted in flushing out slopes if ditch lines, slope stability, and other features are not impaired. Do not leave material in unsightly piles. Spread it in uniform layers, neatly leveled and shaped. Leave adequate openings in spoil banks to allow adjacent land surfaces to drain.
 d. Apply provisions pertaining to soil erosion and stream pollution to this work.

204.3.06 Quality Acceptance
General Provisions 101 through 150.

204.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

204.4 Measurement
Channel excavation, authorized and accepted by the Engineer, is measured in its original position by the method of average end areas.

204.4.01 Limits
General Provisions 101 through 150.

204.5 Payment
The Department will pay for the quantity of channel excavation as measured above at the Contract Unit Price per cubic yard (meter). Payment will not be made for excavation beyond the authorized typical sections, grades, or lengths established by the Engineer.

Payment will be made under:

| Item No. 204 | Channel excavation | Per cubic yard (meter) |

204.5.01 Adjustments
General Provisions 101 through 150.
Section 205—Roadway Excavation

205.1 General Description
Roadway excavation shall conform to the lines, grades, and cross-sections shown on the Plans or established by the Engineer. If artifacts of historical or archaeological significance are encountered, temporarily stop excavation operations until directed by the Engineer. See Subsection 107.13.A.

Roadway excavation includes the following:
- Excavating, hauling, and placing or disposing of materials (not removed under another Contract Item) from within the limits of areas designated in the Contract.
- Excavating ditches (except channel excavation) and filling and/or plugging abandoned wells (both dug and drilled) located within the Right-of-Way and construction easements according to Georgia Standard 9031H.
- Removing paving, aggregates, and ballast not incorporated into the new work as a result of alignment shifts, grade changes, or reasons that may or may not be shown on the Plans.
- Salvaging aggregates, paving, (only if designated on the Plans) and removed railroad ballast.
- The Department claims salvaged materials unless the Engineer directs that materials be wasted. Dispose of materials not salvaged. Stockpile salvaged materials on the Project unless other sites for stockpiling are shown on the Plans.

205.1.01 Definitions
General Provisions 101 through 150.

205.1.02 Related References
A. Related Specifications
 - Section 107—Legal Regulations and Responsibility to the Public
 - Section 109—Measurement and Payment
 - Section 201—Clearing and Grubbing Right-of-Way
 - Section 202—Random Clearing and Grubbing
 - Section 208—Embankments
 - Section 209—Subgrade Construction
 - Section 411—Asphaltic Concrete Pavement, Partial Removal
 - Section 610—Removal of Miscellaneous Roadway Items

B. Related Documents
 - General Provisions 101 through 150.

205.1.03 Submittals
General Provisions 101 through 150.

205.2 Materials
Define excavated material, regardless of its nature or composition, as “unclassified excavation” unless otherwise specified in the Plans.

The Engineer will designate materials that are unsuitable.

205.2.01 Delivery, Storage, and Handling
A. Disposal of Surplus Material
 - Unless directed by the Engineer, do not waste excavated material until satisfying embankment and backfill requirements, unless material is designated on the Plans as “Unsuitable for embankment or backfill construction.”
 - Dispose of materials to be wasted according to Subsection 201.3.05.E and the following information:
 - Use suitable surplus material to widen embankments uniformly or to flatten fill slopes, or deposit the material in places on the Right-of-Way as directed by the Engineer.
Do not leave an unsightly pile of material that will damage abutting property or deposit material above the grade of the adjacent roadway unless so directed by the Engineer.

Do not place the edge of a waste bank nearer than 10 ft (3 m) from the top of a cut slope.

Dispose of unsuitable and surplus materials unless they are used as fill for slopes, abandoned ditches, or other areas shown on the Plans.

Deposit unsuitable material excavated from ditches and do not allow it to remain within 3 ft (1 m) of the ditch edge. Spread material neatly in level, uniform layers.

Use suitable materials from ditches for constructing roadway embankments unless otherwise directed by the Engineer.

B. Waste Disposal Areas

When unable to dispose of unsuitable or surplus excavation material on the Right-of-Way, dispose of it in the following areas:

1. Disposal Areas Shown on Plans

Check disposal areas shown on the Plans. They may or may not be adjacent to the Right-of-Way.

When shown on the Plans, the Department will obtain Right-of-Way or easement to permit disposal of material. The Plans contain the amounts of royalties and the conditions for the acquiring of the waste easement.

When the Department furnishes the waste areas, and the Engineer provides measurements of the area used, do the following:

a. Promptly pay royalties to the owners of waste pits.

b. Meet other conditions agreed to with the owners.

c. Submit to the Engineer a written statement signed by the owner stating that the owner has been paid in full and the agreed conditions, including proper draining and final clean-up, have been fulfilled to the owner’s satisfaction before receiving final payment from the Department.

The Department will not make separate payment for these costs of acquisition.

If the property owner is not paid within 60 days after the Engineer has furnished the measurement, the Department may pay the property owner directly any amounts due, and deduct it from funds due the Contractor.

This provision does not affect the obligation of the Contractor under his bond or the rights of the property owner or the Department under the bond.

In case of dispute between the Contractor and the Department, the Chief Engineer will make the final and conclusive decision.

When disposal areas are shown on the Plans and are elected to be used, comply with the terms of the option before resorting to other areas.

2. Disposal Areas Not Shown on Plans

When waste disposal areas are not shown on the Plans, obtain suitable disposal areas at no expense to the Department.

Exercise the right to sell or otherwise dispose of the surplus material in these cases. (See Subsection 107.22 and Subsection 107.23.)

3. Reclamation

Reclaim disposal areas according to Section 160.

205.3 Construction Requirements

205.3.01 Personnel

General Provisions 101 through 150.

205.3.02 Equipment

General Provisions 101 through 150.

205.3.03 Preparation

General Provisions 101 through 150.

205.3.04 Fabrication

General Provisions 101 through 150.
205.3.05 Construction

Perform roadway excavation according to the Plans, and all of the requirements of this Subsection.

1. Provide adequate openings in spoil banks to allow the adjacent land surface to drain.
2. To carry water from the side hill, cut surface ditches at the top of cut slopes that extend to each end of the cuts.
3. Turn side ditches or gutters that empty from cuts to embankments outward to avoid embankment erosion.
4. Discharge water from surface ditches at terraces or in tail ditches cut along contour lines (wherever possible).
5. Provide outlets or flumes for roadway ditches where necessary according to the Plans.
 Surface ditches, outlets, and other such ditches will be paid for as “unclassified excavation.”
6. Uniformly round the intersection of cut slopes with natural ground surfaces, including the beginning and end of cut slopes.
7. Bring cut slopes to the grade and cross-section shown on the Plans or established by the Engineer.
8. Finish to reasonably uniform surfaces acceptable for seeding and mulching operations.
9. Dispose of material from slides and overbreaks that occur before Final Acceptance as directed by the Engineer.

A. Constructing Serrated Slopes

Construct serrated slopes as follows:

1. Grade the backslope according to the Construction Detail.
 The pay line is the template line or the final staked cross-section slope line. The Department will not make additional measurement or payment for constructing serrated slopes.
2. Start the first serration (step) as designated on the Construction Detail. Ensure that it is level instead of parallel to the roadway grade.
3. Use the tilt-control blade bulldozer to cut steps in alternate directions.

B. Constructing Non-serrated Slopes

Construct non-serrated slopes by leaving the front and back slopes in a roughened condition to provide a seed bed for temporary or permanent grassing operations.

C. Erosion and Siltation Control

Take the measures necessary throughout the Project to control erosion and to prevent silting of rivers, streams, and impoundments. Construct drainage facilities and perform all other construction work that contributes to erosion and siltation control in conjunction with earthwork operations as required by Section 161.

D. Rock Excavation

Remove rock and dispose of it as shown on the Plans or as directed by the Engineer. Transition any flattening of a cut slope already begun when rock is encountered to ensure the cut has a pleasing appearance.

Use the presplitting technique to reduce overbreakage and to establish a free surface or shear plane in the rock along the cut periphery or proposed break lines.

- Presplit a periphery plane to the excavation depth before blasting within the plane.
- Conduct the presplitting process by drilling appropriately sized holes at intervals that will ensure a neat break, to the desired depth, along the plane of the proposed cut. Load and stem the holes with an appropriate light charge explosive, and detonate the explosives simultaneously.
- Allow an 18 in. (450 mm) offset in the slope to begin succeeding drilling operations when the depth of the cut is more than can be drilled from the top.

Create a relatively smooth shear plane as indicated in the Plans with localized irregularities that do not exceed 2 ft (600 mm) behind or 1 ft (300 mm) in front (roadway side) of the plane surface.

Do not presplit slopes flatter than 1:1.

1. Overbreakage

Material that is excavated beyond or below the cross-section shown on the Plans or designated will be at the Contractor’s expense, except unavoidable overbreakage in solid rock. The allowable overbreakage is a maximum of 2 ft (600 mm) below or outside the original template lines. Backfill to replace material removed below the limits specified at no expense to the Department.
2. Precautions
 See Use of Explosives in Subsection 107.12.

3. Rock and Boulders
 Handle rock and boulder excavation as follows:
 a. Excavate solid rock and boulders in the roadbed to at least 1 ft (300 mm) below the finished subgrade elevation and backfill the space to the correct grade with suitable subgrade material.
 b. Leave the side slopes of rock cuts with uniform faces whether or not the excavation is carried beyond the specified side slope.
 c. Remove loose rock on cut slopes immediately after blasting.
 d. Place stones, broken rock, and boulders found within the construction limits and not required for other construction, into embankment slopes when possible.

4. Ensure that sloped surfaces conform to the typical section shown on the Plans or to natural cleavage planes compatible with the typical section. Leave sloped surfaces safe and natural looking.

E. Unsuitable Material Excavation
 The Engineer may require unsuitable material be removed from its location.
 1. Remove material and backfill with properly compacted approved material.
 2. Undercut material to the depth shown on the Plans or established by the Engineer in cut areas where the material is not suitable for subgrades or shoulders. Backfill the area with suitable material.
 3. Excavate unsuitable material in roadway cuts and dispose of the material as directed by the Engineer.

 The Department will not designate the unsuitable material excavation as a separate Pay Item unless specifically designated on the Plans, but will pay for it as “Roadway Excavation—Unclassified.”

F. Obliteration of Old Roads
 Obliterate old roads or other areas by completing the following work as directed by the Engineer:
 - Obliterate discontinued roads or other areas inside or outside the Project construction limits.
 - Grade, scarify, plow, and harrow obliterated areas.

 The Department will pay for excavation (other than that necessary for finishing and dressing) as “roadway excavation—unclassified.” Follow this procedure to obliterate the road:
 1. Fill old ditches and grade the roadway after the old road is no longer needed for traffic. Restore the original contour of the ground and produce a surface of naturally rounded slopes.
 2. Use borrow required for the new roadway from fills in the old road (where feasible).
 3. Place surplus and waste material from the new roadway in cuts in the old road (where feasible).
 4. Break down and remove or bury old structures not required to maintain drainage flow. Remove and store material with salvage value, or use it in the new construction.
 5. Scarify, harrow, and smooth the old surface. Re-grass disturbed areas or establish a vegetative cover according to Section 160 or Section 700 as applicable.

G. Surcharge Removal
 Remove and properly dispose of materials placed as surcharge for consolidation or other purposes.
 1. Waste the material removed or use it for other purposes as specified on the Plans or in the Special Provisions.
 2. Provide other areas for disposal if adequate areas are not available for disposing of excess surcharge within the Right-of-Way.

H. Use of Select Materials
 Conserve and use excavated materials suitable for subgrade, shoulder construction, plant topsoil, blanket for fill slopes, or other purposes as directed by the Engineer according to Subsection 104.06.
 1. Reserve suitable material by either leaving it in its original position or stockpiling it as directed by the Engineer.
 2. Haul select materials directly from the excavation area to the final placement area whenever possible. Do not stockpile materials unless specifically directed.

 The Department will again pay for “roadway excavation—unclassified,” which includes necessary hauling and placement, when the material is removed from the stockpile.
I. Final Finishing of Roadway

After excavation has been completed use the following procedure to finish the roadway:

1. Shape the surface of the roadbed and slopes to reasonably true grade alignment and cross-section shown on the Plans or established by the Engineer. Finish according to Section 209.

2. Leave cut slope surfaces in rock reasonably uniform and remove loose overhanging rock.

3. Open all ditches, drains, and culverts constructed to effectively drain the roadway.

The Department will make no separate payment for finishing done under this Section. Include the work in the cost of the roadway excavation.

4. Maintain the excavated areas until final acceptance of the Project.

205.3.06 Quality Acceptance

General Provisions 101 through 150.

205.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

205.4 Measurement

Original ground surface measurements will be obtained using conventional methods, photogrammetric means, or a combination of these methods. The Engineer will determine the method(s) and time when the measurements are to be taken for each Project.

The volume of Roadway Excavation-Unclassified, authorized and accepted by the Engineer, will be computed by the method of average end areas, or other acceptable means, using the original ground surface, the final ground surface, cross-section, or approved templates.

The final ground surface will be obtained from conventional field measurements, as-built templates, photogrammetric means, or a combination of these methods. The Engineer will determine the method(s) to be used on each Project.

The measurement will include:

- Overbreakage and slides in roadway excavation, unless they are caused by Contractor negligence
- Authorized excavation of rock or unsuitable material below template grade
- Material re-excavated from stockpiles and used in construction as directed by the Engineer
- Surcharge removal

Excavation outside of staked lines and slopes will never be measured for payment unless ordered or approved by the Engineer.

Ditch excavation will be measured as specified in paragraph one, above.

Retaining wall construction will be measured to the back and bottom of the select material backfill or footing as the Engineer determines. Any exception outside these lines by the Grading Contractor to provide stable slopes and positive drainage will not be measured and will be considered incidental to the work.

Filling or plugging abandoned wells will not be measured for payment but all costs shall be included in the price bid for Roadway Excavation when Item 205 is shown as a pay item. Otherwise all costs shall be included in the overall contract bid price.

Removing paving, aggregates, and ballasts will be measured and included in the computations for roadway excavation when Section 205 is shown as a pay item (unless those items are shown in the Plans as a separate pay item).

205.4.01 Limits

General Provisions 101 through 150.

205.5 Payment

Removing paving, aggregates, and ballast will be paid for at the Contract Price bid per cubic yard (meter) when Item 205 is shown as a Pay Item, unless the items are shown in the Plans as a separate Pay Item.

The Department will withhold a percentage of the progress payments for the estimated quantity of earthwork (not to exceed 5 percent) until final dressing, subgrade construction, and satisfactory disposal of unsuitable or surplus materials is completed. This percentage withheld shall be in addition to that specified in Subsection 109.07.
The Contract Price per cubic yard (meter) for “roadway excavation—unclassified” will be paid for quantities of excavation measured according to Subsection 205.4. Payment is full compensation for
- Excavating, hauling, placing, and compacting excavated material.
- Removing, loading, hauling, stockpiling as designated, and sawing pavement when payment is included under Item 205.
- Pre-splitting rock, disposing of unsuitable or surplus materials, excavating, shaping, disposing of unsatisfactory excavated materials, maintaining ditches (except channel excavation specified in Section 204), constructing subgrades and shoulders, and finishing, dressing, and maintaining the work until Final Acceptance.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 205</th>
<th>Unclassified excavation</th>
<th>Per cubic yard (meter)</th>
</tr>
</thead>
</table>

205.01 Adjustments
General Provisions 101 through 150.

Section 206—Borrow Excavation

206.1 General Description
This work includes:
- Excavating material from borrow areas or pits outside the Project Right-of-Way
- Hauling and using the material as required on the Plans or directed by the Engineer
- Stripping, excavating, and disposing of unsuitable material from borrow areas. See Subsection 107.22 and Subsection 107.23

206.1.01 Definitions
General Provisions 101 through 150.

206.1.02 Related References
A. Standard Specifications
 - Section 106—Control of Materials
 - Section 107—Legal Regulations and Responsibility to the Public
 - Section 160—Reclamation of Material Pits and Waste Areas
 - Section 201—Clearing and Grubbing Right-of-Way
 - Section 202—Random Clearing and Grubbing
 - Section 208—Embankments
 - Section 209—Subgrade Construction
B. Referenced Documents
 - Section 106 of the National Historical Preservation Act

206.1.03 Submittals
The Engineer’s approval of borrow pits will be subject to the requirements of Section 106 of the National Historical Preservation Act being fulfilled.

Give the Engineer sufficient notice to perform necessary investigations, measurements, staking, and actions required in Subsection 206.3.05.A.

Working in the pit before receiving the following approvals may result in rejection of the borrow pit without payment:
- Approval for environmental considerations and material acceptability
- Approval from pit investigation, cross sectioning, and staking
206.2 Materials
Perform work using embankment materials that meet the requirements in Section 208. Do not use material that contains roots or stumps. The Engineer will approve borrow excavation materials.

Use selected borrow of Class IIIB or better when specified for subgrade construction or other uses (unless otherwise stated in the Plans or the Proposal).

206.2.01 Delivery, Storage, and Handling
Before obtaining material from borrow areas, use material to construct the embankment that is excavated from within the slope stakes, or stockpile the material for topping out the roadbed (unless otherwise directed by the Engineer).

206.3 Construction Requirements

206.3.01 Personnel
General Provisions 101 through 150.

206.3.02 Equipment
Ensure that equipment and methods used in borrow pits produce the following results:

- Various strata, pockets, or accumulations of different types of material are excavated and used in the correct proportions and sequence.
- Material is used to produce borrow or selected borrow with the best possible gradation and stability within the specified range.
- Material is excavated uniformly to facilitate measurement.

206.3.03 Preparation
General Provisions 101 through 150.

206.3.04 Fabrication
General Provisions 101 through 150.

206.3.05 Construction
A. General

The Department will investigate and take necessary actions to satisfy requirements of Section 106 of the National Historical Preservation Act.

B. Clearing and Grubbing

Clear and grub borrow pits as necessary before removing borrow material as specified in Section 106 and Section 202.

C. Draining Pits

Prevent water from standing in the pits unless the Engineer determines not to drain the pit.

Leave slopes presentable. Machine slope the bottom of the excavated area to smooth the surfaces suitable for revegetation.

The Department will not measure for payment ditch excavation for draining borrow pits. The bid price for borrow excavation shall include this work.

D. Disposing of Waste Material

Dispose of material unsuitable for embankments such as stone, broken rock, boulders, and other material found in the borrow pits.

1. Dispose of the material in a manner satisfactory to the Engineer and at no expense to the Department.
2. Do not leave piles of unsightly material in pits with or without the consent of the property owner.
3. Dispose of waste materials according to Subsection 201.3.05.E.

E. Reclamation

Leave borrow pits or waste disposal areas presentable. Reclaim them according to Section 160 unless exempted by Subsection 160.1.

Develop boundary slopes of reclaimed areas and grade them to 3:1 slopes or flatter.
206.3.06

206.3.06 Quality Acceptance
General Provisions 101 through 150.

206.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

206.4 Measurement
The quantity of borrow and selected borrow is measured in its original position by the method of average end areas or other acceptable means.

When designated in the Plans, selected borrow may be measured by volume of the hauling vehicle according to Section 109.

The following will have no payment:

- Material excavated before the original surface of the pit is obtained by the Engineer
- Materials excavated for maintaining the work
- Materials excavated that run out of the embankment on a flatter slope than indicated on the cross-section shown on the Plans or established by the Engineer
- Unsuitable material excavated from the borrow area and not used on the roadway

The Department will measure original and final ground surfaces by conventional field or photogrammetric or other methods, as determined by the Engineer.

206.4.01 Limits
General Provisions 101 through 150.

206.5 Payment
The provisions of Section 106 apply to borrow pits. The Department will not pay for the following:

- Delays caused by fulfilling the requirements of Section 106 or costs involved if the borrow pit is rejected
- Work done to provide or improve access or haul roads to borrow pits (except when specifically stated in the Proposal)

The prices bid for borrow excavation shall include this cost.

The quantities of borrow and selected borrow are measured as described in Subsection 206.4 and will be paid for at the Contract Price per cubic yard (meter). This is full compensation for excavating, hauling, placing, and compacting the material according to the Plans and Specifications and for draining and dressing the borrow area.

Borrow material furnished at no cost (no royalty) to the Contractor is “borrow excavation.”

If royalties must be paid for material shown on the Plans as a possible source of borrow, or if the source of borrow must be furnished, the Bid Item is “borrow excavation including material.”

The same criteria applies to selected borrow.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 206</th>
<th>Borrow excavation</th>
<th>Per cubic yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 206</td>
<td>Borrow excavation, including material</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 206</td>
<td>Selected borrow excavation</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 206</td>
<td>Selected borrow excavation, including material</td>
<td>Per cubic yard (meter)</td>
</tr>
</tbody>
</table>

206.5.01 Adjustments
General Provisions 101 through 150.
Section 207—Excavation and Backfill for Minor Structures

207.1 General Description
This work includes excavating, backfilling, or disposing of materials required to install a bridge culvert, box culvert, pipe, arch culvert, headwall and retaining wall according to the Specifications, the Plans, and the Engineer.

207.1.01 Definitions
General Provisions 101 through 150.

207.1.02 Related References
A. Standard Specifications
 Section 104—Scope of Work
 Section 109—Measurement and Payment
 Section 205—Roadway Excavation
 Section 206—Borrow Excavation
 Section 208—Embankments
 Section 810—Roadway Materials
 Section 812—Backfill Materials
B. Referenced Documents
 GDT 7

207.1.03 Submittals
General Provisions 101 through 150.

207.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Backfill Material—Type I</td>
<td>Subsection 812.2.01</td>
</tr>
<tr>
<td>Foundation Backfill Material—Type II</td>
<td>Subsection 812.2.02</td>
</tr>
<tr>
<td>Imperfect Trench Backfill Material—Type III</td>
<td>Subsection 812.2.03</td>
</tr>
</tbody>
</table>

207.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

207.3 Construction Requirements

207.3.01 Personnel
General Provisions 101 through 150.

207.3.02 Equipment
General Provisions 101 through 150.

207.3.03 Preparation
General Provisions 101 through 150.

207.3.04 Fabrication
General Provisions 101 through 150.
207.3.05 Construction

A. Locations and Elevations

The Engineer will determine final locations and elevations of the structure. The locations and elevations shown on the Plans are approximate.

B. Excavation

The Engineer will determine the minimum requirements for length and depth of excavation for each structure. Assume the responsibility for the cost of installing necessary sheeting and bracing.

When excavating, follow these requirements:

- Excavate through rock or boulder formations to at least 1 ft (300 mm) below the bottom of the structure, except for where the entire concrete or masonry structure rests on solid rock.
- Backfill with Type I or Type II material to the proper subgrade elevation.
- As the embankment is constructed, excavate and place pipe on the new embankment. Pipe may be placed incrementally on steep gradients.
- Cut surfaces at structure trenches to prevent damage to the adjacent pavement when existing paved areas will be retained.
- Saw pavements deep enough to cause the edges to break in straight lines.
- Ensure that the width, depth, and vertical walls of an excavated imperfect trench conform to Plan details and dimensions within 2 in (50 mm).
- Dispose of surplus and unsuitable materials as directed by the Engineer.
- Consider excavated material as unclassified excavation according to Section 205, except that the Department will not pay for excavation for minor structures.
- Include the cost of fulfilling these requirements in the price bid for the pipe.

C. Backfill

Obtain backfill materials that meet the Specifications from sources approved by the Engineer.

1. Foundation Backfill Materials, Types I and II

 Use the following materials as shown on the Plans or as directed by the Engineer:
 a. Use Type I material in dry structure trenches and Type II material in wet trenches.
 b. Use Type I material as a finishing course for Type II material when permitted by the Engineer.
 c. Backfill excavations beyond the specified limits with the same type of material required for the adjacent area; however, the Department will not measure excess backfill material for payment.
 d. Place Type I and Type II backfill material in layers of no more than 6 in (150 mm) loose.
 e. Compact each layer as follows:
 1) Type I Backfill Material: Compact to 95 percent of the theoretical dry density determined by GDT 7.
 2) Type II Backfill Material: Compact to a satisfactory uniform density as directed by the Engineer.

2. Imperfect Trench Backfill Material, Type III

 Place this material as loose uncompacted backfill over pipe structures as shown on the Plans where imperfect trench backfill is specified.

3. Normal Backfill

 Ensure that normal backfill material meets the requirements of Subsection 810.2.01, Class I or II. Place and compact according to Section 208 except as follows:
 a. Do not place rock more than 4 inches (100 mm) in diameter within 2 ft (600 mm) of any drainage structure.
 b. For backfill behind retaining walls, use a pervious material that meets the requirements of Case I or Case II as follows:
 1) Case I. Case I refers to backfills for retaining walls that support roadbeds and parking areas.
 Ensure that the backfill conforms to Section 208. Do not place rock more than 4 in (100 mm) in diameter within 2 ft (600 mm) of the retaining wall or finished surface.
2) Case II. Case II refers to backfills for retaining walls that do not support roadbeds or parking areas.
 Ensure that the backfill conforms to the requirements of Case I above, except compact the backfill to the
density of the adjacent soil.

D. Pavement Replaced

 Replace pavement removed at structure trenches in kind where adjacent pavements will be retained. An equal or better
material may be used when approved by the Engineer.

 Backfill and maintain a smooth riding surface until repaving is complete.

207.3.06 Quality Acceptance
General Provisions 101 through 150.

207.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

207.4 Measurement

A. Excavation

 The following considerations are not measured for payment:
 - Excavation for minor structures, including undercut for backfill materials as shown on the Plans
 - Excavation for an imperfect trench which is required at locations specified in the Plans but which is not
 measured for payment
 - Removal of water
 - Removal of material from any area required to be reexcavated
 - Excavation and backfill of temporary drainage ditches

B. Extra Depth Excavation

 The following extra depth excavations are not measured for payment:
 1. Extra depth excavation because of Contractor negligence.
 2. Extra depth excavation (required by the Engineer) below the original Plan elevation of the bottom of the footing or
 the flow line of a culvert pipe that does not exceed 3 ft (1 m).

 If the Engineer relocates the structure or orders the elevation of the bottom of the footing or the flow line of the pipe to
 be lowered or undercut more than 3 ft (1 m), the Contractor will be compensated for the extra depth excavated below the
 3 ft (1 m) limit according to Subsection 104.04 and Subsection 109.05.

 Calculate the width of extra depth excavation using the diameter of the pipe or the width of the footing plus 2 ft (600
 mm).

 The length of extra depth excavation is equal to the length of that portion of the structure that is lowered more than 3 ft
 (1 m) below Plan elevation.

C. Backfill Materials Types I, II, and III

 1. Types I and II

 These materials (in place and accepted) are measured in cubic yards (meters) compacted.

 Lateral measurements are confined to an area bounded by vertical planes lying not more than 1 ft (300 mm) outside
 of and parallel to the limits of the structure.

 Length and depth measurements are confined to the dimensions of compacted material in place as specified by the
 Engineer. Materials placed outside the above limitations are not measured for payment.

 2. Type III

 The Department measures Type III material (complete, in place, and accepted) in cubic yards (meters).

 Lateral measurements of Type III material are confined to an area bounded by vertical planes lying directly above
 the outside walls of the structure.

 Longitudinal measurements are confined to the length of treatment installed as specified. Measurements of depth are
 the dimensions shown on the Plans or as directed.
207.4.01

D. Normal Backfill

This Item is not measured separately, but is included in the measurement of the Items of excavation from which normal backfill materials are obtained.

207.4.01 Limits
General Provisions 101 through 150.

207.5 Payment

A. Excavation for Minor Structures

This Item will not be paid for separately except as provided in Subsection 207.4.B.

B. Sheet and Bracing

Sheeting and bracing will not be paid for separately unless these materials are left in place at the written direction of the Engineer. In this case, the Contractor will be paid at invoice cost plus 10 percent.

C. Backfill Materials

Backfill material Type I, (measured as shown in Subsection 207.4.C.1) will be paid for according to Section 205 or Section 206.

The Department will pay for Types II and III separately at the Contract Unit Price per cubic yard (meter). This payment is full compensation for furnishing the materials from sources inside or outside the right-of-way, loading, unloading, hauling, handling, placing, and compacting the material.

D. Normal Backfill

This Item will not be paid for directly but will be paid at the Unit Price for the applicable excavation item from which the normal backfill materials are obtained.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 207</th>
<th>Foundation backfill material, type II</th>
<th>Per cubic yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 207</td>
<td>Imperfect trench backfill material, type III</td>
<td>Per cubic yard (meter)</td>
</tr>
</tbody>
</table>

207.5.01 Adjustments
General Provisions 101 through 150.

Section 208—Embankments

208.1 General Description

This work includes placing embankments, backfilling structures, and constructing earth berms and surcharges with suitable material excavated under Section 204, Section 205, Section 206, and Section 207.

Complete the work according to the lines, grades, and typical cross-sections shown on the Plans or established by the Engineer.

The work also includes preparing areas by backfilling stump holes and correcting surface irregularities where the embankment is to be constructed. This includes forming, compacting, and maintaining the embankment and placing and compacting approved material where unsuitable material has been removed.

Payment for this work is included in other appropriate Pay Items unless a specific Pay Item is set up in the Contract.

Apply all provisions of Section 161 to the work in this Section.

Perform Shoulder Construction according to Section 216.

208.1.01 Definitions
General Provisions 101 through 150.
208.1.02 Related References

A. Standard Specifications

 Section 161—Control of Soil Erosion and Sedimentation
 Section 201—Clearing and Grubbing Right-of-Way
 Section 204—Channel Excavation
 Section 205—Roadway Excavation
 Section 206—Borrow Excavation
 Section 207—Excavation and Backfill for Minor Structures
 Section 209—Subgrade Construction
 Section 216—Unpaved Shoulders
 Section 810—Roadway Materials
 Section 811—Rock Embankment
 Section 813—Pond Sand

B. Referenced Documents

 GDT 7
 GDT 20
 GDT 21
 GDT 24a
 GDT 24b
 GDT 59
 GDT 67

208.1.03 Submittals

General Provisions 101 through 150.

208.2 Materials

Embarkment material classes are defined in Section 810, Section 811, and Section 813. The material incorporated into the roadway will be subject to the following limitations:

A. Embankment Material

 Use embankment material classified as Class I, II, III, V, or VI except as noted below:

 1. Inundated Embankments
 A Special Provision in the Proposal will contain required gradation and other characteristics of materials for constructing embankments through reservoirs.

 2. Intermittently Inundated Embankments
 Build intermittently inundated embankments using any material suitable for embankment.

 3. Embankments at Structures
 Embankment materials placed within 10 ft (3 m) of any bridge structure shall be classified as Class I or II. Ensure that materials do not contain rock larger than 3 in (75 mm) for any dimensions.

B. Rock Embankment

 Ensure that rock embankment placed as indicated on the Plans meets the requirements of Section 811 unless specified otherwise in the Plans or in the Special Provisions.

C. In-Place Embankment

 Construct in-place embankment with Class I, II, III, V, or VI material.
D. Backfill Material

Backfill material furnished and stockpiled shall be Class I or Class II as defined in Subsection 810.2.01.A.

E. Pond Sand Embankment

Use pond sand that meets the requirements of Section 813 as embankment material. Material is subject to the following approval limitations:

1. Pond sand will be approved on a stockpile basis only.
2. Pond Sand will not be approved for Type I or normal backfill materials or for backfill for mechanically stabilized walls.
3. Pond sand shall be encapsulated, when used as fill, with 2 ft (600 mm) of soil on the slopes and 3 ft (1 m) of soil on top.
4. Pond sand shall not be used on sidehill fills or fill widenings where any of the following conditions exist:
 a. The proposed fill slope is steeper than 2:1.
 b. The thickness of the proposed fill at its thinnest point, as measured perpendicularly from the new fill line to the existing ground slope/fill slope, is less than 7 ft (2.1 m), including 2 ft (600 mm) of soil cover.
 c. The fill height exceeds 30 ft (9 m).

208.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

208.3 Construction Requirements

208.3.01 Personnel

General Provisions 101 through 150.

208.3.02 Equipment

General Provisions 101 through 150.

208.3.03 Preparation

General Provisions 101 through 150.

208.3.04 Fabrication

General Provisions 101 through 150.

208.3.05 Construction

A. Benching Excavation for Embankment

This work includes excavating material forming benches in the existing ground beneath proposed embankments. Form benches to increase the bond between the existing ground and the proposed embankment.

This work is required where embankments are placed on hillsides or against existing embankments, which will be indicated on the Plans.

Construct the benches approximately 12 ft (3.7 m) wide unless otherwise shown on the Plans. Use material removed in the excavation in the embankments. The Department will make no additional payment for this work.

B. Embankments

Follow these requirements when constructing embankments:

1. Preparation for Embankments

 Before starting embankment construction, clear and grub the embankment area according to Section 201.

 a. Depressions and Undercut Areas

 Fill depressions below the ground surface and undercut areas with suitable material. Remove unsuitable or unstable material and compact according to Subsection 208.3.05.B.1.c before beginning embankment construction.

 b. Scarification and Other Preparation

 Plow and scarify the entire area upon which the embankment is to be placed (except inundated areas) at least 6 in (150 mm) deep.
Before placing the embankment, recompact loosened soil to the approximate density of the underlying soil. Cut benches as specified in Subsection 208.3.05.A.

c. Compaction Under Shallow Fills
When the depth of fill and surfacing is 3 ft (1 m) or less, compact the original ground compact at least 1 ft (300 mm) deep to at least 95 percent of the maximum laboratory dry density as determined from representative samples of the compacted material using, GDT 7, GDT 24a, GDT 24b, or GDT 67 whichever applies.
The in-place density of the compacted fill will be determined according to GDT 20, GDT 21, or GDT 59, whichever applies.

d. Embankments Over Existing Roads, Parking Areas, and Floors
Thoroughly plow or scarify all portions of existing unpaved roads and flexible pavements. Destroy cleavage planes before placing the embankment.
1) Remove the old pavement with rigid surfaces if the new embankment is not more than 3 ft (1 m) high.
2) Break remaining rigid pavements that are within 10 ft (3 m) of the finished grade so that no section larger than 10 ft² (1 m²) remains intact.

2. Embankment Formation
Use the following requirements when constructing the embankment formation:

a. Layer Construction
Except as noted in Subsection 208.3.05.B.2.d, construct the embankments in parallel layers. Deposit the material and spread in horizontal layers not more than 8 in (200 mm) thick, loose measurement, for the full width of the cross-section. Keep layers uniform using motor graders, bulldozers, or other approved equipment.

b. Moisture Content
Compact each layer within the range of optimum moisture content to achieve the compaction specified below. Do not construct successive layers on previous layers that exhibit excessive pumping under construction equipment regardless of compaction.

Dry material if it contains too much moisture. Ensure the moisture content is sufficient for stability and compaction.

Add water if the material is too dry and uniformly mix it with the soil for stability and compaction. The Department will not measure water added to the material under this requirement for payment. It is considered incidental to the satisfactory completion of the work.

c. Degree of Compaction
Compact the embankment at bridge structures to at least 100 percent of the maximum laboratory dry density. Compact for the full depth of the embankment, beginning at the toe of the slope and extending 100 ft (30 m) from the end of the bridge.

Compact embankment other than at bridge structures to at least 95 percent of the maximum laboratory dry density to within 1 ft (300 mm) of the top of the embankment. Compact the top 1 ft (300 mm) of the embankment to at least 100 percent of the maximum laboratory dry density.

If grading and paving are let in separate contracts, the paving Contractor shall recompact the top 6 in (150 mm) to at least 100 percent of the maximum laboratory density.

The maximum laboratory dry density will be determined from representative samples of the compacted material using GDT 7, GDT 24a, GDT 24b, or GDT 67, whichever applies. The in-place density of the compacted fill will be determined according to GDT 20, GDT 21, or GDT 59, whichever is applicable.

d. Special Conditions
Follow these special requirements:
1) Build layers as parallel as possible. In certain cases the Engineer may permit steeper slopes at ends of the embankments.

2) In swamp or inundated areas that will not support the equipment, build the lower part of the fill by dumping successive loads in layers no thicker than necessary to support the hauling equipment.

3) Build and compact the remainder of fills in layers as specified above.

e. Embankments at Structures
Use Class I or II material when constructing embankments over and around pipes, culverts, arches, and bridges according to Subsection 810.2.01.A.1.

1) Compact the material as specified in Subsection 208.3.05.B.2.c.
2) Place the specified material on both sides of bridge structures for a distance of at least 10 ft (3 m).

NOTE: Do not place rock larger than 4 in (100 mm) diameter within 2 ft (600 mm) of any drainage structure.

Before any traffic is allowed over any structure, provide a sufficient depth of material over and around the structure to protect it from damage or displacement.

f. Method of Handling Classes of Soils
Handle the different classes of soils using the following methods:

1) Class IIB3 and Better Soils
 Distribute and compact these soils in 8 in (200 mm) uniform layers over the entire width of the embankment. Use these soils (when available in sufficient quantities) in the top 1 ft (300 mm) of the roadbed. Reserve these soils for this purpose when directed by the Engineer.

2) Class IIB4 Soils
 Distribute and compact these soils in 8 in (200 mm) layers over the entire width of the embankment. Do not use them in the top 1 ft (300 mm) of the roadbed without adding a stabilizing agent.

3) Class III Soils
 Do not use these soils in embankments except when directed in the Plans or ordered by the Engineer. If directed, place them in the same manner as Class IIB4 soils.
 Class IIC4, chert clay soils in District 6 with less than 55 percent passing the No. 10 (2 mm) sieve may be used for subgrade.

4) Class IV Soils
 Do not use these soils in embankments. Waste these soils or (when designated in the Plans or directed by the Engineer) stockpile them and use them forblanketing fill slopes.

5) Class V Soils
 Place these soils in the same manner as Class IIB4 soils. Pulverize large particles to obtain the proper compaction.

6) Class VI Rock
 Place rock in uniform layers not over 3 ft (1 m) thick and distribute it over the embankments to avoid pockets. Fill voids with finer material.
 Do not place rock larger than 6 in (150 mm) in diameter within 3 ft (1 m) of the finished surface of the embankment.
 Do not place rock larger than 6 in (150 mm) in diameter within 2 ft (600 mm) of the outer limits of proposed posts or utility poles.
 Do not place rock at bridge end bents within 10 ft (3 m) of pile locations.

7) All Classes
 Place mixtures of the above classes together with random material such as rock, gravel, sand, cinders, slag, and broken-up pavement so that coarse particles are dumped near the outer slopes and finer particles near the center of the roadway.
 Produce a gradual transition from the center to the outside. If material is too large to place in 8 in (200 mm) layers, treat it as rock or break it down and place it in 8 in (200 mm) layers.

3. Embankment Consolidation at Bridge Ends
 When consolidating embankments at bridge ends, use the following specifications:
 a. When a waiting period is required in the Plans or by Special Provision, place end fills at bridges in time for consolidation readings to indicate that both the fill and the natural ground have reached the desired degree of stability.
 b. Delay constructing bridge portions during the period of consolidation as shown on the Plans or as required by a Special Provision.
 The Plans or the Special Provisions will indicate the estimated time required to reach consolidation.
 The Engineer may extend or shorten this waiting period based on settlement readings taken on points placed in the fills. The longer or shorter waiting period will not constitute a valid claim for additional compensation.
Follow these specifications when extending a waiting period:

1) Extending an estimated waiting period may lead to increasing the Contract time. If the Contract is on a calendar day or completion date basis, the Department may increase the calendar days equal to the maximum number of calendar days involved in the extension.

2) When a time extension causes additional delay due to seasonal changes, the Engineer may recompute the time extension on an available day basis.
 When the Contract is on an available day basis, the time increase will be equal to the greatest number of available days involved in the extension.

3) When time charges on separate Bridge Contracts are controlled by Special Provisions that set forth the availability of bridge sites, extending an estimated waiting period controls the availability of that bridge site only; time charges will be adjusted according to the Special Provision.

C. In-Place Embankment

Construct embankments designated on the Plans and in the Proposal as “In-Place Embankment” using either a hydraulic or conventional dry land construction method and using materials obtained from within the construction limits of the Right-of-Way or from borrow pits, whichever is appropriate.

Regardless of the method of construction, the Department will measure the entire embankment for payment as in-place embankment.

1. Construction

 a. Build embankments according to this Section when hydraulic or conventional dry land construction methods are used.
 b. Furnish equipment suitable for the method chosen to complete the work. Equipment is subject to the Engineer’s approval.
 c. When using a hydraulic method is used, conform to these additional requirements:
 a. Using baffles for construction is permitted as long as the embankment slopes are not steeper than indicated on the Plans.
 b. Use of excess material placed outside the prescribed slopes to raise the fill is permitted.
 c. Leave openings in the embankments at the bridge site as indicated on the Plans.
 Dredge material that invades the openings or existing channels at no additional expense to the Department. Provide the same depth of channel at mean low water as existed before the construction of the embankment.
 d. Do not excavate or dredge material within 500 ft (150 m) of the toe of the embankment or existing structures, unless otherwise shown on the Plans.
 e. Place in-place embankment in areas previously excavated below the ground line in a uniform mass beginning at one end of the excavated area and continuing to the other end of the operation. Avoid forming of muck cores in the embankment.
 f. Construct the embankment at the farthest points along the roadway from the bridge ends and progress to the end of the excavation area beyond the toe of the slope of endrolls at bridge ends.
 g. Remove timber used for temporary bulkheads or baffles from the embankment.
 h. Fill and thoroughly compact the holes.

2. Maintenance

 a. Maintain the embankment at grade until it has been completed and accepted. Assume responsibility for slides, washouts, settlement, subsidence, or mishaps to the work while under construction.
 b. Keep constructed embankment stable and replace displaced portions before Final Acceptance of the entire Contract.
c. Remove and dispose of excess materials, including fill, detours, and erosion deposits placed outside the prescribed slopes in wetland areas.

3. Permits
 Obtain (at no additional expense to the Department) necessary permits or licenses from the appropriate authorities to operate dredges and other floating equipment in waters under their jurisdiction, unless otherwise provided for in the Contract.

4. Erosion Control
 In addition to the provisions of Section 161, follow additional erosion, siltation, and pollution control measures specified in the Plans or Special Provisions.

D. Rock Embankment
 This work includes furnishing materials either from the roadway excavation or other sources and hauling the placing of rock embankment. Use materials that meet the requirements of Subsection 208.2.B, as shown on the Plans or directed by the Engineer.
 1. Place the rock in uniform layers not over 3 ft (1 m) thick. Distribute rock over the embankment to avoid pockets.
 2. Fill voids with rock fines. Do not use rock larger than 6 in (150 mm) for any diameter within 3 ft (1 m) of the finished grade of the embankment, or within 2 ft (600 m) of any structure.
 3. Do not place rock at bridge end bents within 10 ft (3 m) of pile locations. Construct rock embankment and adjoining earth embankment concurrently. Ensure that neither is larger than 4 ft (1.2 m) higher than the other at any time.

E. Final Finishing
 After constructing the entire embankment, shape the surface of the roadbed and the slopes to reasonably true grade and cross-sections as shown on the Plans or established by the Engineer.
 Open ditches, channels, and drainage structures (both existing and those constructed or extended) to effectively drain the roadway. Maintain the embankment areas until Final Acceptance of the Project.

208.3.06 Quality Acceptance
General Provisions 101 through 150.

208.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

208.4 Measurement
The following section details measurement for payment for the work described in this Section:
A. Except as provided herein, there will be no measurement for payment for the work covered by this Section.
B. The Department will compute the quantity of in-place embankment or rock embankment using the average end area method, or other acceptable methods, when embankment is in place and accepted.
 The quantity will be calculated as the neat volume, above the original ground surface, between the template line shown on the Plans or authorized changes by the Engineer, and the original ground surface.
 The original ground surface is determined by conventional field, photogrammetric, or other methods. The Department will not deduct for the volume of culverts and manholes.
 In-place embankment necessary for the construction of temporary detours will not be measured for payment and is considered incidental to the completion of the work unless specifically stated otherwise on the Plans.
 Where work includes excavating of unstable materials below the ground line, the volume of embankment required for backfill below the ground line is calculated based on the neat line measurement for the cross-section shown on the Plans or established by the Engineer by the average end area method or other acceptable methods.
 Where permitted by the Engineer or required by the Plans, material removed from the existing roadbed, special ditches, berm ditches, or dry land borrow pits and used in making embankment will be paid for as in-place embankment regardless of the method of excavation.

208.4.01 Limits
General Provisions 101 through 150.
208.5 Payment
Except as provided for herein, the Department will not make separate payment for placing embankments, backfilling structures, and constructing earth berms, including surcharges.

Payment will be included at the Contract Unit Price for the items covered by Section 204, Section 205, and Section 206. Prices are full compensation for the Work covered by this Section.

The Unit Prices bid per cubic yard (meter) for in-place and rock embankments (when included as Contract bid Items) are full compensation for furnishing suitable material, hauling, placing, compacting, finishing, and dressing according to these Specifications or as directed by the Engineer.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 208</th>
<th>In-place embankment</th>
<th>Per cubic yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 208</td>
<td>Rock embankment</td>
<td>Per cubic yard (meter)</td>
</tr>
</tbody>
</table>

208.5.01 Adjustments
General Provisions 101 through 150.

Section 209—Subgrade Construction

209.1 General Description
This work includes placing, mixing, compacting, and shaping the top 6 in (150 mm) or the Plan-indicated thickness of the roadbed in both excavation and embankment areas.

This work also includes subgrade stabilization, select material subgrade, and shoulder stabilization.

209.1.01 Definitions
General Provisions 101 through 150.

209.1.02 Related References
A. Standard Specifications
 Section 109—Measurement and Payment
 Section 412—Bituminous Prime
 Section 803—Stabilizer Aggregate
 Section 810—Roadway Materials
 Section 815—Graded Aggregate
B. Referenced Documents
 GDT 7
 GDT 20
 GDT 21
 GDT 24a
 GDT 24b
 GDT 59
 GDT 67

209.1.03 Submittals
General Provisions 101 through 150.
209.2 Materials

A. Subgrade Materials

If the Plans do not show the source of material for subgrade, the Engineer will direct the Contractor according to the Specifications, or implement a Supplemental Agreement to ensure a satisfactory subgrade.

If the existing roadway excavation or borrow materials are not suitable or available for stabilizing the subgrade, use the quantity of stabilizer materials defined below in Subsection 209.2.B.

B. Subgrade Stabilizer Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I Stabilizer Aggregate</td>
<td>803.2.01</td>
</tr>
<tr>
<td>Type II Stabilizer Aggregate</td>
<td>803.2.02</td>
</tr>
<tr>
<td>Class II B3 or Better Soil</td>
<td>810.2.01.A.1</td>
</tr>
<tr>
<td>Type III Stabilizer Aggregate</td>
<td>803.2.03</td>
</tr>
<tr>
<td>Type IV Stabilizer Sand</td>
<td>803.2.04</td>
</tr>
</tbody>
</table>

C. Select Material Subgrade

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class II B3 or Better Soil</td>
<td>810.2.01.A.1</td>
</tr>
<tr>
<td>Graded Aggregate</td>
<td>815</td>
</tr>
</tbody>
</table>

D. Shoulder Stabilization

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder Stabilization</td>
<td>803.2.02, Type II</td>
</tr>
</tbody>
</table>

209.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

209.3 Construction Requirements

209.3.01 Personnel
General Provisions 101 through 150.

209.3.02 Equipment
General Provisions 101 through 150.

209.3.03 Preparation
General Provisions 101 through 150.

209.3.04 Fabrication
General Provisions 101 through 150.

209.3.05 Construction

A. Subgrade Construction

Construct subgrade as follows:

1. Plow, harrow, and mix the entire surface of the in-place subgrade to a depth of at least 6 in (150 mm).
2. After thoroughly mixing the material, bring the subgrade to Plan line and grade and compact it to 100 percent of the maximum laboratory dry density.
3. If the subgrade needs to be stabilized, or if a subsequent contract provides for base construction, do not apply density requirement at this stage.
If a subsequent Contract provides for base construction, eliminate mixing and compact the in-place subgrade to 95 percent of the laboratory maximum dry density.

4. Ensure that the subgrade can firmly support construction equipment before placing subsequent layers of base and paving materials. The subgrade must support construction equipment without excessive movement regardless of compaction.

5. Rework unstable areas of subgrade to a moisture content that will provide stability and compaction. The Engineer may direct the Contractor to proof roll the subgrade with a loaded dump truck.

6. Compact the subgrade using a sheepfoot roller.
Where the subgrade soils are predominantly sands, the Engineer may permit the use of vibratory rollers.

B. Subgrade Stabilization

Construct a stabilized subgrade according to Plans or as directed:

1. Undercut and dispose of the amount of subgrade material that will be displaced with the aggregate or selected material according to the Engineer’s direction.

2. Leave material off the subgrade in fill sections requiring stabilization.

3. Place the amount of material specified in Subsection 209.2.B. on the subgrade as specified on the Plans or established by the Engineer.

4. Thoroughly incorporate the material into the existing subgrade to a depth of 6 in (150 mm), or as indicated on the Plans. Plow, disk, harrow, blade, and then mix with rotary tillers until the mixture is uniform and homogeneous throughout the depth to be stabilized.

5. Finish the stabilized subgrade to the Plan line, grade, and cross-section. Compact it to 100 percent of the maximum laboratory dry density as defined in Subsection 209.3.06.
Plant mixing is permitted as an alternative to the mixed-in-place method.

6. Eliminate the mixing and scarifying method before compaction in undercut areas where Type III Stabilizer Aggregates are specified, unless otherwise specified by the Engineer.

C. Select Materials Subgrade

Place select materials as follows:

1. Place a uniform blanket of select material consisting of Class I or II soil or graded aggregate on the prepared subgrade (according to Plan dimensions or as directed by the Engineer).

2. Use the select material reserved from the grading or borrow operations. If material is not available through this source, obtain it from other sources.

3. Finish and compact the material according to Subsection 209.3.05.A.

D. Shoulder Stabilization

Stabilize the shoulder as follows:

1. Spread the stabilizer aggregate at the rate and to the dimensions indicated on the Plans.

2. Mix the aggregate with the in-place shoulder material thoroughly to the Plan depth.

3. Compact the area thoroughly and finish it to Plan dimensions.

4. Prime the stabilized area according to Section 412 when a paving course is required on the shoulders.

E. Finishing Subgrade

When finishing subgrade use the following procedure:

1. Leave the underlying subgrade in cuts and fills low enough to accommodate the additional material when the work requires either subgrade stabilization, select material subgrade, or stabilization for shoulders.

2. Test short sections in curb and gutter areas might be necessary to obtain the proper elevation.

3. Blade the surface of the completed subgrade to a smooth and uniform texture.

209.3.06 Quality Acceptance

The Department will test representative samples of compacted material to determine the laboratory maximum dry density using GDT 7, GDT 24a, or GDT 67 as applicable.

The Department will determine in-place density of the compacted subgrade according to GDT 20, GDT 21, or GDT 59, as applicable.
Ensure that the centerline profile conforms to the established elevations with an acceptable tolerance of ±0.5 in (±13 mm). The acceptable tolerance under a template conforming to the designated cross section shall be ±0.25 in (±6 mm).

Have the Department test the maximum dry density using methods according to Subsection 209.3.05.A. When base construction is not in the same Contract, the tolerances may be 1 in (25 mm), 0.5 in (13 mm), and 95 percent respectively.

209.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

209.4 Measurement
A. Subgrade Construction and Finishing Subgrade
 The Department will make no separate measurement or payment for the work described in this Section.

B. Subgrade Stabilization
 Subgrade stabilization materials, as defined in Subsection 209.3.05.B is measured by the ton (megagram), cubic yard (meter), or square yard (meter) of the specified thickness if none of the existing Roadway Excavation and/or Borrow Materials are suitable and available for stabilizing the subgrade.

C. Select Material Subgrade
 Select materials, conforming to Subsection 209.3.05.C are measured by the cubic yard (meter) in the hauling vehicle, per ton (megagram) according to Subsection 109.01, or by the square yard (meter) of the specified thickness when roadway excavation and/or borrow materials are not available or suitable for this Item.

D. Shoulder Stabilization
 Shoulder stabilization is measured by the cubic yard (meter) or ton (megagram) as specified in Subsection 209.4.B.

209.4.01 Limits
General Provisions 101 through 150.

209.5 Payment
A. Subgrade Construction
 The Department will make no separate payment for subgrade construction or for finishing subgrade.

B. Subgrade Stabilization
 Subgrade stabilization complete and accepted according to Subsection 209.3.05.B will be paid for at the Contract Unit Price per cubic yard (meter), per ton (megagram), or per square yard (meter). This price is full compensation for furnishing the materials, hauling, placing, mixing, compacting, and finishing the stabilized subgrade.

C. Select Material Subgrade
 Select material complete, accepted, and measured according to Subsection 209.4.C will be paid for at the Contract Unit Price per cubic yard (meter), per ton (megagram), or per square yard (meter). This price is full compensation for furnishing the material where required, hauling, placing, mixing, compacting and finishing the select material subgrade.

D. Shoulder Stabilization
 This Item will be measured by Subsection 209.4.B. and paid for according to Subsection 209.5.B. This Item also includes furnishing and applying bituminous prime.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 209</th>
<th>Stabilizer materials (class), (type), (thickness)</th>
<th>Per ton (megagram), cubic yard (meter), or square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 209</td>
<td>Select material subgrade (class), (type), (thickness)</td>
<td>Per ton (megagram), cubic yard (meter), or square yard (meter)</td>
</tr>
<tr>
<td>Item No. 209</td>
<td>Stabilizer aggregate for shoulders</td>
<td>Per ton (megagram), or cubic yard (meter)</td>
</tr>
</tbody>
</table>

209.5.01 Adjustments
General Provisions 101 through 150.
Section 210—Grading Complete

210.1 General Description
This work includes:

- Excavating of all materials including ditches, undesirable material (including removal and replacement), and borrow (if required)
- Hauling
- Forming embankments
- Constructing shoulders and subgrades
- Finishing, dressing, and disposing of undesirable or surplus material
- Clearing and grubbing according to Section 201 and Section 202 unless these items are established as Pay Items in the Contract
- Removing and disposing of miscellaneous roadway items, including but not limited to curbs, drainage structures, and pavements (unless established as separate contract items)

Ensure that the completed grading work conforms to the horizontal and vertical alignment and typical cross-sections shown on the Plans or as directed by the Engineer.

210.1.01 Definitions
General Provisions 101 through 150.

210.1.02 Related References
A. Standard Specifications
 - Section 109—Measurement and Payment
 - Section 201—Clearing and Grubbing Right-of-Way
 - Section 202—Random Clearing and Grubbing
 - Section 204—Channel Excavation
 - Section 205—Roadway Excavation
 - Section 206—Borrow Excavation
 - Section 207—Excavation and Backfill for Minor Structures
 - Section 208—Embankments
 - Section 209—Subgrade Construction

B. Referenced Documents
 - General Provisions 101 through 150.

210.1.03 Submittals
General Provisions 101 through 150.

210.2 Materials
Use materials required for grading construction that conform to the requirements of Section 204, Section 205, Section 206, Section 207, Section 208, and Section 209.

210.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

210.3 Construction Requirements
210.3.01 Personnel
General Provisions 101 through 150.
210.3.02 Equipment
Use equipment approved by the Engineer that will not damage base, pavement, or other appurtenances to be retained.

210.3.03 Preparation
Before placing base material, finish the subgrade according to Subsection 209.3.05.E.

210.3.04 Fabrication
General Provisions 101 through 150.

210.3.05 Construction
Perform The Work according to the appropriate portions of Section 201, Section 202, Section 204, Section 205, Section 206, Section 207, Section 208, and Section 209 of the Specifications. Measurement and payment shall be according to the provisions of this Section. See Subsection 210.4 and Subsection 210.5, below.

210.3.06 Quality Acceptance
When the Engineer determines that the existing material in areas where fills are to be placed is undesirable, the Engineer may require the Contractor to remove the undesirable material and replace it with suitable material.

- Compact the replacement materials according to the applicable portions of Section 208.
- In cut areas, where the material below the template line is undesirable for subgrade or shoulders, undercut it to a depth established by the Engineer and replace it with suitable material.
- Compact the replacement materials as specified herein.

210.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

210.4 Measurement

A. Grading Complete
 The Work under this Item is not measured separately for payment.

B. Grading Per Mile (Kilometer)
 This Item is measured in linear miles (kilometers) along the centerline of the road or the median, including ramps where shown on the Plans.

C. Undercut Excavation
 The amount of undercut excavation (when directed by the Engineer and not addressed in the Plans) measured for payment is the product of the length, width, and depth of excavation. Replacement material for undercut excavation is not measured for payment. There will be no separate payment for undercut excavation required by the Plans or rock excavation required under Subsection 205.3.

210.4.01 Limits
General Provisions 101 through 150.

210.5 Payment

A. Grading Complete
 This Item completed and accepted will be paid for at the Lump Sum Price bid. Payment is full compensation for all work and materials specified in this Section.

B. Grading Per Mile (Kilometer)
 This Item will be paid for at the Contract Unit Price per linear mile (kilometer) complete in place and accepted. This price is full compensation for furnishing the materials and performing the work specified in this Section.

C. Undercut Excavation
 Undercutting areas not shown in the Plans when directed by the Engineer will be paid for at the rate of $5.00 per cubic yard ($6.50 per cubic meter) for quantities up to 750 yd³ (575 m³).
 Quantities exceeding 750 yd³ (575 m³) will be considered Extra Work as defined in Subsection 109.05, and will be paid for accordingly. Payment is full compensation for excavating and disposing of undesirable material and supplying, placing, and compacting replacement material.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 210</th>
<th>Grading complete</th>
<th>Per lump sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 210</td>
<td>Grading per mile (kilometer)</td>
<td>Per mile (kilometer)</td>
</tr>
<tr>
<td>Item No. 210</td>
<td>Undercut excavation</td>
<td>Per cubic yard (meter)</td>
</tr>
</tbody>
</table>

210.5.01 Adjustments
General Provisions 101 through 150.

Section 211—Bridge Excavation and Backfill

211.1 General Description
This work includes the following responsibilities:

- Removing materials necessary for the construction of bridge footings and substructures
- Disposing of excess materials and required backfilling, including porous backfill
- Constructing and removing work bridges, cribs, cofferdams, and caissons
- Dewatering, draining, sheeting, and exploratory boring of foundations necessary to complete the work

Excavate and backfill concrete box culverts as specified in Section 207.

211.1.01 Definitions
Foundation: Material on which the footing of the substructure or seal rests.

211.1.02 Related References
A. Standard Specifications
 - Section 201—Clearing and Grubbing Right-of-Way
 - Section 207—Excavation and Backfill for Minor Structures
 - Section 500—Concrete Structures
 - Section 525—Cofferdams
 - Section 540—Removal of Existing Bridge
B. Referenced Documents
 - General Provisions 101 through 150.

211.2 Materials

211.2.01 Delivery, Storage, and Handling
A. Surplus Materials
 Dispose of surplus, stockpiled, and excavated materials as directed by the Engineer. Materials may be spread neatly and smoothly on the right-of-way so as not to obstruct the channel of any existing or proposed waterway. Dispose of wasted materials according to Subsection 201.3.05.E.

211.3 Construction Requirements

211.3.01 Personnel
General Provisions 101 through 150.

211.3.02 Equipment
A. Cofferdams and Sheetin
 Use necessary protection such as cofferdams and sheeting when working in or near excavations where the surrounding earth could fail and endanger personnel or damage the work.
 Use cofferdams or sheeting to prevent undesirable changes in channels and slopes.
211.3.03

Construct, remove, and dispose of cofferdams according to Section 525, regardless of whether they are measured separately for payment.

211.3.03 Preparation

A. Preparation of Foundations

Prepare and maintain foundations as follows:

1. Do not subject concrete to the action of water before final setting, except as provided for seal concrete in Subsection 500.3.05.V.
2. Where footings are placed on a slightly sloped foundation of rock or hardpan, key the center of the foundation approximately 1 ft (300 mm) deep throughout an area approximately equal to the dimensions of the column to be placed (unless the Plans require entire footing to be keyed).
3. When the Engineer requires, step the foundation and remove all loose fragments and clean and fill seams as directed.
4. Do not disturb the top of the foundation to ensure that footings are placed on undisturbed material when they are not resting on rock or hardpan foundations.

211.3.04 Fabrication

General Provisions 101 through 150.

211.3.05 Construction

A. Foundations and Footings

The sizes and elevations shown on the Plans are approximate, and are subject to change when directed.

B. Inspection

Provide the Engineer ample opportunity and safe conditions (as determined by the Engineer) to inspect foundations and measure removed materials. Do not place concrete or close foundation areas from view until the area has been inspected and approved.

C. Boring of Foundations and Seals

Bore foundations as requested and in an approved manner so that the foundation’s adequacy can be determined by the Engineer. Borings are usually required only for foundations and seals with no piles. All borings shall be made in the Engineer’s presence.

Bore to at least 6 ft (1.8 m) deep in rock and 10 ft (3 m) deep in other material, excluding seals. The entire depth of the seal will usually be bored in only one location.

D. Backfill Construction

Follow these requirements when backfilling:

1. General
 Backfilling is a part of the work of excavation, except as noted.
 a. Place the backfill in layers not exceeding 1 ft (300 mm) of loose material. Compact the layer before placing the next layer.
 Backfill around all substructures except those located within the banks of a stream at normal water level.
 b. Do not jet backfills.
 c. Place backfill material to apply only balanced horizontal loads to a newly placed structure or portion of structure.
 Do not backfill portions of structures that do not have backfill on all sides until the concrete has reached the required strength (as determined by the Engineer) to withstand the earth pressures.

2. Intermediate Bents and Piers
 Compact backfill for intermediate bents and piers to the approximate density of the surrounding soil.
 a. Begin and complete backfilling around substructures not supported by piling the next workday after placing the lift, if possible. Backfill at least within three calendar days after placement.
 b. Backfill footings before beginning form work on the columns.
 c. Begin backfilling around pile-supported footings and columns after removing forms. Complete as soon as possible but within five calendar days after placing concrete.
3. End Bents and Abutments

Compact backfill for end bents and abutments (including their wingwalls) to the density shown on the Standard Plans or Special Plans.

a. Begin and complete the work no later than five calendar days after placing concrete, unless other time limits are indicated on the Plans.

 If other time limits are indicated, this work may be second stage construction or second stage backfill construction.

b. Step slopes behind abutments, unless otherwise shown, and take precautions to prevent the backfill from wedging against the abutment.

c. Provide drainage behind abutments and their wingwalls as shown on the Plans.

d. Place backfill for abutment footings and portions of walls having fill on both sides of the wall according to Subsection 211.3.05.D.4.

4. Backfill Material

Backfill around intermediate bents and piers with material removed from the excavation, unless the material is unsatisfactory to the Engineer.

a. Ensure that material for end bents and abutments meets the requirements shown on the Standard Plans or Special Plans.

 When suitable material is not available within the immediate vicinity of the bridge within the right-of-way, locate a source acceptable to the Engineer and haul the material to the site.

b. Obtain and place backfill material necessary for end bent and abutment construction— including special backfill material used in constructing mechanically stabilized earth wall abutments.

c. Ensure that material located and hauled to the bridge site meets the requirements of Class I, Class II, or as shown in Subsection 810.2.01.A.1, unless otherwise noted.

d. Ensure that porous backfill (when specified) consists of coarse aggregate size No. 57 as specified in Subsection 800.2.01, or crushed stone drainage material as specified in Subsection 806.2.02.A.

211.3.06 Quality Acceptance

General Provisions 101 through 150.

211.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

211.4 Measurement

A. Bridge Excavation

Bridge excavation is measured for payment as follows:

- Bridge excavation is measured in cubic yards (meters) of bridge excavation acceptably removed.
- No payment is made for materials removed outside the area bounded by vertical planes a maximum of 18 in (450 mm) outside of and parallel to the neat lines of the footings, unless otherwise shown on the Plans.
- No separate measurement is made under the Item of bridge excavation for excavation necessary for end bent construction unless otherwise shown on the Plans.
- Portions of structures removed under Section 540 that fall within the excavation limits are not included in the measurements for bridge excavation.
- The vertical pay dimension is measured from the original ground line. However, for grade separation structures, the vertical pay dimension is measured from the subgrade template of the roadway passing underneath, unless otherwise shown on the Plans.
- The vertical pay dimension for excavation at an intermediate bent (constructed within the limits of a previously placed end roll) includes the portion of the end roll that falls within the excavation limits.
- Each portion of a stepped footing is considered a separate footing (for measurement purposes).
- The bottom of each footing or step will be cross-sectioned by the Engineer (to obtain the elevation of the completed excavation).
211.4.01

B. Bridge Backfill

Bridge backfill is measured for payment as follows:

- No separate measurement is made for bridge backfill.
- Backfill material hauled to intermediate substructure locations according to Subsection 211.3.05.D.4. is not measured as bridge backfill, but is considered a Specification Allowance as set forth in Subsection 211.5.B.
- No allowance is made for material hauled in for use at bridge ends.

211.4.01 Limits
General Provisions 101 through 150.

211.5 Payment

A. Bridge Excavation

This work will be paid for at the Contract Price per cubic yard (meter) complete, or at the Contract Price modified as specified below:

1. The Department will pay for all eligible excavation down to 2 ft (600 mm) below the Plan foundation elevation at the Contract Price for bridge excavation.

2. The amount of payment for excavating lower than 2 ft (600 mm) below the Plan elevation is determined by increasing the Contract Price for bridge excavation as follows:
 a. If excavations extend 6 ft (1.8 m) or less below the Plan foundation elevation, payment for excavating the material from 2 ft (600 mm) below the Plan foundation elevation is at the Contract Price plus 50 percent.
 b. If excavations extend more than 6 ft (1.8 m) but not more than 10 ft (3 m), payment for excavating the material from 2 ft (600 mm) below the Plan Foundation elevation is at the Contract Price plus 75 percent.
 c. If excavations extend more than 10 ft (3 m) below the Plan foundation elevation, payment for excavating the material from 2 ft (600 mm) below the Plan foundation is at the Contract Price plus 100 percent.

B. Bridge Backfill

The Department will not pay for this work separately. Include the cost in other pay items included in the Bridge Contract.

The Department will pay 125 percent of the Contract Price for bridge excavation when the Contractor furnishes and hauls material used as replacement for unsuitable material excavated at intermediate substructure locations. Maximum dimensions and deductions are specified in Subsection 211.4.B.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 211</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 211</td>
<td>Bridge excavation</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 211</td>
<td>Bridge excavation grade separation</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 211</td>
<td>Bridge excavation, stream crossing— no.</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 211</td>
<td>Porous backfill</td>
<td>Per cubic yard (meter)</td>
</tr>
</tbody>
</table>

211.5.01 Adjustments
General Provisions 101 through 150.

Section 212—Granular Embankment

212.1 General Description

This work includes furnishing, hauling, and placing granular material for constructing or reconstructing of the embankment according to the Plans.

212.1.01 Definitions
General Provisions 101 through 150.
212.1.02 Related References
A. Standard Specifications
 Section 109—Measurement and Payment
 Section 810—Roadway Materials
B. Related Documents
 General Provisions 101 through 150.

212.1.03 Submittals
General Provisions 101 through 150.

212.2 Materials
Ensure that granular material meets the requirements of Class I-A-2 soil, Subsection 810.2.01.A, modified as follows:

<table>
<thead>
<tr>
<th>Percent Passing No. 200 (75 μm)</th>
<th>0 to 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Clay</td>
<td>0 to 10</td>
</tr>
</tbody>
</table>

212.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

212.3 Construction Requirements

212.3.01 Personnel
General Provisions 101 through 150.

212.3.02 Equipment
General Provisions 101 through 150.

212.3.03 Preparation
General Provisions 101 through 150.

212.3.04 Fabrication
General Provisions 101 through 150.

212.3.05 Construction
Follow these requirements when constructing a granular embankment:

1. Place the embankment at the location(s) shown on the Plans.
2. Ensure that thickness of the lifts and the compaction are approved by the Engineer.
3. When granular embankment material is placed under water, place the granular material on dry ground above the high-water level then push the material toward and into the water according to the limits and dimensions shown on the Plans.

212.3.06 Quality Acceptance
General Provisions 101 through 150.

212.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

212.4 Measurement
Furnished granular embankment material complete in place and accepted, is measured by volume according to the following cases:

A. Pit with Multiple Party Access
 When granular embankment material is obtained from a pit from which multiple parties have access, the granular embankment is measured by volume in the hauling vehicle as specified in Subsection 109.01.
212.4.01

B. Pit with Exclusive Access

When granular embankment material is obtained from a pit dedicated exclusively to the Project on which payment for granular embankment is being made, the granular embankment is measured for payment using the average end area method to determine the volume of material removed from the pit and incorporated into The Work.

C. Quarry

When granular embankment material is obtained from a quarry, a certified weight ticket shall accompany the material. The weight of the material delivered and accepted is converted to an equivalent volume based on the dry loose unit weight of the material provided.

212.4.01 Limits
General Provisions 101 through 150.

212.5 Payment
Granular embankment material will be paid for at the Contract Price per cubic yard (meter). This price is full compensation for furnishing material, hauling, placing, compacting, and providing labor, equipment, and superintendence necessary to complete The Work.

Payment will be made under:

| Item No. 212 | Granular embankment, including material and haul | Per cubic yard (meter) |

212.5.01 Adjustments
General Provisions 101 through 150.

Section 214—Mitigation Site Construction

214.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 215—Removal of Solid Waste

215.1 General Description
This work includes excavating, removing, and disposing of solid waste discovered during construction or shown on the Plans. Remove materials according to this Specification, Plan details, and as directed by the Engineer.

215.1.01 Definitions
Solid Waste: Discarded putrescible (i.e. liable to rot) and non-putrescible wastes such as trash, garbage, animal carcasses, debris, and materials not natural to the area.

215.1.02 Related References
A. Standard Specifications
 Section 107—Legal Regulations and Responsibility to the Public
 Section 109—Measurement and Payment
 Section 208—Embankments

B. Referenced Documents
 QPL 64

215.1.03 Submittals
Submit a report of disposal from the municipal solid waste landfill to the Engineer for each load of solid waste removed from the project.

138
215.2 Materials
Handle hazardous materials according to Subsection 107.22, “Hazardous and/or Toxic Waste.”

A. Soil Cover Materials
 Soil materials used to cover exposed areas of a removal site may be any noncontaminated earth material approved by the Engineer.

B. Odor Control Chemicals
 Acceptable odor control chemicals used for solid waste removal are listed on the Georgia Department of Transportation QPL 64. Similar or equal chemicals may be substituted when approved by the Engineer.

215.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

215.3 Construction Requirements

215.3.01 Personnel
General Provisions 101 through 150.

215.3.02 Equipment
General Provisions 101 through 150.

215.3.03 Preparation
General Provisions 101 through 150.

215.3.04 Fabrication
General Provisions 101 through 150.

215.3.05 Construction
A. Worker Protection
 Provide effective engineering and work practice controls to protect employee health and safety.

B. Applicable Specifications
 Perform this work according to this Specification and strictly comply with federal, state, or local codes or ordinances pertaining to removing solid waste.

 Verify the accuracy and existence of applicable codes, ordinances, or other regulations by obtaining and interpreting state, county, city, or local municipality by-laws for solid waste disposal.

C. Site Information
 The Department will make available existing boring logs of sites shown on the Plans. Prospective bidders can obtain this information by contacting the Geotechnical Engineering Bureau of the Office of Materials and Research at (404) 363-7549.

D. Site Categories
 Solid waste removal sites are designated as “Shown on the Plans” or “Discovered during Construction” for the purpose of this Specification.

E. Removal and Disposal Procedures
 Remove and dispose of solid waste using these requirements:
 1. Sites Shown on the Plans
 Work with solid waste sites shown on the Plans according to these requirements:
 a. Give the Engineer two weeks notice before removing solid waste.
 The Engineer will notify the local governing authority of the proposed work and tentative time schedules.
 b. After beginning to excavate solid waste, give the work constant attention.
 Excavate the material to the full depth and width of the cut in one continuous operation, leaving minimum exposed surface.
c. Leave working faces of the cut as near vertical as possible. However, slope them enough to safely place a layer of soil over the exposed areas.
d. Transport solid waste to a permitted municipal solid waste landfill. Obtain a listing of permitted municipal solid waste landfills by contacting the Georgia Environmental Protection Division, Land Protection Compliance Program at (404) 362-2696.
e. Obtain permission for disposal from the landfill. You must have the Engineer’s approval of the disposal site.
f. Fill trucks hauling material from the removal site to less than full capacity to prevent spills.
 Completely cover the truck body with a waterproof tarpaulin, large enough to extend over the sides and end of the bed to secure the material in transit. Fasten the tarpaulin securely.
g. At the end of each day’s work, cover exposed areas of the removal site with a 6 in (150 mm) layer of clean earth. Include the cost of this work in the overall bid submitted.
h. Spray odor control chemicals on the exposed solid waste and on hauling vehicles as outlined in Subsection 215.3.05.F, “Odor Control.”
i. When directed by the Engineer, overexcavate the area based on the conditions of the solid waste site during removal. Overexcavation is measured and paid for according to Subsection 215.4, “Measurement” and Subsection 215.5, “Payment.”
j. When removal is complete, backfill solid waste areas according to the embankment construction requirements in Section 208. Include the cost of this work in the applicable bid prices for unclassified and borrow.

2. Solid Waste Sites Discovered During Construction

Control solid waste sites discovered during construction by following these requirements:

a. Report solid waste sites discovered during construction to the Engineer, immediately. Stop work in the vicinity until the Engineer determines an appropriate Plan for removal and payment.
b. Conduct Work approved by the Engineer under the provisions of Subsection 109.05, “Extra Work.”
c. Remove, dispose of, and backfill according to this Specification and Subsection 107.22, “Hazardous and/or Toxic Waste.”

F. Odor Control

Control objectionable odors from the exposed solid waste at the removal site and on haul trucks in transit as follows:

1. Use an effective odor control chemical selected from QPL 64, or an approved equivalent.
 The Engineer will cooperate with the local governing authority to determine the acceptability of the odor control chemical, the application concentration, and the application frequency in the removal area and on the hauling vehicles.

2. Keep available a minimum three-day supply of odor control chemical to treat the solid waste during removal operations. During the last three days of removal, the Engineer may allow the odor chemical inventory be reduced to save expenses.
 Include the cost of spray material, labor, and equipment necessary to control objectionable odors in the overall bid submitted.

215.3.06 Quality Acceptance

General Provisions 101 through 150.

215.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

215.4 Measurement

The work performed under this item is measured as follows:

A. Sites Shown on the Plans

Removing solid waste from sites shown on the Plans is measured by the cubic yard (meter).

The volume of material measured for payment will be based on cross-section measurements using the average end area method.

Excavating outside the neat lines shown on the Plans is not measured for payment unless the work is directed and authorized by the Engineer.
B. Sites Discovered during Construction

Work for solid waste removal sites discovered during construction is measured according to Subsection 109.05, “Extra Work.”

C. Overexcavation of Solid Waste

Overexcavating solid waste to depths below those shown on the Plans is measured by the cubic yard (meter). Volume calculations are described in Subsection 215.4.A, “Sites Shown on the Plans.”

215.5 Payment

Work performed under this Item will be paid for as follows:

A. Sites Shown on the Plans

Removing solid waste from sites shown on the Plans will be paid for at the Contract Unit Price bid per cubic yard (meter). This is full compensation for excavating the solid waste material; hauling and properly disposing of the hazardous materials; closing the remaining landfill site; constructing necessary haul roads; furnishing chemicals and spraying the removal site, trucks, and contents as required; disposing at a permitted municipal solid waste landfill; and providing fencing, labor, equipment, tools, direction, and incidentals necessary to complete the Item.

B. Sites Discovered during Construction

Removing solid waste from sites discovered during construction will be paid for according to Subsection 109.05.

C. Overexcavation of Solid Waste

When the Engineer requires removal of solid waste beyond the limits shown on the Plans, payment for removal and disposal will be as follows:

1. Solid waste removed from within the neat cross sections shown on the Plans, and to the depth of 3 ft (1 m) below those cross sections, will be paid for at the Unit Price bid per cubic yard (meter) for removing solid waste.

2. Solid waste removed to depths below the 3 ft (1 m) specified above will be paid for as follows:
 a. Over 3 ft (1 m) but not over 10 ft (3 m) deep:
 This material will be paid for at the rate of 110 percent of the Unit Price bid per cubic yard (meter) for that portion of the material over 3 ft (1 m) but not over 10 ft (3 m) of extra depth.
 b. More than 10 ft (3 m) deep:
 If the extra depth exceeds 10 ft (3 m), stop work in that area. The Engineer will request an investigation by the Office of Materials and Research.
 If necessary to excavate below the 10 ft (3 m) level, do not resume work until a satisfactory plan for payment has been established.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Removal of solid waste</th>
<th>Per cubic yard (meter)</th>
</tr>
</thead>
</table>

215.5.01 Adjustments

General Provisions 101 through 150.

Section 216—Unpaved Shoulders

216.1 General Description

This work includes constructing unpaved shoulders.

216.1.01 Definitions

General Provisions 101 through 150.

216.1.02 Related References

A. Standard Specifications

 Section 106—Control of Materials
216.1.03

Section 205—Roadway Excavation
Section 210—Grading Complete
Section 817—Shoulder Material

B. Referenced Documents

GDT 7
GDT 20
GDT 21
GDT 24a
GDT 59
GDT 67

216.1.03 Submittals

General Provisions 101 through 150.

216.2 Materials

Unless otherwise specified in the Proposal, ensure that the material conforms to Section 817. The provisions of Section 106 apply to shoulder materials obtained from sources off the Right-of-Way.

216.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

216.3 Construction Requirements

216.3.01 Personnel

General Provisions 101 through 150.

216.3.02 Equipment

Before beginning shoulder construction, have the required equipment on the Project and in good working condition. Use equipment approved by the Engineer. The Engineer will not permit tractors with treads or equipment that damage existing base, surfacing, or pavement.

216.3.03 Preparation

General Provisions 101 through 150.

216.3.04 Fabrication

General Provisions 101 through 150.

216.3.05 Construction

A. General

Shape and compact shoulders in sequence as required for the type of base or pavement being constructed. Promptly repair damage to an existing base, surface, or pavement due to shoulder construction. Repairs are to be made at no expense to the Department.

B. Compaction

Immediately compact shoulders as follows to reduce erosion:

1. Grassed Shoulders

Compact shoulder areas above subgrade elevation that require grassing or sodding to a firm and stable condition as determined by the Engineer.

2. Ungrassed Shoulders

Ensure that ungrassed shoulder areas (including ungrassed stabilized shoulders and paved shoulders) have a resultant density of at least 100 percent of the maximum laboratory dry density. The density is determined from compacted representative samples of the material using GDT 7, GDT 67, or GDT 24a, whichever applies. The in-place density of the compacted shoulder will be determined according to GDT 20, GDT 21, or GDT 59, whichever applies.
3. **All Shoulders**
 Compact shoulders adjacent to a flexible base at least 18 in (450 mm) wider on each side along with the base course.

 C. Maintenance
 Maintain shoulders as follows:
 1. Cut weep holes through shoulders constructed prior to flexible bases to prevent impoundment of water on the road-bed or subgrade.
 2. Provide adequate temporary drainage facilities to prevent excessive erosion when front slopes are subject to concentrated water at weep holes.
 3. Promptly repair excessive erosion to prevent damage to the adjacent base or pavement.
 4. Repair and dress adjacent slopes and remove excess material from adjacent ditches when shaping, dressing, and compacting shoulders.

 D. Construction Sequence
 Construct unpaved shoulders as follows:
 1. **Portland Cement Concrete Bases and Pavements**
 Construct, shape, and compact the shoulders as soon as the curing period is complete on each section.
 2. **Hot Mix Asphaltic Concrete Pavement**
 Construct shoulders adjacent to hot mix asphaltic concrete pavement according to the following case scenarios:
 a. **Hot Mix Asphaltic Concrete Bases**
 Construct, shape, and compact the shoulders as soon as the final rolling is complete on each section.
 b. **Hot Mix Asphaltic Concrete Intermediate and Surface Courses**
 Place the shoulder material for the underlying base course and compact it before beginning the intermediate or surface course. Place, shape, and compact the remaining shoulder material after completing the final rolling of each section of surface course.
 3. **Flexible Bases or Pavements (except those listed under Subsection 216.3.05.D.2.a and Subsection 216.3.05.D.2.b)**
 Follow these requirements except when constructing shoulders and base courses of the same materials:
 a. Before constructing the base or pavement, place loose shoulder material to construct the compacted width of shoulder shown on the Plans.
 Place the loose shoulder material at a proper distance outside the proposed edge of base or pavement.
 b. After initially manipulating and compacting the base or paving material, use the blade grader to pull the shoulder up to, but not inside of, the proposed edge of the base or pavement.
 c. When constructing multiple courses, construct the shoulders, base, or pavement using the same number of courses. Prevent excessive erosion from concentrated water at weep holes by keeping the distance from the base or pavement construction to the shoulder construction to a minimum. Move smoothly and efficiently between the two operations.
 4. **Stabilized Shoulders**
 When the Plans or Proposal call for stabilized shoulders, add the stabilizer according to the Specification pertaining to that Item.
 5. **Shoulders Constructed with Base Material**
 When constructing shoulders and base courses out of the same materials, place and construct the shoulder material in the same way as the base material.
 6. **Shoulders Constructed under Traffic**
 When constructing shoulders on highways that are open to traffic, use the following construction operations:
 a. **Removing Existing Shoulder Materials**
 Do not remove existing shoulders or portions of existing shoulders more than 1,500 ft (450 m) ahead of paving operations. Also, comply with this limitation when constructing new shoulders and paving is not involved.
 b. **Constructing Shoulders**
 Complete and compact shoulders within a distance of 1,500 ft (450 m) or less behind finished paving operations.
216.3.06

c. Enforcing Construction Limitations

When trenching out or rebuilding the shoulders on opposite sides of the pavement simultaneously, separate the two operations by at least 1 mile (1600 m), leaving at least one usable shoulder to protect passing traffic.

216.3.06 Quality Acceptance

General Provisions 101 through 150.

216.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

216.4 Measurement

A. Materials Obtained from Roadbed

Shoulders constructed from material obtained from adjacent portions of the roadbed are measured according to Subsection 205.4, “Measurement” or Subsection 210.4, “Measurement,” as applicable.

B. Shoulders Adjacent to Stabilized Bases

When bases are constructed by stabilizing the existing roadbed, and the shoulders are to be bladed into section using materials from the existing roadbed, no measurement of shoulder materials will be made.

C. Shoulders Constructed with New Base Course Materials

New shoulders constructed of the same material as the new base course by spreading the base course material full width of the roadbed is measured for payment according to the appropriate Specification for the type base course.

D. Shoulders Constructed with Selected Shoulder Material

Selected shoulder material, including accepted pervious and impervious shoulder material obtained from pits or other sources off the Right-of-Way, is measured in cubic yards (meters) loose volume in vehicles when dumping.

216.4.01 Limits

General Provisions 101 through 150.

216.5 Payment

A. Shoulders Constructed with Materials Obtained from Existing Roadbed

Measured shoulder material obtained from the existing roadbed will be paid at the Contract Unit Price per cubic yard (meter) for Section 205.

Shoulders constructed out of existing roadway materials including selected borrow already in position from prior construction operations, will not be paid for separately. Payment for these materials will be made under the pertinent items required to place these materials in position.

B. Shoulders Constructed with New Base Course Materials

Shoulders constructed from new base course materials will be paid for according to the appropriate Specifications for the type of base course.

C. Shoulders Constructed with Selected Shoulder Material

Selected shoulder material, including accepted pervious and impervious shoulder material obtained from pits or other sources off the Right-of-Way, will be paid for at the Contract Unit Price per cubic yard (meter) or square yard (meter) of a specified thickness. Payment is full compensation for furnishing the material when specified and for performing construction, compaction, and other work specified in this Section pertaining to the Item.

If under the provisions of Section 106 the Contractor shall pay royalties for the selected shoulder material, the Pay Item is listed with the words “Including Material” added.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Selected material for shoulder construction</th>
<th>Per cubic yard (meter) or square yard (meter), ___ in (mm) average thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 216</td>
<td>Selected material for shoulder construction including material</td>
<td>Per cubic yard (meter) or square yard (meter), ___ in (mm) average thickness</td>
</tr>
</tbody>
</table>
Section 217—Removal of Underground Storage Tanks

217.1 General Description

This work includes excavating, removing, and disposing of underground storage tank (UST) systems discovered during construction or shown on the Plans.

Remove materials according to this Specification, Plan details, and as directed by the Engineer.

217.1.01 Definitions

Underground storage tank system: A tank with at least 10 percent of its volume underground, including the pipes and pumps connected to the tank. The tanks may be used to store petroleum products or hazardous chemicals. Tanks used for the following are specifically excluded from Georgia EPD Rules (Chapter 391-3-15) and EPA regulation 40 CFR Part 280:

- Farm or residential tanks of 1100 gal (4160 L) or less capacity used for storing motor fuel for noncommercial uses
- Tanks used for storing heating oil for consumptive use of the premises where stored
- Pipeline facilities

Remove tanks excluded from Georgia EPD Rules (Chapter 391-3-15) and EPA regulation 40 CFR Part 280 according to the American Petroleum Institute’s Recommended Practice 1604 (API 1604).

217.1.02 Related References

A. Standard Specifications

Section 107—Legal Regulations and Responsibility to the Public
Section 109—Measurement and Payment
Section 208—Embankments

B. Referenced Documents

Georgia EPD Rules (Chapter 391-3-15)
EPA regulation 40 CFR Part 280
American Petroleum Institute’s Recommended Practice 1604 (API 1604)

217.1.03 Submittals

A. UST Systems Shown on the Plans

Submit documentation of proper disposal to the Engineer no later than the day following disposal.
Submit the soil or water samples to a laboratory approved by the Engineer for testing.
Submit to the Engineer a completed test report, sketch, and certification that the tests were performed according to EPD rules. Submit the documentation within 30 days after the date the samples were taken.

217.2 Materials

A. Soil Backfill

To backfill a UST removal site, use earth materials approved by the Engineer.

B. Hazardous Materials

Handle materials classified as hazardous according to Subsection 107.22, “Hazardous and/or Toxic Waste.”

217.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.
217.3

217.3 Construction Requirements

217.3.01 Personnel
General Provisions 101 through 150.

217.3.02 Equipment
General Provisions 101 through 150.

217.3.03 Preparation
Two weeks before working on UST systems shown in the Plans, notify the Engineer in writing. The Engineer will inspect the work with the Office of Materials and Research and the District’s UST Tank Pull Inspector.

When the Engineer grants approval to proceed and the UST Tank Pull Inspector is present onsite to monitor the UST removal, proceed with the work according to the requirements outlined in Subsection 217.3.05.A, “Applicable Specifications”.

217.3.04 Fabrication
General Provisions 101 through 150.

217.3.05 Construction
A. Applicable Specifications
 Remove and dispose of UST systems according to the American Petroleum Institute’s Recommended Practice 1604 (API 1604), Georgia EPD Rules (Chapter 391-3-15), and EPA regulation 40 CFR Part 280.

 In addition to these requirements, strictly comply with Federal, State, or local codes or ordinances pertaining to removing UST systems.

 Verify the accuracy and existence of applicable codes, ordinances, and other regulations by obtaining and interpreting state, county, city, or local municipality by-laws for solid waste disposal.

B. UST Categories

 For this Specification, UST systems are categorized as those shown on the Plans or discovered during construction.

 1. UST Systems Shown on the Plans
 a. Consider UST systems shown on the Plans as a normal part of the Contract.
 b. Assume liability for improperly removing and disposing of UST systems. Prevent spilling the contents of the tank and carefully handle and transport the tank to the permitted disposal area.
 Immediately contain any spills and remove and dispose of the contaminated soil at no cost to the Department.
 If the Engineer determines that the Contractor is negligent in containing and remediating spills, the Department will hire outside forces to perform the work and deduct the cost from the Contractor’s payments.
 c. Dispose of the tank, contents, and contaminated soils according to EPD rules.
 d. After removing the tank and its contents, take soil samples as specified in the EPD rules and sketch the location and depth from which the samples were taken.
 e. If soils in the tank pit are visually contaminated, remove the soils through additional excavation (over-excavation).
 Over-excavate to the limits of contamination or a maximum of 4 ft. (1.2 m) deep, whichever occurs first. After completing over-excavation, take soil samples as specified above.
 If water is present in the pit after removing tank or over-excavating, take a water sample.
 f. Submit the soil and/or water samples to a laboratory approved by the Engineer for testing. Give the Engineer a complete test report and certification that the tests were performed according to EPD rules.
 g. Place and compact backfill material for tank pit areas within the construction limits according to Section 208.
 Tank pit areas on the right-of-way outside the construction limits will not require any special placement procedure or compaction testing. Leave the area level, smooth, and dressed to the satisfaction of the Engineer.

 2. UST Systems Discovered During Construction

 If a UST system is discovered during construction, notify the Engineer immediately.
 a. Stop work in the vicinity of the UST until arrangements for removal and disposal have been made.
b. Upon the Engineer’s approval to proceed, perform the work according to Subsection 217.3.05.A and Subsection 217.3.05.B.1.b.

217.3.06 Quality Acceptance
General Provisions 101 through 150.

217.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

217.4 Measurement
The work performed under this Item is measured as follows:

A. UST Shown on Plans
 UST systems shown on the Plans are measured on a per each basis.

B. UST Discovered during Construction
 Work for UST systems discovered during construction is measured according to Subsection 109.05.

C. Over-excavation of Contaminated Soil
 Over-excavation of contaminated soil for UST systems shown on the Plans is measured by the cubic yard (meter).
 The volume of material measured for payment is the difference in the tank pit volume based on neat line plan dimensions minus the volume of the completed excavation area as determined from cross sections, using the average end area method.
 Excavation outside Plan dimensions or dimensions established by the Engineer will not be measured for payment. Disposal of contaminated soil is not measured separately.

217.4.01 Limits
General Provisions 101 through 150.

217.5 Payment
Work performed under this Item will be paid as follows:

A. UST Shown on Plans
 UST systems shown on the Plans and removed under this Item will be paid for at the Contract Unit Price per each.
 Payment is full compensation for excavating, testing, hauling, and handling according to Georgia Environmental Protection Division Rules, as well as backfilling, compacting, fencing, and removing and disposing of contaminated soil, tank, tank contents, and all other incidentals necessary to complete the work.

B. UST Discovered During Construction
 Removing UST systems discovered during construction will be paid for according to Subsection 109.05.

C. Over-excavation of Contaminated Soil
 Over-excavating contaminated soil will be paid for at the Contract Unit Price per cubic yard (meter). Payment is full compensation for removing, hauling, properly disposing, backfilling, and compacting.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 217</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 217</td>
<td>Removal of underground storage tank, station No. _____</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 217</td>
<td>Over-excavation of contaminated soil</td>
<td>Per cubic yard (meter)</td>
</tr>
</tbody>
</table>

217.5.01 Adjustment
General Provisions 101 through 150.
Section 218—Blanket for Fill Slopes

218.1 General Description
This work includes placing a blanket material on fill slopes as shown on the Plans.

218.1.01 Definitions
General Provisions 101 through 150.

218.1.02 Related References
A. Standard Specifications
 Section 893—Miscellaneous Planting Materials

B. Referenced Documents
 General Provisions 101 through 150.

218.1.03 Submittals
General Provisions 101 through 150.

218.2 Materials
Use blanket material that meets the requirements on the Plans or in the Special Provisions. Ensure that plant topsoil meets the requirements of Subsection 893.2.01.

216.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

218.3 Construction Requirements

218.3.01 Personnel
General Provisions 101 through 150.

218.3.02 Equipment
General Provisions 101 through 150.

218.3.03 Preparation
General Provisions 101 through 150.

218.3.04 Fabrication
General Provisions 101 through 150.

218.3.05 Construction
A. Remove Vegetation, Roots, and Trash
 Remove vegetation, roots, trash, or materials that hinder the preparation of a proper bed for grassing as a part of this Item.

B. Plant Topsoil
 To reduce plant topsoil loss from erosion, place the soil shortly before and in conjunction with grassing operations, unless otherwise directed. After placing material, replace material lost from erosion at no additional expense to the Department.

218.3.06 Quality Acceptance
General Provisions 101 through 150.

218.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

218.4 Measurement
The quantity of material placed and accepted under this Item is measured in cubic yards (meters), loose measure, in the vehicles at the point of dumping.
218.4.01 Limits
General Provisions 101 through 150.

218.5 Payment
Payment will be made under:

| Item No. 218 | Blanket for fill slopes | Per cubic yard (meter) |

218.5.01 Adjustment
General Provisions 101 through 150.

Section 219—Crushed Aggregate Subbase

219.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 221—Special Subgrade Compaction and Test Rolling

221.1 General Description
This work includes rolling subgrades using a special roller described in this Section and repairing weak places discovered during rolling.

The Item does not take the place of compaction or subgrade improvement specified elsewhere in the Specifications. It consists of the following complete operations:

- Test rolling and performing final compaction and preparation of the finished subgrade using special rolling and compaction equipment
- Replacing or repairing weak areas that develop in the finished subgrade from manipulating the test rolling equipment
- Continuing test rolling to compact repaired areas until the entire subgrade remains firm
- Protecting culverts and bridges from damage according to specified construction methods

221.1.01 Definitions
General Provisions 101 through 150.

221.1.02 Related References
General Provisions 101 through 150.

221.1.03 Submittals
General Provisions 101 through 150.

221.2 Materials
General Provisions 101 through 150.

221.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

221.3 Construction Requirements

221.3.01 Personnel
General Provisions 101 through 150.

221.3.02 Equipment
Use the following equipment for special subgrade compaction and test rolling. Do not vary from these Specifications except by written permission from the Engineer.
221.3.03

A. Roller

Use a pneumatic-tired roller with these features:

- Single-axle base with four wheels
- Gross weight adjustable from 35 to 50 tons (31 to 45 Mg) as determined by the Engineer
- Wheels constructed to allow free rocking and oscillation
- Roller no more than 10 ft (3 m) wide overall with a turning radius of 15 ft (4.5 m) or less

Have a separate tractor unit pull the roller unless a self-propelled roller meets all of these requirements.

Use 18:00 x 25 tires inflated to the pressure recommended by the manufacturer for the wheel load but to not less than 90 psi (620 kPa).

Ensure that the gross contact area (entire surface of the tire on a flat surface) is no more than 331 in² (0.213 m²) per tire and the net contact area (treads) is no more than 166 in² (0.107 m²) per tire.

221.3.03 Preparation

Prepare the surface to be test rolled to the proper grade and cross-section. Ensure the top 8 in (200 mm) of the surface is within 3 percentage points of the optimum moisture content when rolling.

221.3.04 Fabrication

General Provisions 101 through 150.

221.3.05 Construction

A. Subgrade Preparation

When required, stabilize in the specified areas according to the Specifications before test rolling.

B. Extent of Rolling

Test roll on all portions of the subgrade under the proposed base, subbase, or pavement, plus a 2 ft (600 mm) width on each side. Exclude ramps servicing private property.

1. Roll frontage roads, spur connections, crossovers, and intersections according to the same requirements. The cost of rolling is considered incidental to the Item.
2. Test roll parallel to the centerline, with the forward speed of the roller between 2 and 5 miles (3 and 8 km) per hour.
3. Roll one outer edge then the other outer edge. Progress uniformly toward the center section until passing over the entire surface area at least twice.
4. Roll the entire width in segments long enough so that each segment takes about half a day.
5. Stop rolling during extreme moisture. If the moisture content of the subgrade is deficient, correct it by adding water.
6. Roll in the presence of the Engineer, who will mark the extent of weak areas and depressions immediately.

C. Repairs to Subgrade

Repair depressions and weak spots discovered while rolling.

1. The repairs may consist of removing unsatisfactory materials, replacing them with satisfactory materials, and strengthening or stabilizing the materials in place.
2. The Engineer will decide what repairs to make. Place and compact materials in the roadbed as specified for embankment or subgrades, whichever is appropriate.
3. Test roll again after making the repairs until the repaired areas are satisfactory according to these Specifications.

D. Test Rolling at Structures

Protect structures and prevent damage to them. Repair or replace damage caused by the test rolling at no expense to the Department.

1. Bridges

Do not allow the rolling unit within 10 ft (3 m) of bridge ends or bridge approach slabs.

Do not allow the rolling unit to cross a bridge on its own wheels when the unit’s weight exceeds 23,000 lbs (10 433 kg) for a 1-axle loading.
2. Culvert Type Structures
 When a culvert type structure falls within the limits of the test rolling area and the finished surface of the subgrade is less than 4 ft (1.2 m) above the exterior of the structure, do not allow the rolling unit within 10 ft (3 m) of the structure. Do not allow the rolling unit to cross any portion of the structure, except by one of the following methods selected by the Contractor.

 Follow these protection methods. Assume responsibility for damage to a structure.
 a. Detour the rolling unit off the roadway and around the structure to the opposite side where rolling is resumed.
 b. Transport the rolling unit across the structure if the gross weight of the loaded transporting unit does not exceed 23,000 lbs (10 433 kg) for a 1-axle loading.
 c. Construct an embankment ramp over the structure to provide a minimum cover of 4 ft (1.2 m) over the top. The ramp must extend to the same elevation on each side for a minimum distance of 10 ft (3 m) from its exterior. Place and remove the ramp at no expense to the Department.

221.3.06 Quality Acceptance
General Provisions 101 through 150.

221.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

221.4 Measurement
A. Test Rolling
 Special subgrade compaction and test rolling is measured in miles (kilometers) along the center of the road—excluding bridges (regardless of the width and number of lanes to be rolled).

 Frontage roads, spur connections, crossovers, and intersecting roads (including their ramp connections) falling within the right-of-way and within the limits of the Project are included in the overall length of the roadway shown for the Item, or included in the distance for any portion specified on the Plans.

B. Repairs to Subgrade
 Materials removed under this Specification, regardless of their nature, are measured for payment according to Section 205 as Unclassified Excavation.

 If the moved materials are laid aside or stockpiled and later used again, excavating these materials and placing them in the roadbed is measured for payment as Unclassified Excavation.

 If new materials are required, they will be measured and paid for at the Unit Price bid for the materials according to Section 205 or Section 209, as applicable.

221.4.01 Limits
General Provisions 101 through 150.

221.5 Payment
A. Test Rolling
 Special subgrade compaction and test rolling will be paid for at the Unit Price bid per mile (kilometer) completed and accepted. Payment is full compensation for preparing the surface, transporting the roller, moving the roller across or around prohibited areas, rolling as specified, watering, and providing incidentals necessary to complete the Item.

 No separate payment will be made for protecting structures. Include the cost in the Unit Price bid for special subgrade compaction and test rolling.

B. Repairs to Subgrade
 Payment for repaired subgrades will be according to Section 205 and Section 209, where applicable.

 Payment will be made under:

| Item No. 221 | Special subgrade compaction and test rolling | Per mile (kilometer) |

221.5.01 Adjustment
General Provisions 101 through 150.
Section 222—Aggregate Drainage Courses

222.1 General Description
This work includes installing aggregate drainage courses. The drainage courses shall conform to the Specifications and to the lines, grades, and dimensions shown on the Plans or directed by the Engineer.

222.1.01 Definitions
General Provisions 101 through 150.

222.1.02 Related References
A. Standard Specifications
 Section 109—Measurement and Payment
 Section 208—Embankments
 Section 209—Subgrade Construction
 Section 806—Aggregate for Drainage

B. Referenced Documents
 General Provisions 101 through 150.

222.1.03 Submittals
General Provisions 101 through 150.

222.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I Aggregate Drainage Course</td>
<td>806.2.01</td>
</tr>
<tr>
<td>Type II Aggregate Drainage Course</td>
<td>806.2.02</td>
</tr>
<tr>
<td>Type III Drainage Blanket Material</td>
<td>806.2.03</td>
</tr>
</tbody>
</table>

222.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

222.3 Construction Requirements

222.3.01 Personnel
General Provisions 101 through 150.

222.3.02 Equipment
A. Embankment or Subgrades
 To spread a uniform layer of coarse or fine aggregate without segregation and compact it to the specified requirements, use hauling and spreading equipment approved by the Engineer.

B. Other Surfaces
 On any other surface, including wet and unstable areas, use trucks for end-dumping, and bulldozers and road machines for spreading.

222.3.03 Preparation
General Provisions 101 through 150.

222.3.04 Fabrication
General Provisions 101 through 150.
222.3.05 Construction

Construct the roadbed according to the lines, grades, and typical cross-sections shown on the Plans and according to Section 208 and Section 209.

Use coarse aggregate, drainage course, and drainage blanket material as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Aggregate Drainage Course</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Use in a trench around pipe or in the shoulder in conjunction with a trench.</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Use as a drainage blanket under sidewalks, curbs and gutter, and beneath the pavement system or shoulders.</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Use on parts of the roadway shown on the Plans as requiring a drainage blanket.</td>
<td></td>
</tr>
</tbody>
</table>

A. Prepared Embankments or Subgrades

1. Place the Material
 Spread the material uniformly to obtain the compacted depth required on the Plans and as follows:
 a. The maximum thickness of each course is 6 in (150 mm) compacted, except as noted in Subsection 222.3.02.B, “Other Surfaces.”
 b. If installing an underdrain system immediately under or adjacent to the aggregate drainage course, connect the drainage course directly to the underdrain system.
 c. After placing the pavement, make the subbase outside of the pavement flush with the outside pavement edge. Do not cut cement-stabilized subbase—keep it in place.
 d. When necessary, cover a shoulder drainage course with a second layer of shoulder pavement to prevent contaminating the aggregate drainage material.

2. Compact the Material
 Compact the material according to the following procedures, and have the Engineer approve it.
 a. Unless specified otherwise by the Engineer, begin rolling on the outer edge of the drainage course and progress toward the center. On super-elevated curves or shoulders, begin rolling on the lower edge and progress toward the higher edge.
 b. For a Type II aggregate drainage course, roll when the moisture content of the material is at or near the optimum moisture.
 c. Roll until the surfaces of each layer are uniformly compacted.
 d. Compact the final layer with a steel wheel roller weighing no less than 10 tons (9 Mg) or a vibratory roller approved by the Engineer.
 e. If a layer is deficient in required thickness by more than 3/4 in (19 mm), scarify the surface and add more material to the thin area. Compact again according to the Specifications.

B. Other Surfaces

1. Prepare the Area
 a. Before placing drainage material, excavate or trench low areas for positive drainage as directed by the Engineer.
 b. Excavate trenches and undercutting to the dimensions and grades indicated on the Plans.

2. Drain the Area
 Drain unstable or wet areas when the area is in the subgrade or the original ground surface is an embankment area or a trench. Spread drainage material to the requirements on the Plans or as directed by the Engineer.

3. Compact the Material
 Compact drainage material until stable.

222.3.06 Quality Assurance

General Provisions 101 through 150.

222.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.
222.4 Measurement

Aggregate drainage course is measured by the ton (megagram) or cubic yard (meter). When measured by the ton (megagram), the weight is determined by approved truck scales at the job site, or by other scales approved in advance. When measured by the cubic yard (meter), the loose volume is determined as specified in Section 109.

222.4.01 Limits
General Provisions 101 through 150.

222.5 Payment

Aggregate drainage course of the type specified will be paid for at the Contract Unit Price per ton (megagram) or per cubic yard (meter).

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>222</td>
<td>Aggregate Drainage Course, Type ____</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>222</td>
<td>Aggregate Drainage Course, Type ____</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>573</td>
<td>Underdrain Pipe including Drainage Aggregate ____ in(mm)</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

222.5.01 Adjustments

If the average thickness for any 1-mile (1600 m) increment exceeds the specified thickness by more than 1 in (25 mm), the Department will reduce the Contractor’s payment for the excess material. The Department will calculate the excess material by multiplying how much average thickness exceeded the allowable 1 in (25 mm) tolerance by the surface area of the course.

Section 225—Soil-Lime Construction

225.1 General Description

This work includes preparing and treating roadbed materials with lime to form a base, subbase, or subgrade.

Water, mix, shape, and compact the necessary material according to these requirements and with the lines, grades, and thickness indicated on the Plans.

Lime treated roadbed materials, subbases, or bases will be designated as Class A, Class B, or Class C.

The requirements of these Specifications are applicable to each course or layer, unless otherwise indicated on the Plans.

225.1.01 Definitions
General Provisions 101 through 150.

225.1.02 Related References

A. Standard Specifications

 Section 109—Measurement and Payment
 Section 205—Roadway Excavation
 Section 209—Subgrade Construction
 Section 301—Soil-Cement Construction
 Section 412—Bituminous Prime
 Section 810—Roadway Materials
 Section 814—Soil Base Materials
 Section 821—Cutback Asphalt
 Section 880—Water
 Section 882—Lime
B. Referenced Documents

GDT 19
GDT 20
GDT 21
GDT 42
GDT 59

225.1.03 Submittals
General Provisions 101 through 150.

225.2 Materials

Ensure that the soil is suitable for lime stabilization and that the materials used for stabilization meet the following requirements:

<table>
<thead>
<tr>
<th>Soil</th>
<th>Section 810 or Section 814, as applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Subsection 880.2.01</td>
</tr>
<tr>
<td>Lime</td>
<td>Subsection 882.2.02</td>
</tr>
<tr>
<td>Bituminous prime</td>
<td>Subsection 821.2.01</td>
</tr>
<tr>
<td>Blotter material (sand)</td>
<td>Subsection 412.3.05.G.3</td>
</tr>
</tbody>
</table>

A. Soil

Use soil that consists of materials found in the roadbed, base, subbase, or added materials as specified or directed by the Engineer. Ensure that these materials meet the requirements shown on the Plans or the pertinent Specifications for these items.

Remove the following from the soil:

- Particles of aggregate too large to pass through a 3 in (75 mm) sieve
- Roots, stumps, grass turfs, and other vegetable matter

B. Water

Use water without detrimental quantities of oil, salt, acid, alkalis, sugar, or vegetable matter. The total inorganic solids shall not exceed 0.20 percent. Non-potable water shall be tested and approved before use.

Tests shall be according to Subsection 880.2.01.

C. Lime

The application rate for lime will be determined from laboratory tests and provided to the Contractor prior to beginning stabilization work. Hydrated lime will be used in all tests.

D. Bituminous Prime

Use bituminous prime that consists of cutback asphalt of the following grades:

- RC-30
- RC-70
- RC-250
- MC-30
- MC-70
- MC-250
225.2.01

E. Blotter Material

Use blotter material (sand) that meets the requirements of Section 412.

225.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

225.3 Construction Requirements

225.3.01 Personnel

Ensure that adequate protection and safety equipment and training is provided for all personnel.

225.3.02 Equipment

A. General Equipment

Use equipment of the right size, in satisfactory mechanical condition, that can produce satisfactory results. The Engineer will approve the equipment prior to the beginning of construction. Provide any necessary equipment, including:

- Spreaders capable of uniformly distributing bulk lime or lime slurry to the actual application rate as shown in the Plans.
- Mixing and scarifying equipment capable of ensuring positive depth control. Weight all rollers sufficiently to accomplish the required compaction.
- Rotary-type mixers, disc harrows, or motor patrols for mixing.
- Equipment for applying water and prime. Use a type and weight of equipment that will not damage lime-treated soil.

B. Alternate Equipment

Alternate equipment, such as continuous or batch-type central plant or traveling mixing plants, will be approved if the equipment produces a mixture that meets this Specification.

225.3.03 Preparation

A. Prepare for Soil-Lime Construction

Prepare for soil-lime construction as follows:

1. Grade and shape the underlying foundation to the required lines, grades, and cross-section.
2. Compact the foundation to the required density specified in Subsection 225.3.05.F, “Compact Lime Layer” and Subsection 225.3.06.B, “Finishing Requirements.”
3. Dry the foundation if necessary.
4. Ensure that the foundation is firm and can support the construction and compaction equipment without displacement.
5. Stabilize any soft or yielding material. If necessary, repeat this step (at no additional cost to the Department) before placing each subsequent layer.
6. Scarify and partially pulverize each layer of material to be treated to the necessary depth.
7. Remove all detrimental material from the soil according to Subsection 225.2, “Materials.”

B. Test Section

The first section of each mixing operation will be a test section. The length of the test section will be the length required to use all of the lime on one truck.

Demonstrate the acceptability of the equipment and methods used and provide a standard by which to ensure the finished grade elevation and compacted thickness with this method.

1. If necessary, change the equipment, methods, or initial grade elevations based on results of the test section.
2. If changes in methods or equipment are made during the Project, additional test sections shall be constructed when directed by the Engineer.

225.3.04 Fabrication

General Provisions 101 through 150.
225.3.05 Construction
Lime-treated roadbed materials, subbases, or bases will be designated as Class A, B, or C, as follows:

A. Class A Treatment
 Apply the specified percentage of lime in two equal increments according to the following steps:
 1. Spread the first increment of lime.
 2. Mix the material.
 3. Allow the material to mellow to a loamy consistency.
 4. Spread the second increment of lime.
 5. Mix the material.

B. Class B Treatment
 Apply the specified percentage of lime according to the following steps:
 1. Spread the lime.
 2. Mix the material.
 3. Allow the material to mellow to a loamy consistency.
 4. Mix the material.
 5. Compact and finish the material. See Subsection 225.3.05.F, “Compact Lime Layer” for compaction and Subsection 225.3.06.B, “Finishing Requirements” for finishing.

C. Class C Treatment
 Apply the specified percentage of lime according to the following steps:
 1. Spread the lime.
 2. Mix the material.
 3. Compact and finish the material. See Subsection 225.3.05.F, “Compact Lime Layer” for compaction and Subsection 225.3.06.B, “Finishing Requirements” for finishing.

D. Apply Lime
 1. General
 □ Apply lime according to the rate specified by the Engineer.
 □ Apply lime uniformly so that the quantity applied does not vary more than +/- 10 percent of the quantity specified for each section.
 □ Apply lime only to areas that can be completed and sealed in one day.
 □ Do not mix lime with frozen soils or with soils containing frost. Perform lime stabilization only when the air temperature is above 45 °F (7 °C) and only between April 1 and October 15, unless directed otherwise by the Engineer.
 □ Distribute lime at the specified rate by making repeated passes over a section until the required percentage has been spread.
 □ After each pass, incorporate the material into the soil with mixing equipment. If necessary, add more water to the mix to accelerate mellowing.
 2. Protect and Ensure Safety
 □ Provide the necessary equipment and take the necessary precautions to protect operations personnel from the hazards of lime dust or slurry.
 □ Prevent damage, discomfort, or inconvenience to the public or to private property while preparing and distributing lime.
 3. Methods
 Spread lime on scarified areas at the specified rate. Distribute the material uniformly to avoid excessive loss.
Choose one of the following three methods to apply lime:

a. Dry Application with Quicklime
 Adjust the design application rate that was based on using hydrated lime, to reflect the properties of quicklime. Use the following formula to determine the application rate for quicklime:

 \[AR_Q = \frac{AR_H}{(1.32)(P)} \]

 where;
 \(AR_Q \) = Application Rate For Quicklime
 \(AR_H \) = Design Application Rate Based On Hydrated Lime
 1.32 = Ratio of molecular weights for hydrated lime (74) and quicklime (56)
 \(P \) = Certified Percent Purity Of The Quicklime

 Do not apply quicklime if the Engineer determines that wind conditions could make blowing lime hazardous to traffic, workers, or adjacent property.

 Minimize lime pockets by applying lime to shaped and rolled areas that are relatively smooth. Spread uniformly at the specified rate using a spreader approved by the Engineer.

 Slake dry quicklime on the ground after application by applying water until all the lime pebbles dissolve into a liquid or paste. Do this before incorporating quicklime into the soil.

b. Slurry Made with Hydrated Lime
 Create a lime slurry by mixing 30 percent dry lime solids, by weight, with 70 percent water. Mix slurry in agitating equipment, and continue to agitate until arriving at the roadbed. Spread slurry on the scarified area with distributing equipment.

c. Slurry Made by Slaking Quicklime
 Create a lime slurry by slaking quicklime using special equipment at or near the Project site. Obtain the Engineer’s approval for all equipment and procedures before work begins

E. Mix Lime

1. General
 Maintain the moisture content of the material at its specified optimum or not more than 5 percent over the optimum, at all times.

 Add water during mixing if necessary, even if the material has the optimum moisture content to sustain the chemical reaction between lime and water.

 Mix the material the same as for “Dry Application” or “Slurry Application” unless indicated otherwise.

a. Immediately after applying the lime:
 1) Scarify and mix to the required depth and width.
 2) If the depth to be treated, as shown on the Plans, is more than 6 in (150 mm) compacted, treat in approximately equal layers of not more than 6 in (150 mm) deep.
 3) When multi-layer construction is required, blade the upper layers of the compacted soil in windrows outside the area to be treated until the lower layer is mixed, compacted, and approved by the Engineer.
 4) Blade each successive layer back into place, shape and treat it with lime, mix, compact and shape to typical section. Include the cost of this manipulation in the bid price.

b. Control scarifying and mixing to provide uniform depth. Make the crown of the undisturbed soil underneath conform as closely as possible to the crown of the finished course.

c. Until the lime is incorporated or mixed, allow only spreading, watering, or mixing equipment to drive over the section being processed.

d. Determine bulking factors from the dry weight of laboratory-tested raw and lime treated soils. Furnish a finished course of lime treated material that conforms to the specified thickness and surface requirements in the Plans.
2. Mix Lime (Initial)
 a. Class A or Class B Lime Treatment
 1) Incorporate lime and water with rotary mixers until uniform. The mixture must pass through a 2 in (50 mm) sieve.
 2) Add the amount of water necessary to produce a moisture content of no less than 5 percent below the mixture’s optimum moisture content or no more than 5 percent above optimum moisture content. See GDT 19.
 3) After mixing is complete, reshape the treated course to the approximate line, grade, and typical section.
 4) Seal with a light, pneumatic-tired roller and other approved equipment, as necessary.
 5) Mellow 3 to 14 days, as determined by the Engineer. During this mellowing period, keep the entire surface of the treated course moist.
 b. Class C Lime Treatment
 1) Incorporate lime and water with rotary mixers until uniform. Continue to mix and add water until obtaining a homogeneous mixture of soil, lime, and water that is satisfactory to the Engineer.
 2) After mixing and applying water, ensure that 100 percent of the material by dry weight passes a 1.5 in (37.5 mm) sieve and 80 percent by dry weight passes a No. 4 (4.75 mm) sieve.

3. Mix and Pulverize Lime (Final)
 The following applies to Class A and Class B lime treatments only.
 a. After the required mellowing period, scarify the layer.
 b. After a Class A treatment, add the second application of lime.
 c. Remix the layer as prescribed in the initial mixing operations, adding water as necessary.
 d. Continue mixing until 100 percent of the material by dry weight, exclusive of gravel and stone, passes a 2 in (50 mm) sieve and 60 percent passes a No. 4 (4.75 mm) sieve.
 e. Ensure that the percent of moisture is at or above the laboratory specified optimum moisture.
 f. If mixing cannot be completed in one day, seal the surface of the layer with a rubber-tired roller. Continue the process the next day, weather permitting.

F. Compact Lime Layer
 Compact the material according to the following requirements and to Subsection 225.3.06.B, “Finishing Requirements” for finishing.

1. Class A and B Lime Treatments
 Compact the mixture immediately after completing the final mixing.
2. Class C Lime Treatment
 Compact the mixture immediately after completing the first and only mixing.
3. Class A, B, and C Treatments
 a. Complete compaction operations during one working day.
 b. Keep the moisture content of the material uniform when compacting. Maintain the material at optimum moisture content or up to two percent over the optimum content.
 c. Compact uniformly and continuously, beginning at the bottom. Use sheepsfoot-type rollers. Continue until the entire depth of the mixture is compacted to the required density specified in Subsection 225.3.06.A.
 d. Immediately correct depressions or soft spots that develop in the compacted areas with the following methods:
 1) Scarify the area.
 2) Add lime when required.
 3) Remove the material when required.
 4) Reshape and compact.
 e. Stop compaction and remove the sheepsfoot-type roller when a layer of loose soil not exceeding 1 in (25 mm) remains.
 f. In addition to the requirements specified for density, compact the full depth of the mixture to the extent necessary for it to remain stable under construction equipment.
225.3.06

G. Cure Lime (Final)

1. General
 a. After the lime-treated soil has been finished as specified in Subsection 225.3.06.B, keep it moist for 7 days.
 b. Lime stabilized subgrade or embankment may be cured by applying water to maintain the course moist during curing.
 c. To protect a lime-stabilized base, subbase, or shoulder course, apply bituminous prime material (see Subsection 225.2.D) according to Section 412.
 d. Apply the prime as soon as possible, but not later than 24 hours after completing the finishing operations, unless delayed by wet weather. If delayed, apply prime as soon as the surface is sufficiently dry.
 e. Ensure the lime-treated soil surface is free of all loose and extraneous material and that it contains sufficient moisture to prevent excessive penetration of the bituminous material.
 f. If directed by the Engineer, sweep the lime-treated soil clean of loose material before applying the prime.

2. Apply the Prime
 a. Apply the bituminous material uniformly to the surface of the lime-treated soil at the rate of 0.15 to 0.30 gal/yd² (0.70 to 1.4 L/m²).
 b. Properly maintain the material during the entire curing period so that all of the lime-treated soil will be covered effectively during this period.
 c. Complete curing prior to placing subsequent layers of material.

3. Protect Lime Layer
 a. If necessary, open completed sections of the lime-treated soil to lightweight local traffic. Make sure the curing is not impaired and that the treated sections have hardened sufficiently to prevent marring or distorting the surface.
 b. Use construction equipment on the lime-treated soil only to discharge material into the spreader during base or paving operations or except as may be permitted for embankment construction.

225.3.06 Quality Acceptance

A. Density Requirements

After shaping the mixture to line, grade, and cross-section specifications, roll the course until uniformly compacted as determined by GDT 19. Use the percentages of maximum dry density in the following table. Determine the in-place density according to GDT 20, GDT 21, or GDT 59, as applicable.

<table>
<thead>
<tr>
<th>Description</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>All base, subbase, or shoulder courses</td>
<td>100%</td>
</tr>
<tr>
<td>Top 1 ft (300 mm) of embankment (subgrade)</td>
<td>100%</td>
</tr>
<tr>
<td>To within 1 ft (300 mm) of the top of the embankment</td>
<td>95%</td>
</tr>
</tbody>
</table>

B. Finishing Requirements

Ensure that the surface of the completed lime-stabilized layer conforms to the lines, grades, and cross-sections shown on the Plans or established by the Engineer and meets the following characteristics:

☐ Uniform lime mixture
☐ Smooth
☐ Dense
☐ Well-bonded
☐ Unyielding
☐ Free of cracks or loose material

Ensure that surface requirements meet the following Specifications:

<table>
<thead>
<tr>
<th>Subgrade</th>
<th>Section 209.3.05.E.</th>
<th>Section 301</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base, subbase, or shoulder course</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C. Thickness
 If necessary, reconstruct the course or add lime to the course at no additional cost to the Department.
 1. Determine the thickness of the lime-stabilized layer, according to GDT 42, at intervals not to exceed 500 ft (150 m).
 2. The thickness of the entire layer shall not vary more than 1 in (25 mm), plus or minus, from the thickness shown on the Plans.
 3. Immediately reconstruct any section deficient by more than 1 in (25 mm) according to this Specification and the Plans.
 4. Add additional lime to correct the deficiency of any section exceeding the 1 in (25 mm) tolerance. Remix to the specified depth and width according to this Specification and the Plans.

225.3.07 Contractor Warranty and Maintenance
Perform the following work at no cost to the Department. Repeat this work as often as necessary to keep the lime-treated soil intact.

- Maintain the lime-treated soil in good condition until The Work is completed and accepted.
- Maintain a smooth surface on the course by blading.
- Immediately repair any defects that occur.

225.4 Measurement
A. Soil-Lime Material
 If it is necessary to add other material to the roadbed, or to build the base or subbase entirely with new material, soil-lime material is measured by loose volume cubic yard (meter), as specified in Section 109.

B. Soil-Lime Treated Roadbed, Subbase, and Base Course
 If payment is specified by the square yard (meter), soil-lime treated roadbed, subbase, and base course are measured with the methods used for soil-cement specified in Section 301.

C. Lime
 - Lime is measured by the ton (megagram).
 - If quicklime (CaO) is slaked on the job in an approved mixing tank to produce a lime slurry, the pay quantity for lime is measured in ton (megagram) of hydrated lime. The pay quantity is calculated using the certified lime purity for each truckload as follows:
 \[\text{Total Weight of Hydrated Lime Produced, ton (Mg)} = (A \times B \times 1.32) + A \times C \]
 Where:
 - \(A\) = actual quicklime delivered
 - \(B\) = certified % purity
 - \(C\) = % inert material
 - 1.32 = ratio of molecular weights for hydrated lime (74) and pure quicklime (56)
 - If quicklime is spread on the roadbed in a dry application, it is measured by the ton (megagram) based on invoice weight.
 - The formula for converting quicklime to hydrated lime does not apply for dry applications.

D. Prime
 Bituminous prime is not measured for separate payment. Application will be according to Section 412.

E. Unsuitable Material
 Unsuitable materials removed from the roadbed are measured according to the Earthwork Item in the Contract.

225.4.01 Limits
General Provisions 101 through 150.
225.5

225.5 Payment

A. Soil-Lime Material

If material is mixed on the job, it may be necessary to add other materials to the roadbed or to build up the base or subbase entirely with new materials. Any additional soil-lime material will be paid at the Contract Price per square yard (meter) or per cubic yard (meter) when in place and accepted.

Payment will be full compensation for the following:

- Shaping and compacting the existing roadbed
- All materials except lime
- Loading and unloading materials
- Hauling materials
- Crushing, processing, mixing, spreading, watering, compacting, and shaping materials
- Maintenance
- All other incidentals necessary to complete the work

B. Soil-Lime Treated Roadbed Base and Subbase Course

A course of soil-lime treated roadbed base and subbase will be paid for at the Contract Price per square yard (meter) when in place and accepted. Payment will be full compensation for the following:

- Preparing the roadbed
- Mixing on the road
- Shaping, pulverizing, watering, and compacting materials
- Repairing all defects
- Maintenance

C. Pre-mixed Soil-Lime Treated Base and Subbase Course

A course of pre-mixed soil-lime treated base and subbase will be paid for at the Contract Price per ton (megagram) or per square yard (meter) when completed, in place and accepted.

Payment will be full compensation for the following:

- Shaping and compacting the existing roadbed
- All materials except lime
- Loading and unloading materials
- Hauling materials
- Crushing, processing, mixing, spreading, watering, compacting, and shaping materials
- Maintenance
- All other incidentals necessary to complete the work.

D. Lime

Only lime in the finished course or courses will be paid at the Contract Price per ton (megagram). Payment will be full compensation for furnishing, hauling, and applying the material.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 225</th>
<th>Soil-lime material—including material and haul</th>
<th>Per cubic yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 225</td>
<td>Soil-lime treated (roadbed, base, subbase or shoulder course), class _____, thickness _____</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 225</td>
<td>Lime</td>
<td>Per ton (megagram)</td>
</tr>
</tbody>
</table>

225.5.01 Adjustments

No payment will be made for lime used to correct defects due to faulty equipment or negligence.

Payment will not be made for any lime spread and exposed for four hours or more prior to mixing. Treat such areas again with the full required rate of application.
Add lime, at no additional cost to the Department, to any section on which washing or blowing prior to mixing caused excessive lime loss.

Reconstruct areas, at no cost to the Department, on which lime-treated soil was constructed but not covered with a layer of pavement, base, or other construction material during the same construction season.

The Engineer will test each section as it is completed. Scarify, moisten, rework, and compact any section with a density less than the specified requirements according to the requirements of these Specifications and at no additional cost to the Department.

No payment will be made for lime application exceeding the 10 percent plus tolerance. When the quantity applied is deficient by more than 10 percent, additional lime shall be applied prior to mixing at the Contractor’s expense.

Section 230—Lump Sum Construction

230.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 231—Miscellaneous Construction, Unpaved Roads and Streets

231.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 232—Railroad Construction

232.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 233—Haul Roads

233.1 General Description
This work includes maintaining and repairing haul roads that are county roads and city streets within the State of Georgia. Haul roads on the State Highway System are not included.

233.1.01 Definitions
Haul roads: Routes used for transporting materials to a Project. Haul roads include routes described in the Contract and alternate routes approved by the Engineer.

233.1.02 Related References
A. Standard Specifications
 Section 109—Measurement and Payment
 Section 209—Subgrade Construction
 Section 317—Reconstructed Base Course
 Section 400—Hot Mix Asphaltic Concrete Construction
 Section 412—Bituminous Prime
 Section 413—Bituminous Tack Coat
 Section 424—Bituminous Surface Treatment
233.1.03

B. Referenced Documents

Form HD-561
Form HD-561A

233.1.03 Submittals

If substituting a different road for a haul road designated in the Contract, conduct an inspection of the proposed haul road in conjunction with the Engineer and the governmental agency or political subdivision charged with the control and maintenance of the route.

☐ After the inspection, prepare an agreement using Form HD-561A, which states existing conditions, maintenance conditions during hauling, and restoration after hauling is completed.

☐ Sign the agreement together with the governmental agency or political subdivision.

☐ Submit the agreement for the Engineer’s approval before hauling materials on the proposed route.

233.2 Materials

Restore haul roads with materials that meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer Aggregate (Type I)</td>
<td>209</td>
</tr>
<tr>
<td>Reconstructed Base Course</td>
<td>317</td>
</tr>
<tr>
<td>Asphalitic Concrete</td>
<td>400</td>
</tr>
<tr>
<td>Bituminous Prime</td>
<td>412</td>
</tr>
<tr>
<td>Bituminous Tack Coat</td>
<td>413</td>
</tr>
<tr>
<td>Bituminous Surface Treatment</td>
<td>424</td>
</tr>
</tbody>
</table>

If any of the above materials are specified in the original Contract under a modified Specification, furnish materials for haul road maintenance and restoration under the same modified Specification.

233.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

233.3 Construction Requirements

Maintain the haul road to the Engineer’s satisfaction during hauling.

233.3.01 Personnel

General Provisions 101 through 150.

233.3.02 Equipment

General Provisions 101 through 150.

233.3.03 Preparation

The Department will determine sources of local materials and commercially produced aggregates and which haul roads exist for transporting the materials.

233.3.04 Fabrication

General Provisions 101 through 150.

233.3.05 Construction

A. Restoration Requirements

When hauling operations are completed, restore the haul road to a condition equal to that which existed before hauling operations were started.

☐ The Engineer will determine the kind and amount of restoration work required and the procedures and requirements to follow.
An obligation to maintain and restore the road will not be relieved in the event that other traffic uses the haul road concurrently.

If another contractor who is also under contract with the Department hauls material over the same route, the Engineer will determine the amount of maintenance and restoration obligation for each contractor.

233.3.06 Quality Acceptance

A. Inspection

When the restoration work on a haul road is completed, a joint inspection of the haul road route will be made under the jurisdiction of a governmental agency or political subdivision other than the Department.

- Inspect the road in conjunction with the Engineer and the governmental agency or political subdivision charged with the control and maintenance of the restored road.
- The Engineer will obtain two copies of the executed Haul Road Release, part of Form HD-561 or HD-561A.
- If using a substitute road, the Contractor must obtain the forms specified above and submit them to the Engineer.

233.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

233.4 Measurement

Materials ordered by the Engineer for maintaining and restoring haul roads are measured as defined in the applicable section of the Specifications.

If using a substitute haul road, materials are measured for payment according to the quantities shown on the Plans for the original haul road. Quantities of materials used above those shown on the Plans will not be measured for payment.

Blading and shaping costs necessary for maintaining and restoring haul roads are not measured for payment.

233.4.01 Limits

General Provisions 101 through 150.

233.5 Payment

Stabilizer aggregate will be paid for under the requirements of Section 209.

All materials, measured as stated above, will be paid at the Contract Price for the Items shown on the Plans and listed in the Proposal.

When the Engineer orders materials other than those listed above, they will be paid on a force account basis under Subsection 109.05, “Extra Work.”

233.5.01 Adjustments

General Provisions 101 through 150.

Section 300—General Specifications for Base and Subbase Courses

300.1 General Description

This Specification applies to all base and subbase courses, except asphaltic concrete. Additional requirements for each type of base and subbase are described in the appropriate Sections for specific base and subbase type construction.

300.1.01 Definitions

General Provisions 101 through 150.

300.1.02 Related References

A. Standard Specifications

- Section 106—Control of Materials
- Section 107—Legal Regulations and Responsibility to the Public
- Section 109—Measurement and Payment
300.1.03

Section 150—Traffic Control
Section 152—Field Laboratory Building
Section 160—Reclamation of Material Pits and Waste Areas
Section 205—Roadway Excavation
Section 206—Borrow Excavation
Section 209—Subgrade Construction
Section 301—Soil-Cement Construction
Section 302—Sand-Bituminous Stabilized Base Course
Section 310—Graded Aggregate Construction
Section 316—Cement Stabilized Graded Aggregate Construction
Section 412—Bituminous Prime
Section 831—Admixtures

B. Referenced Documents

Form OMR-TM-141 Daily Truck Weights
Form 474 Tally Sheet

300.1.03 Submittals

General Provisions 101 through 150.

300.2 Materials

Find the Specifications for materials to be used and the references for them under the appropriate Section for each base and subbase type construction.

Ensure that each material meets the requirements for the type specified. Incorporate only materials that meet the Engineer’s approval.

Admixtures meeting the requirements of Subsection 831.2.03 and approved for use in stabilized bases or subbases shall be governed by the requirements as outlined in Laboratory Standard Operating Procedure No. 5, Quality Control of Portland Cement and Blended Hydraulic Cements and Quality Control of Fly Ash and Granulated Blast-Furnace Slag.

A. Selecting Local Materials at the Source

The Engineer has the authority to classify materials at the source and require the materials to be excavated in the proper sequence so that each kind will reach its destination at the best location for that material in the finished work. The Engineer has the authority to reject any unsuitable materials.

B. Sources of Local Materials Outside the Right-of-Way

Follow the provisions of Subsection 106.10, “Local Material Sources” to obtain materials from local sources outside the right-of-way.

300.2.01 Delivery, Storage, and Handling

A. Storing at Central Mix Plants

Store material at a plant site with enough space for separate stockpiles, bins, or stalls for each size of aggregate. Keep aggregates separated until delivery to the plant feeders for proportioning. Keep the storage yard neat and the stockpiles, bins, and stalls accessible for obtaining samples.

300.3 Construction Requirements

300.3.01 Personnel

Supply all personnel and equipment necessary for obtaining samples from base plants and delivering them to the plant laboratory.
300.3.02 Equipment

Ensure that all equipment for constructing base and subbase courses is of an approved design and in satisfactory condition before construction begins. The equipment required for each type of base or subbase will be determined according to the construction method used.

A. Central Mix Plants

The central mixing plant will not be approved for proportioning, batching, or mixing unless a field laboratory meeting the requirements of Section 152 is available for the exclusive use of the Engineer or Inspector.

Design, coordinate, and operate plants so that the mixture is produced within the specified tolerances. The requirements are as follows.

1. Scales
 Before any mixture is delivered to the Project, check all scales with standard weights for accuracy and for agreement with each other.
 If weight proportioning is used, provide accurate scales so all ingredients of the mixture can be weighed separately. Use scales that are accurate to within 0.5 percent of the measured load. Support scales with rigid supports so that vibration from the plant does not interfere with accurate readings.
 a. Weight Box and Hopper Scales
 Use springless dial scales of a standard make and design for weight boxes and hopper. Inspect and seal scales when the Engineer determines it necessary to assure accuracy. Ensure that at least ten 50 lb. (25 kg) weights are available for testing the scales.
 b. Motor Truck Scales
 With each plant, include a motor truck scale with a platform large enough to accommodate the entire length of any vehicle used. Ensure that the scale is certified according to Section 109 and is large enough to weigh the largest anticipated load. Do not measure weights greater than the rated capacity of the scales.
 Ensure that the weights of the aggregate batches in the truck before delivery to the Project are within two percent of the sum of the weights of the batch ingredients.
 Complete Forms OMR-TM-141 (Daily Truck Weights) and Form 474 (Tally Sheet) for each day’s production and submit them to the Engineer.

2. Mixer
 Equip each central mix plant with an approved mixer.
 If Portland cement is required, begin mixing immediately after the cement is added to the coarse aggregate and soil mortar. Continue mixing until a homogeneous and uniform mixture is produced.
 If the equipment does not produce a homogeneous and uniform mixture that meets these Specifications, the Engineer will require the Contractor to make the changes necessary to accomplish this result.
 Any adjustments made to the charge in a batch mixer or the rate of feed to a continuous mixer must ensure a complete mix of all of the material.
 Correct dead areas in the mixer where the material does not move or is not sufficiently agitated, by reducing the volume of material or by making other adjustments.

3. Mixture Proportioning
 Add Portland cement, bituminous materials, aggregates, or other ingredients in such a manner that they are uniformly distributed throughout the mixture during the mixing operation.

4. Water Proportioning
 In all plants, proportion water by weight. Provide a means for the Engineer to verify the amount of water per batch or the rate of flow for continuous mixing.
 Use spray bars to evenly distribute moisture throughout the mixture.

5. Sampling
 Use sampling equipment approved by the Engineer to obtain samples before combining them with other ingredients or introducing them into the mixer.
 Use sampling equipment to provide an accurate representation of the furnished material.
6. Additional Requirements for Continuous-Mixing Plants
 a. Feeder System
 Continuous mixing plants shall use a feeder system that accurately proportions aggregate from each bin by weight.
 Equip each feeder with a device that can change the quantity of material being fed. Use a feeder with adjustments that can be securely fastened.
 Ensure that the plant has an interlocking system of feeders and conveyors that can be synchronized to supply a continuous flow of aggregate, including a positive flow of dry and liquid additives for mixing.
 Provide an electronic belt-weighing device to monitor the combined aggregates. Ensure that there are meters for maintaining the aggregates and additives at varying production rates.
 Use an electronic control package capable of tracking which accepts a signal from the belt-weighing device and signals to continuously vary the dry and liquid additive feeder speed and maintain the feed rate.
 Proportion dry additives with a gravimetric (depleting weight) system meeting the following requirements:

 □ The dry additive gravimetric (depleting weight) system includes an isolation vessel supported by load cells independent of the fines silo.
 □ Use load cells in conjunction with an electronic scale package having remote digital display and the necessary controls. Continuously weigh the material being metered with a positive displacement feeder mounted on the discharge of the isolation vessel.

 b. Control System
 Use a control package that has a plant interlock shutdown capability. Plants must be able to shut down if actual flow rates differ from desired flow rates excessively. If the flow rate deviates excessively, an alarm shall sound at any of the aggregate, dry additive, or liquid additive metering devices.
 Provide a monitoring station to control the entire operation that shows continuous quantitative data on the production and proportioning of the mix ingredients.

 c. Portable Power Units
 Equip plants that use portable electric power generators with a frequency meter (graduated and accurate to one hertz) and a voltmeter (graduated and accurate to two volts), installed in the power circuit.

 d. Mixer
 Use a mixer equipped with enough paddles or blades to produce a uniform and homogeneous mixture. Replace paddle blades that show more than 25 percent wear in the face area. Use paddles that can be adjusted to angular positions on the shafts and that can be reversed to retard the flow of the mix. Keep the mixer level.

 e. Surge Hopper
 Equip the mixer with a surge hopper. Use a surge hopper that automatically discharges the mixture when it reaches a predetermined level.

7. Additional Requirements For Batch-Mixing Plants
 a. Weigh Box or Hopper
 Use weigh boxes and hoppers that are suspended on scales, large enough to hold a full batch without spilling or needing hand raking, and equipped with a device for accurately weighing each size of aggregate.
 Provide a convenient and accurate means of obtaining samples of aggregates from each bin before the material enters the mixing chamber. Equip each bin compartment with a bin level indicator that automatically stops weighing when a bin is empty.

 b. Mixer
 Include an approved, leak-proof batch mixer in the plant. Use a mixer fast enough or equipped with enough paddles or blades to produce a properly and uniformly mixed batch. Replace paddles and blades that show more than 25 percent wear in the face area.

 c. Weighing Cement
 Weigh cement on scales separate from the aggregate batching scales. Ensure that all scales meet the requirements of Section 109.
d. Proportioning Bituminous
 Introduce bituminous material into the mixer through spray bars and weigh it on scales separate from the aggregate batching scales.

e. Control of Mixing Time
 Use a time-locking device that automatically limits mixing time. Do not mix materials less than 30 seconds.

B. In-Place Mixers
 For in-place mixing operations, use mixers that meet the following requirements:
 1. Multiple Pass Mixers
 Use approved rotary-type multiple pass mixers with sufficient tines that mix cement, soil or soil-aggregate, and water uniformly for the full depth of the course.
 2. Traveling Plant Mixers
 Use approved traveling mixing plants to pick up the aggregate, soil, or other materials from the windrow or roadway. Use plants equipped with a bottom shell or pan that pick up and mix the material while it is separated from the foundation material during at least 50 percent of the mixing cycle.
 Use plants that mix the material for the full depth of the section. Ensure that travelling plants move forward with successive increments the length and width of the roadbed so that the roadbed is compacted and finished in one operation. Ensure that none of the materials being mixed are lost or segregated.
 Use plants mounted on wheels or crawler tracks wide enough so that they will not rut or damage the mixed surface when loaded to capacity.
 Use plants with a pressurized metering device that introduces water during mixing.
 Ensure that devices for proportioning water and materials to be mixed accurately measures the specified amounts while the machine is in motion.
 For bituminous stabilization, use plants equipped with a metering device that accurately measures the bituminous material into the mixer within the tolerances specified in Section 302.3.05.B. Ensure that the meter indicator dial has a scale with divisions indicating gallons (liters).
 If mixing equipment does not produce a homogeneous and uniform mixture, make the changes necessary to produce this result, as required by the Engineer.

C. Mechanical Cement Spreader
 When the material is to be mixed in-place, use an approved mechanical cement spreader to uniformly and accurately spread the cement. Do not use pneumatic tubes to transfer the cement from the tanker to the material to be stabilized.

D. Mixture Spreader
 Use an approved mechanical spreader that meets the following requirements to uniformly spread the mixture:
 - A height-adjustable strike-off plate to obtain the specified thickness of the finished base
 - A self-propelled spreader with rollers to contact the truck tires and push the truck without skewing the spreader or truck
 - A hopper large enough to prevent spilling or wasting the material

E. Static Rollers
 Use static rollers that meet the following requirements. Use self-propelled static rollers on cement stabilized base.
 1. Trench Roller
 In this context, “roller” describes a wheel made of a flat metal surface; “wheel” describes a rubber wheel of the automotive type.
 When base widening is specified, use at least one trench roller. Use a trench roller that has a guiding roller or wheel that operates in tandem with the compression roller on the area to be compacted or with the auxiliary wheel or roller.
 Ensure that the trench roller is equipped with an auxiliary wheel or roller, mounted on a height-adjustable axle. The contact surface of the auxiliary wheel or roller must be adjustable to at least 10 in (250 mm) above and 2 in (50 mm) below the rolling plane of the compression roller. If this adjustment is not sufficient to compact the subgrade to the Plan elevation, adjust the contact surface the necessary amount.
 If the steering roller or wheel operates in tandem with the auxiliary wheel or roller, it does not need to be height-adjustable.
Ensure that the auxiliary wheel or roller operates on the surface of the pavement adjacent to the area to be compacted, and at a distance from the edge of the pavement that no damage occurs. Keep the height adjustment of the auxiliary wheel or roller such that the compression roller will develop a smooth, compacted surface true to crown.

Use gas-propelled trench rollers equipped with reversing, smooth operating friction clutches. Ensure that friction clutches have smooth operating brakes of ample capacity. Use either hand-powered or power-operated steering devices.

The compression per inch (25 mm) width of compression roller shall not be less than 300 lbs (545 kg) and not greater than 365 lbs (660 kg). If necessary, use a hollow compression roller and secure the minimum weight with liquid ballast. The trench roller must compact a minimum width of at least 15 in (375 mm).

Fit rollers with adjustable spring scrapers that can scrape in both directions.

2. Steel-Wheel Rollers
 Use three-wheel or tandem steel-wheel rollers. Use self-propelled rollers equipped with cleaning devices to prevent material from adhering to the wheels.
 For base or subbase materials, use 3-wheel rollers on base or subbase materials that have a minimum weight of 10 tons (9 Mg) and a minimum compression of 325 pounds per inch (580 kg/100 mm) of width for the rear wheels.
 Use steel wheel tandem rollers with a minimum weight of 10 tons (9 Mg) and a minimum compression of 225 pounds per inch (400 kg/100 mm) of width for the rear drum.

3. Pneumatic-Tire Rollers
 Use pneumatic-tire rollers with a minimum contact pressure of 50 psi (345 kPa) per wheel.
 Equip rollers to uniformly distribute the load between all wheels.
 Use multiple axle, multiple wheel rollers with wheels staggered on the axles and spaces between each wheel to provide uniform compaction for the full compacting width of roller.
 Ensure that the air pressure of any tire does not vary more than 5 psi (35 kPa) from the established pressure.
 Operate rollers between 3 mph (5 kph) and 8 mph (13 kph), unless otherwise directed by the Engineer.

4. Sheepsfoot Rollers
 Use vibratory or static compaction sheepsfoot rollers of sufficient size and weight to obtain the desired compaction.

F. Vibratory Rollers
 Use an approved vibratory roller designed to activate the frequency of vibration and the roller movement separately.
 Ensure that the weight and amplitude of the roller can compact the surface to Specifications with a minimum number of passes.

G. Bituminous Sampling Valve
 Use bituminous transfer pumps that include a valve for sampling bituminous materials.

H. Fine Grading Machine
 Specifications for the Fine Grading Machine are included in either a Special Provision or a Supplemental Specification in the Proposal or in the current Supplemental Specification book.

300.3.03 Preparation
A. Alternate Methods
 When alternate methods of construction are provided without restriction, the Contractor may select these alternate methods at will, provided the equipment and organization are suited to the method selected. Before starting construction, discuss the proposed method with the Engineer. The method selected must:
 - Spread base or subbase material uniformly without damaging the subgrade, subbase, or the material being placed
 - Mix the materials until they are homogeneous
 - Use the specified water and cement or bitumen content
 - Compact throughout the depth of the course to the density specified
 - Complete the work within the specified time limits

Organize the work and equipment so that spreading, compacting, and finishing the base or subbase is a continuous operation. Do not exceed minimum or maximum time limits where the detailed Specifications require them, except in unusual cases where permitted by the Engineer.
B. Preparing the Pit Site

Remove grass, weeds, roots, and other debris from local materials pits. Adhere to the requirements of Subsection 107.23, “Environmental Considerations” when performing this work. Include the cost in the prices bid for the pertinent Pay Items. This work is not considered as clearing and grubbing.

C. Preparing the Subgrade

If the subgrade does not meet the requirements of Section 209 for surface, compaction, and stability, repair all defective portions until it meets the requirements of that Section. Remove unsuitable materials and replace with acceptable material, if necessary. Compact the subgrade as specified in Section 209.

Have enough prepared subgrade meeting the requirements of Section 209 for at least one day of base construction before beginning work.

D. Preparing the Subbase

If a subbase is required, prepare it according to the requirements for surface and compaction. Ensure that it is stable enough to support the equipment that will place the base material without rutting or pumping. Repair all defective portions and replace any unsuitable material with acceptable material, if the subbase does not meet the requirements of the Specifications.

300.3.04 Fabrication

General Provisions 101 through 150.

300.3.05 Construction

A. Draining and Leaving Materials Pits

Keep materials pits well drained while materials are being removed from them. After removing materials, leave pits in the condition required by Section 106 and Section 160.

B. Mining and Mixing in a Pit

Mine all local materials pits within the pit boundaries and grid depths established by the Engineer.

Mine all materials from top to bottom. Mix materials in the pit before hauling to the roadbed or plant.

Place materials in windrows or stockpiles with a dragline or backhoe. Blend the gradation and moisture strata from each pit to a uniform mixture.

When a rim ditch is required and its depth exceeds the specified grid depth of soil-cement material, include only the material above the grid depth as base material. Use this material for the windrow or stockpile of material to be used for soil-cement base unless the Engineer determines that below-the-grid material is satisfactory.

Only use ladder pans and scrapers for stockpiling and windrow in pits that are less than 18 in (450 mm) deep.

After the preliminary mixing, prevent the coarse materials from segregating from the fine materials with loading equipment that continues to blend the material.

C. Placing Materials

1. Mixture Control

The Engineer will determine the proportions of the materials to be used in compounding the base or subbase. The Engineer will determine the analysis basis of the components.

Change the mix, if required by the Engineer, to ensure that the finished base meets the requirements of these Specifications.

2. Moisture Control

Control the moisture content according to the specified requirements for each type of base or subbase.

Add water uniformly, allow it to evaporate or aerate, and roll the materials as often as necessary, to control the moisture content within the limits specified.

3. Number of Courses

Because the maximum thickness of base or subbase materials to be mixed or spread in one course varies with the equipment used, it is subject to the Engineer’s approval. Ensure that the thickness meets the requirements of Subsection 300.3.05.C.5, “Compaction.”
4. Widening Work

Ensure that widening work conforms to Section 150.
When widening in traffic areas, excavate an area that can be completed in the same day.
When widening pavement on which there is traffic on both sides, stagger operations to keep the widening trench open in one lane of traffic at a time.

5. Compaction

Compact the entire thickness of all bases and subbases to the specified maximum dry weight per cubic foot (meter), as determined by the method specified in the Section for each base or subbase.

If any base or subbase is more than 6 in (150 mm) thick, construct according to the following table for layer thickness:

<table>
<thead>
<tr>
<th>Material</th>
<th>Layer Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topsoil, Sand-Clay, or Chert</td>
<td>Two equal layers, or one layer not to exceed 8 in (200 mm)</td>
</tr>
<tr>
<td>Graded Aggregate</td>
<td>Two equal layers, or one layer not to exceed 8 in (200 mm)</td>
</tr>
<tr>
<td>Cement Stabilized Graded Aggregate</td>
<td>Two equal layers, or one layer not to exceed 8 in (200 mm)</td>
</tr>
<tr>
<td>Cement Stabilized Soil Aggregate</td>
<td>Two equal layers, or one layer not to exceed 8 in (200 mm)</td>
</tr>
<tr>
<td>Sand Bituminous</td>
<td>Two equal layers, or one layer not to exceed 8 in (200 mm)</td>
</tr>
<tr>
<td>Soil-Cement</td>
<td>One layer not to exceed 8 in (200 mm)</td>
</tr>
</tbody>
</table>

D. Meeting Surface Requirements

Produce a smooth, uniform surface that complies with these Specifications.

Rebuild any areas that do not meet the requirements or remove or add material to the area until the Engineer approves of the Work.

300.3.06 Quality Acceptance

A. Monitoring Quality Control

Ensure that the mixture and the materials used meet the following quality controls:

- Before producing any mixture for the Project, calibrate the electronic sensors, devices, or settings for proportioning all mixture ingredients by scale weight. Calibrate in the presence of the Engineer, the proportioning of every ingredient for all rates of production.
- Maintain a dated, written record of the most recent calibration. Post the calibration at the base plant and make the record available for the Engineer’s inspection at all times. Format records as graphs, tables, charts, or mechanically prepared data. If the material changes, the rate of production changes by more than +/- 20%, the plant is not producing base material for more than two weeks, or if a component affecting the ingredient proportions has been repaired, replaced, or adjusted, check and recalibrate the proportions.
- Verify the moisture of the mixture being produced. Perform checks on ingredient proportioning and verify truck weight as directed by the Engineer.
 Provide quality control personnel and all necessary equipment to perform and document moisture tests. Perform moisture tests at a frequency of at least one test per hour of base plant production.

B. Repairing Defects

During construction: If materials that do not meet these Specifications are placed on the roadway at any time during construction, remove and replace them with acceptable materials as a part of the Pay Item for the base or subbase being constructed.

After construction: Promptly correct defects discovered in the surface finish, thickness, or compaction of the completed base or subbase before The Work is accepted.

- If the base, subbase, or shoulders are deficient in thickness and it is determined that the subgrade elevation is high, remove the materials, lower the subgrade, and reconstruct the course, according to these Specifications at no cost to the Department.
- If job conditions permit and the Engineer mandates, correct areas deficient in thickness by raising the elevation of the surface or adding material to the course.
In other cases, the Engineer may determine that the defective portions must be entirely removed. Add, mix, spread, and compact new material according to the Specifications and at no cost to the Department.

If a surface is less than 3 in (75 mm) deep, scarify the area to a depth of at least 3 in (75 mm), except in the case of stabilized bases or subbases. Mix and compact the new and old materials.

Repair stabilized bases or subbases according to Section 301, Section 302, Section 310, or Section 316, whichever is applicable.

300.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

300.4 Measurement
Base and Subbase courses will be measured in accordance with the Specification Section for the item.

Bituminous prime will not be measured for separate payment.

300.4.01 Limits
General Provisions 101 through 150.

300.5 Payment
Base and Subbase courses will be paid for in accordance with the Specification Section for the item. Include the cost of furnishing and applying bituminous prime in the Unit Price Bid for each individual Base Item according to the applicable provisions of Section 412.

No separate payment will be made for adding water or for aerating or rolling for the purpose of adding water. Include the cost of controlling moisture content in the prices bid for the pertinent Pay Items.

Separate payment will be made only for clearing and grubbing listed in the Proposal or required in the Plans and designated a Pay Item by the Engineer.

No separate payment will be made for stripping excavation unless shown on the Plans and included in the Proposal as a Pay Item.

300.5.01 Adjustments
If the Contractor for the subbase or base is responsible for the subgrade under another Pay Item, no additional payment will be made for any repairs made to the subgrade, except as provided in Section 209.

If another party (not the Contractor) is responsible for the subgrade, removing unsuitable materials will be paid for according to the Earthwork Item in the Contract.

Include compaction, scarification, and any other preparation necessary for the subgrade in the Unit Price Bid for the pertinent base course.

Section 301—Soil-Cement Construction

301.1 General Description
This work includes constructing a base, subbase, or shoulder course composed of soil, or a mixture of soils, and stabilizing with Portland cement. Construct according to these Specifications and conform to the lines, grades, and typical sections shown on the Plans or established by the Engineer.

The provisions in Section 300 apply to this Item.

301.1.01 Definitions
General Provisions 101 through 150.

301.1.02 Related References
A. Standard Specifications
 Section 109—Measurement and Payment
 Section 205—Roadway Excavation
301.2

Section 300—General Specifications for Base and Subbase Courses
Section 412—Bituminous Prime
Section 814—Soil Base Materials
Section 821—Cutback Asphalt
Section 830—Portland Cement
Section 831—Admixtures
Section 880—Water

B. Referenced Documents
GDT 19
GDT 20
GDT 21
GDT 59
GDT 67
GDT 86
AASHTO T 134

301.1.03 Submittals
Before constructing a test section, submit a Construction Work Plan to the Engineer for approval.

301.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil-Cement Material</td>
<td>Subsection 814.2.02</td>
</tr>
<tr>
<td>Portland cement</td>
<td>Subsection 830.2.01</td>
</tr>
<tr>
<td>Water</td>
<td>Subsection 880.2.01</td>
</tr>
<tr>
<td>Fly Ash and Slag</td>
<td>Subsection 831.2.03</td>
</tr>
<tr>
<td>Cutback Asphalt</td>
<td>Subsection 821.2.01</td>
</tr>
<tr>
<td>RC-30, RC-70, RC-250, or MC-30, MC-70, MC-250</td>
<td>Subsection 412.3.05.G.3</td>
</tr>
<tr>
<td>Blotter Material (Sand)</td>
<td>Subsection 412.3.05.G.3</td>
</tr>
</tbody>
</table>

When fly ash or slag is specified as an admixture in the soil-cement base, use fly ash or slag that meets the physical requirements of Subsection 831.2.03.

301.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

301.3 Construction Requirements
A. General
 1. Methods

 This Specification is based on the mixed-in-place and central plant mix methods. Supplement in-place or plant mixing with plow, harrow, or blade mixing when the Engineer permits.

 When the Plans and Proposal indicate that the material will be paid by the ton (megagram), use the central plant mixing method. If the work will be paid by the square yard (meter), the Plans and Proposal will indicate the required thickness and the mixing method to be used.
When payment is made by the square yard (meter) and a roadway mixer is used, the Engineer will determine if the materials in the roadbed are suitable for use. If the Engineer approves, use materials in the roadbed without payment, except for the payment per cubic yard (meter) provided in Subsection 301.5.A, “Soil-Cement Material” below. If it is necessary to add other materials to those in the roadbed to meet the desired thickness or to modify the physical properties of the existing materials, these materials will be measured and paid by the cubic yard (meter).

2. Fly Ash and Slag
 Unless otherwise specified in the Contract, fly ash and slag shall be used only in central plant mix construction. Apply fly ash and slag to the mix according to the procedures for cement established in Subsection 300.3.02.A, “Central Mix Plants” and Subsection 301.3.05.A.4, “Cement.”

3. Weather Limitations
 Ensure the following:
 Mix and place cement-treated base or subbase only when the weather permits the course to be finished without interruption in the time specified.
 Mix and place materials only when the moisture content of the soil to be used in the mixture meets the limits specified in this Subsection.
 Begin mixing only when the air temperature is above 40 °F (4 °C) in the shade, and rising.
 Ensure that the temperature of the soil to be used in the mixture and the subbase or subgrade is above 50 °F (10 °C).

4. Interruption of Work
 If the work is interrupted for more than two hours after cement has been added, or if rain increases the cement’s moisture content outside the limits specified in Subsection 301.3.05.B.7.c, “Moisture Control,” remove and replace the affected portion at no additional cost to the Department.

301.3.01 Personnel
 Ensure that only experienced and capable personnel operate equipment.

301.3.02 Equipment
 Use equipment that meets the requirements of Subsection 300.3.02 and this subsection. The Engineer will approve equipment type and condition before construction begins.
 Provide sufficient equipment in good working condition to do the following:
 - Allow continuous prosecution of the Work.
 - Mix, place, and compact within the required time limits.
 Use any applicable equipment specified in Subsection 412.3.02, “Equipment” for bituminous prime.

301.3.03 Preparation
 A. Subgrade or Subbase Preparation
 Prepare the subgrade or subbase as specified in Subsection 300.3.03.C, “Preparing the Subgrade” or Subsection 300.3.03.D, “Preparing the Subbase” if the base, subbase, or shoulders will be composed entirely of new materials, whether mixed-in-place or central plant mixed. Place materials only on dry, thawed subgrade or subbase.

301.3.04 Fabrication
 General Provisions 101 through 150.

301.3.05 Construction
 A. In-Place Mixing
 1. Soil
 If additional soil is needed on the roadbed, place and spread the soil uniformly to the proper depth to obtain the specified thickness.
 2. Pulverization
 Pulverize the roadbed materials as follows:
 a. Loosen and pulverize roadbed materials to the width and depth to be stabilized without disturbing or damaging the underlying subgrade.
b. Continue pulverizing until 100 percent of roadbed material passes through a 1-1/2 in (37.5 mm) sieve, and until at least 80 percent of the soil, excluding any stone or gravel, passes through a No. 4 (4.75 mm) sieve.

c. Add water to assist pulverization if necessary.

d. Remove all roots, sod, and rocks that exceed 3 in (75 mm) in diameter.

e. Remove all other harmful materials.

3. Moisture Adjustments

Immediately before spreading cement, adjust the moisture content of the in-place material so it will stabilize to within 100 to 120 percent of optimum moisture (amount of moisture in the mixture at maximum dry density).

4. Cement

Spread cement as follows:

a. Uniformly spread the required amount of Portland cement with a cyclone-type mechanical spreader or its equivalent.

b. Apply the Portland cement at a rate that ensures the pounds spread are within ±10 percent of the amount specified. Furnish a square-yard cloth, scales and personnel for checking the spread rate of cement placed.

c. Apply cement on soils with a moisture content less than 120 percent of optimum.

d. Apply cement on days when wind will not interfere with spreading.

e. If the cement content is below the 10 percent limit in the mixing area, add additional cement to bring the affected area within the tolerance specified and recalibrate the mechanical spreader’s spread rate. If the cement content is more than the 10 percent limit in the mixing area, the excess quantity will be deducted from the Contractor’s pay for cement.

f. Regulate operations to limit the application of cement to sections small enough so that all of the compacting and finishing operations specified in Subsection 301.3.05.B.7, “Compacting and Finishing” can be completed within the required time limits.

g. Pass only spreading and mixing equipment over the spread cement. Operate this equipment so that it does not displace cement.

h. Replace damaged cement at no additional cost the Department when damage is caused by:
 - Hydration due to rain, before or during mixing operations
 - Spreading procedures contrary to the requirements mentioned above
 - Displacement by the Contractor’s equipment or other traffic

5. Mixing

Mix the material as follows:

a. Uniformly windrow the material if the mixing plant requires it. Otherwise, shape the material to the proper line, grade, and cross-section before mixing.

b. Mix the material according to either roadmix method in Subsection 301.3.05.A.6, “Road Methods.”

c. Begin mixing as soon as practical after the cement is spread, and continue until a homogeneous and uniform mixture is produced. If the equipment does not produce a homogeneous and uniform mixture meeting these Specifications, make any necessary changes to meet the Engineer’s requirements.

6. Road Methods

a. Multiple Pass Mixing

Perform multiple pass mixing as follows:

1) After spreading the cement, mix it with the material to be treated.

2) Ensure that the material has been adjusted for moisture as stated in Subsection 301.3.05.B.7.c, “Moisture Control.”

3) Continue mixing with successive passes until a uniform mixture of cement and soil, or soil-aggregate is obtained.

4) Immediately after the preliminary mixing of cement and soil or soil-aggregate, add water as needed to maintain or bring the mixture to within the moisture requirements of Subsection 301.3.05.B.7.c, “Moisture Control.”

5) Uniformly mix the additional water to incorporate it into the full depth of the mixture.
b. Traveling Plant Mixing
 Perform traveling plant mixing as follows:
 1) After spreading the cement, mix it with an approved traveling plant mixer.
 2) Ensure that the mixer picks up the full depth of material from the windrow on the roadbed onto the bottom shell or pan.
 3) Mix at a speed that ensures a uniform mixture of soil, cement, and water.
 4) Apply water through a water-metering device on the plant to uniformly distribute the proper amount of water to the loose material on the shell or pan. Distribute the water so that cement balls do not form.
 5) Continue to mix the cement and water so that all material to be treated is mixed at once.
 6) Ensure that there is enough mixture to produce, after final compaction, a course within allowable tolerances.

7. Compacting and Finishing
 Compact and finish according to Subsection 301.3.05.B.7, “Compacting and Finishing”.

B. Central Plant Mixing

1. Soil
 Do the following:
 a. Before introducing any soil into the mixer, pulverize it until 100 percent passes a 1-1/2 in (37.5 mm) sieve.
 b. Ensure that at least 80 percent of the soil, excluding any stone or gravel, passes through a No. 4 (4.75 mm) sieve.
 c. Have enough stockpile material meeting the requirements of Subsection 300.3.05.B, “Mining And Mixing In A Pit” for at least one day of base construction before operations begin.

2. Cement
 Do the following:
 a. Measure cement by weight.
 Uniformly add cement into the mixture. The cement incorporated, per ton (megagram) of soil, shall be within 5 percent of the amount prescribed by the Engineer.
 b. Perform cement checks that compare the actual percent cement in the mixture with the required percent cement specified in the approved Mix Design for the Project on each of the first two tankers supplying cement to the plant. If these checks are within the specified tolerance, one cement check per day will be required.
 c. Perform and make available to the Engineer a minimum of four daily comparison checks between the certified scales and the plant computer to ensure the proper percentage of cement is being incorporated into the mixture between cement checks.
 d. When a cement check is out of the specified tolerance, at least two, passing one-tanker checks, are required before returning to a one cement check per day basis. When three consecutive cement checks fail to meet the specified tolerance, discontinue soil-cement plant production. Correct the problem, and recalibrate the plant as specified in Subsection 300.3.06.A “Monitoring Quality Control” before resuming the work.
 e. When the cement content exceeds the specified tolerance, the Department will deduct the excess cement from the Contractor’s pay for cement. When the cement content does not meet the specified tolerance, the Engineer will evaluate the strength of the affected area after 7 days.
 f. Correct any areas of base with deficient strength as specified in the Strength Correction Chart at no additional cost to the Department, regardless of the percent of compaction. This correction also applies to the test section described in Subsection 301.3.05.B.7.a, “Test Section.”
 g. Quantities of cement used in calibrating the plant will also be deducted from the Contractor’s pay for cement.

3. Mixing
 Do the following:
 a. Measure proportions of soil, cement, and water separately and accurately before mixing.
 b. Charge all materials into the mixer together. Begin mixing immediately.
 c. Mix until a homogeneous and uniform mixture is produced. If the final blend of materials is not homogeneously mixed or does not meet the moisture range specified in Subsection 301.3.05.B.7.c, “Moisture Control,” cease plant operations until corrections are made in the plant or to the materials.
4. Hauling
 Do the following:
 a. Deliver soil-cement material to the Project.
 b. Spread soil-cement material so that compaction can begin within 45 minutes after the soil, cement, and water have been charged into the mixer.
 c. Protect the mixture in transit by using a securely fastened waterproof cover large enough to extend down over the sides and the end of the bed of each haul vehicle.

5. Spreading
 Spread the soil-cement mixture as follows:
 a. Use an approved mixture spreader as specified in Subsection 300.3.02.D, “Mixture Spreader” to obtain the specified thickness. Spread the mixture the full width of the area to be covered.
 b. Ensure that trucks and other construction equipment, including motor graders, do not travel over the material until compaction equipment has made initial passes over the mixture.
 c. Ensure that less than 30 minutes elapse between the placement of cement-treated material in adjacent lanes at any location, unless longitudinal joints are specified.

6. Thickness of Course
 Compact the soil-cement base to a maximum thickness of 8 in (200 mm). Place the full thickness in one course only and compact as specified in Subsection 301.3.05.B.7, “Compacting and Finishing” below.

7. Compacting and Finishing
 a. Test Section
 Construct a test section as follows:
 1) Use the first section of each constructed soil-cement base course as a test section.
 2) Use a test section between 350 ft (100 m) and 500 ft (150 m) long for the designated width.
 3) Before constructing a test section, submit a Construction Work Plan to the Engineer for approval. The Construction Work Plan must indicate proposed equipment and compaction procedures.
 4) If the Construction Work Plan is approved, the Engineer will evaluate the Work Plan during test section construction. The Engineer will evaluate compaction, moisture, homogeneity of mixture, thickness of course, and laminations or compaction planes (scabbing).
 5) If the Engineer determines that the Work Plan is not satisfactory, revise the compaction procedure and augment or replace equipment, as necessary, to complete work according to the Specifications.
 b. Time Limits
 Observe the following time limits:
 1) Begin compaction within 45 minutes of the time water is added to the soil-cement mixture.
 2) Complete compaction within 2 hours.
 3) Complete all operations in four hours, from adding cement to finishing the surface.
 c. Moisture Control
 Control moisture as follows:
 1) During compaction, ensure a uniform moisture content of the mixture that is between 100 and 120 percent of the optimum moisture content.
 2) If the moisture content exceeds the tolerance at any time, cease operations immediately and make the adjustments necessary to bring the moisture content within tolerance.
 3) Do not use materials that “pump” under construction traffic, regardless of moisture content.
 d. Additional Compaction Requirements
 Perform the following additional compaction requirements:
 1) Compact the soil-cement base, subbase, or shoulder course to at least 98 percent of the maximum dry density as determined in this Subsection.
 2) Do not perform vibratory compaction on materials more than 1-1/2 hours old, measured from the time the cement was added to the mixture.
 3) Uniformly compact the mixture and then fine-grade the surface to the line, grade, and cross-section shown on the Plans.
4) Loosened material accumulated during this process is considered waste and is to be removed from the Project. Do not use additional layers of cement-treated materials in order to conform to cross-sectional or grade requirements.

5) Use a pneumatic-tired roller to roll the finished surface until the surface is smooth, closely knit, free from cracks, and in conformance with the proper line, grade, and cross-section.

If the Engineer requires, lightly apply water to the finished surface to aid in sealing the completed base and preparing the surface for priming.

6) At any place inaccessible to the roller, secure the required compaction with mechanical tampers approved by the Engineer. The same compaction requirements stated in the above Subsection apply.

e. Additional Finishing Requirements

Perform the following additional finishing requirements:

1) Use the automatically controlled screed equipment when required by Subsection 300.3.03.H. “Fine Grading Machine” of the Specifications. Control fine-grading for this requirement with sensing wires or a taut stringline. Furnish, install, and maintain this operation as a part of this Pay Item. When automatically controlled screed equipment is not required, fine-grading with motor graders is permitted.

2) Fine-grade the surface of the cement-stabilized subbase for Portland cement concrete pavement or the cement-stabilized base for asphaltic concrete pavement.

3) Fine-grade immediately after placement and compaction. Roll the subbase again according to this Subsection.

8. Construction Joints

Form construction joints as follows:

a. Form a straight transverse joint at the end of each day’s construction or when the work is interrupted so that the material cannot be compacted within the time limit specified in this Subsection.

b. Create the straight transverse joint by cutting back into the completed work to form a true vertical face free of loose or shattered material.

c. Form the joint at least 2 ft (600 mm) from the point at which the strike-off plate of the spreader comes to rest at the end of the day’s work, or at the point of interruption.

d. Form a longitudinal joint as described above if the soil-cement mixture is placed over a large area where it is impractical to complete the full width during one day’s work. Use the procedure for forming a straight transverse joint. Ensure that waste material is removed from the compacted base.

9. Prime

Apply bituminous prime to the finished surface of the base course at the end of each day or as soon as the Engineer determines it is practical. Apply prime only to an entirely moist surface.

If weather delays prime application, apply prime as soon as the surface moisture is adequate. Apply prime according to Section 412.

10. Opening To Traffic

No traffic or equipment is permitted to operate on the finished base, subbase, or shoulders until the prime has hardened enough so that it does not pick up under traffic. For the first seven days after priming, traffic is restricted to lightweight vehicles such as passenger cars and pickup trucks. Vehicles with an average axle load exceeding 20,000 pounds (9 Mg) will not be allowed on the finished base or subbase at any time.

Correct any failures caused by traffic at no additional cost to the Department.

11. Protection of Course

Maintain the base, subbase, or shoulder course constructed under these Specifications until the Engineer determines that it has sufficiently cured and is ready to be covered with the next base or pavement course. Make repairs specified in Subsection 300.3.06.B. “Repairing Defects” whenever defects appear. This preservation action does not relieve the Contractor of his responsibility to maintain the work until final acceptance as specified in Section 105.

301.3.06 Quality Acceptance

A. Compaction Tests

Test compaction as follows:

1. Determine the maximum dry density for central plant mix construction from representative samples of the material to be compacted according to GDT19 (AASHTO T 134).

2. Determine the maximum dry density for mixed-in-place construction according to GDT 19 or GDT 67.
3. Determine the in-place density of the cement-stabilized base, subbase, or shoulders as soon as possible after compaction, but before the cement sets. Determine in-place density according to GDT 20, GDT 21, or GDT 59.

B. Finished Surface Tests

Test the finished surface as follows:

1. Check the finished surface of the cement stabilized base, subbase, or shoulder course transversely.

2. Place a 15 ft (4.5 m) straightedge parallel to the centerline. Additionally, use one of the following tools:
 - A template, cut true to the required cross-section and set with a spirit level on nonsuperelevated sections
 - A system of ordinates, measured from a stringline
 - A surveyor’s level

3. Ensure that ordinates measured from the bottom of the template, stringline, or straightedge to the surface do not exceed 1/4 in (6 mm) at any point. Rod readings shall not deviate more than 0.02 foot (6 mm) from the required readings.

4. Correct any variations from requirements immediately, as specified in Subsection 300.3.05.D,

C. Tolerances

1. Thickness Measurements
 a. Thickness requirements apply to shoulder construction where the Plans specify a uniform thickness, or where the shoulders will be surfaced. Do the following:
 b. Determine the thickness of the base, subbase, or shoulder course, by making as many checks as necessary to determine the average thickness.

2. Deficient Thickness
 a. If any measurement is deficient in thickness more than 1/2 in (13 mm), make additional measurements to determine the deficient area.
 b. Correct any area deficient by more than 1/2 in (13 mm) to the design thickness by using one of the following methods according to these Specifications:
 - Apply Asphaltic Concrete 9.5 mm Superpave.
 - Remove material to the full depth of the course and reconstruct to the required thickness.
 No payment will be made for any 9.5 mm Superpave asphaltic concrete applied to correct deficiencies nor will payment be made for removing and reconstructing the deficient work.

3. Average Thickness
 Average thickness is measured as follows:
 a. The average thickness per linear mile (kilometer) is determined from all measurements within the mile (kilometer) increments.
 b. The average thickness shall not exceed the specified thickness by more than 1/2 in (13 mm).
 c. If the unit of payment is by the ton (megagram) or cubic yard (meter), and the average thickness for any mile (kilometer) increment exceeds the allowable 1/2 in (13 mm) tolerance, payment for the excess quantity in that increment will be deducted.
 d. The excess quantity is calculated by multiplying the average thickness that exceeds the allowable 1/2 in (13 mm) tolerance by the surface area of the base, subbase, or shoulder, as applicable.

4. Strength
 Do the following:
 a. Ensure that the strength of the soil-cement base, subbase, or shoulder course is at least 300 psi (2070 kPa), as determined from testing the unconfined compressive strength of cores from the completed course in accordance with GDT 86.
 b. If a strength test falls below 300 psi (2070 kPa), do the following:
 1) Isolate the affected area by securing additional cores.
 2) Average all compressive strengths in the affected area to determine the basis for corrective work according to the table below or the Engineer’s directions.

5. Compaction
 The compaction requirement for soil-cement base, subbase, or shoulder course shall be a minimum of 98 percent of the specified theoretical density.
If any compaction test falls below 98 percent, core and retest the represented area for compressive strength determination after 7 days. If the strength is 300 psi (2070 kPa) or greater, no correction will be required. If the strength is less than 300 psi (2070 kPa), isolate the affected area by obtaining additional cores.
Average all compressive strengths in the affected area to determine the basis for corrective work, according to the following table.

<table>
<thead>
<tr>
<th>Compressive Strength</th>
<th>Correction Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 psi (2070 kPa) or greater</td>
<td>None</td>
</tr>
<tr>
<td>200 psi (1380 kPa) to 299 psi (2069 kPa)</td>
<td>6 in & 8 in (150 mm & 200 mm) base—add 135 lbs/yd² (75 kg/m²) asphaltic concrete</td>
</tr>
<tr>
<td>Less than 200 psi (1380 kPa)</td>
<td>Reconstruct affected area</td>
</tr>
</tbody>
</table>

Ensure that a corrected area requiring asphaltic concrete is at least 150 ft (45 m) long.
Perform corrective work requiring asphaltic concrete or reconstruction at no additional cost to the Department.

301.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

301.4 Measurement

A. Soil-Cement Material

Soil-cement material is measured by the cubic yard (meter), loose volume, as specified in Section 109, during mixed-in-place construction if it is necessary to add materials to the roadbed or to build up the base, subbase, or shoulders with new material.

B. Soil-Cement Stabilized Base, Subbase, and Shoulder Course

Soil-cement stabilized base, subbase, and shoulder course are measured as follows:

1. The surface length is measured along the centerline when payment is specified by the square yard (meter). The width is specified on the Plans.
 a. Irregular areas, such as turnouts and intersections, are measured by the square yard (meter).
 b. Material is measured in tons (megagrams), as mixed and accepted, when payment is specified by the ton (megagram).

The actual weight is determined by weighing each loaded vehicle on a required motor truck scale as the material is hauled to the roadway. The actual weight will be the pay weight; no deduction will be made for the weight of the cement.

C. Portland Cement

Portland cement is measured by the ton (megagram).

D. Fly Ash and Slag

Fly ash and slag are measured by the ton (megagram) according to this Specification.

E. Prime

Bituminous prime is not measured for separate payment. Include the cost of furnishing and applying bituminous prime according to the provisions of Section 412 in the Unit Price Bid for each individual base item.

F. Unsuitable Material

Unsuitable materials that have been removed are measured and paid for according to the Earthwork Item in the Contract.

301.4.01 Limits
General Provisions 101 through 150.

301.5 Payment

A. Soil-Cement Material

Where in-place mixing is done, and when it is necessary to add other materials to those in the roadbed or to build up the base, subbase, and shoulders entirely with new materials, the added soil-cement material, in place and accepted, will be paid at the Contract Price per cubic yard (meter). Payment will be full compensation for soil-cement material; mixing in the pit; loading, hauling, and unloading; and spreading.
B. Soil-Cement Stabilized Base, Subbase, and Shoulder Course

Where specified, soil-cement stabilized base, subbase, and shoulder course, in place and accepted, will be paid at the Contract Price per square yard (meter). Payment will be full compensation for roadbed preparation, mixing on the road, shaping, pulverizing, watering, compaction, defect repair, and maintenance.

C. Pre-mixed Soil-Cement Stabilized Base, Subbase, and Shoulder Course

Where specified, pre-mixed soil-cement stabilized base, subbase, and shoulder course, in place and accepted, will be paid at the Contract Price per ton (megagram) or square yard (meter).

Payment will be full compensation for roadbed preparation; all materials except Portland cement; loading, hauling, and unloading; mixing; spreading; watering; rolling and shaping; and maintenance.

D. Portland Cement

Portland cement will be paid at the Contract Price per ton (megagram). Payment is full compensation for furnishing, hauling, and applying the material. Only Portland cement incorporated in the finished course will be paid; no payment will be made for cement used to correct defects due to the Contractor’s negligence, faulty equipment, or plant calibration error.

E. Fly Ash and Slag

Fly ash and slag will be paid at the Contract Price per ton (megagram), according to this Subsection. Payment will be full compensation for hauling and applying the materials. Only fly ash and slag incorporated into the finished course will be paid; no payment will be made for fly ash and slag used to correct defects due to the Contractor’s negligence, faulty equipment, or plant calibration error.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 301</th>
<th>Soil-cement material—including material and haul</th>
<th>per cubic yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 301</td>
<td>Soil-cement stabilized base, subbase, and shoulder course</td>
<td>per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 301</td>
<td>Pre-mixed soil-cement stabilized base, subbase, and shoulder course—including material and haul</td>
<td>per ton (megagram) or per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 301</td>
<td>Pre-mixed soil-cement stabilized base and shoulder course—including material and haul</td>
<td>per ton (megagram) or per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 301</td>
<td>Portland cement</td>
<td>per ton (megagram)</td>
</tr>
<tr>
<td>Item No. 301</td>
<td>Fly ash and slag</td>
<td>per ton (megagram)</td>
</tr>
</tbody>
</table>

301.5.01 Adjustments
General Provisions 101 through 150.

Section 302—Sand-Bituminous Stabilized Base Course

302.1 General Description

This work includes constructing a base course composed of sand, or a mixture of sands that is stabilized with bituminous materials. Construct the base course according to these Specifications and to the lines, grades, and typical cross-sections shown on the Plans or established by the Engineer.

All of the provisions of Section 300 apply to this Item.

302.1.01 Definitions
General Provisions 101 through 150.

302.1.02 Related References
A. Standard Specifications
 Section 105—Control of Work
 Section 109—Measurement and Payment
Section 300—General Specifications for Base and Subbase Courses
Section 400—Hot Mix Asphaltic Concrete Construction
Section 412—Bituminous Prime
Section 814—Soil Base Materials
Section 821—Cutback Asphalt
Section 822—Emulsified Asphalt
Section 823—Cutback Asphalt Emulsion

B. Referenced Documents

AASHTO T 191
ASTM D 1138
GDT 7
GDT 8
GDT 59
GDT 67

302.1.03 Submittals
General Provisions 101 through 150.

302.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand for Bituminous Base</td>
<td>Subsection 814.2.03</td>
</tr>
<tr>
<td>RC-800</td>
<td>Subsection 821.2.01</td>
</tr>
<tr>
<td>Bituminous Prime:</td>
<td>Subsection 821.2.01</td>
</tr>
<tr>
<td>Cutback Asphalt, RC-30, RC-70, RC-250, or MC-30, MC-70, MC-250</td>
<td></td>
</tr>
<tr>
<td>Emulsified Asphalt, EAP-1</td>
<td>Subsection 822.2.01</td>
</tr>
<tr>
<td>Cutback Asphalt Emulsion, CBAE-2</td>
<td>Subsection 823.2.01</td>
</tr>
<tr>
<td>Blotter Materials (Sand)</td>
<td>Subsection 412.3.05.G.3</td>
</tr>
</tbody>
</table>

Produce a sand-bituminous mixture with a resistance to plastic flow of 200 lbs (90 kg) minimum when tested according to ASTM 1138.

Produce a sand-bituminous mixture with a maximum 4 percent, 7-day absorption when tested according to GDT 8.

302.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

302.3 Construction Requirements
A. General

1. Methods

Use the central plant mixing method when the sand-bituminous stabilized base course is to be paid for by the ton (megagram). Mix, spread, and compact the material according to Section 400, with the following exceptions:

☐ No test strip is required.
☐ The Compaction Acceptance Schedule does not apply.

Use either the central plant or traveling plant mixing method when the sand-bituminous stabilized base course is to be paid for by the square yard (meter).
302.3.01

Use the central plant mixing method when the sand-bituminous stabilized base course is used for widening in addition to the use of suitable special rollers for compaction.

Use plow and harrow mixing only for aeration according to Subsection 302.3.05.D.1, “Preparing Mixture for Compaction.”

2. Temperature Limitations

Do not apply bituminous materials when the air temperature is less than 60 °F (15 °C) in the shade nor when the temperature of either the subgrade, subbase, or soil to be used in the mixture is below 50 °F (10 °C).

302.3.01 Personnel

General Provisions 101 through 150.

302.3.02 Equipment

Provide all necessary equipment (in satisfactory condition) on the Project before work commences. Use applicable equipment specified in Subsection 412.3.02, “Equipment” for bituminous prime.

302.3.03 Preparation

When constructing the base from new materials, prepare the subgrade or subbase as specified in Subsection 300.3.03.C, “Preparing the Subgrade,” or Subsection 300.3.03.D, “Preparing the Subbase”

Prepare the subgrade or subbase by scarifying a minimum of 2 ft (600 mm) on each side of the Plan width and to the depth of material when the Engineer determines that any existing roadbed materials are suitable for mixed-in-place base construction.

Blend new materials with the prepared roadbed thoroughly before adding bituminous material.

302.3.04 Fabrication

General Provisions 101 through 150.

302.3.05 Construction

A. Process

1. In-Place Mixing

a. The Engineer will determine the suitability of existing roadbed materials for inclusion in the base course.

b. Remove all roots, sod, or rock more than 3 in (75 mm) in diameter and all other harmful materials from the roadbed during processing.

c. Place additional new soil (sand) on the roadbed and spread it uniformly to the proper depth to obtain the Plan thickness of the compacted base course. Place materials only on dry, unfrozen subgrade or subbase.

d. Loosen and pulverize the material to be stabilized without disturbing or damaging the underlying subgrade or subbase. Add water as needed to assist pulverization.

 - 100 percent of material shall pass the 1.5 in (37.5 mm) sieve.

 - A minimum of 80 percent of the soil (exclusive of stones or gravel) shall pass the No. 4 (4.75 mm) sieve.

e. Provide moisture content between 2 and 8 percent by weight of the soil before adding the bituminous material. The moisture content shall be adjusted under the Engineer’s direction.

 1) Add water at the mixer using accurate gauging devices.

 2) Ensure that the moisture is uniformly distributed.

f. Shape the material to obtain the grade and cross-section required in the Plans. Windrow the material uniformly only if the mixing plant operation requires.

g. Uniformly apply the bituminous material after adjusting the moisture content and shaping has been completed.

h. Apply the bituminous material only as temperatures allow per the following table.

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC-800 Cutback Asphalt</td>
<td>160 °F (70 °C)</td>
<td>210 °F (100 °C)</td>
</tr>
</tbody>
</table>

i. Mix the sand-bituminous mixture in successive sections so that the roadway can be compacted full width in one operation. Ensure that a uniform mixture is produced.
2. Central Plant Mixing Method
 a. Thoroughly pulverize material so that 100 percent will pass through a 1.5 in (37.5 mm) sieve and at least 80 percent of the soil, excluding any stone or gravel, will pass through a No. 4 (4.75 mm) sieve.
 b. Adjust the moisture content of the pulverized base material according to Subsection 302.3.05.A.1.d.
 c. Mix as follows:
 1) Proportion the sand-bituminous material and water separately.
 2) Charge all materials into the mixer together and mix immediately.
 d. Mix until a uniform mixture is produced.
 e. Ensure that the temperature of the bituminous material is between 160 °F (70 °C) and 210 °F (100 °C) for mixing.
 f. Spread the sand-bituminous mixture to the proper depth to obtain the thickness required on the Plans of the finished base course.
 - Use an approved spreader.
 - Place sand-bituminous material only on a dry subgrade or subbase.

B. Quantity of Bituminous Material

The Engineer will determine the quantity of bituminous material required. Apply the bituminous material uniformly, using an amount within 5 percent of the required quantity.

If bituminous material is applied at a rate more than 5 percent in excess of the required amount and it is considered detrimental, remove and reconstruct the section. If the application rate is more than 5 percent and the material is left in place, no payment will be made for bituminous material in excess of the 5 percent tolerance.

Correct any shortage of bituminous material more than 5 percent less than the required amount by applying additional bituminous material. The cost of reapplying, remixing, and compacting will be included in this Pay Item at no additional cost to the Department.

C. Extent of Application

Limit the application of the bituminous material so that aeration and compaction can begin immediately after mixing.

D. Mixing

1. Preparing Mixture for Compaction
 a. Shape the base to line, grade, and cross-section indicated in the Plans.
 b. Aerate the mixture as follows:
 1) Begin aeration as soon as the prepared base is long enough to permit the operation of aeration equipment.
 2) Loosen and turn the mixture with harrows, blades, or the equivalent, until the volatile solvents and water evaporate and the mixture is tacky.
 c. If rain threatens the work, roll the surface enough to exclude as much rainwater as possible. Resume aeration as soon as weather permits.

2. Thickness of Courses
 a. Spread the base as follows:
 1) Spread to a maximum compacted lift thickness of 8 in (200 mm).
 2) Lay the maximum lift thickness for which the specified compaction is obtained, otherwise lay the base in more than one course.

E. Compacting and Finishing

Compact as soon as the condition of the material and the weather permit. Bring the base to line, grade, and cross-section. Roll until the full depth of the course is compacted to 95 percent of the maximum dry density of the sand, without bituminous material.

1. Single-Course Construction

 After the base has been compacted, do the following:
 a. Shape the course to line, grade, and cross-section again.
b. Roll the surface with a pneumatic-tired roller followed by a steel-wheel roller to seal the surface. Begin at the edges and work toward the center until the surface is smooth, closely knit, free from cracks, and in conformance with the proper line, grade, and cross section.

c. Correct any defects specified in Subsection 300.3.06.B, “Repairing Defects.”

2. Multiple-Course Construction
 After compacting the first course, do the following:
 a. Shape the surface again to line, grade, and cross-section.
 b. Spread and compact the second and succeeding courses as previously described.
 c. Finish the surface according to the procedure specified for Single-Course Construction, above.

3. Compact Irregular Areas
 Compact irregular areas inaccessible to a roller by using mechanical tampers approved by the Engineer. Density requirements are unchanged from above.

F. Prime Coat
 Apply bituminous prime according to Section 412.

G. Preservation of Base
 Maintain the base in a smooth and acceptable condition until it is covered by other construction.

 1. Make repairs to any defects as specified in Subsection 300.3.06.B, “Repairing Defects.”
 2. Preserving the base as specified does not relieve the Contractor of the general duty to maintain the Work until it is accepted as specified in Section 105.

302.3.06 Quality Acceptance

A. Compaction Tests
 Test compaction as follows:

 1. Determine the maximum dry density from representative samples of the material before adding the bituminous material by GDT 7 or GDT 67.
 2. Determine the in-place density of the base according to AASHTO T 191 or GDT 59

B. Finished Surface Tests
 Check the finished surface of the base, subbase, or shoulder course as follows:

 1. Check the longitudinal surface using a 15 ft (4.5 m) straightedge parallel to the centerline.
 2. Check the transverse surface by using one of the following tools:
 a. A template, cut true to the required cross-section and set with a spirit level on non-superelevated sections
 b. A system of ordinates, measured from a stringline
 c. A surveyor’s level
 3. Ensure that ordinates measured from the bottom of the template, stringline, or straightedge, to the surface do not exceed 1/4 in (6 mm) at any point. Rod readings shall not deviate more than 0.02 ft (6 mm) from required readings.
 4. Correct any variations from these requirements immediately according to Subsection 300.3.06.B, “Repairing Defects.”

C. Thickness Tolerances
 1. Thickness Measurements
 Determine the thickness of the base, subbase, or shoulder course, by making as many checks as necessary to determine the average thickness.
 2. Deficient Thickness
 a. If any measurement is deficient in thickness more than 1/2 in (13 mm), make additional measurements to determine the deficient area.
 b. Correct any area deficient between 1/2 in (13 mm) and 1 in (25 mm) to the design thickness by using one of the following methods according to these Specifications:
 - Apply Asphaltic Concrete 9.5 mm Superpave.
 - Leave in place and accept payment for the materials and area (if the course is mixed in place) at 1/2 the Contract Unit Price for the deficient area.
c. Correct any area deficient in thickness by more than 1 inch (25 mm) by applying Asphaltic Concrete 9.5 mm Superpave or removing the material to the full depth of the course and reconstructing to the required thickness in accordance with these Specifications.

d. If payment is made by the cubic yard (meter) or ton (megagram), payment for Asphaltic Concrete 9.5 mm Superpave to correct deficiencies will be made at the Contract Unit Price that applies to the course needing correction. Payment for additional material used in reconstructing an area will be made at the Contract Unit Price, but the removed material removed will be deducted from payment.

e. If payment is made by the square yard (meter), no payment will be made for additional material required to correct deficiencies or reconstructing deficient work.

3. Average Thickness

Average thickness is measured as follows:

a. The average thickness per linear mile (kilometer) is determined from all measurements within the mile (kilometer) increments except the areas deficient by more than 1/2 in (13 mm) and not corrected.

b. The average thickness shall not exceed the specified thickness by more than 1/2 in (13 mm).

c. If the basis of payment is per cubic yard (meter) or ton (megagram) and the average thickness for any mile (kilometer) increment exceeds the allowable 1/2 in (13 mm) tolerance, the excess quantity in that increment will be deducted from the Contractor’s payments.

d. The excess quantity is calculated by multiplying the average thickness that exceeds the allowable 1/2 in (13 mm) tolerance by the surface area of the base, subbase, or shoulder, as applicable.

e. If the basis of payment is per square yard (meter), no deduction will be made for excess thickness.

302.3.07 Contractor and Warranty and Maintenance

General Provisions 101 through 150.

302.4 Measurement

A. Sand Bituminous Stabilized Base Course Materials

When a mixed-in-place construction method is used, any additional materials necessary to add to the roadbed will be measured by loose volume in cubic yards (meters) of additional material added according to Section 109.

B. Sand Bituminous Stabilized Base Course

When payment is by the square yard (meter), measure length along the centerline in feet (meters) and use the Plan width to calculate area. Use actual dimensions of irregular areas placed to calculate the number of square yards.

When payment is by the ton (megagram), measure the actual weight of the sand-bituminous mixture on approved scales.

C. Bituminous Materials

Measure bituminous materials incorporated into the mixture according to Section 109.

No separate measurement will be made for bituminous prime.

D. Unsuitable Material

Measure unsuitable material removed according to the Earthwork Item in the Contract.

302.4.01 Limits

General Provisions 101 through 150.

302.5 Payment

A. Base Course Material

Sand Bituminous Stabilized Base Course materials, in place and accepted, will be paid at the Contract Unit Price per cubic yard (meter), which shall be full compensation for furnishing the material where specified in the Pay Item, mixing the pit, for all loading, unloading, spreading as here specified, and for hauling where specified in the Pay Item.

B. Sand-Bituminous Stabilized Base Course

Sand-Bituminous Stabilized Base Course, complete in place and accepted, will be paid for at the Contract Unit Price per square yard (meter), which shall be full compensation for preparation of the roadbed, for mixing on the road, shaping, pulverizing, hauling, watering, compaction, repair of all defects, and maintenance
C. Sand-Bituminous Stabilized Base Course Pre-Mixed

Sand-Bituminous Stabilized Base Course, complete in place and accepted, will be paid for at the Contract Unit Price per ton (megagram) or per square yard (meter), which shall be full compensation for preparation of the roadbed, for all materials except bituminous materials, and for loading, unloading, all hauling, mixing, spreading, watering, rolling, shaping, and maintenance.

D. Bituminous Material

The number of gallons (liters) of bituminous material, except bituminous material in excess of the 5% tolerance and except that used as Bituminous Prime, will be paid at the Contract Unit Price per gallon (liter), complete and in place.

Payment is full compensation for providing bituminous material, hauling, heating, and applying the material.

E. Unsuitable Material

Removal of unsuitable material will be paid for according to the Earthwork Item in the Contract.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 302</th>
<th>Description</th>
<th>Unit of Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 302</td>
<td>Sand-bituminous stabilized base course material, including material and haul</td>
<td>per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 302</td>
<td>Sand-bituminous stabilized base course material, including haul</td>
<td>per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 302</td>
<td>Sand-bituminous stabilized base course, ___ inch (mm)</td>
<td>per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 302</td>
<td>Pre-mixed sand-bituminous stabilized base course, including material</td>
<td>per ton (megagram) or per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 302</td>
<td>Bituminous materials</td>
<td>per gallon (liter)</td>
</tr>
</tbody>
</table>

302.5.01 Adjustments

General Provisions 101 through 150.

Section 303—Topsoil, Sand-Clay, or Chert Construction

303.1 General Description

This work includes constructing a base, subbase, or shoulder course using topsoil, sand-clay, or chert, stabilized with aggregate, where required.

Construct according to these Specifications and to the lines, grades, and typical cross-sections shown on the Plans or established by the Engineer.

All of the provisions of Section 300 apply to this Item.

303.1.01 Definitions

General Provisions 101 through 150.

303.1.02 Related References

A. Standard Specifications

- Section 106—Control of Materials
- Section 202—Random Clearing and Grubbing
- Section 205—Roadway Excavation
- Section 206—Borrow Excavation
- Section 300—General Specifications for Base and Subbase Courses
- Section 412—Bituminous Prime
- Section 803—Stabilizer Aggregate
- Section 814—Soil Base Materials
- Section 821—Cutback Asphalt
Section 823 – Cutback Asphalt Emulsion

B. Referenced Documents

AASHTO T 99 and 191
GDT 21
GDT 59
GDT 67

303.1.03 Submittals
General Provisions 101 through 150.

303.2 Materials

Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topsoil or Sand-Clay</td>
<td>814.2.01</td>
</tr>
<tr>
<td>Stabilizer Aggregates (Type as Specified)</td>
<td>803</td>
</tr>
<tr>
<td>Chert</td>
<td>814.2.04</td>
</tr>
<tr>
<td>Cutback Asphalt, RC-30, RC-70, RC-250 or MC-30, MC-70, MC-250</td>
<td>821.2.01</td>
</tr>
<tr>
<td>Cutback Asphalt Emulsion, CBAE-2</td>
<td>823.2.01</td>
</tr>
<tr>
<td>Blotter Material (Sand)</td>
<td>412.3.05.G.3</td>
</tr>
</tbody>
</table>

If an ingredient needs to be added to those naturally present in the roadbed or in any approved source of base, subbase, or shoulder material, obtain it from sources approved by the Engineer. Select sources according to the guidelines of Section 106.

303.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

303.3 Construction Requirements

303.3.01 Personnel
General Provisions 101 through 150.

303.3.02 Equipment

Provide equipment in satisfactory condition for proper construction. Use any applicable equipment specified in Subsection 412.3.02, “Equipment” for bituminous prime.

303.3.03 Preparation

If creating the base, subbase, or shoulder construction entirely with new materials, prepare the subgrade or subbase as specified in Subsection 300.3.03.C, “Preparing the Subgrade” or Subsection 300.3.03.D, “Preparing the Subbase”. Do not place base materials on muddy or frozen subgrade or subbase.

303.3.04 Fabrication
General Provisions 101 through 150.

303.3.05 Construction

A. Roadbed Materials

If the Engineer determines roadbed materials are unsuitable for use, remove and replace them with approved new materials.

If the Engineer determines that roadbed materials are satisfactory, mix, shape, and finish them according to the Specifications.

B. Placing Material

Mix and control the materials according to Subsection 300.3.05.B, “Mining and Mixing in a Pit.” Handle and place materials carefully to prevent fine and coarse materials from separating.
If placing only one kind of material on the prepared subgrade or subbase, or adding only one kind of material to the roadbed to obtain the required mixture, place the material directly on the prepared roadbed and distribute uniformly.

If mixing together materials from more than one outside source, spread them in separate layers to the proper depth. Do this for each separate course, if placing the base in more than one course.

If creating topsoil or sand-clay from artificial mixtures, place the proper proportions of the required ingredients on the roadbed and distribute uniformly.

Use the following steps to spread, mix, and stabilize a base, subbase, or shoulder course.

1. Spreading
 Spread material lengthwise up to 2,500 ft (750 m) on the roadbed. If the material is too wet to mix, place additional material as the Engineer requires. Mix as soon as the moisture content reaches the proper level.

2. Mixing
 Mix the material by one of the following methods, weather and moisture conditions permitting:
 a. Plowing, Harrowing, and Blading
 Without disturbing the underlying subgrade or subbase, plow the material to its full depth, then harrow with a disc harrow. Begin plowing both at the edges and the center, alternating back and forth as many times as necessary, to produce a thoroughly pulverized and homogeneous mixture.
 b. Traveling Plant
 A traveling plant mixer may be used instead of the method described above.

3. Stabilizing
 After mixing and shaping the base, subbase, or shoulder course, spread stabilizer aggregate, if specified in the Contract or the Plans.
 The quantity of stabilizer material required will be specified in pounds/square yard (kilograms/square meter) of road surface covered. The Department reserves the right to increase, decrease, or eliminate stabilizer material.
 Spread and mix stabilizer aggregate with either the upper 4 in (100 mm) or to the full depth of the course, as the Plans indicate. Uniformly incorporate the stabilizer aggregate into the course. Remix and reshape all sections of the course as needed.
 When using stabilized subgrade as a base course, either permanently or temporarily (for example, as detours), prime according to Section 412.

C. Compacting and Finishing
 Use the following steps to compact and finish a base, subbase, or shoulder course.

1. Moisture Content
 Ensure that the moisture content is uniformly distributed and within 90 to 120 percent of optimum. The Engineer will determine the percentage within this range that is appropriate for each job.

2. Compaction
 If the base, subbase, or shoulder course is more than 8 in (200 mm) thick, compact it in two courses of equal thickness.
 After placing and mixing the material, roll it until the course is uniformly compacted to 100 percent of the maximum dry density.
 Complete all courses of any section of construction started in the same day, weather permitting.
 a. Single-Course Construction
 1) Compact the surface by rolling, beginning at least 2 ft (600 mm) outside of its edges.
 2) Proceed toward the center until the finished surface is smooth, closely knit, and conforms to the proper line, grade, and cross-section.
 3) Correct any defects according to Subsection 300.3.06.B, “Repairing Defects.”
 b. Multiple-Course Construction
 1) After compacting the first course, shape the surface again to line, grade, and cross-section.
 2) Add water as necessary to develop the proper moisture content.
 3) Spread and compact the second and any succeeding courses (including stabilizer aggregate, if required) without rolling the first course again.
4) Finish the surface according to the procedure specified for Subsection 303.3.05.C.2.a, “Single-Course Construction.”

c. Irregular Areas
In places inaccessible to the roller, obtain the required compaction with mechanical tampers approved by the Engineer. Apply the same density requirements as stated above.

D. Protecting the Base, Subbase, or Shoulders
Maintain the course true to grade and cross-section. Until the course cures to the Engineer’s satisfaction, keep it free from ruts, ridges, and dust caused by traffic. Roll and add water as needed and repair defects as soon as they appear, as specified in Subsection 303.3.06.B, “Repairing Defects.”

E. Priming the Base
After completing the base, apply Bituminous Prime according to Section 412.

If the base is primed before base material classification test results are known, repair and reprime any resulting defective areas at no additional cost to the Department.

303.3.06 Quality Acceptance
A. Compaction Tests
 a. The maximum dry density will be determined from representative samples of compacted material, according to GDT 67 or AASHTO T 99, Method D, where applicable.

 b. The Engineer will determine the in-place density of finished courses according to AASHTOT 191, GDT59, or GDT 21, where applicable.

B. Finished Surface
 a. Check the finished surface of the base, subbase, or shoulder course transversely. Check the surface by placing a 15 ft (4.5 m) straightedge perpendicular to the centerline, and also by using one of the following tools:
 □ A template, cut true to the required cross section and set with a spirit level on non-superelevated sections
 □ A system of ordinates, measured from a stringline
 □ A surveyor’s level

 b. Ensure that ordinates measured from the bottom of the template, stringline, or straightedge to the surface do not exceed 1/2 in (13 mm) at any point. Rod readings shall not deviate more than 0.04 foot (13 mm) from the required readings.

 c. Correct any variations that exceed the requirements immediately, as specified in Subsection 303.3.06.B, “Repairing Defects.”

C. Thickness Tolerances
 1. Thickness Measurements
 a. Thickness requirements apply to shoulder construction where the Plans specify a uniform thickness, or where the shoulders will be surfaced.

 b. Determine the thickness of the base, subbase, or shoulder course, by making as many checks as necessary to determine the average thickness.

 2. Deficient Thickness
 a. If any measurement is deficient in thickness more than 1/2 in (13 mm), make additional measurements to determine the deficient area.

 b. Correct any area deficient between 1/2 in (13 mm) and 1 in (25 mm) to the design thickness by using one of the following methods according to these Specifications:
 □ Add additional quantities of the same materials and reconstruct to the required thickness
 □ Leave in place and accept payment for the materials and area (if the course is mixed in place) at ½ the Contract Unit Price for the deficient area.

 c. Correct any area deficient in thickness by more than 1 inch (25 mm) by adding additional quantities of the same material and reconstructing to the required thickness in accordance with these Specifications.
d. If payment is made by the cubic yard (meter), payment for additional material to correct deficiencies will be made at the Contract Unit Price with no additional cost to the Department for scarification, mixing or compaction.

e. If payment is made by the square yard (meter), no payment will be made for additional material required to correct deficiencies or reconstructing deficient work.

3. Average Thickness
 a. The average thickness per linear mile (kilometer) is determined from all measurements within the mile (kilometer) increments except the areas deficient by more than 1/2 in (13 mm) and not corrected.
 b. The average thickness shall not exceed the specified thickness by more than 1/2 in (13 mm).
 c. If the basis of payment is per cubic yard (meter) for base, subbase, or shoulder, and the average thickness for any mile (kilometer) increment exceeds the allowable 1/2 in (13 mm) tolerance, the excess quantity in that increment will be deducted from the Contractor’s payments.
 d. The excess quantity is calculated by multiplying the average thickness that exceeds the allowable 1/2 in (13 mm) tolerance by the surface area of the base, subbase, or shoulder, as applicable.
 e. If the basis of payment is per square yard (meter), no deduction will be made for excess thickness.

303.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

303.4 Measurement
A. Topsoil, Sand-Clay, or Chert
 Topsoil, sand-clay, or chert is measured by the cubic yard (meter) loose volume, or by the square yard (meter), as specified in Section 109.

B. Stabilizer Aggregate
 Stabilizer aggregate is measured by the ton (megagram). Its weight is determined by certified truck scales on the job, or by another certified scale approved in advance by the Engineer.

C. Prime
 Bituminous prime is not measured for separate payment.

D. Clearing and Grubbing
 When clearing and grubbing is eligible for payment under the provisions of Subsection 106.10, “Local Materials Sources,” it is measured by the acre (hectare).

E. Stripping Excavation
 When stripping excavation is eligible for payment under the provisions of Section 206 it will be measured using the average end area method as borrow excavation, including material, by the cubic yard (meter).

F. Removing Unsuitable Materials
 Unsuitable materials removed are measured and paid for under the Earthwork Item in the Contract.

G. Blending and Remixing
 Blending and remixing will be measured by the square yard (meter) as measured on the longitudinal surface, and to the width specified.

303.4.01 Limits
 General Provisions 101 through 150.

303.5 Payment
A. Topsoil, Sand-Clay or Chert Base, Subbase, and Shoulder Course
 This course will be paid at the Contract Unit Price per cubic yard (meter) or per square yard (meter) as specified for base, subbase, and shoulders, complete, in place, and accepted.
Payment is full compensation for:

- Preparing the roadbed
- Furnishing materials when specified in the Pay Item
- Loading and unloading
- Scarifying, spreading, plowing and harrowing
- Mixing and blending in the pit, in the plant, and in the roadway
- Rolling and shaping
- Watering, maintaining, hauling, and priming

B. Stabilizer Aggregate

Stabilizer aggregate will be paid at the Contract Unit Price per ton (megagram) complete, in place, and accepted. Payment will be full compensation for furnishing materials, loading, hauling, unloading, handling, spreading, scarifying, mixing, watering, shaping, and maintenance.

C. Clearing and Grubbing

Clearing and grubbing eligible for payment under the provisions of Subsection 106.10, “Local Material Sources,” will be paid according to Section 202.

D. Stripping Excavation

Stripping excavation eligible for payment under the provisions of Section 206 will be paid according to the same section. Payment will be full compensation for the removal of all materials unsuitable for use in the base, subbase, or shoulder.

E. Priming

Bituminous prime will not be measured for separate payment. Its cost is included in the price bid for base.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 303</th>
<th>Topsoil, sand-clay, or chert (base, subbase, shoulder) course, class ___ including material</th>
<th>Per cubic yard (meter) or square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 303</td>
<td>Topsoil, sand-clay, or chert (base, subbase, shoulder) course, class ___</td>
<td>Per cubic yard (meter) or square yard (meter)</td>
</tr>
<tr>
<td>Item No. 303</td>
<td>Topsoil, sand-clay, or chert (base and shoulder) course, class ___ including material</td>
<td>Per cubic yard (meter) or square yard (meter)</td>
</tr>
<tr>
<td>Item No. 303</td>
<td>Topsoil, sand-clay, or chert (base and shoulder) course, class ___</td>
<td>Per cubic yard (meter) or square yard (meter)</td>
</tr>
<tr>
<td>Item No. 303</td>
<td>Stabilizer aggregate, type ___ including material</td>
<td>Per ton (megagram)</td>
</tr>
</tbody>
</table>

303.5.01 Adjustments
General Provisions 101 through 150.

Section 304—Soil Aggregate Construction

304.1 General Description
This work includes constructing base, subbase, or shoulder courses composed of mineral aggregate and soil mortar on prepared subgrade or subbase. Construct according to these Specifications and to the lines, grades, thickness, and cross-sections shown on the Plans or established by the Engineer.

All of the provisions of Section 300 apply to this work.

304.1.01 Definitions
General Provisions 101 through 150.
304.1.02 Related References

A. Standard Specifications
 Section 105—Control of Work
 Section 109—Measurement and Payment
 Section 300—General Specifications for Base and Subbase Courses
 Section 412—Bituminous Prime
 Section 816—Soil Aggregate Bases

B. Referenced Documents
 GDT 21
 GDT 49
 GDT 59

304.1.03 Submittals
General Provisions 101 through 150.

304.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Aggregate Base</td>
<td>816.2.01</td>
</tr>
<tr>
<td>Soil Mortar for Soil Aggregate Base</td>
<td>816.2.02</td>
</tr>
<tr>
<td>Bituminous Prime</td>
<td>412</td>
</tr>
</tbody>
</table>

304.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

304.3 Construction Requirements

304.3.01 Personnel
General Provisions 101 through 150.

304.3.02 Equipment
Provide equipment in satisfactory condition for proper construction. Use any applicable equipment as specified in Subsection 412.3.02, “Equipment” for Bituminous Prime.

304.3.03 Preparation
Prepare the subgrade or subbase as specified in Subsection 300.3.03.C, “Preparing the Subgrade” or Subsection 300.3.03.D, “Preparing the Subbase.” Place soil aggregate materials only on a dry, thawed foundation.

304.3.04 Fabrication
General Provisions 101 through 150.

304.3.05 Construction

A. Methods
 1. Use any of the methods of mixing material described in Section 300.
 2. In lieu of the methods of mixing described in Section 300 and when approved by the Engineer, use one of the following methods:
 a. Produce soil aggregate from an approved source or deposit.
 1) Produce soil aggregate base that will meet the requirements of this Specification after it has been mined, crushed, and processed.
 2) Stockpile the processed material before delivery to the Project.
3) Keep the stockpile large enough during loading operations to ensure that a uniformly blended material is delivered to the Project.

4) Use equipment that will not segregate the material during loading.

b. Produce a soil aggregate using in-place operations

1) Mix one material with the existing roadbed materials.

2) Mix two materials on a prepared subgrade.

B. Placing Material

Use the following steps to spread and mix base, subbase, or shoulder course.

1. Spreading and Mixing

a. When using soil aggregate base produced from an approved source, uniformly spread the material with an approved mechanical spreader to obtain the desired thickness. Compact and finish according to Subsection 304.3.05.C, “Compacting and Finishing.”

b. When in-place operations are required, use the following procedures for either mixing one material with the existing roadbed materials or mixing two materials on a prepared subgrade:

1) Uniformly spread the material with an approved mechanical spreader to obtain the desired thickness when mixing two materials on a prepared subgrade. When mixing only one material with the existing roadbed materials, the material may be dumped directly on the subgrade and spread uniformly.

2) After spreading material, and as soon as weather and moisture conditions permit, mix it by plowing, harrowing, and blading.

3) Without disturbing the underlying subgrade or subbase, plow the material to its full depth, then harrow with a disc harrow.

4) Begin plowing alternately at the edges and the center, back and forth, as many times as necessary to produce a thoroughly pulverized and homogeneous mixture.

5) Compact and finish according to Subsection 304.3.05.C, “Compacting and Finishing.”

C. Compacting and Finishing

Construct courses to the maximum thickness as specified in Subsection 300.3.05.C.5, “Compaction.”

Use the following steps to compact and finish a base, subbase, or shoulder course:

1. Moisture Content

Ensure that the moisture content of materials is uniformly distributed and allows compaction to the specified density. Add sufficient water during the mixing operations to provide the optimum moisture content, ± 2 percentage points.

2. Compaction

After placing and shaping the material to line and grade, compact it to 98 percent of the maximum dry density as determined by representative samples, using GDT 49. When using the material as a base for paved shoulders 6 ft (1.8 m) wide or less, compact to at least 96 percent of the maximum dry density.

a. One-Course Construction

1) After compaction, shape to the required grade, line, and cross-section.

2) Add water as necessary to develop the proper moisture content.

3) Roll until the surface is smooth, closely knit, and free of cracks.

4) Correct all defects according to Subsection 300.3.06.B, “Repairing Defects.”

b. Multiple Course Construction

1) After compacting the first course, shape the surface again to line, grade, and cross-section.

2) Add water as necessary to develop the proper moisture content.

3) Spread and compact the second and any succeeding courses without rolling the first course again.

4) Finish the surface according to the procedure specified for one-course construction.

c. Irregular Areas

In places inaccessible to the roller, obtain the required compaction with mechanical tampers approved by the Engineer.
304.3.06

D. Priming Base

After completing the base, apply bituminous prime according to Section 412.

304.3.06 Quality Acceptance

A. Compaction

Determine the maximum dry density from representative samples of compaction material according to GDT 49.
Determine the in-place density according to GDT 21 or GDT 59.

B. Finished Surface

1. Transverse Check

Check the finished surface of the base, subbase, or shoulder course transversely. Using one of the following tools:
 - A template, cut true to the required cross-section and set with a spirit level on non-superelevated sections
 - A system of ordinates, measured from a stringline
 - A surveyor's level

2. Longitudinal Check

Check the surface longitudinally by placing a 15 ft (4.5 m) straightedge parallel to the centerline.

Ensure that ordinates measured from the bottom of the template, stringline, or straightedge to the surface do not exceed 1/4 in (6 mm) at any point. Rod readings shall not deviate more than 0.02 foot (6 mm) from the required readings.

Immediately correct any variations that exceed the requirements, as specified in Subsection 300.3.06.B, “Repairing Defects.”

C. Thickness Tolerances

1. Thickness Measurements
 a. Thickness requirements apply to shoulder construction where the Plans specify a uniform thickness, or where the shoulders will be surfaced.
 b. Determine the thickness of the base, subbase, or shoulder course, by making as many checks as necessary to determine the average thickness.

2. Deficient Thickness
 a. If any measurement is deficient in thickness more than 1/2 in (13 mm), make additional measurements to determine the deficient area.
 b. Correct any area deficient between 1/2 in (13 mm) and 1 in (25 mm) to the design thickness by using one of the following methods according to Subsection 300.3.06.B.
 - Add additional quantities of the same materials and reconstruct to the required thickness
 - Leave in place and accept payment for the materials and area at 1/2 the Contract Unit Price for the deficient area.
 c. Correct any area deficient in thickness by more than 1 inch (25 mm) by adding additional quantities of the same material and reconstructing to the required thickness in accordance with Subsection 300.3.06.B.
 d. No additional payment will be made for correcting deficient thickness.

3. Average Thickness
 a. The average thickness per linear mile (kilometer) is determined from all measurements within the mile (kilometer) increments.
 b. Do not include in the measurements, any areas that are deficient by more than 1/2 in (13 mm) but less than 1 in (25 mm) and left in place.

D. Priming Base

Prime the completed base according to Section 412.

304.3.07 Contractor Warranty and Maintenance

A. Protecting the Base, Subbase, or Shoulders

Maintain the course until the Engineer determines that it has cured sufficiently and is ready to prime. Maintain by additional wetting, rolling, and blading as necessary. Repair any defects according to Subsection 300.3.06.B, “Repairing Defects.”
These protection measures do not relieve the Contractor of maintaining the Work until final acceptance as specified in Section 105.

304.4 Measurement
A. Soil Aggregate Base Course
Soil aggregate base course is measured in square yards (meters) of the specified thickness, as defined in Section 109. The length is measured on the surface along the centerline, and the width as specified on the Plans. Irregular areas, such as turnouts and intersections, are measured to the closest square yard (meter).

Where specified on the Plan, measurements are by the ton (megagram) according to Section 109

B. Soil Mortar
When obtained from a borrow pit, soil mortar for soil aggregate base is measured by the cubic yard (meter) loose volume.

C. Bituminous Prime
Bituminous prime is not measured for separate payment.

304.4.01 Limits
General Provisions 101 through 150.

304.5 Payment
A. Soil Aggregate Base Course
Soil aggregate base course will be paid at the Contract Unit Price per square yard (meter) of the specified thickness, or per ton (megagram), complete and accepted as defined above including Bituminous Prime.

B. Soil Mortar
When obtained from a borrow pit, soil mortar for soil aggregate base will be paid at the Contract Unit Price per cubic yard (meter), including materials and haul.

C. Bituminous Prime
Bituminous prime will not be paid separately; include its cost in the base course bid price.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 304</th>
<th>Soil aggregate base course, including materials _____ in (mm)</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 304</td>
<td>Soil aggregate base course, including materials</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>Item No. 304</td>
<td>Soil mortar, including materials</td>
<td>Per cubic yard (meter)</td>
</tr>
</tbody>
</table>

304.5.01 Adjustments
General Provisions 101 through 150.

Section 305—Cement Stabilized Soil Aggregate Construction

305.1 General Description
Specifications for this work will be included elsewhere in the Contract.
Section 307—Impermeable Membrane for Subgrades, Basins, Ditches, and Canals

307.1 General Description
This work includes installing materials to serve as an impermeable membrane. The membrane prevents water seepage beneath the installation level shown on the Plans.

307.1.01 Definitions
General Provisions 101 through 150.

307.1.02 Related References
A. Standard Specifications
 Section 888—Waterproofing Membrane Material
B. Referenced Documents
 General Provisions 101 through 150.

307.1.03 Submittals
General Provisions 101 through 150.

307.2 Materials
Use the following materials to construct the waterproofing layer (impermeable membrane):

- Cross-laminated, high-density polyethylene film
- Flexible, self-adhesive, rubberized asphalt

Ensure that these materials meet the requirements of Subsection 888.2.03. As an alternative and if approved by the Engineer, use another equal system that has at least a 5-year serviceability record.

307.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

307.3 Construction Requirements

307.3.01 Personnel
General Provisions 101 through 150.

307.3.02 Equipment
General Provisions 101 through 150.

307.3.03 Preparation
General Provisions 101 through 150.

307.3.04 Fabrication
General Provisions 101 through 150.

307.3.05 Construction
A. Installation
 Install according to the Plans.
B. Placement
 Place the membrane on a soil blanket or cushion at least 6 in (150 mm) thick, that contains material fine enough to pass through a No. 10 (2 mm) sieve. Take care not to form a “slip plane” between the underlying soil and overlying material. Ensure that the membrane is at least 4 ft (1.2 m) wide, with seam strengths at least 95 percent of the membrane strength.
C. Protection
 During construction, protect the membrane from damage at all times. Remove and replace sections damaged by sunlight, heat, sharp objects, or any other source, at no cost to the Department.
307.3.06 Quality Acceptance
General Provisions 101 through 150.

307.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

307.4 Measurement
Impermeable membrane for subgrades, basins, ditches, and canals is measured by the number of square yards (meters) of subgrade, basins, ditches, and canals.

307.4.01 Limits
Extra, overlapping material required to produce a uniform membrane is not measured.

307.5 Payment
Impermeable membrane for subgrades, basins, ditches, and canals will be paid for at the Contract Unit Price per square yard (meter). This payment will be full compensation for preparing the surfaces, furnishing the membrane system materials, and applying the membrane system.

Payment will be made under:

| Item No. 307 | Impermeable membrane for subgrades, basins, ditches, and canals | Per square yard (meter) |

307.5.01 Adjustments
General Provisions 101 through 150.

Section 310—Graded Aggregate Construction

310.1 General Description
This work includes constructing a base, subbase or shoulder course composed of mineral aggregates. Construct according to these Specifications and to the lines, grades, thickness, and typical cross-sections shown on the Plans or established by the Engineer.

The provisions of Section 300 apply to this work.

310.1.01 Definitions
General Provisions 101 through 150.

310.1.02 Related References
A. Standard Specifications
 Section 105—Control of Work
 Section 300—General Specifications for Base and Subbase Courses
 Section 412—Bituminous Prime
 Section 815—Graded Aggregate
 Section 821—Cutback Asphalt
 Section 823—Cutback Asphalt Emulsion

B. Referenced Documents
 AASHTO T 180
 GDT 21
 GDT 59
310.1.03

310.1.03 Submittals
General Provisions 101 through 150.

310.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graded aggregate</td>
<td>815</td>
</tr>
<tr>
<td>Cutback asphalt, RC-30, RC-70, RC-250 or MC-30, MC-70, MC-250</td>
<td>821.2.01</td>
</tr>
<tr>
<td>Cutback Asphalt Emulsion, CBAE-2</td>
<td>823.2.01</td>
</tr>
<tr>
<td>Blotter material (sand)</td>
<td>412.3.05.G.3</td>
</tr>
</tbody>
</table>

310.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

310.3 Construction Requirements

310.3.01 Personnel
General Provisions 101 through 150.

310.3.02 Equipment
Provide equipment in satisfactory condition for proper construction of the base, subbase or shoulder course. Use any applicable equipment specified in Subsection 412.3.02, “Equipment” for Bituminous Prime.

310.3.03 Preparation
Prepare the subgrade or subbase as specified in Subsection 300.3.03.C, “Preparing the Subgrade” or Subsection 300.3.03.D, “Preparing the Subbase.” Place graded aggregate materials only on dry, thawed subgrade or subbase.

310.3.04 Fabrication
General Provisions 101 through 150.

310.3.05 Construction

A. Placing Material

Use the central plant mix method unless producing aggregates (from an approved source or deposit) that conform to the requirements of Section 815.

Use the following steps to mix base and spread subbase or shoulder course.

1. Mixing
When blending two sizes of aggregate, proportion the aggregate and water, if needed, into the central plant. Mix until producing a homogeneous and uniform mixture.

2. Spreading
To obtain the specified thickness, uniformly spread materials to the proper depth with a mixture spreader. Do not use materials containing frost or frozen particles.

 a. One-Course Construction
 Lay one course to a maximum thickness of 8 in (200 mm) compacted.

 b. Multiple-Course Construction
 If the thickness of the base, subbase or shoulder course exceeds 8 in (200 mm), construct it in 2 or more courses of equal thickness.

B. Compacting Material

Use the following steps to compact and finish a base, subbase, or shoulder course.

1. Moisture Content
Ensure that the moisture content of materials is uniformly distributed and allows compaction to the specified density.
Unless approved by the Office of Materials and Research, no graded aggregate will be shipped to a project when the moisture content of the material exceeds two percent of optimum moisture.

2. Compaction

After shaping the spread material to line, grade, and cross-section, roll to uniformly compact the course. If using Group 1 aggregate, roll to at least 98 percent of maximum dry density. If using Group 2 aggregate, roll to at least 100 percent of the maximum dry density.

If using graded aggregate mixtures composed of either group as base for paved shoulders 6 ft (1.8 m) wide or less, compact to at least 96 percent of the maximum dry density.

Regardless of compaction, ensure that the compacted base is sufficiently stable to support construction equipment without pumping. If the base material is unstable from too much moisture, dry and rework the base material. Dry and rework the underlying subgrade, if necessary.

a. One-Course Construction

1) After compaction, shape to the required grade, line, and cross-section.
2) Add water as necessary to develop the proper moisture content.
3) Roll until the surface is smooth, closely knit, and free of cracks.
4) Correct all defects according to Subsection 300.3.06.B, “Repairing Defects.”

b. Multiple-Course Construction

1) After compacting the first course, shape the surface again to line, grade, and cross section.
2) Add water as necessary to develop the proper moisture content.
3) Spread and compact the second and any succeeding courses without rolling the first course again.
4) Finish the surface according to the procedure specified for one-course construction.

c. Irregular Areas

In places inaccessible to the roller, obtain the required compaction with mechanical tampers approved by the Engineer. Apply the same density requirements as stated above in Subsection 310.3.05.B.

C. Finishing

Finish the surface of the subbase for Portland cement concrete pavement or the base of asphaltic concrete pavement with automatically controlled screed equipment when required by Subsection 300.3.02.H, “Fine Grading Machine” of the Specifications. Furnish, install, and maintain the sensing wires needed to control the finish operation as a part of the Pay Item. When automatically controlled screed equipment is not required, fine grading with motor graders is permitted.

Finish immediately after the placing and compacting operations. After finishing, compact the subbase again, according to Subsection 310.3.05.B, “Compacting Material.”

D. Protecting the Base, Subbase or Shoulders

Maintain the course until the Engineer determines that it has cured sufficiently and is ready to prime. Maintain by additional wetting, rolling, and blading as necessary. Repair any defects according to Subsection 300.3.06.B, “Repairing Defects.”

These protection measures do not relieve the Contractor of maintaining the Work until final acceptance as specified in Section 105.

E. Priming the Base

Apply bituminous prime according to Section 412 unless using:

- Graded aggregate base under Portland cement concrete pavement
- Graded aggregate base under asphaltic concrete 5 in (125 mm) or more in total thickness

310.3.06 Quality Acceptance

A. Compaction Tests

1. Determine the maximum dry density from representative samples of compacted material, according to AASHTO T180, Method D.
2. Determine the in-place density of finished courses according to GDT 21 or GDT 59, where applicable.
B. Finished Surface

Check the finished surface of the base, subbase, or shoulder course as follows:

1. Check the longitudinal surface using a 15 ft (4.5 m) straightedge parallel to the centerline.
2. Check the transverse surface by using one of the following tools:
 - A template, cut true to the required cross-section and set with a spirit level on non-superelevated sections
 - A system of ordinates, measured from a stringline
 - A surveyor’s level
3. Ensure that ordinates measured from the bottom of the template, stringline, or straightedge, to the surface do not exceed 1/4 in (6 mm) at any point. Rod readings shall not deviate more than 0.02 ft (6 mm) from required readings.
4. Correct any variations from these requirements immediately according to Subsection 300.3.06.B, “Repairing Defects.”

C. Thickness Tolerances

1. Thickness Measurements
 a. Thickness requirements apply to shoulder construction where the Plans specify a uniform thickness, or where the shoulders will be surfaced.
 b. Determine the thickness of the base, subbase, or shoulder course, by making as many checks as necessary to determine the average thickness.

2. Deficient Thickness
 a. If any measurement is deficient in thickness more than 1/2 in (13 mm), make additional measurements to determine the deficient area.
 b. Correct any area deficient between 1/2 in (13 mm) and 1 in (25 mm) to the design thickness by using one of the following methods according to these Specifications:
 - Add additional quantities of the same materials and reconstruct to the required thickness
 - Leave in place and accept payment for the materials and area at ½ the Contract Unit Price for the deficient area.
 c. Correct any area deficient in thickness by more than 1 inch (25 mm) by adding additional quantities of the same material and reconstructing to the required thickness in accordance with these Specifications.
 d. If payment is made by the ton (megagram), payment for additional material to correct deficiencies will be made at the Contract Unit Price with no additional cost to the Department for scarification, mixing or compaction.
 e. If payment is made by the square yard (meter), no payment will be made for additional material required to correct deficiencies or for reconstructing deficient work.

3. Average Thickness
 a. The average thickness per linear mile (kilometer) is determined from all measurements within the mile (kilometer) increments except the areas deficient by more than 1/2 in (13 mm) and not corrected.
 b. The average thickness shall not exceed the specified thickness by more than 1/2 in (13 mm).
 c. If the basis of payment is per ton (megagram), and the average thickness for any mile (kilometer) increment exceeds the allowable 1/2 in (13 mm) tolerance, the excess quantity in that increment will be deducted from the Contractor’s payments.
 d. The excess quantity is calculated by multiplying the average thickness that exceeds the allowable 1/2 in (13 mm) tolerance by the surface area of the base, subbase, or shoulder.
 e. If the basis of payment is per square yard (meter), no deduction will be made for excess thickness.

310.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

310.4 Measurement

A. Graded Aggregate

Where specified for payment by the ton (megagram), graded aggregate base, subbase or shoulder materials are measured in tons (megagrams), mixed and accepted. When hauling material to the roadway, the actual weight of each loaded vehicle is determined with an approved motor truck scale.
Where specified for payment by the square yard (meter) for a certain thickness, the surface length is measured along the centerline, and the width is specified on the Plans. Measure irregular areas, such as turnouts and intersections, by the square yard (meter).

B. Bituminous Prime

Bituminous prime is not measured for separate payment.

310.4.01 Limits
General Provisions 101 through 150.

310.5 Payment
A. Graded Aggregate

Graded aggregate base, subbase, or shoulder course will be paid for at the Contract Unit Price per ton (megagram) or per square yard (meter), complete, in place, and accepted. This payment shall be full compensation for:

- Materials
- Shaping and compacting the existing roadbed
- Loading, hauling, and unloading
- Crushing and processing
- Mixing
- Spreading
- Watering
- Compacting and shaping
- Maintenance
- Priming, when required
- All incidentals necessary to complete The Work

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 310</th>
<th>Graded aggregate (base, subbase, shoulder course)—including material</th>
<th>Per ton (megagram) or square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 310</td>
<td>Graded aggregate base and shoulder course— including material</td>
<td>Per ton (megagram) or square yard (meter)</td>
</tr>
</tbody>
</table>

310.5.01 Adjustments
General Provisions 101 through 150.

Section 311—Crushed Stone Base

311.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 316—Cement Stabilized Graded Aggregate Construction

316.1 General Description
Specifications for this work will be included elsewhere in the Contract.
317.1 General Description
This work includes reconstructing base courses by:

- Reshaping the existing road surface
- Adding the required amount of new material
- Compacting materials to form a foundation course for other base courses, surface courses, or pavements

Construct base courses according to these Specifications and to the lines, grades, and typical cross-sections shown on the Plans or established by the Engineer.

Apply all of the provisions of Section 300 to this Item.

317.1.01 Definitions
General Provisions 101 through 150.

317.1.02 Related References
A. Standard Specifications
 - Section 109—Measurement and Payment
 - Section 300—General Specifications for Base and Subbase Courses
 - Section 412—Bituminous Prime
B. Referenced Documents
 - General Provisions 101 through 150.

317.1.03 Submittals
General Provisions 101 through 150.

317.2 Materials
Use materials shown on the Plans or Proposal that conform to the requirements in these Specifications for each type of material.

317.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

317.3 Construction Requirements

317.3.01 Personnel
General Provisions 101 through 150.

317.3.02 Equipment
Provide equipment in satisfactory condition for the proper reconstruction of the base course.

317.3.03 Preparation
General Provisions 101 through 150.

317.3.04 Fabrication
General Provisions 101 through 150.

317.3.05 Construction
A. Methods
 With the following methods, bring the existing road surface up to the established grade to conform to the cross-section indicated on the Plans.
 1. Remove Unsuitable Material
 When existing roadbed material is unsuitable for use, remove and replace it with approved material.
2. Remove and Stockpile Existing Base
 If removing roadbed materials to stockpile for further use, as shown on the Plans, follow these steps:
 a. Scarify and pulverize the roadbed to the specified depth, without removing the subgrade or shoulder material.
 b. Deposit material in stockpiles on thoroughly clean surfaces.
 c. Minimize segregation of the separate ingredients when stockpiling the material.
3. Scarify
 If leaving roadbed material in place, scarify below the upper surface of the finished base course to a uniform depth, and to the entire width of the finished base course, to:
 a. Eliminate all depressions and irregularities
 b. Allow the bonding of any additional material to the old base
 c. Reshape to the required cross-section
 If the surface has been treated with a bituminous material, break it down sufficiently to incorporate into the existing base. If this is impossible, remove it from the base and dispose of it as the Engineer directs.
4. Add New Material
 Where unsuitable material has been removed, shape the subgrade or remaining material as directed to add material. Use new material that conforms to the governing Specification.
5. Replace Stockpiled Material
 After shaping the subgrade, place stockpiled material along with any additional new material on the roadbed. If the existing roadbed material is satisfactory for use, but deficient in thickness after scarifying, bring the surface to the grade and depth indicated on the Plans by:
 a. Removing all material larger than 3 in (75 mm) in diameter
 b. Adding new material

B. Mix and Shape
 After adding the required amount of new material, thoroughly mix the old and new base course. Mix according to the requirements set out under the Specifications for the type of base being constructed. During the mixing and shaping operations, add sufficient quantities of water, if needed, to secure proper moisture conditions.
 After mixing, shape the entire roadbed to the required grade and cross-section. Remix and reshape all or any part of the base as necessary, to obtain the desired results.

C. Compact and Finish
 After mixing and shaping the base material, compact and finish according to the Specifications for the type of base being reconstructed.

D. Prime
 After compaction, preserve the base by priming according to Section 412.

317.3.06 Quality Acceptance
General Provisions 101 through 150.

317.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

317.4 Measurement
A. Base Preparation
 Base preparation is measured along the center of the road in miles (kilometers) or in square yards (meters).

B. Removed Unsuitable Material
 Removed unsuitable material is measured according to the Earthwork Item in the Contract.

C. Additional Material
 Where specified for payment by the cubic yard (meter), the new material added to reconstruct the base is measured by the cubic yard (meter) loose volume as specified in Section 109.
317.4.01

Where specified for payment by the ton (megagram), new material is measured in tons (megagrams), as mixed and accepted. The actual weight is determined by weighing each loaded vehicle with an approved motor truck scale as the material is hauled to the roadway. The actual weight will be the pay weight.

D. Removed, Stockpiled, and Replaced Material

The removal, stockpiling, and replacing of material is measured by the cubic yard (meter) loose volume as specified in Section 109.

E. Prime

Bituminous prime is not measured for separate payment; include it in the price of base preparation.

317.4.01 Limits

General Provisions 101 through 150.

317.5 Payment

A. Removed Unsuitable Material

The removal of unsuitable material will be paid for according to the Earthwork Item in the Contract.

B. Removed and Stockpiled Material

The removal and stockpiling of existing base material will be paid for at the Contract Unit Price per cubic yard (meter). This payment will be full compensation for:

- Scarifying
- Pulverizing
- Loading, hauling, and unloading
- Replacing all existing material from stockpiles

C. Replaced Base Material

The replacement of existing base material from stockpiled materials will be paid for at the Contract Unit Price per cubic yard (meter). This will be full compensation for:

- Loading, hauling, and unloading
- Replacing all existing material from stockpile, as required

D. Base Preparation

The preparation of the base will be paid for at the Contract Unit Price per mile (kilometer) or per square yard (meter). This payment will be full compensation for:

- Scarifying
- Shaping
- All machining necessary to bring the existing road surface to the established grade and to the cross-section shown on the Plans
- Priming

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 317</th>
<th>Additional reconstructed base material</th>
<th>Per cubic yard (meter) or ton (megagram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 317</td>
<td>Additional reconstructed base material, including material</td>
<td>Per cubic yard (meter) or ton (megagram)</td>
</tr>
<tr>
<td>Item No. 317</td>
<td>Removing and stockpiling existing base material</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 317</td>
<td>Replacing existing base material from stockpile</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 317</td>
<td>Base preparation</td>
<td>Per mile (kilometer) or square yard (meter)</td>
</tr>
</tbody>
</table>

317.5.01 Adjustments

General Provisions 101 through 150.
Section 318—Selected Material Surface Course

318.1 General Description
This work includes constructing a surface course with soil and/or stone. Construct according to these Specifications and to the lines, grades, and typical cross-sections shown on the Plans or established by the Engineer.

Apply the requirements of Section 300 to this Item unless modified by this Specification.

318.1.01 Definitions
General Provisions 101 through 150.

318.1.02 Related References
A. Standard Specifications
 Section 205 – Roadway Excavation
 Section 300—General Specifications for Base and Subbase Courses
 Section 303—Topsoil, Sand-Clay or Chert Construction
 Section 800—Coarse Aggregate
 Section 803—Stabilizer Aggregate
 Section 814—Soil Base Materials
 Section 815—Graded Aggregate

B. Referenced Documents
 General Provisions 101 through 150.

318.1.03 Submittals
Submit a “Request for Material Approval.”

318.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topsoil and Sand Clay</td>
<td>814.2.01</td>
</tr>
<tr>
<td>Chert</td>
<td>814.2.04</td>
</tr>
<tr>
<td>Graded Aggregate</td>
<td>815.2.01, and notes 1 and 2, below.</td>
</tr>
<tr>
<td>Coarse Aggregate, Size No. 467, 3, or 4</td>
<td>815.2.02, and notes 1 and 2, below.</td>
</tr>
<tr>
<td>Stabilizer Aggregate (Type as Designated)</td>
<td>800.2.01</td>
</tr>
<tr>
<td></td>
<td>803</td>
</tr>
</tbody>
</table>

NOTE 1. Use Subsection 815.2.02, “Unconsolidated Limerock” as aggregate surface course only if the material gradation meets the requirements of Subsection 815.2.01, “Graded Aggregate.”

NOTE 2. When a Project requires an aggregate surface course to be placed and left as a riding surface, use only graded aggregate that meets the requirements of Subsection 815.2.01, “Graded Aggregate.”

A. Satisfactory Material
 Use in-place roadbed or driveway material when determined to be acceptable by the Engineer.

B. Unsuitable Material
 Remove roadbed materials unsuitable for use as determined by the Engineer.
318.2.01

C. Additional Material

To add materials to those in the roadbed or to build up the surface course entirely, use materials approved by the Engineer.

318.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

318.3 Construction Requirements

318.3.01 Personnel

General Provisions 101 through 150.

318.3.02 Equipment

General Provisions 101 through 150.

318.3.03 Preparation

If constructing the course entirely of new materials, prepare the subgrade as specified in Subsection 300.3.03.C, “Preparing the Subgrade.” If using in-place material, ensure that the surface has been properly shaped. Do not place materials on muddy or frozen subgrade.

318.3.04 Fabrication

General Provisions 101 through 150.

318.3.05 Construction

Spread selected material by approved method to the thickness prescribed on the Plans.

Scarify, mix, and shape the selected material to the required cross section. Roll until the surface is thoroughly compacted, firm, and unyielding. Add water to assist scarifying and compaction.

Where in place materials are approved for use, scarify, mix, shape and compact according to the Specifications for the applicable material.

When stabilizer aggregate is specified, mix it into the surface course according to Subsection 303.3.05.B.3, “Stabilizing.”

Where aggregate surface course is specified, spread the specified aggregate or stabilizer material uniformly to the required depth at locations shown on the Plans or as directed by the Engineer.

318.3.06 Quality Acceptance

General Provisions 101 through 150.

318.3.07 Contractor Warranty and Maintenance

Maintain the finished surface course to the required cross section and usable, until the Project is completed and accepted.

318.4 Measurement

A. Selected Material Surface Course

This Item, furnished, complete in place and accepted, is measured by the cubic yard (meter), loose volume as specified in Section 109.

B. In-Place Selected Material Surface Course

This Item is measured in place, on the roadway, in square yards (meters). The actual length is measured along the surface of the surface course, and multiplied by the Plan width. Where this item is on driveways or other irregular areas, the quantity is the actual number of square yards (meters) completed in place and accepted.

C. Stabilizer Aggregate and Aggregate Surface Course

Stabilizer Aggregate and Aggregate Surface Course are measured by the ton (megagram). Their weights are determined with certified truck scales as specified in Section 109.

D. Unsuitable Material

Removed unsuitable material is measured and paid for as Roadway Excavation-Unclassified, Section 205.

318.4.01 Limits

General Provisions 101 through 150.
318.5 Payment

A. Selected Material Surface Course

This item will be paid for at the Contract Unit Price per cubic yard (meter), complete in place and accepted. This payment will be full compensation for:

- Preparing the subgrade
- Furnishing all material
- Loading, hauling, and unloading
- Scarifying
- Pulverizing
- Harrowing
- Spreading
- Mixing, compacting, and shaping
- Maintaining and watering the course

B. In-Place Selected Material Surface Course

This Item, regardless of the depth of material processed, will be paid for at the Contract Unit Price per square yard (meter), complete in place and accepted.

This payment will be full compensation for:

- Scarifying
- Pulverizing
- Harrowing
- Mixing, compacting, and shaping
- Maintaining and watering the course

C. Stabilizer Aggregate

The Stabilizer Aggregate will be paid for at the Contract Unit Price per ton (megagram), complete in place and accepted. This payment will be full compensation for:

- Furnishing all material
- Loading, hauling, and unloading
- Scarifying
- Spreading, mixing, compacting, and shaping
- Maintaining and watering the course

D. Aggregate Surface Course

Aggregate Surface Course will be paid for at the Contract Unit Price per ton (megagram), complete in place and accepted. This payment will be full compensation for:

- Furnishing all material
- Loading, hauling, and unloading
- Spreading, compacting, and shaping
- Maintaining the course

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>318</td>
<td>Selected materials, surface course</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>318</td>
<td>In-place selected material surface course</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>318</td>
<td>Aggregate surface course</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>303</td>
<td>Stabilizer aggregate type ____</td>
<td>Per ton (megagram)</td>
</tr>
</tbody>
</table>
Section 319—Lime-Fly Ash Soil Construction

319.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 325—Stabilized Base Material for Patching

325.1 General Description
This work includes patching with soil-cement construction, cement stabilized graded aggregate construction, or select material stabilized construction. Construct according to the Plans, the Proposal, or as directed by the Engineer.

325.1.01 Definitions
General Provisions 101 through 150.

325.1.02 Related References
A. Standard Specifications
 Section 109—Measurement and Payment
 Section 209—Subgrade Construction
 Section 301—Soil-Cement Construction
 Section 316—Cement Stabilized Graded Aggregate Construction
 Section 412—Bituminous Prime
 Section 810—Roadway Materials

B. Referenced Documents
 General Provisions 101 through 150.

325.1.03 Submittals
General Provisions 101 through 150.

325.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil-Cement Construction</td>
<td>301</td>
</tr>
<tr>
<td>Cement Stabilized Graded Aggregate Construction</td>
<td>316</td>
</tr>
<tr>
<td>Bituminous Prime</td>
<td>412</td>
</tr>
<tr>
<td>Subgrade Construction</td>
<td>209</td>
</tr>
</tbody>
</table>

Ensure that the subgrade stabilizer-select material meets the requirements of Subsection 810.2.01, “Roadway Materials—Class IIB3” or better. Any special gradation will be specified by a Special Provision.

325.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.
325.3 Construction Requirements

Ensure that all labor, equipment, and materials necessary to ensure a continuous patching operation are on hand before patching begins.

325.3.01 Personnel
General Provisions 101 through 150.

325.3.02 Equipment
Provide all the equipment required for the type of patching used.

A concrete mixer with proper weight and moisture control will be considered as a stationary mixing plant for the production of patching material under this Specification.

325.3.03 Preparation
Prepare stabilized base material areas for patching as follows:

1. Trim the sides of the areas to be patched and leave them vertical. Remove all loose material.
2. Remove unsatisfactory material to the depth shown on the Plans or as directed by the Engineer; remove at least 6 in (150 mm) of material.
3. If unsatisfactory material is below a plane that is 1 ft (300 mm) below the existing surface, undercut the area as necessary.
4. Backfill the area with subgrade stabilizer-select material to 1 ft (300 mm) below the existing surface. Use subgrade that meets the requirements of Section 209.

325.3.04 Fabrication
General Provisions 101 through 150.

325.3.05 Construction
Patch during traffic unless otherwise specified. Follow the requirements of Section 301 unless otherwise stated in this Specification.

Patch stabilized base material areas as follows:

1. Thoroughly compact patches at the optimum moisture to at least 100 percent of the maximum laboratory dry density.
2. Compact to the required degree with a conventional steel wheel, pneumatic tired roller, mechanical tampers, or other devices.
3. Lightly spray or mop each patch with bituminous prime. Sand primed areas subject to traffic as directed by the Engineer.

325.3.06 Quality Acceptance
General Provisions 101 through 150.

325.3.07 Contractor Warranty and Maintenance
Repair or replace damaged or destroyed patch at no additional cost to the Department.

325.4 Measurement

A. Base Material

Base material is measured by the cubic yard (meter), loose volume, as specified in Subsection 109.01, “Measurement and Quantities.”

B. Subgrade Stabilizer-Select Material

Subgrade stabilizer-select material is measured by the cubic yard (meter), loose volume, as specified in Subsection 109.01, “Measurement and Quantities.”

325.4.01 Limits
General Provisions 101 through 150.
325.5 Payment

A. Base Material

The accepted quantity of base material will be paid for at the Contract Unit Price per cubic yard (meter). This payment will be full compensation for:

- Flagging and directing traffic
- Preparing the patched area
- Furnishing material, including Portland cement and bituminous prime
- Loading, unloading, and hauling material
- Crushing
- Processing
- Mixing
- Spreading
- Watering
- Compacting
- Maintaining material

B. Subgrade Stabilizer-Select Material

Subgrade stabilizer-select material will be paid for at the Contract Unit Price per cubic yard (meter) complete in place and accepted. Payment will be full compensation for:

- Removing and disposing asphalt pavements, base materials, and unsatisfactory subgrades
- Furnishing all material
- Loading, hauling, and unloading material
- Mixing
- Compacting
- Finishing
- Watering

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 325</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 325</td>
<td>Soil-cement stabilized base course for patching</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 325</td>
<td>Graded aggregate, cement stabilized base for patching</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 325</td>
<td>Subgrade stabilizer-select material for patching</td>
<td>Per cubic yard (meter)</td>
</tr>
</tbody>
</table>

325.5.01 Adjustments

General Provisions 101 through 150.

Section 326—Portland Cement Concrete Subbase

326.1 General Description

This work includes constructing a subbase composed of a mixture of Portland cement and graded aggregate, or Portland cement, aggregate, and sand. Construct according to these Specifications and to the lines, grades, and typical cross-sections shown on the Plans or established by the Engineer.

Apply the requirements of Section 300 to this work.

326.1.01 Definitions

General Provisions 101 through 150.
326.1.02 Related References
A. Standard Specifications
 Section 109—Measurement and Payment
 Section 300—General Specifications for Base and Subbase Courses
 Section 430—Portland Cement Concrete Pavement
 Section 500—Concrete Structures
 Section 800—Coarse Aggregate
 Section 801—Fine Aggregate
 Section 815—Graded Aggregate
 Section 830—Portland Cement
 Section 831—Admixtures
 Section 832—Curing Agents
B. Referenced Documents
 ASTM C 94
 AASHTO T 22
 AASHTO T 126
 GDT 26
 GDT 27
 GDT 28
 GDT 32

326.1.03 Submittals
Prior to construction, submit a grade control plan for the Engineer’s approval.

326.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Aggregate</td>
<td>801.2.01</td>
</tr>
<tr>
<td>Portland Cement</td>
<td>830.2.01</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>831.2.03</td>
</tr>
<tr>
<td>*Graded Aggregate</td>
<td>815.2.01</td>
</tr>
<tr>
<td>Coarse Aggregate</td>
<td>800.2.01</td>
</tr>
<tr>
<td>Air Entraining Admixture</td>
<td>831.2.01</td>
</tr>
<tr>
<td>Chemical Admixtures for Concrete Type A or D</td>
<td>831.2.02</td>
</tr>
<tr>
<td>Curing Compound—White, Wax Base</td>
<td>832.2.03</td>
</tr>
</tbody>
</table>

* The gradation requirements of graded aggregate are modified to require 30 to 45 percent by weight passing the No. 10 (2.0 mm) sieve.

326.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

326.3 Construction Requirements
326.3.01 Personnel
General Provisions 101 through 150.
326.3.02 Equipment

Provide the equipment and tools necessary to perform this work, including the following.

A. Concrete Batching Equipment

Provide separate bins and weighing hoppers for aggregates and cement in the batching plant. Use separate scales to weigh cement and aggregate.

The Engineer will inspect scales for weighing concrete materials and water measuring devices before their use. Ensure accuracy of scales and water measuring devices of plus or minus 1.0 percent throughout the operating range.

Measure admixtures to an accuracy of plus or minus 3.0 percent.

B. Slip Form Paver and Spreader

To place the subbase mixture, use a self-propelled slip form paver equipped with tracks sufficient to prevent slippage and bogging when loaded.

☐ Use the paver to strike off, consolidate, and float finish the fresh mixture—all in one pass.

☐ Operate the paver from a string grade control, or a combination of string control and existing pavement control.

☐ Use a self-propelled mechanical spreader to distribute the mixture on the grade.

326.3.03 Preparation

Before placing Portland cement concrete subbase, prepare the roadbed as required by the Plans and the Specifications.

326.3.04 Fabrication

General Provisions 101 through 150.

326.3.05 Construction

Produce Portland cement concrete subbase by combining authorized proportions of approved materials in homogeneous, uniform batches.

Ensure that the grade immediately under the subbase does not contribute to deficient thicknesses of either the subbase or pavement. Employ methods to ensure that subbase placement equipment does not cause deficient thickness to areas supporting the equipment.

Produce the subbase as follows:

A. Mixing

The Engineer will determine the design proportions of the required materials based upon mixes prepared in the laboratory or trials performed during construction.

Determine the batch weights required to produce the necessary quantity.

Measure the cement, aggregates, and water separately, to the accuracy specified above. Continue mixing until producing a homogeneous and uniform mixture.

Mix concrete produced in a stationary central mix plant for a minimum of 60 seconds, after all materials have entered the drum. A reduction of mix time may be allowed if representative tests show that the concrete meets the requirements of ASTM C 94, Requirements for Uniformity. In all cases, mix for at least 50 seconds.

Ensure that transit mixed concrete meets the requirements of Subsection 500.3.04.E.3.

B. Placing

Spread the mixture on the grade with minimum rehandling. Hand spread with shovels if necessary. Do not place Portland cement concrete on muddy, puddled, or frozen subgrade.

NOTE: Do not allow workers to walk in fresh concrete with shoes coated with dirt or other foreign substances.

C. Consolidating

Consolidate the mixture by vibrating the full length, width, and depth of the section. Ensure that vibration does not produce puddling or excessive grout accumulation. If consolidation and density are not satisfactory, stop placement and furnish methods or equipment to produce subbase conforming to the Specifications.
D. Finishing

Finish the mixture to the proper cross-section. Use equipment that produces a uniform surface free of irregular, rough, or porous areas. Use a tube float or other finishing device approved by the Engineer to provide a smooth surface. Unless the Engineer permits, do not add water to the surface to aid finishing.

E. Forming Construction Joints

Form a construction joint when mixture placement is interrupted for more than one hour. Construct joints according to Subsection 430.3.05 unless the Engineer waives the requirements concerning reinforcement. Ensure that the straightedge tolerance is 3/8 in (10 mm) in 20 ft (6 m).

F. Curing

Cure the mixture according to Subsection 430.3.05.L.1. Apply compound for the impervious membrane method at the rate of 200 ft²/gal (5 m²/L) or less. Apply a second application of curing compound just before placing the pavement to act as a bond breaker. Apply the second application at the same rate as the first application.

G. Preserving the Subbase

Maintain the subbase until it is covered by the succeeding pavement course.

1. Place the pavement course on the subbase only after the mixture has cured for 7 days.
2. Operate the spreader and slip form paver on the subbase after 7 days, but do not use the subbase as a haul road for loaded trucks, equipment, or other vehicles for 14 days.
 a. Construct earth ramps and barricades to move traffic across the subbase.
 b. Remove and replace areas damaged by vehicles or equipment at no additional cost to the Department.

H. Weather Limitations

1. Do not place the subbase mixture when the air temperature in the shade is less than 40 °F (5 °C) and falling. Wait until the air temperature is at least 35 °F (2 °C) and rising.
2. Protect the subbase from rain until the surface has sufficiently hardened to prevent marring.
3. Protect the subbase from cold weather according to Subsection 430.3.05.L.4.

326.3.06 Quality Acceptance

Check the finished surface transversely by a system of ordinates measured from a stringline. Also check the surface with a 20 ft (6 m) straightedge placed parallel to the centerline.

Remove or correct deviations in excess of 3/8 in (10 mm) in 20 ft (6 m). If the Engineer permits, correct low areas by increasing the thickness of the surface course at no additional cost to the Department.

A. Composition of Subbase Mixture

The Department will determine the required proportions based on the test results of sample material. Secure and deliver a sufficient amount of materials to the laboratory for evaluation.

An approved mixture shall conform to the following:

1. Aggregate
 Use aggregate that meets the requirements of Subsection 815.2.01. Use aggregates manufactured at the quarry or blended at the plant site to produce the desired results. Place aggregates in one or more stockpiles if the gradation is uniform at the time of batching.

2. Cement
 Use at least 275 lbs/yd³ (165 kg/m³) of Portland cement for Portland cement concrete subbase.
 Use fly ash as a partial replacement for Portland cement if:
 a. The quantity of cement replaced is 15 percent or less by weight.
 b. Cement is replaced by fly ash at the rate of 1.25 lbs to 2 lbs (1.25 kg to 2.0 kg) of fly ash to each pound (kilogram) of cement.
 Do not use Type IP cement in fly ash mixes.

3. Water-Cement Ratio
 The maximum water-cement ratio shall not exceed 1.3. Calculate the water-cement ratio based on the total cement material used, including fly ash.
4. Air Content
 Maximum design air content shall be 7.0 percent.

5. Slump
 Maximum design slump shall be 1.5 in (40 mm).

6. Compressive Strength
 Ensure that the mixture is capable of demonstrating a laboratory compressive strength at 28 days of 1,000 psi (7 MPa) +1.8R*. (*Where: R = the difference between the largest observed value and the smallest observed value for all compressive strength specimens at 28 days, for a given combination of materials and mix proportions prepared together.)
 Determine compressive strength from the results of six cylinders prepared and tested according to AASHTO: T 126 and T 22.

B. Field Adjustment of Design Proportions
 The Engineer will determine changes in design proportions based on construction conditions and notify the Contractor in writing of the effective date and time of the changes.

C. Mix Tolerances
 The Engineer will verify that the mix is proportioned according to the approved mix design. Assume responsibility for determining the required batch weights.
 Ensure that variations in consistency and air content of the mixture are within the following limits at the time of placement.
 1. Consistency
 Slump shall not exceed 2 in (50 mm) as determined by GDT 27.
 2. Air Content
 Air content shall not exceed 8.0 percent, as determined by the applicable test method in GDT 26, GDT 28, or GDT 32.

D. Acceptance of Subbase Mixture
 The Department will accept the mixture based upon results required in the Sampling Testing and Inspection Manual for:
 - Slump
 - Air tests
 - Water-cement ratio
 - Surveillance of plant operations and mix production

E. Thickness
 Determine thickness by taking probe measurements in the fresh mixture every 250 ft (75 m) or less. Adjust the strike off to compensate for variations in thicknesses. Obtain cores to determine the boundaries of areas subject to thickness correction. A construction tolerance of plus or minus 0.5 in (13 mm) from the Plan depth is permitted.
 1. Deficient Thickness
 Correct areas deficient in thickness by more than 0.5 in (13 mm) but less than 1 in (25 mm) by increasing the surface course depth. Remove or correct areas deficient in thickness by more than 1 in (25 mm) as the Engineer directs.
 The Engineer may base the decision to remove or correct the area on a Plan submitted by the Contractor detailing how to obtain the final pavement profile and grade.
 2. Excessive Thickness
 Remove areas with excessive thickness when the Engineer requires. Removal is not required when the excessive thickness does not result in a surface course deficient in thickness.

326.3.07 Contractor Warranty and Maintenance
 General Provisions 101 through 150.

326.4 Measurement
 Portland cement concrete subbase is measured by the square yard (meter) as noted in Section 109, complete in place and accepted.
326.4.01 Limits
General Provisions 101 through 150.

326.5 Payment
Portland cement concrete subbase will be paid for at the Contract Unit Price per square yard (meter) for each specified thickness shown on the plans. This payment will be full compensation for:

- Providing Portland cement and all other materials
- Applying first and second applications of curing compound
- Providing all equipment and labor
- Mixing
- Hauling
- Providing other incidentals necessary to complete the Item
- Replacing subbase when required

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 326</th>
<th>Portland cement concrete subbase ____ in (mm) thick</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
</table>

326.5.01 Adjustments
General Provisions 101 through 150.

Section 327—Mining, Crushing, and Stockpiling Aggregates

327.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 328—Foamed Asphalt Stabilized Base Course

328.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 400—Hot Mix Asphaltic Concrete Construction

400.1 General Description
This work includes constructing one or more courses of bituminous plant mixture on the prepared foundation or existing roadway surface. The mixture shall conform with lines, grades, thicknesses, and typical cross sections shown on the Plans or established by the Engineer.

This section includes the requirements for all bituminous plant mixtures regardless of the gradation of the aggregates, type and amount of bituminous material, or pavement use.

Work will be accepted on a lot-to-lot basis according to the requirements of this Section and Section 106.

400.1.01 Definitions
Segregated Mixture: Mixture which lacks homogeneity in HMA constituents of such a magnitude that there is a reasonable expectation of accelerated pavement distress or performance problems. May be quantified by measurable changes in temperature, gradation, asphalt content, air voids, or surface texture.

New Construction: A roadway section more than 0.5 mile (800 m) long that is not longitudinally adjacent to the existing roadway. If more than one lane is added, and any of the lanes are longitudinally adjacent to the existing lane, each lane shall be tested under the criteria for a resurfacing project.
400.1.02

Trench Widening: Widening no more than 4 ft. (1.2 m) in width.

Comparison sample: Opposite quarter of material sampled by the Contractor.

Quality assurance sample: Independent sample taken by the Department.

Referee sample: A sample of the material remaining after quartering which is used for evaluation if a comparison of Contractor and Departmental test results is outside allowable tolerances.

400.1.02 Related References

A. Standard Specifications
 - Section 106—Control of Materials
 - Section 109—Measurement and Payment
 - Section 152—Field Laboratory Building
 - Section 413—Bituminous Tack Coat
 - Section 424—Bituminous Surface Treatment
 - Section 802—Coarse Aggregate for Asphaltic Concrete
 - Section 828—Hot Mix Asphaltic Concrete Mixtures

B. Referenced Documents
 - AASHTO T 209
 - AASHTO T 202
 - AASHTO T 49
 - Laboratory Standard Operating Procedure (SOP) 27, “Quality Assurance for Hot Mix Asphaltic Concrete Plants in Georgia”
 - Department of Transportation Standard Operating Procedure (SOP) 15
 - GDT 38
 - GDT 73
 - GDT 78
 - GDT 83
 - GDT 93
 - GDT 119
 - GDT 125
 - GSP 15
 - GSP 21
 - QPL 1
 - QPL 2
 - QPL 7
 - QPL 26
 - QPL 30
 - QPL 39
 - QPL 41
 - QPL 45
 - QPL 65
 - QPL 67
QPL 70
QPL 77

400.1.03 Submittals

A. Invoices

When the Department requests, furnish formal written invoices from a supplier for all materials used in production of HMA. Show the following on the Bill of Lading:

- Date shipped
- Quantity in tons (megagrams)
- Included with or without additives (for asphalt cement)

Purchase asphaltic cement from a supplier who will provide copies of Bill of Lading upon the Department’s request.

B. Paving Plan

Before starting asphaltic concrete construction, submit a written paving plan to the Engineer for approval. Include the following on the paving plan:

- Proposed starting date
- Location of plant(s)
- Rate of production
- Average haul distance(s)
- Number of haul trucks
- Paver speed feet (meter)/minute for each placement operation
- Mat width for each placement operation
- Number and type of rollers for each placement operation
- Sketch of the typical section showing the paving sequence for each placement operation
- Electronic controls used for each placement operation
- Temporary pavement marking plan

If staged construction is designated in the Plans or contract, provide a paving plan for each construction stage.

If segregation is detected, submit a written plan of measures and actions to prevent segregation. Work will not continue until the plan is submitted to and approved by the Department.

C. Job Mix Formula

After the Contract has been awarded, submit to the Engineer a written job mix formula proposed for each mixture type to be used based on an approved mix design. Furnish the following information for each mix:

- Specific project for which the mixture will be used
- Source and description of the materials to be used
- Mixture I.D. Number
- Proportions of the raw materials to be combined in the paving mixture
- Single percentage of the combined mineral aggregates passing each specified sieve
- Single percentage of asphalt by weight of the total mix to be incorporated in the completed mixture
- Single temperature at which to discharge the mixture from the plant
- Theoretical specific gravity of the mixture at the designated asphalt content
- Name of the person or agency responsible for quality control of the mixture during production

Do the following to have the formulas approved and to ensure their quality:

1. Submit proposed job mix formulas for review at least two weeks before beginning the mixing operations.
2. Do not start hot mix asphaltic concrete work until the Engineer has approved a job mix formula for the mixture to be used. No mixture will be accepted until the Engineer has given approval.
3. Provide mix designs for all Superpave and 4.75 mm mixes to be used. The Department will provide mix design results for other mixes to be used.
400.2

4. After a job mix formula has been approved, assume responsibility for the quality control of the mixtures supplied to the Department according to Subsection 106.01, “Source of Supply and Quantity of Materials.”

D. Quality Control Program

Submit a Quality Control Plan to the Office of Materials and Research for approval. The Quality Control Program will be included as part of the certification in the semiannual plant inspection report.

400.2 Materials

Ensure that materials comply with the specifications listed in Table 1.

<table>
<thead>
<tr>
<th>Table 1—Materials Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Asphalt Cement, Grade Specified</td>
</tr>
<tr>
<td>Coarse Aggregates for Asphaltic Concrete</td>
</tr>
<tr>
<td>Fine Aggregates for Asphaltic Concrete</td>
</tr>
<tr>
<td>Mineral Filler</td>
</tr>
<tr>
<td>Heat Stable Anti-Stripping Additive</td>
</tr>
<tr>
<td>Hydrated Lime</td>
</tr>
<tr>
<td>Silicone Fluid</td>
</tr>
<tr>
<td>Bituminous Tack Coat: PG 58-22, PG 64-22, PG 67-22</td>
</tr>
<tr>
<td>Hot Mix Asphaltic Concrete Mixtures</td>
</tr>
<tr>
<td>Fiber Stabilizing Additives</td>
</tr>
</tbody>
</table>

When required, provide Uintaite material, hereafter referred to by the common trade name Gilsonite, as a reinforcing agent for bituminous mixtures. Supply a manufacturer’s certification that the Gilsonite is a granular solid which meets the following requirements:

- Softening Point (AASHTO: T-53) 300-350 °F (150-175 °C)
- Specific Gravity, 77 °F (25 °C) (AASHTO: T-228) 1.04 ± 0.02
- Flash Point, COC (AASHTO: T-48) 550 °F (290 °C) Min.
- Ash Content (AASHTO: T-111) 1.0% Max.
- Penetration, 77 °F (25 °C), 100 gm., 5 sec. (AASHTO: T-49) 0

400.2.01 Delivery, Storage, and Handling

Storage of material is allowed in a properly sealed and insulated system for up to 24 hours except that Stone Matrix Asphalt (SMA), Open-Graded Friction Course (OGFC), or Porous European Mix (PEM) mixtures shall not be stored more than 12 hours. Mixtures other than SMA, OGFC, or PEM may be stored up to 72 hours in a sealed and insulated system, equipped with an auxiliary inert gas system, with the Engineer’s approval. Segregation, lumpiness, or stiffness of stored mixture is cause for rejection of the mixture. The Engineer will not approve using a storage or surge bin if the mixture segregates, loses excessive heat, or oxidizes during storage.

The Engineer may obtain mixture samples or recover asphalt cement according to GDT 119. AASHTO T 202 and T 49 will be used to perform viscosity and penetration tests to determine how much asphalt hardening has occurred.

A. Vehicles for Transporting and Delivering Mixtures

Ensure that trucks used for hauling bituminous mixtures have tight, clean, smooth beds.

Follow these guidelines when preparing vehicles to transport bituminous mixtures:

1. Use an approved releasing agent from QPL 39 in the transporting vehicle beds, if necessary, to prevent the mixture from sticking to the bed. Ensure that the releasing agent is not detrimental to the mixture. When applying the agent, drain the excess agent from the bed before loading.

2. Protect the mixture with a waterproof cover large enough to extend over the sides and ends of the bed. Securely fasten the waterproof cover before the vehicle begins moving.
3. Insulate the front end and sides of each bed with an insulating material with the following specifications:
 - Consists of builders insulating board or equivalent
 - Has a minimum “R” value of 4.0
 - Can withstand approximately 400 °F (200 °C) temperatures
 Install the insulating material so it is protected from loss and contamination.
4. Mark each transporting vehicle with a clearly visible identification number.
5. Create a hole in each side of the bed so that the temperature of the loaded mixture can be checked.
 Ensure that the mixture is delivered to the roadway at a temperature within ± 20 °F (± 11 °C) of the temperature on the job mix formula.
 If the Engineer determines that a truck may be hazardous to the Project or adversely affect the quality of the work, remove the truck from the project.

B. Containers for Transporting, Conveying, and Storing Bituminous Material
 To transport, convey, and store bituminous material, use containers free of foreign material and equipped with sample valves. Bituminous material will not be accepted from conveying vehicles if material has leaked or spilled from the containers.

400.3 Construction Requirements

400.3. 01 Personnel
General Provisions 101 through 150.

400.3.02 Equipment
Hot mix asphaltic concrete plants that produce mix for Department use are governed by Quality Assurance for Hot Mix Asphaltic Concrete Plants in Georgia, Laboratory Standard Operating Procedure No. 27.

The Engineer will approve the equipment used to transport and construct hot mix asphaltic concrete. Ensure that the equipment is in satisfactory mechanical condition and can function properly during production and placement operations. Place the following equipment at the plant or project site:

A. Field Laboratory
 Provide a field laboratory according to Section 152.

B. Plant Equipment
 1. Scales
 Provide scales as follows:
 a. Furnish (at the Contractor’s expense) scales to weigh bituminous plant mixtures, regardless of the measurement method for payment.
 b. Ensure that the weight measuring devices that provide documentation comply with Subsection 109.01, “Measurement and Quantities.”
 c. When not using platform scales, provide weight devices that record the mixture net weights delivered to the truck. A net weight system will include, but is not limited to:
 - Hopper or batcher-type weight systems that deliver asphaltic mixture directly to the truck
 - Fully automatic batching equipment with a digital recording device
 d. Use a net weight printing system only with automatic batching and mixing systems approved by the Engineer.
 e. Ensure that the net weight scale mechanism or device manufacturer, installation, performance, and operation meets the requirements in Subsection 109.01, “Measurement and Quantities.”
 f. Provide information on the Project tickets according to Department of Transportation SOP-15.
 2. Time-Locking Devices
 Furnish batch type asphalt plants with automatic time-locking devices that control the mixing time automatically. Construct these devices so that the operator cannot shorten or eliminate any portion of the mixing cycle.
3. Surge- and Storage-Systems
 Provide surge and storage bins as follows:
 a. Ensure that bins for mixture storage are insulated and have a working seal, top and bottom, to prevent outside air infiltration and to maintain an inert atmosphere during storage.
 Bins not intended as storage bins may be used as surge bins to hold hot mixtures for part of the working day. However, empty these surge bins completely at the end of the working day.
 b. Ensure that surge and storage bins can retain a predetermined minimum level of mixture in the bin when the trucks are loaded.
 c. Ensure that surge and storage systems do not contribute to mix segregation, lumpiness, or stiffness.
4. Controls for Dust Collector Fines
 Control dust collection as follows:
 a. When collecting airborne aggregate particles and returning them to the mixture, have the return system meter all or part of the collected dust uniformly into the aggregate mixture and waste the excess. The collected dust percentage returned to the mixture is subject to the Engineer’s approval.
 b. When the collected dust is returned directly to the hot aggregate flow, interlock the dust feeder with the hot aggregate flow and meter the flow to maintain a flow that is constant, proportioned, and uniform.
5. Mineral Filler Supply System
 When mineral filler is required as a mixture ingredient:
 a. Use a separate bin and feed system to store and proportion the required quantity into the mixture with uniform distribution.
 b. Control the feeder system with a proportioning device that meets these specifications:
 □ Is accurate to within ± 10 percent of the filler required
 □ Has a convenient and accurate means of calibration
 □ Interlocks with the aggregate feed or weigh system to maintain the correct proportions for all rates of production and batch sizes
 c. Provide flow indicators or sensing devices for the mineral filler system and interlock them with the plant controls to interrupt the mixture production if mineral filler introduction fails.
 d. Add mineral filler to the mixture as follows, according to the plant type:
 □ Batch Type Asphalt Plant. Add mineral filler to the mixture in the weigh hopper.
 □ Continuous Plant Using Pugmill Mixers. Feed the mineral filler into the hot aggregate before it is introduced into the mixer so that dry mixing is accomplished before the bituminous material is added.
 □ Continuous Plants Using the Drier-Drum Mixers. Add the mineral filler so that dry mixing is accomplished before the bituminous material is added and ensure that the filler does not become entrained into the air stream of the drier.
6. Hydrated Lime Treatment System
 When hydrated lime is required as a mixture ingredient:
 a. Use a separate bin and feed system to store and proportion the required quantity into the mixture.
 b. Ensure that the aggregate is uniformly coated with hydrated lime aggregate before adding the bituminous material to the mixture. Add the hydrated lime so that it will not become entrained in the exhaust system of the drier or plant.
 c. Control the feeder system with a proportioning device that meets these specifications:
 □ Is accurate to within ± 10 percent of the amount required
 □ Has a convenient and accurate means of calibration
 □ Interlocks with the aggregate feed or weigh system to maintain the correct proportions for all rates of production and batch sizes and to ensure that mixture produced is properly treated with lime
 d. Provide flow indicators or sensing devices for the hydrated lime system and interlock them with the plant controls to interrupt mixture production if hydrated lime introduction fails.
7. Net Weight Weighing Mechanisms
 Certify the accuracy of the net weight weighing mechanisms by an approved registered scale serviceperson at least once every 6 months. Check the accuracy of net weight weighing mechanisms at the beginning of Project production.
and thereafter as directed by the Engineer. Check mechanism accuracy as follows:

a. Weigh a load on a set of certified commercial truck scales. Ensure that the difference between the printed total net weight and that obtained from the commercial scales is no greater than 4 lbs/1,000 lbs (4 kg/Mg) of load. Check the accuracy of the bitumen scales as follows:
 - Use standard test weights.
 - If the checks indicate that printed weights are out of tolerance, have a registered scale serviceperson check the batch scales and certify the accuracy of the printer.
 - While the printer system is out of tolerance and before its adjustment, continue production only if using a set of certified truck scales to determine the truck weights.

b. Have plants that use batch scales maintain ten 50 lb (25 kg) standard test weights at the plant site to check batching scale accuracy.
 - Ensure that plant scales that are used only to proportion mixture ingredients, not to determine pay quantities, are within two percent throughout the range.

8. Fiber Supply System
 - When stabilizing fiber is required as a mixture ingredient:
 a. Use a separate feed system to store and proportion by weight the required quantity into the mixture with uniform distribution.
 b. Control the feeder system with a proportioning device that meets these Specifications:
 - Is accurate to within ± 10 percent of the amount required. Automatically adjusts the feed rate to maintain the material within this tolerance at all times
 - Has a convenient and accurate means of calibration
 - Provide in-process monitoring, consisting of either a digital display of output or a printout of feed rate, in pounds (kg) per minute, to verify feed rate
 - Interlocks with the aggregate feed or weigh system to maintain the correct proportions for all rates of production and batch sizes.
 c. Provide flow indicators or sensing devices for the fiber system and interlock them with the plant controls to interrupt the mixture production if fiber introduction fails or if the output rate is not within the tolerances given above.
 d. Introduce the fiber as follows:
 - When a batch type plant is used, add the fiber to the aggregate in the weigh hopper. Increase the batch dry mixing time by 8 to 12 seconds from the time the aggregate is completely emptied into the mixer to ensure the fibers are uniformly distributed prior to the injection of asphalt cement into the mixer.
 - When a continuous or drier-drum type plant is used, add the fiber to the aggregate and uniformly disperse prior to the injection of asphalt cement. Ensure the fibers will not become entrained in the exhaust system of the drier or plant.

C. Equipment at Project Site

1. Cleaning Equipment
 - Provide sufficient hand tools and power equipment to clean the roadway surface before placing the bituminous tack coat. Use power equipment that complies with Subsection 424.3.02.F, “Power Broom and Power Blower.”

2. Pressure Distributor
 - To apply the bituminous tack coat, use a pressure distributor that complies with Subsection 424.3.02.B, “Pressure Distributor.”

3. Bituminous Pavers
 - To place hot mix asphaltic concrete, use bituminous pavers that can spread and finish courses that are:
 - As wide and deep as indicated on the Plans
 - True to line, grade, and cross section
 - Smooth
 - Uniform in density and texture
 - Continuous Line and Grade Reference Control. Furnish, place, and maintain the supports, wires, devices, and materials required to provide continuous line and grade reference control to the automatic paver control system.
b. **Automatic Screed Control System.** Equip the bituminous pavers with an automatic screed control system actuated from sensor-directed mechanisms or devices that will maintain the paver screed at a pre-determined transverse slope and elevation to obtain the required surface.

c. **Transverse Slope Controller.** Use a transverse slope controller capable of maintaining the screed at the desired slope within ± 0.1 percent. Do not use continuous paving set-ups that result in unbalanced screed widths or off-center breaks in the main screed cross section unless approved by the Engineer.

d. **Screed Control.** Equip the paver to permit the following four modes of screed control. The method used shall be approved by the Engineer.
 - Automatic grade sensing and slope control
 - Automatic dual grade sensing
 - Combination automatic and manual control
 - Total manual control

Ensure that the controls are referenced with a taut string or wire set to grade, or with a ski-type device or mobile reference at least 30 ft (9 m) long when using a conventional ski. A non-contacting laser or sonar-type ski with at least four referencing mobile stations may be used with a reference at least 24 ft (7.3 m) long. Under limited conditions, a short ski or shoe may be substituted for a long ski on the second paver operating in tandem, or when the reference plane is a newly placed adjacent lane.

Automatic screed control is required on all Projects; however, when the Engineer determines that Project conditions prohibit the use of such controls, the Engineer may waive the grade control, or slope control requirements, or both.

e. **Paver Screed Extension.** When the laydown width requires a paver screed extension, use bolt-on screed extensions to extend the screeds, or use an approved mechanical screed extension device. When the screed is extended, add auger extensions according to the paver manufacturer’s recommendations.

```
NOTE: Do not use extendible strike-off devices instead of approved screed extensions. Only use a strike-off device in areas that would normally be luted in by hand labor.
```

4. **Compaction Equipment**

Ensure that the compaction equipment is in good mechanical condition and can compact the mixture to the required density. The compaction equipment number, type, size, operation, and condition is subject to the Engineer’s approval.

5. **Materials Transfer Vehicle (MTV)**

a. Use a Materials Transfer Vehicle (MTV) when placing asphaltic concrete mixtures on Projects on the state route system with the following conditions:

1) **When to use:**
 - The ADT is equal to or greater than 6000,
 - The project length is equal to or greater than 3000 linear feet (915 linear meters),
 - The total tonnage (megagrams) of all asphaltic concrete mixtures is greater than 2000 tons (1815 Mg).

2) **Where to use:**
 - Mainline of the traveled way
 - Collector/distributor (C/D) lanes on Interstates and limited access roadways
 - Leveling courses at the Engineer’s discretion

b. **Ensure the MTV and conventional paving equipment meet the following requirements:**

1) **MTV**
 - Has a truck unloading system which receives mixture from the hauling equipment and independently deliver mixtures from the hauling equipment to the paving equipment.
 - Has mixture remixing capability by either a storage bin in the MTV with a minimum capacity of 14 tons (13 megagrams) of mixture and a remixing system in the bottom of MTV storage bin, or a dual pugmill system located in the paver hopper insert with two full length transversely mounted paddle mixers to continuously blend the mixture as it discharges to a conveyor system.
☐ Provides to the paver a homogeneous, non-segregated mixture of uniform temperature with no more than 20 °F (18 °C) difference between the highest and lowest temperatures when measured transversely across the width of the mat in a straight line at a distance of one foot to three feet from the screed while the paver is operating.

2) Conventional Paving Equipment

☐ Has a paver hopper insert with a minimum capacity of 14 tons (13 Mg) installed in the hopper of conventional paving equipment when an MTV is used.

- If the MTV malfunctions during spreading operations, discontinue placement of hot mix asphaltic concrete after there is sufficient hot mix placed to maintain traffic in a safe manner. However, placement of hot mix asphaltic concrete in a lift not exceeding 2 in. (50 mm) may continue until any additional hot mix in transit at the time of the malfunction has been placed. Cease spreading operations thereafter until the MTV is operational.

- Ensure the MTV is empty when crossing a bridge and is moved across without any other Contractor vehicles or equipment on the bridge. Move the MTV across a bridge in a travel lane and not on the shoulder. Ensure the speed of the MTV is no greater than 5 mph (8 kph) without any acceleration or deceleration while crossing a bridge.

400.3.03 Preparation

A. Prepare Existing Surface

Prepare the existing surface as follows:

1. Clean the Existing Surface. Before applying hot mix asphaltic concrete pavement, clean the existing surface to the Engineer’s satisfaction.

2. Patch and Repair Minor Defects
 Before placing leveling course:
 a. Correct potholes and broken areas that require patching in the existing surface and base as directed by the Engineer.
 b. Cut out, trim to vertical sides, and remove loose material from the areas to be patched.
 c. Prime or tack coat the area after it has been cleaned. Compact patches to the Engineer’s satisfaction. Material for patches does not require a job mix formula, but shall meet the gradation range shown in Section 828. The Engineer must approve the asphalt content to be used.

3. Apply Bituminous Tack Coat
 Apply the tack coat according to Section 413. The Engineer will determine the application rate, which must be within the limitations Table 2.

<table>
<thead>
<tr>
<th>Application Rates for Bituminous Tack, gal/yd² (L/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under OGFC and PEM Mixes</td>
</tr>
<tr>
<td>0.06 (0.270)</td>
</tr>
<tr>
<td>All Other Mixes</td>
</tr>
</tbody>
</table>

*On thin leveling courses and freshly placed asphaltic concrete mixes, reduce the application rate to 0.02 to 0.04 gal/yd² (0.09 to 0.18 L/m²).

B. Place Patching and Leveling Course

1. When the existing surface is irregular, bring it to the proper cross section and grade with a leveling course of hot mix asphaltic concrete materials.

2. Use leveling at the same Superpave Mix Design Level specified for the surface course except when leveling is no greater than 0.75 inch (19 mm).

3. Place leveling at the locations and in the amounts directed by the Engineer.

4. Use leveling course mixtures that meet the requirements of the job mix formulas defined in:
 - Subsection 400.3.05.A, “Observe Composition of Mixtures”
 - Section 828
5. If the leveling and patching mix type is undesignated, determine the mix type by the thickness or spread rate according to Table 3, but do not use 4.75 mm mix on interstate projects.

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Rate of Spread</th>
<th>Type of Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 0.75 in (19 mm)</td>
<td>Up to 85 lbs/yd² (45 kg/m²)</td>
<td>4.75 mm Mix or 9.5 mm Superpave (Level A)</td>
</tr>
<tr>
<td>0.75 to 1.5 in (19 to 38 mm)</td>
<td>85 to 165 lbs/yd² (45 to 90 kg/m²)</td>
<td>9.5 mm Superpave (Level B)</td>
</tr>
<tr>
<td>1.5 to 2 in (38 to 50 mm)</td>
<td>165 to 220 lbs/yd² (90 to 120 kg/m²)</td>
<td>12.5 mm Superpave *</td>
</tr>
<tr>
<td>2 to 3 in (50 to 75 mm)</td>
<td>220 to 330 lbs/yd² (120 to 180 kg/m²)</td>
<td>19 mm Superpave *</td>
</tr>
<tr>
<td>Over 3 in (75 mm)</td>
<td>Over 330 lbs/yd² (180 kg/m²)</td>
<td>25 mm Superpave</td>
</tr>
</tbody>
</table>

* These mixtures may be used for isolated patches no more than 6 in. (150 mm) deep and no more than 4 ft. (1.2 m) in diameter or length.

400.3.04 Fabrication
General Provisions 101 through 150.

400.3.05 Construction
Provide the Engineer at least one day’s notice prior to beginning construction, or prior to resuming production if operations have been temporarily suspended.

A. Observe Composition of Mixtures
 1. Calibration of plant equipment
 If the material changes, or if a component affecting the ingredient proportions has been repaired, replaced, or adjusted, check and recalibrate the proportions.
 Calibrate as follows:
 a. Before producing mixture for the Project, calibrate by scale weight the electronic sensors or settings for proportioning mixture ingredients.
 b. Calibrate ingredient proportioning for all rates of production.
 2. Mixture control
 Compose hot mix asphaltic concrete from a uniform mixture of aggregates, bituminous material, and if required, hydrated lime, mineral filler, or other approved additive.
 Make the constituents proportional to produce mixtures that meet the requirements in Section 828. The general composition limits prescribed are extreme ranges within which the job mix formula must be established. Base mixtures on a design analysis that meets the requirements of Section 828.
 If control test results show that the characteristic tested does not conform to the job mix formula control tolerances given in Section 828, take immediate action to ensure that the quality control methods are effective.
 Control the materials to ensure that extreme variations do not occur. Maintain the gradation within the composition limits in Section 828.

B. Prepare Bituminous Material
 Uniformly heat the bituminous material to the temperature specified in the job mix formula with a tolerance of ± 20 °F (± 10 °C).

C. Prepare the Aggregate
 Prepare the aggregate as follows:
 1. Heat the aggregate for the mixture, and ensure a mix temperature within the limits of the job mix formula.
 2. Do not contaminate the aggregate with fuel during heating.
3. Reduce the absorbed moisture in the aggregate until the asphalt does not separate from the aggregate in the prepared mixture. If this problem occurs, the Engineer will establish a maximum limit for moisture content in the aggregates. When this limit is established, maintain the moisture content below this limit.

D. Prepare the Mixture

Proportion the mixture ingredients as necessary to meet the required job mix formula. Mix until a homogenous mixture is produced.

1. Add Mineral Filler
 When mineral filler is used, introduce it in the proper proportions and as specified in Subsection 400.3.02.B.5, “Mineral Filler Supply System.”

2. Add Hydrated Lime
 When hydrated lime is included in the mixture, add it at a rate specified in Section 828 and the job mix formula. Use methods and equipment for adding hydrated lime according to Subsection 400.3.02.B.6, “Hydrated Lime Treatment System.”
 Add hydrated lime to the aggregate by using Method A or B as follows:
 Method A—Dry Form—Add hydrated lime in its dry form to the mixture as follows, according to the type of plant:
 a. Batch Type Asphalt Plant: Add hydrated lime to the mixture in the weigh hopper or as approved and directed by the Engineer.
 b. Continuous Plant Using Pugmill Mixer: Feed hydrated lime into the hot aggregate before it is introduced into the mixer so that dry mixing is complete before the bituminous material is added.
 c. Continuous Plant Using Drier-Drum Mixer: Add hydrated lime so that the lime will not become entrained into the air stream of the drier and so that thorough dry mixing will be complete before the bituminous material is added.
 Method B—Lime/Water Slurry—Add the required quantity of hydrated lime (based on dry weight) in lime/water slurry form to the aggregate. This solution consists of lime and water in concentrations as directed by the Engineer. Equip the plant to blend and maintain the hydrated lime in suspension and to mix it with the aggregates uniformly in the proportions specified.

3. Add Stabilizing Fiber
 When stabilizing fiber is included in the mixture, add it at a rate specified in Section 819 and the Job Mix Formula. Introduce it as specified in Subsection 400.3.02.B.8, “Fiber Supply System.”

4. Add Gilsonite Modifier
 When required, add the Gilsonite modifier to the mixture at a rate such that eight percent by weight of the asphalt cement is replaced by Gilsonite. Use either PG 64-22 or PG 67-22 asphalt cement as specified in Subsection 820.2.01. Provide suitable means to calibrate and check the rate of Gilsonite being added. Introduce Gilsonite modifier by either of the following methods.
 a. For batch type plants, incorporate Gilsonite into the pugmill at the beginning of the dry mixing cycle. Increase the dry mix cycle by a minimum of 10 seconds after the Gilsonite is added and prior to introduction of the asphalt cement. For this method, supply Gilsonite in plastic bags to protect the material during shipment and handling and store the modifier in a waterproof environment. The bags shall be capable of being completely melted and uniformly blended into the combined mixture.
 Gilsonite may also be added through a mineral filler supply system as described in Subsection 400.3.02.B.5, “Mineral Filler Supply System.” The system shall be capable of injecting the modifier into the weigh hopper near the center of the aggregate batching cycle so the material can be accurately weighed.
 b. For drum drier plants, add Gilsonite through the recycle ring or through an acceptable means which will introduce the Gilsonite prior to the asphalt cement injection point. The modifier shall be proportionately fed into the drum mixer at the required rate by a proportioning device which shall be accurate within ± 10 percent of the amount required. The entry point shall be away from flames and ensure the Gilsonite will not be caught up in the air stream and exhaust system.

5. Avoid Materials from Different Sources
 Do not use mixtures prepared from aggregates from different sources intermittently. This will cause the color of the finished pavement to vary.
E. Observe Weather Limitations

Do not mix and place asphaltic concrete if the existing surface is wet or frozen. Do not lay asphaltic concrete OGFC mix or PEM at air temperatures below 55 °F (13 °C). For other courses, follow the temperature guidelines in the following table:

<table>
<thead>
<tr>
<th>Lift Thickness</th>
<th>Minimum Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in (25 mm) or less</td>
<td>55 °F (13 °C)</td>
</tr>
<tr>
<td>1.1 to 2 in (26 mm to 50 mm)</td>
<td>45 °F (8 °C)</td>
</tr>
<tr>
<td>2.1 to 3 in (51 mm to 75 mm)</td>
<td>35 °F (2 °C)</td>
</tr>
<tr>
<td>3.1 to 4 in (76 mm to 100 mm)</td>
<td>30 °F (0 °C)</td>
</tr>
<tr>
<td>4.1 to 8 in (101 mm to 200 mm)</td>
<td>Contractor’s discretion</td>
</tr>
</tbody>
</table>

F. Perform Spreading and Finishing

Spread and finish the course as follows:

1. Determine the course’s maximum compacted layer thickness by the type mix being used according to Table 5.

<table>
<thead>
<tr>
<th>Mix Type</th>
<th>Minimum Layer Thickness</th>
<th>Maximum Layer Thickness</th>
<th>Maximum Total Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mm Superpave</td>
<td>3 in (75 mm)</td>
<td>5 in (125 mm) *</td>
<td>—</td>
</tr>
<tr>
<td>19 mm Superpave</td>
<td>1 3/4 in (44 mm)</td>
<td>3 in (75 mm) *</td>
<td>—</td>
</tr>
<tr>
<td>12.5 mm Superpave</td>
<td>1 3/8 in (35 mm)</td>
<td>2 1/2 in (62 mm)*</td>
<td>8 in (200 mm)</td>
</tr>
<tr>
<td>9.5 mm Superpave Levels B, C, or D</td>
<td>1 1/8 in.(28 mm)</td>
<td>2 in (50 mm)</td>
<td>4 in (100 mm)</td>
</tr>
<tr>
<td>9.5 mm Superpave Level A</td>
<td>3/4 in (19 mm)</td>
<td>1 3/8 in (35 mm)</td>
<td>4 in (100 mm)</td>
</tr>
<tr>
<td>4.75 mm Mix</td>
<td>7/8 in (22 mm)</td>
<td>1 1/8 in (30 mm)</td>
<td>2 in (50 mm)</td>
</tr>
<tr>
<td>9.5 mm OGFC</td>
<td>55 lbs/yd² (30 kg/m²)</td>
<td>65 lbs/yd² (36 kg/m²)</td>
<td>—</td>
</tr>
<tr>
<td>12.5 mm OGFC</td>
<td>85 lbs/yd² (47 kg/m²)</td>
<td>95 lbs/yd² (53 kg/m²)</td>
<td>—</td>
</tr>
<tr>
<td>12.5 mm PEM</td>
<td>110 lbs/yd² (80 kg/m²)</td>
<td>165 lbs/yd² (90 kg/m²)</td>
<td>—</td>
</tr>
<tr>
<td>9.5 mm SMA</td>
<td>1 1/8 in (28 mm)</td>
<td>1 1/2 in (40 mm)</td>
<td>4 in (100 mm)</td>
</tr>
<tr>
<td>12.5 mm SMA</td>
<td>1 1/4 in (32 mm)</td>
<td>3 in (75 mm)</td>
<td>6 in (150 mm)</td>
</tr>
<tr>
<td>19 mm SMA</td>
<td>1 3/4 in (44 mm)</td>
<td>3 in (75 mm)</td>
<td>—</td>
</tr>
</tbody>
</table>

* Allow up to 6 in (150 mm) per lift on trench widening. Place 9.5 mm Superpave and 12.5 mm Superpave up to 4 in (100 mm) thick for driveway and side road transition.

2. Unload the mixture into the paver hopper or into a device designed to receive the mixture from delivery vehicles.
3. Except for leveling courses, spread the mixture to the loose depth for the compacted thickness or the spread rate. Use a mechanical spreader true to the line, grade, and cross section specified.
4. For leveling courses, use a motor grader equipped with a spreader box and smooth tires to spread the material or use a mechanical spreader meeting the requirements in Subsection 400.3.02.C, “Equipment at Project Site.”
5. Obtain the Engineer’s approval for the sequence of paving operations, including paving the adjoining lanes. Minimize tracking tack onto surrounding surfaces.
6. Ensure that the outside edges of the pavement being laid are aligned and parallel to the roadway center line.
7. For Contracts that contain multiple lifts or courses, arrange the width of the individual lifts so that the longitudinal joints of each successive lift are offset from the previous lift at least 1 ft (300 mm). This requirement does not apply to the lift immediately over thin lift leveling courses.

Ensure that the longitudinal joint(s) in the surface course and the mix immediately underneath asphaltic concrete OGFC are at the lane line(s).

NOTE: Perform night work with artificial light provided by the Contractor and approved by the Engineer.

8. Where mechanical equipment cannot be used, spread and rake the mixture by hand. Obtain the Engineer’s approval of the operation sequence, including compactive methods, in these areas.

9. Keep small hand raking tools clean and free from asphalt build up. Do not use fuel oil or other harmful solvents to clean tools during the work.

10. Do not use mixture with any of these characteristics:

- Segregated
- Nonconforming temperature
- Deficient or excessive asphalt cement content
- Otherwise unsuitable to place on the roadway in the work

11. Remove and replace mixture placed on the roadway that the Engineer determines has unacceptable blemish levels from segregation, streaking, pulling and tearing, or other characteristics. Replace with acceptable mixture at the Contractor’s expense. Do not continually place mixtures with deficiencies.

Do not place subsequent course lifts over another lift or courses placed on the same day while the temperature of the previously placed mix is 140 °F (60 °C) or greater.

12. Obtain the Engineer’s approval of the material compaction equipment. Perform the rolling as follows:

a. Begin the rolling as close behind the spreader as possible without causing excessive distortion of the asphaltic concrete surface.

b. Continue rolling until roller marks are no longer visible.

c. Use pneumatic-tired rollers with breakdown rollers on all surface and subsurface courses except asphaltic concrete OGFC, PEM and SMA or other mixes designated by the Engineer.

13. If applicable, taper or “feather” asphaltic concrete from full depth to a depth no greater than 0.5 in (13 mm) along curbs, gutters, raised pavement edges, and areas where drainage characteristics of the road must be retained. The Engineer will determine the location and extent of tapering.

G. Maintain Continuity of Operations

Coordinate plant production, transportation, and paving operations to maintain a continuous operation. If the spreading operations are interrupted, construct a transverse joint if the mixture immediately behind the paver screed cools to less than 250 °F (120 °C).

H. Construct the Joints

1. Construct Transverse Joints

a. Construct transverse joints to facilitate full depth exposure of the course before resuming placement of the affected course.

b. Properly clean and tack the vertical face of the transverse joint before placing additional material.

NOTE: Never burn or heat the joint by applying fuel oil or other volatile materials.

c. Straightedge transverse joints immediately after forming the joint.

d. Immediately correct any irregularity that exceeds 3/16 in. in 10 ft (5 mm in 3 m).

2. Construct Longitudinal Joints

Clean and tack the vertical face of the longitudinal joint before placing adjoining material. Construct longitudinal joints so that the joint is smooth, well sealed, and bonded.

3. Construction Joint Detail for OGFC and PEM Mixtures

In addition to meeting joint requirements described above, construct joints and transition areas for 12.5 mm OGFC
and 12.5 mm PEM mixtures as follows:

a. For projects which do not have milling included as a pay item:
 1) Place OGFC mixture meeting gradation requirements of 9.5 mm OGFC as specified in Section 828 on
 entrance and exit ramp gore areas and end of project construction joints.
 - Taper mixture from 3/8 in (10 mm) at end of project to full plan depth within maximum distance
 of spread for one load of mixture
 - Taper mixture placed on gore areas from thickness of the edge of the mainline to 3/8 in (10 mm) at
 the point of the ramp transverse joint.
 2) Construct the ramp transverse joint at the point specified in the plans or as directed by the Engineer.
 3) Mixture placed in the transition and gore areas will be paid for at the contract unit price for 12.5 mm OGFC
 or 12.5 mm PEM as applicable.

b. For projects which have milling included as a pay item:
 1) Taper milling for a distance of no less than 50 ft (15 m) to a depth of 2 1/4 in (59 mm) at the point of the
 transverse joint
 2) Taper thickness, if needed, of the dense-graded surface mix within the 50 ft (15 m) distance to 1 1/2 in (40
 mm) at the point of the transverse joint
 3) Taper thickness of the 12.5 mm OGFC or 12.5 mm PEM to 3/4 in (19 mm) so that it ties in at grade level
 with the existing surface at the point of the transverse joint

I. Protect the Pavement
 Protect sections of the newly finished pavement from traffic until the traffic will not mar the surface or alter the surface
 texture. If directed by the Engineer, use artificial methods to cool the newly finished pavement to open the pavement to
 traffic more quickly.

J. Modify the Job Mix Formula
 If the Engineer determines that undesirable mixture or mat characteristics are being obtained, the job mix formula may
 require immediate adjustment.

400.3.06 Quality Acceptance

A. Acceptance Plans for Gradation and Asphalt Cement Content
 The Contractor will randomly sample and test mixtures for acceptance on a lot basis. The Department will monitor the
 Contractor testing program and perform comparison and quality assurance testing.

1. Determine Lot Amount
 A lot consists of the tons (megagrams) of asphaltic concrete produced and placed each production day. If this
 production is less than 500 tons (500 Mg), or its square yard (meter) equivalent, production may be incorporated
 into the next working day. The Engineer may terminate a lot when a pay adjustment is imminent if a plant or
 materials adjustment resulting in a probable correction has been made. Terminate all open lots at the end of the
 month, except for materials produced and placed during the adjustment period. The lot will be terminated as
 described in Subsection 400.3.06, “Adjustments”.
 If the final day’s production does not constitute a lot, the production may be included in the lot for the previous
day’s run; or, the Engineer may treat the production as a separate lot with a corresponding lower number of tests.

2. Determine Lot Acceptance
 Determine lot acceptance as found in Subsection 400.5.01, “Adjustments.”
 The Department will perform the following task:
 Determine the pay factor by using the mean of the deviations from the job mix formula of the tests in each lot
 and apply it to Table 9—Mixture Acceptance Schedule for Surface Mixes or Table 10—Mixture Acceptance
 Schedule for Subsurface Mixes, whichever is appropriate. This mean will be determined by averaging the actual
 numeric value of the individual deviations from the job mix formula, disregarding whether the deviations are
 positive or negative amounts. Do not calculate lot acceptance using test results for materials not used in the
 Work. Determine the pay factor for each lot by multiplying the contract unit price by the appropriate pay factor
 from the Mixture Acceptance Schedule - Table 9 or Table 10. When two or more pay factors for a specific lot
 are less than 1.0, determine the adjusted payment by multiplying the contract unit price by the lowest pay factor.
 If the mean of the deviations from the job mix formula of the lot acceptance tests for a control sieve or for
 asphalt cement content exceeds the tolerances established in the appropriate Mixture Acceptance Schedule, and
if the Engineer determines that the material need not be removed and replaced, the lot may be accepted at an adjusted unit price as determined by the Engineer. If the Engineer determines that the material is not acceptable to leave in place, the materials shall be removed and replaced at the Contractor's expense.

3. Provide Quality Control Program

Provide a Quality Control Program as established in SOP 27 which includes:

- Assignment of quality control responsibilities to specifically named individuals who have been certified by the Office of Materials and Research
- Provisions for prompt implementation of control and corrective measures
- Provisions for communication with Project Manager, Bituminous Technical Services Engineer, and Testing Management Operations Supervisor at all times
- Provisions for reporting all test results daily through the Office of Materials and Research computer Bulletin Board Service; other checks, calibrations and records will be reported on a form developed by the Contractor and will be included as part of the project records
- Notification in writing of any change in quality control personnel

a. Certification Requirements:

- Use laboratory and testing equipment certified by the Department. (Laboratories which participate in and maintain AASHTO accreditation for testing asphaltic concrete mixtures will be acceptable in lieu of Departmental certification.)
- Provide certified quality control personnel to perform the sampling and testing. A Quality Control Technician (QCT) may be certified at three levels:
 1) Temporary Certification – must be a technician trainee who shall be given direct oversight by a certified Level 1 or Level 2 QCT while performing acceptance testing duties during the first 5 days of training. The trainee must complete qualification requirements within 30 production days after being granted temporary certification. A trainee who does not become qualified within 30 production days will not be re-eligible for temporary certification. A certified Level 1 or Level 2 QCT shall be at the plant at all times during production and shipment of mixture to monitor work of the temporarily certified technician.
 2) Level 1 – must demonstrate they are competent in performing the process control and acceptance tests and procedures related to hot mix asphalt production and successfully pass a written exam.
 3) Level 2 – must meet Level 1 requirements and must be capable of and responsible for making process control adjustments, and successfully pass a written exam.

- Technician certification is valid for 3 years from the date on the technician’s certificate unless revoked or suspended. Eligible technicians may become certified through special training and testing approved by the Office of Materials and Research. Technicians who lose their certification due to falsification of test data will not be eligible for recertification in the future unless approved by the State Materials and Research Engineer.

b. Quality Control Management

1) Designate at least one Level 2 QCT as manager of the quality control operation. The Quality Control Manager shall meet the following requirements:

- Be accountable for actions of other QCT personnel
- Ensure that all applicable sampling requirements and frequencies, test procedures, and Standard Operating Procedures are adhered to
- Ensure that all reports, charts, and other documentation is completed as required

2) Provide QCT personnel at the plant as follows:

- If daily production for all mix types is to be greater than 250 tons (megagrams), have a QCT person at the plant at all times during production and shipment of mixture until all required acceptance tests have been completed
- If daily production for all mix types will not be greater than 250 tons (megagrams) a QCT may be responsible for conducting tests at up to two plants, subject to random number sample selection
- Have available at the plant or within immediate contact by phone or radio a Level 2 QCT responsible for making prompt process control adjustments as necessary to correct the mix
3) Sampling, Testing, and Inspection Requirements.

Provide all sample containers, extractants, forms, diaries, and other supplies subject to approval of the Engineer.

Perform daily sampling, testing, and inspection of mixture production that meets the following requirements:

(a) Randomly sample mixtures according to GSP 15, and GDT 73 (Method C) and test on a lot basis. In the event less than the specified number of samples are taken, obtain representative 6 in (150 mm) cores from the roadway at a location where the load not sampled was placed. Take enough cores to ensure minimum sample size requirements are met for each sample needed.

(b) Maintain a printed copy of the computer generated random sampling data as a part of the project records.

(c) Perform sampling, testing, and inspection duties of GSP 21.

(d) Perform extraction or ignition test (GDT 83 or GDT 125) and extraction analysis (GDT 38). If the ignition oven is used, a printout of sample data including weights shall become a part of the project records. For asphalt cement content only, digital printouts of liquid asphalt cement weights may be substituted in lieu of an extraction test for plants with digital recorders. Calculate the asphalt content from the ticket representing the mixture tested for gradation.

(e) Save extracted aggregate, opposite quarters, and remaining material (for possible referee testing) of each sample as follows:

- Store in properly labeled, suitable containers.
- Secure in a protected environment.
- Store for three working days. If not obtained by the Department, within three days they may be discarded.

(f) Maintain a process control flow chart daily for each sieve specified on the job mix formula and including the percent asphalt cement. The flow chart shall include:

- Allowable ranges based on the Mixture Control Tolerance in Section 828
- A graph plot of the deviations from the job mix formula for each test per mix type

(g) Add the following information on load tickets from which a sample or temperature check is taken:

- Mixture temperature
- Signature of the QCT person performing the testing

NOTE: Determine mixture temperature at least once per hour of production for OGFC and PEM mixes.

(h) Calibrate the lime system when hydrated lime is included in the mixture:

- Perform a minimum of twice weekly during production
- Post results at the plant for review
- Provide records of materials invoices upon request (including asphalt cement, aggregate, hydrated lime, etc.)

(i) Take action if acceptance test results are outside Mixture Control Tolerances of Section 828.

- One sample out of tolerance

 1) Contact Level 2 - QCT to determine if a plant adjustment is needed

 2) Immediately run a process control sample. Make immediate plant adjustments if this sample is also out of tolerance

 3) Test additional process control samples as needed to ensure corrective action taken appropriately controls the mixture

- Two consecutive acceptance samples of the same mix type out of tolerance regardless of Lot or mix design level, or three consecutive acceptance samples out of tolerance regardless of mix type

 1) Stop plant production immediately
(2) Reject any mixture already in storage that:
 □ Deviates more than 10 percent in gradation from the job mix formula based on the acceptance sample
 □ Deviates more than 0.7 percent in asphalt content from the job mix formula based on the acceptance sample

(3) Make a plant correction to any mix type out of tolerance prior to resuming production
 □ Do not send any mixture to the project before test results of a process control sample meets Mixture Control Tolerances
 □ Reject any mixture produced at initial restarting that does not meet Mixture Control Tolerances

4) Comparison Testing and Quality Assurance Program
 Periodic comparison testing by the Department will be required of each QCT to monitor consistency of equipment and test procedures. The Department will take independent samples to monitor the Contractor's quality control program.

a) Comparison Sampling and Testing
 Retain samples for comparison testing and referee testing if needed as described in Subsection 400.3.06.A.3.b.3. Discard these samples only if the Contractor’s acceptance test results meet a 1.00 pay factor and the Department does not procure the samples within three working days.

 The Department will test comparison samples on a random basis. Results will be compared to the respective contractor acceptance tests and the maximum difference shall be as follows:

Table 6—Allowable Percent Difference Between Department and Contractor Acceptance Tests

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>SURFACE</th>
<th>SUB-SURFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 in. (12.5 mm)</td>
<td></td>
<td>4.0%</td>
</tr>
<tr>
<td>3/8 in. (9.5 mm)</td>
<td>3.5%</td>
<td>4.0%</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>3.5%</td>
<td>3.5%</td>
</tr>
<tr>
<td>No. 8 (2.36 mm)</td>
<td>2.5%</td>
<td>3.0%</td>
</tr>
<tr>
<td>No. 200 (75 μm)</td>
<td>2.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>A.C.</td>
<td>0.4%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

NOTE: Pavement courses to be overlaid with OGFC or PEM mixes are considered surface mixes.

(1) If test comparisons are within these tolerances:
 □ Continue production
 □ Use the Contractor's tests for acceptance of the lot

(2) If test comparisons are not within these tolerances:
 □ Another Departmental technician will test the corresponding referee sample
 □ Results of the referee sample will be compared to the respective contractor and Departmental tests using the tolerance for comparison samples given above.

 (a) If referee test results are within the above tolerances when compared to the Contractor acceptance test, use the Contractor's test for acceptance of the effected lot.

 (b) If referee test results are not within the above tolerances when compared to the Contractor acceptance test, the Department will review the Contractor's quality control methods and determine if a thorough investigation is needed.
b) Quality Assurance Sampling and Testing

(1) Randomly take a minimum of two quality assurance samples from the lesser of five days or five lots of production regardless of mix type or number of projects.

(2) Compare test deviation from job mix formula to Mixture Control Tolerances in Section 828. If results are outside these tolerances, another sample from the respective mix may be taken.

NOTE: For leveling courses less than 110 lb/yard² (60 kg/m²) that have quality assurance test results outside the Mixture Control Tolerances of Section 828, use the Department's test results only and applicable pay factors will apply.

If test results of the additional sample are not within Mixture Control Tolerances, the Department will take the following action:

- Take random samples from throughout the lot as in Subsection 400.3.06.A.3.b.3 and use these test results for acceptance and in calculations for the monthly plant rating. Applicable pay factors will apply and the contractor QCT test results will not be included in pay factor calculations nor in the monthly plant rating.

- Determine if the Contractor’s quality control program is satisfactory and require prompt corrective action by the Contractor if specification requirements are not being met.

- Determine if the QCT has not followed Departmental procedures or has provided erroneous information.

- Take samples of any in-place mixture represented by unacceptable QCT tests and use the additional sample results for acceptance and in calculations for the monthly plant rating and apply applicable pay factors. The Contractor QCT tests will not be included in the pay factor calculations nor in the monthly plant rating.

B. Compaction

Determine the mixture compaction using either GDT 39 or GDT 59. The compaction is accepted in lots defined in Subsection 400.3.06. A “Acceptance Plans for Gradation and Asphalt Cement Content” and is within the same lot boundaries as the mixture acceptance.

1. Calculate Pavement Mean Air Voids

The Department will calculate the pavement air voids placed within each lot as follows:

a. Average the results of 5 tests run on randomly selected sites in that lot.

b. Select the random sites using GDT 73.

Density tests are not required for asphaltic concrete placed at 90 lbs/yard² (50 kg/m²) or less, 4.75 mm mix, and asphaltic concrete OGFC and PEM. Compact these courses to the Engineer’s satisfaction.

The maximum Pavement Mean Air Voids for all Superpave and Stone Matrix Asphalt mixtures shall be 7.8 percent. The adjustment period for density shall be three lots or three production days, whichever is less, in order for the contractor to ensure maximum compactive effort has been achieved which will yield no more than 7.8 percent Mean Air Voids. If the contractor needs to adjust the mixture to improve density results, a change in the job mix formula may be requested for approval during the adjustment period so long as the following values are not exceeded:

- Coarse pay sieve ± 4%
- No. 8 (2.36 mm) sieve ± 2%
- No. 200 (75 um) sieve ± 1%
- Asphalt Content ± 0.2%

All value changes must still be within specification limits.

If the Office of Materials and Research is satisfied that the contractor has exerted the maximum compactive effort and is not able to maintain Pavement Mean Air Voids at no more than 7.8%, the Engineer may establish a maximum target for Pavement Mean Air Voids.

Mixture placed during the adjustment period for density shall meet the requirements for a 0.90 pay factor in Table 12 of Subsection 400.5.01.C, “Calculate Mean Pavement Air Voids.” Mixture which does not meet these density requirements shall be paid for using the applicable pay factor.
If the mean air voids of the pavement placed within a lot exceeds 7.8% (or 100% of the maximum target air voids, if established) and the Engineer determines that the material need not be removed and replaced, the lot may be accepted at an adjusted unit price as determined by the Engineer.

2. Obtain Uniform Compaction

For a lot to receive a pay factor of 1.00 for compaction acceptance, the air void range cannot exceed 4 percent for new construction or 5 percent for resurfacing projects. The range is the difference between the highest and lowest acceptance test results within the affected lot. If the air void range exceeds these tolerances, apply a Pay Factor of 95%.

The 5% reduced pay factor for the compaction range does not apply in these instances:

- The mixture is placed during the adjustment period as defined in Subsection 400.5.01.A, “Materials Produced and Placed During the Adjustment Period.”
- All air void results within a given lot are less than 7.8%.

C. Surface Tolerance

In this Specification, pavement courses to be overlaid with a friction course are considered surface courses. Other asphalt paving is subject to straightedge and visual inspection and irregularity correction as shown below:

1. Visual and Straightedge Inspection

Paving is subject to visual and straightedge inspection during and after construction operations until Final Acceptance. Locate surface irregularities as follows:

- Keep a 10 ft (3 m) straightedge near the paving operation to measure surface irregularities on courses. Provide the straightedge and the labor for its use.
- Inspect the base, intermediate, and surface course surfaces with the straightedge to detect irregularities.
- Correct irregularities that exceed 3/16 in. in 10 ft (5 mm in 3 m) for base and intermediate courses, and 1/8 in. in 10 ft (3 mm in 3 m) for surface courses.

Mixture or operating techniques will be stopped if irregularities such as rippling, tearing, or pulling occur and the Engineer suspects a continuing equipment problem. Stop the paving operation and correct the problem. Correct surface course evaluations on individual Laser Road Profiler test sections, normally 1 mile (1 km) long.

2. Target Surface Smoothness

The Department will use the Laser Road Profiler method to conduct acceptance testing for surface course tolerance according to GDT 126. This testing will be performed only on:

- Surface courses
- Mainline traveled way
- Ramps more than 0.5 mile (800 m) long

Achieve the smoothest possible ride during construction. Do not exceed the target Laser Road Profiler smoothness index as shown below:

<table>
<thead>
<tr>
<th>Table 7—Pavement Smoothness Requirements—New Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Description</td>
</tr>
<tr>
<td>Asphaltic concrete OGFC and PEM on interstates and asphaltic concrete OGFC and PEM on new construction</td>
</tr>
<tr>
<td>Other resurfacing on interstates, asphaltic concrete OGFC and PEM resurfacing on state routes, and new construction</td>
</tr>
<tr>
<td>All other resurfacing on state routes (excluding LARP, PR, airports, etc.)</td>
</tr>
</tbody>
</table>

If the target values are not achieved, immediately adjust the operations to meet the target values.
Corrective work is required if the surface smoothness exceeds the Laser Road Profiler smoothness index shown below:

Table 8—Pavement Smoothness Requirements—Corrective Work

<table>
<thead>
<tr>
<th>Construction Description</th>
<th>Smoothness Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalitic concrete OGFC and PEM on interstates and asphalitic concrete OGFC and PEM on new construction</td>
<td>825</td>
</tr>
<tr>
<td>Other resurfacing on interstates, asphalitic concrete OGFC and PEM resurfacing on state routes, and new construction</td>
<td>900</td>
</tr>
<tr>
<td>All other resurfacing on state routes (excluding LARP, PR, airports, etc.)</td>
<td>1025</td>
</tr>
</tbody>
</table>

If surface tolerance deficiencies need correction, obtain the Engineer’s approval of the methods and type mix used.

3. Bridge Approach Ride Quality

The following are subject to a ride quality test by the Department for 100 ft. (30 m) of roadway approaching each end of a bridge using the Rainhart Profilograph:

- A state road with 4 lanes or more
- A 2-lane state road with a current traffic count of 2,000 vpd or more
- Locations designated on the Plans

All other bridge approaches shall meet the 1/8 in. in 10 ft (3 mm in 3 m) straightedge requirement. Test ride quality as follows:

a. The Department will determine a profile index value according to test method GDT 78.

b. The Department will average the profile index value from the right and left wheelpath for each 100 ft (30 m) section for each lane. Keep the profile index value under 30.

c. Meet the profile index value for the 100 ft (30 m) section of roadway up to the joint with the approach slab.

d. Schedule the profilograph testing 5 days before needed. Clean and clear obstructions from the test area.

e. Correct the sections that do not meet the ride quality criteria of this Specification. After correction, these sections are subject to retesting with the Rainhart Profilograph. The Engineer shall direct the type of correction method, which may include:

- Milling
- Grinding
- Removing and replacing the roadway

No additional compensation will be made.

The Department will perform Profilograph testing up to two times on the bridge approaches at no cost to the Contractor. Additional profilograph testing will cost the Contractor $500 per test.

D. Reevaluation of Lots

When lots are reevaluated as shown in Subsection 106.03, “Samples, Tests, Cited Specifications,” sampling and testing is according to GDT 73. Request shall be made for reevaluation immediately upon notification of the lot results. The following procedures apply:

1. Mixture Acceptance

The Department will take the same number of new tests on cores taken at a location where the load sampled was placed and will use only those core results for acceptance.

The Department will use the mean of the deviations from the job mix formula for these tests to determine acceptance based on the appropriate column in the Asphalt Cement Content and Aggregate Gradation of Asphalt Concrete Mixture Acceptance Schedule—Table 9 or 10.

2. Compaction Acceptance

The Department will reevaluate the lot through additional testing by cutting 5 cores and averaging these results with the results of the original 5 compaction tests. The Department will use the average to determine acceptance according to the Compaction Acceptance Schedule in Subsection 400.5.01.C, “Calculate Pavement Mean Air Voids”.

236
Table 9—Mixture Acceptance Schedule—Surface Mixes

<table>
<thead>
<tr>
<th>Mixture Characteristics</th>
<th>Pay Factor</th>
<th>Mean of the Deviations from the Job Mix Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 Test</td>
</tr>
<tr>
<td>Asphalt Cement Content (Extraction, Ignition)</td>
<td>1.00</td>
<td>0.00 - 0.70</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.71 - 0.80</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.81 - 0.90</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>0.91 - 1.00</td>
</tr>
<tr>
<td></td>
<td>0.70</td>
<td>1.01 - 1.19</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>1.20 - 1.40</td>
</tr>
<tr>
<td>3/8 in. (9.5 mm) Sieve (12.5 mm OGFC, 12.5 mm PEM, 12.5 mm Superpave)</td>
<td>1.00</td>
<td>0.00 - 0.90</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>9.1 - 10.0</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>10.1 - 11.9</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>12.0 - 13.0</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>13.1 - 14.0</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>14.1 - 14.5</td>
</tr>
<tr>
<td>3/8 in. (9.5 mm) Sieve (12.5 mm SMA)</td>
<td>1.00</td>
<td>0.0 - 6.8</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>6.9 - 7.5</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>7.6 - 8.9</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>9.0 - 9.8</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>9.9 - 10.5</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>10.6 - 10.9</td>
</tr>
<tr>
<td>No. 4 (4.75 mm) Sieve (9.5 mm OGFC, 9.5 mm Superpave)</td>
<td>1.00</td>
<td>0.00 - 9.0</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>9.1 - 10.0</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>10.1 - 11.9</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>12.0 - 13.0</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>13.1 - 14.0</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>14.1 - 14.5</td>
</tr>
<tr>
<td>Mixture Characteristics</td>
<td>Pay Factor</td>
<td>Mean of the Deviations from the Job Mix Formula</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1 Test</td>
<td>2 Tests</td>
</tr>
<tr>
<td>No. 4 (4.75 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 6.8</td>
</tr>
<tr>
<td>(9.5 mm SMA)</td>
<td>0.98</td>
<td>6.9 - 7.5</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>7.6 - 8.9</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>9.0 - 9.8</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>9.9 - 10.5</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>10.6 - 10.9</td>
</tr>
<tr>
<td>No. 8 (2.36 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 7.0</td>
</tr>
<tr>
<td>(Superpave and 4.75 mm</td>
<td>0.98</td>
<td>7.1 - 8.0</td>
</tr>
<tr>
<td>mixes)</td>
<td>0.95</td>
<td>8.1 - 9.0</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>9.1 - 10.9</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>11.0 - 12.0</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>12.1 - 12.5</td>
</tr>
<tr>
<td>No. 8 (2.36 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 5.3</td>
</tr>
<tr>
<td>(12.5 mm SMA, 9.5 mm</td>
<td>0.98</td>
<td>5.4 - 6.0</td>
</tr>
<tr>
<td>SMA)</td>
<td>0.95</td>
<td>6.1 - 6.8</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>6.9 - 8.2</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>8.3 - 9.0</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>9.1 - 9.4</td>
</tr>
</tbody>
</table>

No. 8 (2.36 mm) Sieve for OGFC and PEM mixes: When the mean of the deviations from the Job Mix Formula for a particular lot exceeds the tolerance for a 1.00 pay factor in the appropriate column, the lot will be paid for at 0.50 of the Contract Price.
<table>
<thead>
<tr>
<th>Mixture Characteristics</th>
<th>Pay Factor</th>
<th>1 Test</th>
<th>2 Tests</th>
<th>3 Tests</th>
<th>4 Tests</th>
<th>5 Tests</th>
<th>6 Tests</th>
<th>7 Tests</th>
<th>8 Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Cement Content</td>
<td>1.00</td>
<td>0.00 - 0.80</td>
<td>0.00 - 0.61</td>
<td>0.00 - 0.52</td>
<td>0.00 - 0.46</td>
<td>0.00 - 0.39</td>
<td>0.00 - 0.36</td>
<td>0.00 - 0.34</td>
<td></td>
</tr>
<tr>
<td>(Extraction, Ignition)</td>
<td>0.95</td>
<td>0.00 - 0.90</td>
<td>0.53 - 0.68</td>
<td>0.47 - 0.51</td>
<td>0.44 - 0.47</td>
<td>0.40 - 0.43</td>
<td>0.37 - 0.40</td>
<td>0.35 - 0.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.91 - 1.00</td>
<td>0.59 - 0.64</td>
<td>0.52 - 0.56</td>
<td>0.48 - 0.52</td>
<td>0.44 - 0.47</td>
<td>0.41 - 0.44</td>
<td>0.38 - 0.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>1.01 - 1.19</td>
<td>0.65 - 0.69</td>
<td>0.57 - 0.61</td>
<td>0.53 - 0.56</td>
<td>0.48 - 0.51</td>
<td>0.45 - 0.47</td>
<td>0.42 - 0.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.70</td>
<td>1.20 - 1.40</td>
<td>0.70 - 0.72</td>
<td>0.62 - 0.64</td>
<td>0.57 - 0.59</td>
<td>0.52 - 0.55</td>
<td>0.48 - 0.51</td>
<td>0.45 - 0.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>1.41 - 1.60</td>
<td>0.73 - 0.85</td>
<td>0.65 - 0.67</td>
<td>0.60 - 0.63</td>
<td>0.56 - 0.60</td>
<td>0.52 - 0.56</td>
<td>0.49 - 0.52</td>
<td></td>
</tr>
<tr>
<td>1/2 in. (12.5 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 0.80</td>
<td>0.00 - 0.61</td>
<td>0.00 - 0.52</td>
<td>0.00 - 0.46</td>
<td>0.00 - 0.39</td>
<td>0.00 - 0.36</td>
<td>0.00 - 0.34</td>
<td></td>
</tr>
<tr>
<td>(25 mm Superpave)</td>
<td>0.98</td>
<td>13.0 - 14.0</td>
<td>7.0 - 7.7</td>
<td>6.2 - 6.8</td>
<td>5.6 - 6.1</td>
<td>5.1 - 5.6</td>
<td>4.8 - 5.2</td>
<td>4.5 - 4.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>14.1 - 15.0</td>
<td>7.8 - 8.5</td>
<td>6.9 - 7.5</td>
<td>6.2 - 6.7</td>
<td>5.7 - 6.1</td>
<td>5.3 - 5.7</td>
<td>5.0 - 5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>15.1 - 16.0</td>
<td>8.6 - 9.3</td>
<td>7.6 - 8.2</td>
<td>6.8 - 7.4</td>
<td>6.2 - 6.7</td>
<td>5.8 - 6.3</td>
<td>5.5 - 5.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>16.1 - 17.0</td>
<td>11.2 - 11.5</td>
<td>9.4 - 9.6</td>
<td>8.3 - 8.6</td>
<td>7.5 - 7.8</td>
<td>6.8 - 7.0</td>
<td>6.4 - 6.5</td>
<td>6.0 - 6.1</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>17.1 - 18.0</td>
<td>11.6 - 11.9</td>
<td>9.7 - 9.9</td>
<td>8.7 - 9.0</td>
<td>7.9 - 8.1</td>
<td>7.1 - 7.3</td>
<td>6.6 - 6.8</td>
<td>6.2 - 6.4</td>
</tr>
<tr>
<td>1/2 in. (12.5 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 0.97</td>
<td>0.00 - 0.90</td>
<td>0.00 - 0.62</td>
<td>0.00 - 0.46</td>
<td>0.00 - 0.38</td>
<td>0.00 - 0.35</td>
<td>0.00 - 0.33</td>
<td></td>
</tr>
<tr>
<td>(19 mm SMA)</td>
<td>0.98</td>
<td>9.8 - 10.5</td>
<td>6.2 - 6.8</td>
<td>5.3 - 5.8</td>
<td>4.7 - 5.1</td>
<td>4.2 - 4.6</td>
<td>3.9 - 4.2</td>
<td>3.6 - 3.9</td>
<td>3.4 - 3.7</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>10.6 - 11.2</td>
<td>5.9 - 6.4</td>
<td>5.2 - 5.6</td>
<td>4.7 - 5.0</td>
<td>4.3 - 4.6</td>
<td>4.0 - 4.3</td>
<td>3.8 - 4.0</td>
<td>3.6 - 3.7</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>11.3 - 12.0</td>
<td>6.5 - 7.0</td>
<td>5.7 - 6.1</td>
<td>5.1 - 5.6</td>
<td>4.7 - 5.0</td>
<td>4.4 - 4.7</td>
<td>4.1 - 4.4</td>
<td>3.9 - 4.0</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>12.1 - 12.8</td>
<td>8.4 - 8.6</td>
<td>7.1 - 7.2</td>
<td>6.2 - 6.5</td>
<td>5.7 - 5.9</td>
<td>5.1 - 5.3</td>
<td>4.8 - 4.9</td>
<td>4.5 - 5.6</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>12.9 - 13.5</td>
<td>8.7 - 8.9</td>
<td>7.3 - 7.4</td>
<td>6.6 - 6.8</td>
<td>6.0 - 6.1</td>
<td>5.4 - 5.5</td>
<td>5.0 - 5.1</td>
<td>4.7 - 4.8</td>
</tr>
<tr>
<td>3/8 in. (9.5 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 0.97</td>
<td>0.00 - 0.62</td>
<td>0.00 - 0.52</td>
<td>0.00 - 0.46</td>
<td>0.00 - 0.38</td>
<td>0.00 - 0.35</td>
<td>0.00 - 0.33</td>
<td></td>
</tr>
<tr>
<td>(19 mm Superpave, 12.5</td>
<td>0.98</td>
<td>10.1 - 11.9</td>
<td>6.4 - 7.0</td>
<td>5.7 - 6.3</td>
<td>5.3 - 5.8</td>
<td>4.8 - 5.3</td>
<td>4.5 - 5.0</td>
<td>4.2 - 4.6</td>
<td>3.9 - 4.0</td>
</tr>
<tr>
<td>mm Superpave)</td>
<td>0.95</td>
<td>12.0 - 13.0</td>
<td>6.4 - 7.0</td>
<td>5.7 - 6.3</td>
<td>5.3 - 5.8</td>
<td>4.8 - 5.3</td>
<td>4.5 - 5.0</td>
<td>4.2 - 4.6</td>
<td>3.9 - 4.0</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>13.1 - 14.0</td>
<td>7.8 - 8.6</td>
<td>7.0 - 7.6</td>
<td>6.4 - 6.9</td>
<td>5.9 - 6.3</td>
<td>5.5 - 5.9</td>
<td>5.1 - 5.5</td>
<td>4.8 - 4.9</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>14.1 - 14.5</td>
<td>10.3 - 10.8</td>
<td>8.7 - 8.9</td>
<td>7.7 - 8.0</td>
<td>7.0 - 7.5</td>
<td>6.4 - 6.8</td>
<td>6.0 - 6.4</td>
<td>5.6 - 6.0</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>14.6 - 15.0</td>
<td>10.6 - 10.8</td>
<td>9.0 - 9.2</td>
<td>8.1 - 8.4</td>
<td>7.6 - 7.8</td>
<td>6.9 - 7.3</td>
<td>6.5 - 6.8</td>
<td>6.1 - 6.5</td>
</tr>
<tr>
<td>Mixture Characteristics</td>
<td>Pay Factor</td>
<td>Mean of the Deviations from the Job Mix Formula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Test</td>
<td>2 Tests</td>
<td>3 Tests</td>
<td>4 Tests</td>
<td>5 Tests</td>
<td>6 Tests</td>
<td>7 Tests</td>
<td>8 Tests</td>
</tr>
<tr>
<td>No. 4 (4.75 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 10.0</td>
<td>0.00 - 7.6</td>
<td>0.00 - 6.3</td>
<td>0.00 - 5.8</td>
<td>0.00 - 5.4</td>
<td>0.00 - 4.9</td>
<td>0.00 - 4.6</td>
<td>0.00 - 4.3</td>
</tr>
<tr>
<td>(9.5 mm Superpave)</td>
<td>0.98</td>
<td>10.1 - 11.9</td>
<td>7.7 - 8.5</td>
<td>6.4 - 6.9</td>
<td>5.9 - 6.4</td>
<td>5.5 - 5.9</td>
<td>5.0 - 5.4</td>
<td>4.7 - 5.0</td>
<td>4.4 - 4.7</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>14.1 - 14.5</td>
<td>10.3 - 10.5</td>
<td>8.1 - 8.3</td>
<td>7.7 - 8.0</td>
<td>7.1 - 7.5</td>
<td>6.5 - 6.9</td>
<td>6.0 - 6.4</td>
<td>5.6 - 5.9</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>14.6 - 15.0</td>
<td>10.6 - 10.8</td>
<td>8.4 - 8.6</td>
<td>8.1 - 8.4</td>
<td>7.6 - 8.0</td>
<td>7.0 - 7.4</td>
<td>6.5 - 6.8</td>
<td>6.0 - 6.3</td>
</tr>
<tr>
<td>No. 8 (2.36 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 8.0</td>
<td>0.00 - 6.3</td>
<td>0.00 - 5.4</td>
<td>0.00 - 4.8</td>
<td>0.00 - 4.5</td>
<td>0.00 - 4.1</td>
<td>0.00 - 3.8</td>
<td>0.00 - 3.6</td>
</tr>
<tr>
<td>(All mixes except SMA)</td>
<td>0.98</td>
<td>8.1 - 9.0</td>
<td>6.4 - 7.0</td>
<td>5.5 - 6.0</td>
<td>4.9 - 5.3</td>
<td>4.6 - 4.9</td>
<td>4.2 - 4.5</td>
<td>3.9 - 4.2</td>
<td>3.7 - 3.9</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>9.1 - 10.0</td>
<td>7.1 - 7.7</td>
<td>6.1 - 6.6</td>
<td>5.4 - 5.8</td>
<td>5.0 - 5.4</td>
<td>4.6 - 4.9</td>
<td>4.3 - 4.6</td>
<td>4.0 - 4.3</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>10.1 - 11.9</td>
<td>7.8 - 8.5</td>
<td>6.7 - 7.2</td>
<td>5.9 - 6.4</td>
<td>5.5 - 5.8</td>
<td>5.0 - 5.3</td>
<td>4.7 - 5.0</td>
<td>4.4 - 4.6</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>12.0 - 13.0</td>
<td>8.6 - 8.8</td>
<td>7.3 - 7.5</td>
<td>6.5 - 6.8</td>
<td>5.9 - 6.3</td>
<td>5.4 - 5.7</td>
<td>5.1 - 5.3</td>
<td>4.7 - 4.9</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>13.1 - 14.0</td>
<td>8.9 - 9.1</td>
<td>7.6 - 7.8</td>
<td>6.9 - 7.2</td>
<td>6.4 - 6.6</td>
<td>5.8 - 6.1</td>
<td>5.4 - 5.7</td>
<td>5.0 - 5.3</td>
</tr>
<tr>
<td>No. 8 (2.36 mm) Sieve</td>
<td>1.00</td>
<td>0.00 - 6.0</td>
<td>0.00 - 4.7</td>
<td>0.00 - 4.1</td>
<td>0.00 - 3.6</td>
<td>0.00 - 3.4</td>
<td>0.00 - 3.1</td>
<td>0.00 - 2.9</td>
<td>0.00 - 2.4</td>
</tr>
<tr>
<td>(19 mm SMA)</td>
<td>0.98</td>
<td>6.1 - 6.8</td>
<td>4.8 - 5.2</td>
<td>4.2 - 4.5</td>
<td>3.7 - 4.0</td>
<td>3.5 - 3.7</td>
<td>3.2 - 3.4</td>
<td>3.0 - 3.2</td>
<td>2.8 - 2.9</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>6.9 - 7.5</td>
<td>5.3 - 5.8</td>
<td>4.6 - 5.0</td>
<td>4.1 - 4.4</td>
<td>3.8 - 4.0</td>
<td>3.5 - 3.7</td>
<td>3.3 - 3.5</td>
<td>3.0 - 3.2</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>7.6 - 8.9</td>
<td>5.9 - 6.4</td>
<td>5.1 - 5.4</td>
<td>4.5 - 4.8</td>
<td>4.1 - 4.4</td>
<td>3.8 - 4.0</td>
<td>3.6 - 3.8</td>
<td>3.3 - 3.5</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>9.0 - 9.8</td>
<td>6.5 - 6.6</td>
<td>5.5 - 5.6</td>
<td>4.9 - 5.1</td>
<td>4.5 - 4.7</td>
<td>4.1 - 4.3</td>
<td>3.9 - 4.0</td>
<td>3.6 - 3.7</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>9.9 - 10.5</td>
<td>6.7 - 6.8</td>
<td>5.7 - 5.9</td>
<td>5.2 - 5.4</td>
<td>4.8 - 5.0</td>
<td>4.4 - 4.6</td>
<td>4.1 - 4.3</td>
<td>3.8 - 4.0</td>
</tr>
</tbody>
</table>
E. Segregated Mixture

Prevent mixture placement that yields a segregated mat by following production, storage, loading, placing, and handling procedures. Also, make needed plant modifications and provide necessary auxiliary equipment. (See Subsection 400.1.01, “Definitions.”)

If the mixture is segregated in the finished mat, the Department will take actions based on the degree of segregation. The actions are described below.

1. Unquestionably Unacceptable Segregation

 When the Engineer determines that the segregation in the finished mat is unquestionably unacceptable, follow these measures:
 a. Suspend Work and require the Contractor to take positive corrective action. The Department will evaluate the segregated areas to determine the extent of the corrective work to the in-place mat as follows:
 □ Perform extraction and gradation analysis by taking 6 in (150 mm) cores from typical, visually unacceptable segregated areas.
 □ Determine the corrective work according to Subsection 400.3.06.E.3.
 b. Require the Contractor to submit a written plan of measures and actions to prevent further segregation. Work will not continue until the plan is submitted to and approved by the Department.
 c. When work resumes, place a test section not to exceed 500 tons (500 Mg) of the affected mixture for the Department to evaluate. If a few loads show that corrective actions were not adequate, follow the measures above beginning with step 1.a. above. If the problem is solved, Work may continue.

2. Unacceptable Segregation Suspected

 When the Engineer observes segregation in the finished mat and suspects that it may be unacceptable, follow these measures:
 a. Allow work to continue at Contractor’s risk.
 b. Require Contractor to immediately and continually adjust operation until the visually apparent segregated areas are eliminated from the finished mat. The Department will immediately investigate to determine the severity of the apparent segregation as follows:
 □ Take 6 in (150 mm) cores from typical areas of suspect segregation.
 □ Test the cores for compliance with the mixture control tolerances in Section 828.

 When these tolerances are exceeded, suspend work for corrective action as outlined in Subsection 400.3.06.E.3.

3. Corrective Work

 a. Remove and replace (at the Contractor’s expense) any segregated area where the gradation on the control sieves is found to vary 10 percent or more from the approved job mix formula, the asphalt cement varies 1.0% or more from the approved job mix formula, or if in-place air voids exceed 13.5% based on GDT 39. The control sieves for each mix type are shown in Subsection 400.5.01.B “Determine Lot Acceptance.”
 b. Subsurface mixes. For subsurface mixes, limit removal and replacement to the full lane width and no less than 10 ft. (3 m) long and as approved by the Engineer.
 c. Surface Mixes. For surface mixes, ensure that removal and replacement is not less than the full width of the affected lane and no less than the length of the affected areas as determined by the engineer.

 Surface tolerance requirements apply to the corrected areas for both subsurface and surface mixes.

400.3.07 Contractor Warranty and Maintenance

A. Contractor’s Record

 Maintain a dated, written record of the most recent plant calibration. Keep this record available for the Engineer’s inspection at all times. Maintain records in the form of:
 □ Graphs
 □ Tables
 □ Charts
 □ Mechanically prepared data
400.4 Measurement

Thickness and spread rate tolerances for the various mixtures are specified in Subsection 400.4.A.2.b, Table 11, Thickness and Spread Rate Tolerance at Any Given Location. These tolerances are applied as outlined below:

A. Hot Mix Asphaltic Concrete Paid for by Weight

1. Plans Designate a Spread Rate

 a. Thickness Determinations. Thickness determinations are not required when the Plans designate a spread rate per square yard (meter).

 If the spread rate exceeds the upper limits outlined in the Subsection 400.4.A.2.b, Table 11, “Thickness and Spread Rate Tolerance at Any Given Location”, the mix in excess will not be paid for.

 If the rate of spread is less than the lower limit, correct the deficient course by overlaying the entire lot.

 The mixture used for correcting deficient areas is paid for at the Contract Unit Price of the course being corrected and is subject to the Mixture Acceptance Schedule—Table 9 or 10.

 b. Recalculate the Total Spread Rate. After the deficient hot mix course has been corrected, the total spread rate for that lot is recalculated, and mix in excess of the upper tolerance limit as outlined in the Subsection 400.4.A.2.b, Table 11, “Thickness and Spread Rate Tolerance at Any Given Location” is not paid for.

 The quantity of material placed on irregular areas such as driveways, turnouts, intersections, feather edge section, etc., is deducted from the final spread determination for each lot.

2. Plans Designate Thickness

 If the average thickness exceeds the tolerances specified in the Subsection 400.4.A.2.b, Table 11, “Thickness and Spread Rate Tolerance at Any Given Location”, the Engineer shall take cores to determine the area of excess thickness. Excess quantity will not be paid for.

 If the average thickness is deficient by more than the tolerances specified in the Thickness and Spread Rate Tolerance at Any Given Location Table below, the Engineer shall take additional cores to determine the area of deficient thickness. Correct areas with thickness deficiencies as follows:

 a. Overlay the deficient area with the same mixture type being corrected or with an approved surface mixture. The overlay shall extend for a minimum of 300 ft (90 m) for the full width of the course.

 b. Ensure that the corrected surface course complies with Subsection 400.3.06.C.1, “Visual and Straightedge Inspection.” The mixture required to correct a deficient area is paid for at the Contract Unit Price of the course being corrected.

 The mixture is subject to the Mixture Acceptance Schedule—Table 9 or 10.

 The quantity of the additional mixture shall not exceed the required calculated quantity used to increase the average thickness of the overlaid section to the maximum tolerance allowed under the following table.

<table>
<thead>
<tr>
<th>Course</th>
<th>Thickness Specified</th>
<th>Spread Rate Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphaltic concrete base course</td>
<td>± 0.5 in (±13 mm)</td>
<td>±40 lbs, -50 lbs (+20 kg, -30 kg)</td>
</tr>
<tr>
<td>Intermediate and/or wearing course</td>
<td>± 0.25 in (± 6 mm)</td>
<td>±20 lbs, -25 lbs (+10 kg, -15 kg)</td>
</tr>
<tr>
<td>Overall of any combination of 1 and 2</td>
<td>± 0.5 in (±13 mm)</td>
<td>±40 lbs, -50 lbs (+20 kg, -30 kg)</td>
</tr>
</tbody>
</table>

NOTE 1: For asphaltic concrete 9.5 mm OGFC and 12.5 mm OGFC, control the spread rate per lot within 5 lbs/yd² (3 kg/m²) of the designated spread rate. For asphaltic concrete 12.5 mm PEM, control the spread rate per lot within 10 lbs/yd² (6 kg/m²) of the designated spread rate.

NOTE 2: Thickness and spread rate tolerances are provided to allow normal variations within a given lot. Do not continuously operate at a thickness or spread rate not specified.

When the Plans specify a thickness, the Engineer may take as many cores as necessary to determine the average thickness of the intermediate or surface course. The Engineer shall take a minimum of one core per 1,000 ft (300 m) per two lanes of roadway. Thickness will be determined by average measurements of each core according to GDT 42.
If the average exceeds the tolerances specified in the Subsection 400.4.A.2.b. Table 11, “Thickness and Spread Rate Tolerance at Any Given Location”, additional cores will be taken to determine the area of excess thickness and excess tonnage will not be paid for.

B. Hot Mix Asphalitic Concrete Paid for by Square Yard (Meter)

1. The thickness of the base course or the intermediate or surface course will be determined by the Department by cutting cores and the thickness will be determined by averaging the measurements of each core.
2. If any measurement is deficient in thickness more than the tolerances given in the table above, additional cores will be taken by the Department to determine the area of thickness deficiency. Correct thickness deficiency areas as follows:
 a. Overlay the deficient area with the same type mixtures being corrected or with surface mixture. Extend the overlay at least 300 ft (90 m) for the full width of the course.
 b. Ensure that the corrected surface course complies with Subsection 400.3.06.C.1, “Visual and Straightedge Inspection”.
 c. The mixture is subject to the Mixture Acceptance Schedule—Table 9 or 10.
3. No extra payment is made for mixtures used for correction.
4. No extra payment is made for thickness in excess of that specified.

NOTE: Thickness tolerances are provided to allow normal variations within a given lot. Do not continuously operate at a thickness not specified.

C. Asphalitic Concrete

Hot mix asphalitic concrete, complete in place and accepted, is measured in tons (megagrams) or square yards (meters) as indicated in the Proposal. If payment is by the ton (megagram), the actual weight is determined by weighing each loaded vehicle on the required motor truck scale as the material is hauled to the roadway, or by using recorded weights if a digital recording device is used.

The weight measured includes all materials. No deductions are made for the weight of the individual ingredients. The actual weight is the pay weight except when the aggregates used have a combined bulk specific gravity greater than 2.75. In this case the pay weight is determined according to the following formula:

\[
T_1 = T \times \left(\frac{\% \text{ AC} + \left(\frac{\% \text{ Aggregate} \times 2.75}{\text{combined bulk Sp. Gr.}} \right)}{100} + \% \text{ Y} \right)
\]

Where:

<table>
<thead>
<tr>
<th>T1</th>
<th>Pay weight, tonnage (Mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Actual weight</td>
</tr>
<tr>
<td>% AC=</td>
<td>Percent asphalt cement by weight of total mixture</td>
</tr>
<tr>
<td>% Aggregate=</td>
<td>Percent aggregate by weight of total mixture</td>
</tr>
<tr>
<td>Combined Bulk Sp. Gr.=</td>
<td>Calculated combined bulk specific gravity of various mineral aggregates used in the mixture</td>
</tr>
<tr>
<td>% Y=</td>
<td>Percent hydrated lime by weight of mineral aggregate</td>
</tr>
</tbody>
</table>

D. Bituminous Material

Bituminous material is not measured for separate payment.
E. Hydrated Lime
 When hydrated lime is used as an anti-stripping additive, it is not measured for separate payment.

F. Field Laboratory
 The field laboratory required in this Specification is not measured for separate payment.

G. Asphaltic Concrete Leveling
 Payment of hot mix asphaltic concrete leveling, regardless of the type mix, is full compensation for furnishing materials, bituminous materials, and hydrated lime (when required) for patching and repair of minor defects, surface preparation, cleaning, hauling, mixing, spreading, and rolling.
 Mixture for leveling courses is subject to the acceptance schedule as stated in Subsection 400.3.06.A and Subsection 400.3.06.B.

H. Asphaltic Concrete Patching
 Hot mix asphaltic concrete patching, regardless of the type mix, is paid for at the Contract Unit Price per ton (Megagram), complete in place and accepted. Payment is full compensation for:
 □ Furnishing materials such as bituminous material and hydrated lime (when required)
 □ Preparing surface to be patched
 □ Cutting areas to be patched, trimmed, and cleaned
 □ Hauling, mixing, placing, and compacting the materials

400.4.01 Limits
When the asphaltic concrete is paid for by the square yard (meter) and multiple lifts are used, the number and thickness of the lifts are subject to the Engineer’s approval and are used to prorate the pay factor for the affected roadway section.

400.5 Payment
When materials or construction are not within the tolerances in this Specification, the Contract Price will be adjusted according to Subsection 106.03, “Samples, Tests, Cited Specifications” and Subsection 400.3.06, “Quality Acceptance.”

Hot mix asphaltic concrete of the various types are paid for at the Contract Unit Price per ton (megagram) or per square yard (meter). Payment is full compensation for furnishing and placing materials including asphalt cement, hydrated lime when required, approved additives, and for cleaning and repairing, preparing surfaces, hauling, mixing, spreading, rolling, and performing other operations to complete the Contract Item.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 400</th>
<th>Asphaltic concrete type</th>
<th>Per ton (megagram)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Superpave, group-blend, including bituminous materials, Gilsonite modifier, and hydrated lime</td>
<td></td>
</tr>
<tr>
<td>Item No. 400</td>
<td>inches asphaltic concrete, type Superpave, group-blend including bituminous materials, Gilsonite modifier and hydrated lime</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 400</td>
<td>Stone Matrix Asphalt, group-blend, including polymer-modified bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>Item No. 400</td>
<td>type OGFC, group 2 only, including bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>Item No. 400</td>
<td>type OGFC, group 2 only, including polymer-modified bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>Item No. 400</td>
<td>Porous European Mix, group 2 only, including polymer-modified bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
</tbody>
</table>

400.5.01 Adjustments
A. Materials Produced and Placed During the Adjustment Period
 An adjustment period is allowed at the start of mixing operations for each type of mix placed on the Contract except for Asphaltic Concrete OGFC or PEM. The adjustment period is provided to adjust or correct the mix and to establish the construction procedures and sequence of operations.
The adjustment period consists of the tons (megagrams) of the affected mix produced and placed on the first day of operation. If this quantity is less than 500 tons (500 Mg), the Engineer may combine the tons (megagrams) produced and placed on the first day of operation with the tons (megagrams) produced and placed on the next production day of the affected mix for the adjustment period.

The material produced and placed during the mixture adjustment period is one lot. If the mix is adjusted during this period, a new lot may be necessary, but a new adjustment period will not be permitted.

This material shall be paid for at 100 percent of the Contract Unit Price provided it meets the minimum requirements for a 1.00 pay factor for asphalt cement content and a 0.90 pay factor for gradation in the Mixture Acceptance Schedule—Table 9 or 10.

If the material placed during the adjustment period fails to meet the above requirements, it will be paid for using the applicable acceptance schedule. When the same type Superpave mixture is placed at different mix design levels and a different blend of materials is specified in the job mix formula, a new adjustment period shall be granted. However, when a Superpave mixture with the same blend of materials specified in the job mix formula is placed at different mix design levels or when a mixture used for leveling at a spread rate of 90 lbs/yard² (50 kg/m²) or less is also used for the surface mix at a spread rate greater than 90 lbs/yard² (50 kg/m²), an additional adjustment period will be allowed for compaction only. This material will be paid for at a 1.00 pay factor provided it:

- Meets the minimum requirements for a 1.00 pay factor in the Mixture Acceptance Schedule—Table 9 or 10 for both asphalt content and gradation.
- Meets the minimum requirements for a 0.90 pay factor in Table 12 of Subsection 400.5.01C, “Calculate Mean Pavement Air Voids.

Mixture which does not meet these requirements shall be paid for using the applicable acceptance schedule.

B. Determine Lot Acceptance

Pay factor adjustments are based on control sieves and asphalt cement content. The control sieves used in the mixture acceptance schedule for the various types of mix are indicated below:

<table>
<thead>
<tr>
<th>Control Sieves Used in the Mixture Acceptance Schedule</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalctic concrete 25 mm Superpave</td>
<td>1/2 in., No. 8 (12.5 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphalctic concrete 19 mm SMA</td>
<td>1/2 in., No. 8 (12.5 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphalctic concrete 19 mm Superpave</td>
<td>3/8 in., No. 8 (9.5 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphalctic concrete 12.5 mm Superpave</td>
<td>3/8 in., No. 8 (9.5 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphalctic concrete 12.5 mm SMA</td>
<td>3/8 in., No. 8 (9.5 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphalctic concrete 12.5 mm PEM</td>
<td>3/8 in., No. 8 (9.5 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphalctic concrete 12.5 mm OGFC</td>
<td>3/8 in., No. 8 (9.5 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphalctic concrete 9.5 mm Superpave</td>
<td>No. 4, No. 8 (4.75 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphalctic concrete 9.5 mm SMA</td>
<td>No. 4, No. 8 (4.75 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphalctic concrete 9.5 mm OGFC</td>
<td>No. 4, No. 8 (4.75 mm, 2.36 mm) sieves and asphalt cement</td>
</tr>
<tr>
<td>Asphalctic concrete 4.75 mm Mix</td>
<td>No. 8 (2.36 mm) sieve and asphalt cement</td>
</tr>
</tbody>
</table>

For projects which do not have milling quantities established as a Pay Item, the Department will pay for 12.5 mm OGFC and PEM placed on ramps and end of project transitions under the appropriate mixture pay item, but the mix shall be subject to the same gradation and control sieve requirements as asphaltic concrete 9.5 mm OGFC. Add polymer-modified bituminous material, hydrated lime, and stabilizing fiber to this mix.

The Department will perform the following tasks:

1. Using the Mixture Acceptance Schedule—Table 9 or 10, determine the mean of the deviations from the job mix formula per test results per lot.
2. Determine this mean by averaging the actual numeric value of the individual deviations from the job mix formula; disregard whether the deviations are positive or negative amounts.
3. Use the Asphalt Cement Content and Aggregate Gradation of Asphalt Concrete Mixture Acceptance Schedule—Table 9 to determine acceptance of surface mixes and the Mixture Acceptance Schedule—Table 10 to determine acceptance of subsurface mixes.

On Contracts involving 1,000 tons (1000 Mg) or less of asphaltic concrete, the mixture is accepted for 100 percent payment of the asphaltic concrete Unit Price provided it meets the following:

1. Minimum requirements for a 1.00 pay factor for asphalt cement content and a 0.90 pay factor for gradation in the applicable Mixture Acceptance Schedule—Table 9 or 10.

2. Minimum requirements for a 0.90 pay factor in Table 12 of Subsection 400.5.01C, “Calculate Pavement Mean Air Voids.

If the material placed on Contracts involving 1,000 tons (1000 Mg) or less of asphaltic concrete does not meet the above requirements, the material will be paid for using the applicable acceptance schedule.

C. Calculate Pavement Mean Air Voids

The Department will determine the percent of maximum air voids for each lot by dividing the pavement mean air voids by the maximum pavement mean air voids acceptable.

The Department will determine the payment for each lot by multiplying the Contract Unit Price by the adjusted pay factor shown in the following Air Voids Acceptance schedule:

<table>
<thead>
<tr>
<th>Pay Factor</th>
<th>Percent of Maximum Air Voids (Lot Average-5 Tests)</th>
<th>Percent of Maximum Air Voids (Lot Average-10 Tests) (for Reevaluations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>δ100</td>
<td>δ100</td>
</tr>
<tr>
<td>0.97</td>
<td>100.1 — 105</td>
<td>100.1 — 104</td>
</tr>
<tr>
<td>0.95</td>
<td>105.1 — 112</td>
<td>104.1 — 109</td>
</tr>
<tr>
<td>0.90</td>
<td>112.1 — 124</td>
<td>109.1 — 118</td>
</tr>
<tr>
<td>0.80</td>
<td>124.1 — 149</td>
<td>118.1 — 136</td>
</tr>
<tr>
<td>0.70</td>
<td>149.1 — 172</td>
<td>136.1 — 153</td>
</tr>
<tr>
<td>0.50</td>
<td>172.1 — 191</td>
<td>153.1 — 166</td>
</tr>
</tbody>
</table>

When the range tolerance is exceeded, the Department will apply a pay factor of 0.95 as described in Subsection 400.3.06.B.2.

D. Asphaltic Concrete For Temporary Detours

Hot mix asphaltic concrete placed on temporary detours that will not remain in place as part of the permanent pavement does not require hydrated lime. Hot mix used for this purpose is paid for at an adjusted Contract Price.

Where the Contract Price of the asphaltic concrete for permanent pavement is let by the ton (megagram), the Contract Price for the asphaltic concrete placed on temporary detours is adjusted by subtracting $0.75/ton ($0.85/mg) of mix used.

Where the Contract price of the mix in the permanent pavement is based on the square yard (meter), obtain the adjusted price for the same mix used on the temporary detour by subtracting $0.04/yd³ ($0.05/ m³) per 1-in (25-mm) plan depth.

Further price adjustments required in Subsection 400.3.06, “Quality Acceptance,” are based on the appropriate adjusted Contract Price for mix used in the temporary detour work.

E. Determine Lot Payment

Determine the lot payment as follows:

1. When one of the pay factors for a specific acceptance lot is less than 1.0, determine the payment for the lot by multiplying the Contract Unit Price by the adjusted pay factor.

2. When two or more pay factors for a specific acceptance lot are less than 1.0, determine the adjusted payment by multiplying the Contract Unit Price by the lowest pay factor.

If the mean of the deviations from the job mix formula of the tests for a sieve or asphalt cement content exceeds the tolerances established in the Mixture Acceptance Schedule—Table 9 or 10 and if the Engineer determines that the
material need not be removed and replaced, the lot may be accepted at an adjusted unit price as determined by the Engineer. If the pavement mean air voids exceed the tolerances established in the Air Voids Acceptance Schedule – Table 12, remove and replace the materials at the Contractor’s expense.

If the Engineer determines that the material is not acceptable to leave in place, remove and replace the materials at the Contractor’s expense.

Section 401—Cold Mix for Patching

401.1 General Description
This Specification contains requirements for a mixture of mineral aggregates and cutback asphalt suitable for short periods of stockpiling.

401.1.01 Definitions
General Provisions 101 through 150.

401.1.02 Related References
A. Standard Specifications
 Section 800—Coarse Aggregate
 Section 802—Aggregates for Asphalitic Concrete
 Section 820—Asphalt Cement
 Section 821—Cutback Asphalt
 Section 824—Cationic Asphalt Emulsion
B. Referenced Documents
 ASTM D 396
 ASTM D 975
 QPL 70

401.1.03 Submittals
General Provisions 101 through 150.

401.2 Materials
Ensure that materials meet the following specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cationic Asphalt Emulsion, CMS-2</td>
<td>824.2.01</td>
</tr>
<tr>
<td>Cutback Asphalt, Grade MC-250</td>
<td>821.2.01</td>
</tr>
<tr>
<td>Asphalt Cement, PG 64-22</td>
<td>820.2.01</td>
</tr>
<tr>
<td>Liquifier, No. 2 Fuel Oil</td>
<td>ASTM D 396</td>
</tr>
<tr>
<td>Liquifier, No. 2 Diesel Fuel Oil</td>
<td>ASTM D 975</td>
</tr>
<tr>
<td>Fine Aggregate for Asphalitic Concrete</td>
<td>802.2.01</td>
</tr>
<tr>
<td>Coarse Aggregate for Asphalitic Concrete</td>
<td>802.2.02</td>
</tr>
</tbody>
</table>

For a list of sources, see QPL 70.

A. Substitutions
 Instead of using MC-250 as a bituminous material, a mixture of PG 64-22 and either No. 2 heating fuel oil or No. 2 diesel fuel oil may be used in a blend of 67 percent PG 64-22 and 33 percent fuel oil. Blend these materials before mixing or add them separately when mixing.
B. Composition of Mixtures

Ensure that bituminous cold mixtures are uniform mixtures of aggregate, asphaltic material and, if required, mineral filler.

Ensure that the constituents are proportioned to produce mixtures that meet the requirements given in the Composition Table. Group I aggregate, Group II aggregate, or a blend of both may be used.

Aggregate meeting gradation the requirement for size 89 aggregate in Section 800 may be used instead of composite blends, at the Engineer’s discretion.

| Composition Table for Cold Mixes for Bituminous Plant Mixtures for Patching |
|-----------------------------|----------------|----------------|
| Cold Mix Type | 12.5 mm Superpave | 9.5 mm Superpave (Level B) | 9.5 mm Superpave (Level A) |
| Gradation Requirements, Percent Passing, by Weight | | |
| 3/4 in (19 mm) sieve | 100 | | |
| 1/2 in ((12.5 mm) sieve | 90 to 100 | 100 | 100 |
| 3/8 in (9.5 mm) sieve | 70 to 89 | 90 to 100 | 90 to 100 |
| No. 4 (4.75 mm) sieve | 55 to 75 | 65 to 85 |
| No. 8 (2.36 mm) sieve | 34 to 39 | 42 to 47 | 53 to 58 |
| No. 50 (300 µm) sieve | 8 to 27 | 8 to 27 | 10 to 35 |
| No. 200 (75 µm) sieve | 3.5 to 7.0 | 4 to 7 | 4 to 7 |
| Percent Residual AC, by Weight of Total Mixture | 4.3 to 6.5 | 4.3 to 7.0 | 4.5 to 7.0 |

C. Mixing Temperature

The recommended temperatures for aggregate and bituminous materials to ensure proper mixing are as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS-2</td>
<td>140-160 °F (60-70 °C)</td>
</tr>
<tr>
<td>PG 64-22</td>
<td>300-350 °F (150-175 °C)</td>
</tr>
<tr>
<td>MC-250</td>
<td>100-225 °F (40-105° C)</td>
</tr>
<tr>
<td>Aggregates</td>
<td>200-225 °F (95-105 °C)</td>
</tr>
</tbody>
</table>

401.2.01 Delivery, Storage, and Handling

A. Stockpiling the Mixture

1. Place the finished mixture in small stockpiles to allow the mixture to cure properly.
2. After curing, stockpile the mixture in one large stockpile if possible.
3. Ensure that the stockpiling area is clean and well drained.

401.3 Construction Requirements

General Provisions 101 through 150.

401.3.01 Personnel
General Provisions 101 through 150.

401.3.02 Equipment
General Provisions 101 through 150.

401.3.03 Preparation
General Provisions 101 through 150.

401.3.04 Fabrication
General Provisions 101 through 150.
401.3.05 Construction
General Provisions 101 through 150.

401.3.06 Quality Acceptance
General Provisions 101 through 150.

401.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

401.4 Measurement
Cold mix will be measured by weight in tons (megagrams) according at Subsection 109.01, “Measurement and Quantities,” and no deductions will be made for the asphalt cement or liquifier.

401.4.01 Limits
General Provisions 101 through 150.

401.5 Payment
Cold mix will be paid for at the Contract Unit Price per ton (megagram). Payment is full compensation for materials costs, production costs, and shall be FOB the stockpile at the plant.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 401</th>
<th>Cold mix</th>
<th>Per ton (megagram)</th>
</tr>
</thead>
</table>

401.5.01 Adjustments
General Provisions 101 through 150.

Section 402—Hot Mix Recycled Asphalitic Concrete

402.1 General Description
This work includes producing and placing hot mix recycled asphalitic concrete that incorporates reclaimed asphalt pavement (RAP), reclaimed asphalt shingles (RAS), virgin aggregate, hydrated lime, and neat asphalt cement.

402.1.01 Definitions
General Provisions 101 through 150.

402.1.02 Related References
A. Standard Specifications
 Section 400—Hot Mix Asphalitic Concrete Construction
 Section 800—Coarse Aggregate
 Section 828—Hot Mix Asphalitic Concrete Mixtures
B. Referenced Documents
 Guidelines for RAP Stockpile Approval

402.1.03 Submittals
A. Certified Weight Tickets
 Notify the Engineer before removing RAP from a stockpile that belongs to the Department. Submit to the Engineer the certified weight tickets of materials removed from the stockpile.

B. Affidavit
 Submit to the laboratory an affidavit stating the sources of stockpiled materials to be used on a State project. Include the following information in the letter:
 - State project number
Location from which the material was removed
Approximate removal dates
Mix types removed and the estimated quantity of each type in the stockpiles
Other available information about the stockpiled material such as percentage of local sand in the RAP

Obtain specific approval from the laboratory to use RAP or RAS stockpiles.
Adhere to Guidelines for RAP Stockpile Approval.

402.2 Materials

A. RAP Material Composition

Use RAP materials from any of the following:

- Existing roadway
- Contractor’s RAP stockpile that has been approved by the Department
- Department stockpile

NOTE: The location of Department RAP material stockpiles will be given on the Plans.

Do not use RAP materials that contain alluvial gravel or local sand in any mixture placed on interstate projects except for mixtures used in shoulder construction. When used in shoulder construction, limit RAP containing local sand or alluvial gravel so that the sand or gravel contributes no more than 20% of the total aggregate portion of the mix.

1. RAP Percentage

 For non-interstate projects, limit the percentage of RAP allowed in recycled mixes so that the overall amount of alluvial gravel does not exceed 5 percent of the total mix. The percentage of alluvial gravel, local sand, and Group I material in the RAP will be determined through petrographic analysis or available records.

 RAP furnished to the Contractor but not used in the work remains the Contractor’s property.

 RAP used in the recycled mixtures for mainline or ramps (if applicable) may make up from 0 to 40 percent of the mixture depending on the amount of RAP available, the production facilities, and whether the mixture meets the requirements in Section 828.

 The maximum ratio of RAP material to the recycled mixture is 40 percent for continuous mix type plants and 25 percent for batch type plants.

2. Process RAP Material

 Process RAP material to be used in the recycled mixture so that 100 percent will pass the 2 in (50 mm) sieve.

 Additional crushing and sizing may be required if the RAP aggregate exceeds the maximum sieve size for the mix type as shown in Section 828. Obtain representative materials from the RAP stockpile for the mix design.

B. RAS Material

 RAS materials are produced as a by-product of manufacturing roofing shingles and/or discarded shingle scrap from the reroofing of buildings.

 1. Limit the amount of RAS material used in the recycled mixture to no greater than 5 percent of the total mixture weight.

 2. Shred the RAS material before incorporating it into the mix to ensure that 100 percent of the shredded pieces are less than 1/2 in (12.5 mm) in any dimension.

 3. Remove all foreign materials such as paper, roofing nails, wood, or metal flashing.

 4. Provide test results for Bulk Sample Analysis, known as Polarized Light Microscopy, if post-consumer shingles are used to certify the RAS material is free of asbestos. Test stockpiles at the rate of one test per 1000 tons (megagrams) prior to processing.

 Other than as specifically stated in this Subsection, ensure that RAS material is used according to the same requirements as described for RAP material.

C. Asphaltic Concrete Removed from an Existing Roadway

 Asphaltic concrete removed from an existing roadway becomes the Contractor’s property unless specified otherwise on the Plans. RAP material retained by the Department is designated on the Plans, and the RAP shall be stockpiled at the location specified on the Plans.
D. Local Sand and Group I Material in RAP

Use of local sand in recycled mixes is restricted as stipulated in Section 828 for the Project. However, RAP which contains local sand may be used in surface and intermediate layers of non-interstate projects so long as the RAP percentage used does not contribute more than 5% local sand to the total aggregate portion of the mix. The amount of local sand in the RAP material shall be considered when determining the percentage of local sand in the total mix.

Where Pay Items specify that Group II only aggregate is to be used, RAP which consists primarily of Group II aggregate, but contains some Group I aggregate, shall be limited such that the Group I aggregate makes up no more than 5% of the total aggregate portion of the mix. When a Blend I mix is specified, any Group I materials in the RAP will be considered when determining the Group I portion allowed in the total mix as specified in Subsection 828.2.A.2.

E. Asphalt Cement

Using laboratory evaluations, the Department will determine the asphalt cement grade to be used in the recycled mixture. The asphalt cement shall meet the requirements of Section 820.

When the asphalt cement is blended with asphalt cement recovered from the RAP material and after tests on residue from thin film oven tests, the asphalt cement shall have a viscosity of 6,000 to 16,000 poises (600 to 1600 Pa) or as approved by the Engineer. Recover asphalt cement from the recycled mixture to verify that the specified viscosity is being met.

If the Engineer determines during construction that the selected asphalt cement grade is not performing satisfactorily, the Department may change the asphalt cement grade in the mixture, with no change in the Contract Unit Price.

F. Recycled Mixture

The recycled mixture shall be a homogenous mixture of RAP or RAS material, virgin aggregate, hydrated lime, and neat asphalt cement. Ensure that the mixture conforms to an approved mixture design outlined in Section 828.

402.2.01 Delivery, Storage, and Handling

Separate the stockpiles by Project sources and by Group I and Group II aggregate types. Erect a sign on each stockpile to identify the source(s).

If RAP material from different project sources becomes intermixed in a stockpile, only use those materials when approved by the laboratory.

The Department may reject by visual inspection stockpiles that are not clean and free of foreign materials.

402.3 Construction Requirements

402.3.01 Personnel

General Provisions 101 through 150.

402.3.02 Equipment

A. Hot Mix Plant

Use a hot mix plant for the recycling process with necessary modifications approved by the Engineer to process recycled material. Design, equip, and operate the plant so that the proportioning, heating, and mixing yields a uniform final mixture within the job mix formula tolerances.

B. Cold Feed Bin

Proportion the RAP or RAS material using a separate cold feed bin. Ensure that the material meets the size requirements in Subsection 402.2, “Materials.” The ratio of the RAP or RAS to virgin aggregate shall be controlled gravimetrically.

C. Electronic Belt Weighing Devices

Use electronic belt weighing devices to monitor the flow of RAP or RAS and the flow of virgin aggregate. For batch-type plants, the RAP or RAS portion of the mix may be weighed in a weigh hopper before incorporating it into the pugmill.

D. Feeders and Conveyors

Equip plants with an interlocking system of feeders and conveyors that synchronize the RAP or RAS material flow with the virgin aggregate flow. Ensure that the electronic controls track the flow rates indicated by the belt weighing devices and develop the signal to automatically maintain the desired ratio at varying production rates. Design the RAP or RAS feeder bins, conveyor system, and auxiliary bins (if used) to prevent RAP material from segregating and sticking.
402.3.03 Preparation
General Provisions 101 through 150.

402.3.04 Fabrication
General Provisions 101 through 150.

402.3.05 Construction
Follow the requirements in Section 400 for hot mix recycled asphaltic concrete production and placement, materials, equipment, and acceptance plans except as noted or modified in this Specification.

402.3.06 Quality Acceptance
The Department may require additional quality control tests to determine the RAP stockpile consistency and the RAP aggregate quality. In this case, conduct at least three extraction/gradation tests from each individual source. Ensure that aggregate meets the quality standards in Section 800.

402.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

402.4 Measurement
Recycled asphaltic concrete mixture, complete in place and accepted, is measured in tons (megagrams). The weight is determined by recorded weights if an approved recording device is used. Or, the weight is determined by weighing each loaded vehicle on an approved motor truck scale as the material is hauled to the roadway.

402.4.01 Limits
General Provisions 101 through 150.

402.5 Payment
The work performed and the materials furnished as described in this Specification will be paid for at the Contract Unit Price per ton (megagram). Payment is full compensation for providing materials, hauling and necessary crushing, processing, placing, rolling and finishing the recycled mixture, and providing labor, tools, equipment, and incidentals necessary to complete the work, including hauling and stockpiling RAP or RAS material.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>402</td>
<td>Recycled asphaltic concrete type, group-blend, including bituminous materials</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>402</td>
<td>Recycled asphaltic concrete type, group-blend, including bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>402</td>
<td>Recycled asphaltic concrete type, group-blend, including polymer-modified bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>402</td>
<td>_______ in (mm) recycled asphaltic concrete type, group-blend, including bituminous materials</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>402</td>
<td>_______ in (mm) recycled asphaltic concrete type, group-blend, including bituminous materials and hydrated lime</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>402</td>
<td>_______ in (mm) recycled asphaltic concrete type, group-blend, including polymer-modified bituminous materials and hydrated lime</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>402</td>
<td>Recycled asphaltic concrete patching including bituminous materials</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>402</td>
<td>Recycled asphaltic concrete patching including bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>402</td>
<td>Recycled asphaltic concrete leveling including bituminous materials</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>402</td>
<td>Recycled asphaltic concrete leveling including bituminous materials and hydrated lime</td>
<td>Per ton (megagram)</td>
</tr>
</tbody>
</table>

402.5.01 Adjustments
General Provisions 101 through 150.
Section 403—Hot In-Place Recycled Asphaltic Concrete

403.1 Description
This Section covers the hot in-place recycling of the existing surface in a continuous multi-step process which includes:

☐ Softening the existing surface with heat
☐ Hot milling to obtain the depth shown in the plan typical section or stated in the contract general notes
☐ Applying a tack coat
☐ Applying a rejuvenating agent
☐ Adding plant produced asphaltic concrete and virgin aggregate, if needed, prior to remixing
☐ Thoroughly remixing, leveling, and relaying the recycled mixture

403.1.01 Definitions
General Provisions 101 through 150.

403.1.02 Related References
A. Standard Specifications
 Section 106
 Section 109
 Section 400
 Section 402
 Section 800
 Section 824
B. Referenced Documents
 AASHTO T-49
 AASHTO T-209
 AASHTO TP 4
 AASHTO TP 5
 ASTM D92
 ASTM D2170
 ASTM D2872
 ASTM D4124
 GDT 38
 GDT 42
 GDT 66
 GDT 83
 GDT 115
 GDT 119
 GDT 125
 GDT 126
 GSP 15
403.1.03 Submittals
Submit the proposed mix design for approval. As a minimum, the design shall include the following:

- The proportional blend of in-place materials and rejuvenating agent
- The proportional percentage of virgin aggregate and plant-produced hot mix asphalt, if required
- The sources of all materials to be used in the mixture
- The theoretical maximum specific gravity of the final mixture determined by AASHTO T-209
- The air void volume of the mixture after compacting for 50 gyrations with a gyratory compactor according to AASHTO TP 5

Use an approved, qualified laboratory to perform the mixture design analysis. Ensure the final design mixture has an air void volume within 3-5%.

Submit to the Office of Materials and Research (OMR) representative samples of each ingredient to be used in the final in-place mixture for design verification and additional testing as needed. The Department will perform testing for moisture and rutting susceptibility. Adjust mixture proportions as needed to ensure the final mixture meets the following requirements:

- Average rut depth not to exceed 0.3 in (7 mm) when tested using GDT 115.
- Minimum tensile splitting ratio of 80% and minimum individual stress results of 60 psi (415 kPa) when tested using GDT 66.

EXCEPTION: A tensile splitting ratio of no less than 70% is acceptable so long as all individual test values exceed 100 psi (690 kPa).

Allow the Department two weeks to verify the mix design after receiving the proposed mix design and material. Do not begin recycling operations until the Department has approved the design and accepted the mixture.

403.2 Materials
The materials to be used and their specifications are listed below:

A. Aggregate
Add virgin aggregate, if required, which is from an approved source and which meets requirements of Section 800. Use the stone size and spread rate specified in the plans. Additional virgin aggregate from approved sources may be added based on the mixture design analysis at no additional cost to the Department.

B. Plant-Produced Hot Mix Asphaltic Concrete
Add the type and amount of plant-produced asphaltic concrete, if required, as specified in the plans. Additional asphaltic concrete may be added based on the mixture design analysis at no additional cost to the Department. Ensure the hot mix asphaltic concrete is produced according to Section 400 and Section 402.

C. Asphalt Cement Rejuvenating Agent
Obtain approval by the Office of Materials and Research for the source, amount, and type of rejuvenating agent to be used. The Department reserves the right to change, without a change in the contract unit price, the agent and amount being used in the mixture if it is determined by the Engineer that the rejuvenating agent is not performing satisfactorily.

D. Bituminous Tack Coat
Use a cationic asphalt emulsion CRS-2h, CSS-1h, or CQS-1h for the bituminous tack coat that meets Section 824. Apply the tack coat with a system equipped with positive stop/start capabilities that will prevent tack puddles and which will uniformly distribute the tack across the full width of the surface being recycled. Apply tack after the existing surface has been heated, milled, and removed from the roadway and prior to replacing the material onto the roadway.

E. Asphalt Modifier
Provide asphalt modifier as specified in the Plans. It shall be added at a dosage rate that will yield at least 3% solid polymer by weight of the asphalt cement of the in-place material. Asphalt modifiers shall be approved by the Office of Materials and Research prior to use in the work. The Department reserves the right to change the type modifier and amount to be used, without a change in the contract unit price, if the Engineer determines that the asphalt modifier is not performing satisfactorily.
403.2.01 Delivery, Storage, and Handling

A. Aggregate Storage
 Store or stockpile mineral aggregates in a manner that will prevent segregation, mixing of the various sizes, and contamination with foreign materials.

B. Storage of Bituminous Material
 Always keep clean all equipment used to store and handle bituminous material and operate it in such a manner to prevent contamination with foreign matter.

403.3 Construction Requirements

403.3.01 Personnel
 General Provisions 101 through 150.

403.3.02 Equipment
 The Engineer shall approve all equipment, tools, and machines used to perform this work. Do not attempt work with malfunctioning equipment. The Engineer may stop the work if equipment and tools are not sufficient to place the materials satisfactorily.

A. Heating and Milling Units
 Ensure the heating unit meets the following requirements:
 - Capable of heating the asphaltic concrete pavement to a temperature high enough to remove excess moisture and allow hot milling of the material to the designated plan depth without breaking aggregate particles
 - Controls the heating process to prevent charring the existing surface, avoid producing undesirable pollutants, and prevent differential softening of the pavement
 - Confine the heat application under a shielded, or enclosed, hood

 Protect adjacent landscape from heat damage. Rebuild, repair, restore, and make good all injuries or damages to adjacent landscape, at the Contractor’s expense. Equip the unit which contains milling heads with longitudinal grade controls as described in Subsection 403.3.02.C which will consistently control the depth of the milling operation. Milling heads shall remove the heated existing pavement to the depth specified in the Plans for the full transverse width even if additional virgin aggregate or asphaltic concrete mixture is added at no cost to the Department.

 Use a portable milling or scraping unit to completely remove heated material from around utility structures to the full plan depth just prior to placement of the recycled material. Do not attempt to remove heated material from utility structures with hand tools only and do not damage the structures. Repair any damage to structures at no additional cost to the Department.

B. Blending Unit
 Provide a blending unit which meets the following requirements:
 - Capable of blending the removed material and rejuvenating agent (as well as virgin aggregate, asphalt modifier, and plant-produced hot mix asphaltic concrete, if required) into a homogeneous mixture
 - Synchronizes application of all materials based on the volume of material being recycled to provide a proportional application at the predetermined application rate

 Add the rejuvenator after milling has taken place and before or during the blending process with a positive start/stop mechanism that is automatically controlled by the volume of recycled material to be rejuvenated. Do not add rejuvenator based on linear distance travelled.

 Add asphalt modifier, if required, at locations specified in the Plans or directed by the Engineer. Add modifiers during the blending process through a distribution system that will uniformly control the rate of application based on the volume of material being recycled and which contains a measuring system to verify the dosage rate.

C. Screed
 Ensure the screed meets the following requirements:
 - Capable of collecting and distributing the recycled mixture over variable widths for the entire width being processed
 - Capable of controlling transverse cross-slope as directed by the Engineer
403.3.03

- Provides a uniform cross-section without streaks or blemishes
- Controls longitudinal grade electronically in conjunction with a mobile reference or by a non-contacting laser or sonar type ski with at least four referencing stations mounted at a minimum length of 24 feet (7.2 m)

D. Auxiliary Equipment

Provide suitable surface cleaning equipment, hand tools, rollers, and other support equipment necessary to perform the work. Ensure all other equipment meets requirements of Section 400.

403.3.03 Preparation

General Provisions 101 through 150.

403.3.04 Fabrication

General Provisions 101 through 150.

403.3.05 Construction

A. Surface Preparation

Thoroughly clean the surface to be recycled of all dirt, vegetation, and other objectionable materials immediately prior to the affected area being recycled. Remove all metal raised pavement markers and thermoplastic paint markings prior to recycling.

B. Heat, Remove, and Blend Materials

Evenly heat the pavement at full lane width plus a minimum 3 in (75 mm) overlap onto adjacent pavement materials. Control the heating to ensure uniform penetration without differential softening of the surface, and so that the heated material has a temperature in the range of 240 ± 20 °F (115 ± 10 °C) measured immediately behind the heating unit. If virgin aggregate is added, distribute the aggregate across the entire width being recycled prior to the last heat application.

Hot mill and rework the pavement to the width and depth shown in the plan typical section. Control the width of each pass to provide proper placement of longitudinal joints. Control the depth of loosened pavement to within 1/4 in (6 mm) of the depth specified. Ensure the milled material is heated sufficiently so that it is free of lumps. Milled particles shall not be greater than 1-1/2 in (40 mm) in size.

Blend the removed material with a rejuvenating agent (and virgin aggregate, asphalt modifier, or plant-produced hot mix asphaltic concrete, if needed) to produce a homogeneous mixture. Control the rate of application of the rejuvenator to ensure compliance with the mix design and Dynamic Shear Rheometer (DSR) values specified in Subsection 403.3.06.A. Apply other materials as specified in the contract or as determined by the mix design analysis.

C. Tack Coat

Apply tack coat uniformly over the milled area prior to placement of the blended materials. Control the application rate within 0.04 – 0.06 gal/yard² (0.18 – 0.27 L/m²).

D. Application

Control placement of the mixture to produce a surface true to line, grade, and cross-slope with a uniform surface texture free of segregation, lumps, or other unacceptable streaks or blemishes as determined by the Engineer. Ensure the mixture meets the acceptance requirements for mixture quality, compaction, smoothness, and thickness as specified in Subsection 403.3.06.

E. Overlay

Overlay the recycled mixture, if required by the contract, by producing and placing a mixture that meets requirements of Section 400 and Section 402. Smoothness requirements for the hot in-place recycled mixture do not apply if the mixture is overlaid.

403.3.06 Quality Acceptance

A. Mixture

Base acceptance of the materials used in the work on Section 106 and Section 400 except that pay factors for gradation and asphalt content will not apply. Take a minimum of one sample of mixture for each day of operation to determine quality acceptance of the mixture.

Take samples directly behind the paver according to GSP 15 at the location determined by the engineer. Perform extraction and gradation testing according to GDT 83 and GDT 38 or other suitable method approved by the Office of
Materials and Research. Determine the laboratory density of the mixture at 50 gyrations with a gyratory compactor using AASHTO TP 4. Recover the extracted asphalt cement using GDT 119 and test for dynamic shear according to AASHTO TP 5, Method for Determining the Rheological Properties of Asphalt Binder Using Dynamic Shear Rheometer (DSR). Adjust the amount of rejuvenator as necessary to maintain DSR results within a range of 800-2000 poises (80-200 Pa-s) when tested at 140 °F (60 °C). Do not continue the work until corrective adjustments are made if two consecutive samples exceed the range for DSR values.

Submit test results electronically to the Engineer and Office of Materials and Research within 24 hours after samples are taken.

B. Compaction

Compact the recycled mixture immediately after placement so that the maximum Pavement Mean Air Voids is 7.8 percent or less. Determine the mixture compaction using either GDT 39 or GDT 59. The compaction is accepted in lots defined in Subsection 400.3.06.A “Acceptance Plans for Gradation and Asphalt Cement Content” and is within the same lot boundaries as the mixture acceptance. Meet the compaction requirements of Subsection 400.3.06.B. and Subsection 400.5.01.C. The Department will perform all compaction testing.

C. Smoothness

The Department will perform acceptance testing for surface course smoothness tolerance using the Laser Road Profiler according to GDT 126. Smoothness testing will be performed on the mainline traveled way and on ramps more than one-half mile (kilometer) in length.

Clean the roadway of any debris and obstructions and provide traffic control to conduct the testing when requested by the engineer.

Ensure the pavement does not exceed a target smoothness index of 900. Do not continue the work until corrective adjustments have been made if the target value is exceeded. Perform corrective work at no expense to the Department by repeating the hot in-place recycling process, according to this Section, if the smoothness index exceeds 1025.

Maintain a 10 ft. (3 m) straightedge in the vicinity of the paving operation at all times to use in measuring minor surface irregularities and provide the labor for its use. Correct all irregularities in excess of 1/8 in (3 mm) in 10 ft. (3 m). Stop the operation until corrective measures are taken when irregularities such as rippling, tearing, or pulling indicate a continuing problem in equipment, mixture, or operating techniques.

D. Mill Depth

Mill heated material to the thickness specified in the plan typical section or contract general notes. The Department will take cores at a minimum frequency of one core per 1000 ft (300 m) per two lanes of roadway or five cores per day, whichever is less, to verify mill depth.

The Department will determine the average mill depth based on roadway core measurements according to GDT 42. Mill depth will be determined based on total rejuvenated thickness less any thickness contributed by added virgin materials.

To receive full payment for mill depth, ensure the average milled depth is no less than 1/4 in (6 mm) of that specified in the plan typical section or contract general notes. Apply a pay reduction of 25% to the total square yards (meters) applied that day if the average depth is less than that specified, by more than 1/4 in (6 mm) but no more than 1/2 in (13 mm) of that specified.

Take additional cores to determine the area of deficient depth if the average depth is less than that specified, by more than 1/2 in (13 mm). Correct any areas deficient in depth by more than 1/2 in (13 mm) by repeating the hot in-place recycling process at no expense to the Department. Stop the work until corrective measures are made if the average mill depth for two consecutive days is less than 1/4 in (6 mm) of that specified.

403.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

403.4 Measurement

Hot in-place recycled asphaltic concrete mixture is measured by the square yard (meter) of the surface area completed and to the depth specified. In computing square yards (meters), the lengths and widths used shall be as specified in Section 109, Measurement and Payment.
403.5

Rejuvenating agent, virgin aggregate, and plant-produced asphaltic concrete shall be added as individual components of the recycled mixture as required in the mix design analysis. Include this cost in the unit bid price per square yard (meter). Bituminous materials for tack coat applied and accepted will be measured as outlined in Section 109.

403.4.01 Limits

General Provisions 101 through 150.

403.5 Payment

Hot in-place recycled asphaltic concrete is paid for at the contract unit price per square yard (meter). Payment is full compensation for furnishing all materials, all equipment, Work, and labor. Payment also includes removal of raised pavement markers and thermoplastic striping, if applicable, heating and hot-milling, adding rejuvenator, performing the mix design, performing project sampling and testing, and other incidentals necessary to complete the work. Aggregate and hot mix asphaltic concrete which may be added to meet requirements of the mix design analysis shall be included in the contract unit price.

Bituminous tack coat is paid for per gallon (liter) under separate payment. Hot mix asphaltic concrete specified for overlaying, if any, will be paid for under separate payment. Aggregate specified in the contract, if any, (excluding that required based on the mix design analysis) will be paid for under separate payment.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 403</th>
<th>Hot in-place recycled asphaltic concrete</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 403</td>
<td>Hot in-place recycled asphaltic concrete including polymer-modifier</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

403.5.01 Adjustments

General Provisions 101 through 150.

Section 405—Hot Asphalt-Vulcanized Rubber Seal Treatment

405.1 General Description

This work includes placing a hot asphalt–vulcanized rubber seal treatment on an existing pavement surface according to the Specifications.

405.1.01 Definitions

General Provisions 101 through 150.

405.1.02 Related References

A. Standard Specifications

 Section 413—Bituminous Tack Coat
 Section 424—Bituminous Surface Treatment
 Section 800—Coarse Aggregate
 Section 820—Asphalt Cement

B. Referenced Documents

 General Provisions 101 through 150.

405.1.03 Submittals

General Provisions 101 through 150.

405.2 Materials

A. Asphalt Cement

 Before adding rubber and diluent, ensure that the asphalt cement conforms to Section 820.2.01, PG 58-22.
B. Ground Vulcanized Tire Rubber

Ensure that the ground vulcanized tire rubber meets the following requirements:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Maximum Percent Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 8 (2.36 mm)</td>
<td>100</td>
</tr>
<tr>
<td>No. 10 (2.0 mm)</td>
<td>98</td>
</tr>
<tr>
<td>No. 40 (425 µm)</td>
<td>10</td>
</tr>
</tbody>
</table>

Ensure that the granulated rubber has the following characteristics:

- A specific gravity of 1.17 ± 0.03
- No more than a trace of fabric
- Free of wire or other contaminating materials
 - An exception is that up to four percent of calcium carbonate may be included to prevent the particles from sticking together.
- Fully vulcanized

C. Diluent

For diluent, use kerosene with a boiling point above 350 °F (175 °C).

D. Cover Aggregate

Ensure that cover aggregate conforms to Section 800, Class “A,” Group II.

Ensure that gradation of the cover aggregate meets Section 800 for No. 7 stone.

Preheat the cover aggregate to 290 °F to 350 °F (140 °C to 175 °C) and precoat with a maximum of 0.75 percent of performance grade PG 58-22 described in Section 820. See Subsection 405.3.05.A, “Mixing.”

405.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

405.3 Construction Requirements

405.3.01 Personnel

General Provisions 101 through 150.

405.3.02 Equipment

Ensure that equipment conforms to Section 424 and the following:

A. Canvas Cover

If directed by the Engineer, cover exposed material with canvas to help prevent the temperature of exposed material from dropping. See Subsection 405.3.05.A, “Mixing.”

B. Aggregate Spreader

Use an adjustable, self-propelled aggregate spreader to accurately spread the amounts given in the Plans per square yard (meter).

C. Rubber Tire Rollers

Use at least three rubber tire rollers loaded to 5,000 lbs (2275 kg) per tire. Inflate tires to 100 psi (700 kPa).

405.3.03 Preparation

A. Spread the Asphalt-Rubber Composition

Before applying the hot asphalt-rubber composition, clean and patch the existing pavement surface and treat with a bituminous tack coat as specified in Section 413.
B. Test the Distributor Trucks

Before spreading the asphalt-rubber composition, test distributor trucks for transverse spread within the previous 6 months. Prove to the Engineer that each transverse spread was as uniform as possible and variance was never greater than 15 percent.

| NOTE: A transverse spread for other asphalt products will not be accepted. The rate of transverse spread will be determined according to the requirements of the Georgia tentative test method. |

405.3.04 Fabrication
General Provisions 101 through 150.

405.3.05 Construction

A. Mixing

Mix asphalt and rubber as follows:

1. Before adding the rubber, ensure that the temperature of the asphalt is no higher than 325 °F (160 °C) for PG 58-22.
2. Rapidly combine the rubber with the asphalt. Mix the rubber until the material approaches a semi-fluid consistency. Ensure that the weight proportions of the two materials are as follows:

<table>
<thead>
<tr>
<th>Asphalt</th>
<th>75 ± 2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubber</td>
<td>25 ± 2%</td>
</tr>
</tbody>
</table>

3. Mix the hot asphalt and rubber for at least 5 minutes.

| NOTE 1: Design the rubber and asphalt combination method to ensure that the Engineer can determine the percentages by weight of each component to be mixed. Ensure that the mixing equipment can produce a homogenous mixture of rubber and asphalt to prevent separation. |

| NOTE 2: Preheating, precoating, and covering aggregate with canvas may be waived if proper facilities are not available and if application conditions are favorable. Precoating is often used for dust control. |

4. After the asphalt and rubber have reacted fully, add a diluent to:
 - Temporarily reduce the viscosity of the mixture
 - Improve the spraying action from the distributor
 - Provide a better coating of cover aggregate

 The diluent amount is 5.5 percent to 7.5 percent, by volume, of the hot asphalt-rubber composition. When adding the diluent, ensure that the temperature of the hot asphalt-rubber composition does not exceed 350 °F (175 °C).

B. Spreading

Spread the asphalt-rubber mixture as follows:

1. When the proper consistency is reached, immediately begin application. Never hold the mixture at temperatures over 325 °F (160 °C) for more than 1.5 hours after reaching application consistency.
2. Use the following application rates:
 a. In areas where temperatures remain above 20 °F (-7 °C) during the winter season, apply the hot asphalt-rubber mixture at 0.55 gallons/yd², ± 0.03 gallons/yd² (2.5 liters/m², ± 0.15 liters/m²).
 b. In areas where temperatures drop below 20 °F (-7 °C); apply the mixture at 0.60 gal/yd², ± 0.03 gal/yd² (2.7 liters/m², ± 0.15 liters/m²) unless otherwise specified by the Engineer.

Application rates are based on 7.5 lbs/gal (0.90 kg/L), hot, and conversions to the standard 60 °F (15 °C) are not necessary.

| NOTE: Place the hot asphalt-rubber mixture only when the ambient temperature is 60 °F (15 °C) or above and rising. |
3. Apply the cover aggregate at 25 to 40 lbs/yd² (14 to 22 kg/m²), which is 25 to 27 lbs (14 to 15 kg) for No. 7 stone and 35 to 39 lbs (19 to 21 kg) for No. 8 stone, or as directed by the Engineer.

4. Perform at least four complete coverages with the pneumatic rollers. Roll the cover aggregate immediately after application to ensure maximum aggregate embedment.

Do not permit traffic on the completed surface until approved by the Engineer.

5. If heavy or high-speed traffic may displace the cover aggregate, apply 5 to 10 lbs/yd² (2.5 to 5.0 kg/m²) of sand after rolling and before opening the lane to traffic as directed.

6. Sweep the joint edges clean of overlapping cover aggregate before applying the adjacent asphalt–rubber material.

7. Avoid skips and overlaps at joints and protect the surfaces of adjacent structures from being splattered or marred. These defects will be corrected at the Contractor’s expense.

8. Make transverse joints as follows:
 a. Place building paper over the ends of the previous applications.
 b. Start the adjoining application on the building paper.
 c. Remove and dispose of the paper to the Engineer’s satisfaction.

9. In urban areas, remove excess chips within 24 hours after placing. Do not use gutter brooms or steel-tined brooms, and do not disturb the loose chips from parkways, sidewalks, and intersecting streets.

Continue this operation until excess or loose rock is removed from the roadway surface and abutting Rights-of-Way.

10. If needed, apply a flush coat to areas without substantial traffic at the Engineer’s direction. Apply light sanding after flushing to prevent pickup, if required.

405.3.06 Quality Acceptance
General Provisions 101 through 150.

405.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

405.4 Measurement
The quantity to be measured is the number of square yards (meters) of seal treatment completed and accepted. The length is measured along the surface. The width is specified on the Plans, plus or minus any authorized changes. Irregular areas are measured by the surface square yards (meters) within the lines shown on the Plans or authorized changes.

405.4.01 Limits
General Provisions 101 through 150.

405.5 Payment
The accepted quantity of seal treatment is paid for at the Contract Unit Price per square yard (meter). Payment is full compensation for providing materials, hauling, mixing, spreading, rolling, and performing any other work to complete the Item.

Payment will be made under:

| Item No. 405 | Hot asphalt vulcanized rubber seal treatment | Per square yard (meter) |

405.5.01 Adjustments
General Provisions 101 through 150.

Section 406—Coal Tar Emulsion Seal Coat

406.1 General Description
Specifications for this work will be included elsewhere in the Contract.
407.1 General Description

This work includes filling (Type M) or sealing (Type S) joints and cracks in existing pavements with rubber asphalt mixtures. A polymer-modified asphalt rubber (PMAR) blend may be used in lieu of both Type M and Type S.

407.1.01 Definitions

Type M: Used to fill joints and cracks in Portland cement concrete or asphaltic concrete pavements when required by the Plans before placing an overlay.

Type S: Used to seal joints and cracks in Portland cement concrete and asphaltic concrete pavements and shoulders when not placing an overlay.

407.1.02 Related References

A. Standard Specifications
 Section 820—Asphalt Cement

B. Referenced Documents
 AASHTO PP5
 ASTM D4
 ASTM D36
 ASTM D3407
 ASTM D3583

407.1.03 Submittals

Certify that each lot of premixed material meets the requirements of this Specification and shall submit the test results of each lot for each Project. Ensure that each sealant lot is delivered in containers with the manufacturer’s name or trademark and lot number plainly marked.

Furnish samples of the individual components of premixed material as follows:

- At least 20 lbs (10 kg) of rubber representative of each lot
- At least 5 gal (15 L) of asphalt containing additives as proportioned
- Proportional quantities of mixing aids or additives not included above

407.2 Materials

Ensure that the sealant material is a premixed, asphalt-rubber sealant mixture. Ensure that the mixture is a blend of asphalt cement, aromatic extender oil(s), and recycled or reclaimed tire crumb rubber (18 ± 1 percent and 22 ± 1 percent by weight for Type S and Type M, respectively based on weight) in a closely controlled manufacturing process. The dosage rates of tire crumb rubber may be reduced if a polymer modifier is added to the mixture. Produce a mixture with the following properties:

A. Workability

The mixture pours readily and penetrates a 1/4 in (6 mm) pavement joint or crack to a depth of at least 1 in (25 mm) when the application temperature of the fully reacted mixture is 350 °F (177 °C) and the air temperature is 35 °F (2 °C) or higher.

The mixture, when placed in conventional field installation equipment, readily melts to a pumping consistency after being heated to 400 °F (204 °C) for 2 hours maximum. The mixture remains in a pumping consistency when the temperature of the field installation equipment is reduced to the normal operating temperature range of 300 °F to 350 °F (150 °C to 175 °C).

B. Curing

The mixture contains no water or volatile solvents and cures immediately when cooled to a sufficient viscosity to prevent tracking caused by traffic.
C. Softening Point and Flexibility

When a fully reacted mixture sample of asphalt-rubber has been heated at 350 °F (175 °C) for one hour, or when a PMAR blend has been heated at 380 °F (195 °C) for one hour, it shall pass the following laboratory tests:

1. Softening Point

The minimum softening point by ring and ball described in ASTM D 36 is as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Softening Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMAR</td>
<td>185 °F (85 °C)</td>
</tr>
<tr>
<td>Type S</td>
<td>135 °F (60 °C)</td>
</tr>
<tr>
<td>Type M</td>
<td>150 °F (65 °C)</td>
</tr>
</tbody>
</table>

2. Flexibility

Bend a 1/8 in (3 mm) thick x 1 in (25 mm) wide x 6 in (150 mm) long mixture specimen after conditioning to 10 °F (-12 °C) at a minimum bending rate of 9 degrees per second (10 seconds maximum for a 90° bend) over a 1 in (25 mm) diameter mandrel without cracking.

D. Separation

Test the PMAR blend for phase separation by pouring a representative sample of the mixture into aluminum tubes 1 in (25 mm) in diameter and 5-1/2 in (137 mm) long as described in AASHTO PP5. Cure the samples at 325 °F (165 °C) for 48 hours. Take samples from the top and bottom of the tube and determine softening point as described in ASTM D 36. Average the test results from the top and bottom samples. If there is 4% or more difference between the average test result and either of the top or bottom test results, reject the mixture due to separation.

E. Adhesion

When cooled, the mixture bonds strongly to both asphalt and concrete pavement surfaces. The mixture contains no materials that chemically react with these surfaces to reduce the short-term and long-term adhesion bonds.

F. Acceptable Recycled or Reclaimed Tire Crumb Rubber

Before the rubber is added, ensure the asphalt cement used in the mixture conforms to the requirements of Section 820.2.01, PG 58-22 or PG 64-22.

Ensure that the recycled, reclaimed tire crumb rubber used in the mixture meets the following requirements:

- Was obtained from used pneumatic tires (such as automobile, truck, bus, etc.)—not solid tires and non-tire rubber sources
- Was produced from an ambient grinding process (crushes, tears, grinds, or wears the used rubber tires at or above ordinary room temperature that produces rubber particles with a ragged, sponge-like surface). Cryogenically ground rubber or tire buffings are prohibited.
- Contains recycled, vulcanized crumb rubber and/or reclaimed (devulcanized) rubber
- Contains at least 25 percent natural rubber by weight of the total rubber portion of the mixture
- Contains no more than a trace of fabric
- Is free of wire and other contaminating materials, except up to four percent calcium carbonate or talc to prevent rubber particles from sticking
- Contains no rubber particles greater than 1/4 in (6 mm) long
- Meets the following gradation requirements:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 10 (2.0 mm)</td>
<td>100%</td>
</tr>
<tr>
<td>No. 16 (1.18 mm)</td>
<td>95 to 100%</td>
</tr>
<tr>
<td>No. 30 (600 µm)</td>
<td>40 to 80%</td>
</tr>
<tr>
<td>No. 80 (180 µm)</td>
<td>0 to 5%</td>
</tr>
</tbody>
</table>
G. Poly-modified Asphalt Rubber

If a PMAR blend is used, ensure it meets the following additional requirements:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>SPECIFICATION LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cone Penetration, 77 °F (25 °C)</td>
<td>30 - 60 dmm</td>
</tr>
<tr>
<td>Resilience, 77 °F (25 °C), % Recovery</td>
<td>30% minimum</td>
</tr>
<tr>
<td>Ductility, 77 °F (25 °C), 50 mm/minute</td>
<td>300 mm minimum</td>
</tr>
<tr>
<td>Asphalt Compatibility (ASTM D 3407)</td>
<td>Pass</td>
</tr>
<tr>
<td>Bitumen Content (ASTM D 4)</td>
<td>60% minimum</td>
</tr>
<tr>
<td>Tensile Adhesion (ASTM D 3583)</td>
<td>500% minimum</td>
</tr>
<tr>
<td>Rotational Viscosity (Brookfield), No. 5 spindle, 20 RPM, 400 °F (205 °C)</td>
<td>3,000 – 15,000 cp</td>
</tr>
</tbody>
</table>

407.2.01 Delivery, Storage, and Handling

Package the premixed sealant material in units weighing no more than 30 lbs (15 kg) with a maximum of two 30 lbs (15 kg) units per shipping container. Ensure that the plastic film used to package the units melts at normal application temperatures when placed in the installation equipment.

407.3 Construction Requirements

407.3.01 Personnel

General Provisions 101 through 150.

407.3.02 Equipment

A. Field Installation Equipment

Use field installation equipment that produces or maintains specified temperatures, even if filled to capacity.

Ensure that the equipment produces or maintains a homogenous mixture of asphalt and rubber at a uniform temperature without hot or cool spots or rubber and asphalt segregation in the mixture.

B. Crack Filling Equipment

Ensure that the equipment for filling the joints and cracks directs the sealant into the crack. Seal large cracks from the bottom up. Provide squeegees as necessary.

C. Air Compressor(s)

Ensure that the air compressors are satisfactory to the Engineer.

407.3.03 Preparation

A. Joint and Crack Preparation

Use compressed air to thoroughly clean the joints and cracks to be sealed.

Clean the pavement surface and check the joints and cracks to ensure that they are free of vegetation, dirt, dust, moisture, and other foreign material.

407.3.04 Fabrication

General Provisions 101 through 150.

407.3.05 Construction

A. Restrictions

Do not seal joints and cracks if:

- The joint or crack surface to be treated is not thoroughly dry.
- Rain is imminent.
- The air temperature is below 35 °F (2 °C).
B. Procedure

Follow this procedure to seal joints and cracks:

1. Place the prepackaged sealant mixture in the field installation equipment.
2. Heat the sealant mixture for the proper time and temperature to provide a full reaction between the asphalt and rubber.
3. Apply the mixture at the specified application temperature according to the manufacturer’s recommendations or the laboratory’s approval.
4. Carefully fill the joint or cracks, slightly overfull. Strike off the excess with a V-shaped squeegee to feather the sealant out to a width of approximately 2 in (50 mm).

407.3.06 Quality Acceptance

If the packaged units are bonded or stuck together or to the shipping container, or if packaging staples or fasteners cause sealant contamination, the material may be rejected as determined by the Engineer.

The manufacturer must meet the requirements of this Specification and furnish evidence of successful field installation and performance under similar environmental and project conditions.

407.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

407.4 Measurement

Joints and cracks will be measured by the linear foot (meter) by surface measure.

407.4.01 Limits

General Provisions 101 through 150.

407.5 Payment

Joints and cracks sealed according to the Plans and this Specification will be paid for at the Contract Unit Price bid.

Payment is full compensation for furnishing all materials and performing the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 407</th>
<th>Polymer-modified asphalt –rubber joint and crack seal</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 407</td>
<td>Asphalt-rubber joint and crack seal, type “S”</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 407</td>
<td>Asphalt-rubber joint and crack seal, type “M”</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

407.5.01 Adjustments

General Provisions 101 through 150.

Section 408—Joint and Crack Cleaning and Seal

408.1 General Description

Specifications for this work will be included elsewhere in the Contract.

Section 411—Asphaltic Concrete Pavement, Partial Removal

411.1 General Description

This work includes removing portions of existing asphaltic concrete pavement, removing base and subgrade as shown on the Plans or as directed by the Engineer, and sawing joints in the existing asphaltic concrete pavement.

411.1.01 Definitions

General Provisions 101 through 150.
411.1.02

411.1.02 Related References
A. Standard Specifications
 Section 205—Roadway Excavation
 Section 444—Sawed Joints in Existing Portland Cement Concrete Pavements
B. Related Documents
 General Provisions 101 through 150.

411.1.03 Submittals
General Provisions 101 through 150.

411.2 Materials
General Provisions 101 through 150.

411.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

411.3 Construction Requirements

411.3.01 Personnel
General Provisions 101 through 150.

411.3.02 Equipment
General Provisions 101 through 150.

411.3.03 Preparation
General Provisions 101 through 150.

411.3.04 Fabrication
General Provisions 101 through 150.

411.3.05 Construction
A. Saw Joints
 Saw joints as follows:
 1. Saw joints true to the lines shown on the Plans or as directed by the Engineer.
 2. Saw joints the full depth of the existing asphaltic concrete unless otherwise shown on the Plans or directed by the Engineer.
 3. Leave a neat, vertical face for the full depth of the retained portion.
 The Engineer may approve sawing less than full depth if the Contractor demonstrates that the requirements can be met.
B. Remove Pavement
 After sawing the joints, begin removing the isolated pavement.
 Use removal methods that will not damage the pavement edges that will remain in place or impede the proposed construction.
 Pavement, base, or subgrade removed becomes the Contractor’s property unless otherwise specified in the Contract.
C. Protect Remaining Edges
 After removing the pavement, protect the pavement edges that will remain in place.
 1. Do not allow traffic or equipment to cross the remaining edges.
 2. Repair or restore the damaged edges to the Engineer’s satisfaction at no additional cost to the Department.

411.3.06 Quality Acceptance
General Provisions 101 through 150.
411.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

411.4 Measurement
This work will not be measured separately for payment.

411.4.01 Limits
General Provisions 101 through 150.

411.5 Payment
No separate payment will be made for the work described in this section.

When Item 205 is included in the Proposal as a Pay Item, payment for this work is included in payment for unclassified excavation by the cubic yard (meter) as described in Subsection 205.4, “Measurement.” Otherwise, payment is included in the overall price bid for other Contract Items.

Payment is full compensation for providing labor and equipment, sawing, removing and disposing, and providing other incidentals to accomplish the work described in this Specification.

Sawing Portland cement concrete overlaid with asphaltic concrete will be measured and paid for according to Section 444.

411.5.01 Adjustments
General Provisions 101 through 150.

Section 412—Bituminous Prime

412.1 General Description
This work includes preparing and treating an existing surface with bituminous material and blotter material, if required. Treat the surface according to these Specifications and conform to the lines shown on the Plans or established by the Engineer.

412.1.01 Definitions
General Provisions 101 through 150.

412.1.02 Related References
A. Standard Specifications
 Section 424—Bituminous Surface Treatment
 Section 821—Cutback Asphalt
B. Referenced Documents
 General Provisions 101 through 150.

412.1.03 Submittals
General Provisions 101 through 150.

412.2 Materials
Unless otherwise specified, select the types of bituminous materials. The Engineer will determine the grade of materials to be used. The Specifications for the bituminous materials include:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutback Asphalt, RC-30, RC-70, RC-250 or MC-250, MC-30, or MC-70</td>
<td>821.2.01</td>
</tr>
<tr>
<td>Blotter Material (Sand)</td>
<td>412.3.05.G.3</td>
</tr>
</tbody>
</table>

412.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.
412.3

412.3 Construction Requirements

412.3.01 Personnel
General Provisions 101 through 150.

412.3.02 Equipment
Provide equipment that is in good repair, including at least the following units that meet the requirements of Subsection 424.3.02, “Equipment.”

- Pressure distributor
- Power broom and blower
- Aggregate spreader (if required)

412.3.03 Preparation
See Subsection 412.3.05.B, “Condition of Surface.”

412.3.04 Fabrication
General Provisions 101 through 150.

412.3.05 Construction
Prime the following bases and other areas:

- Cement or lime stabilized bases or subbases, regardless of pavement thickness
- Soil or aggregate bases or sub-bases on which bituminous surface treatment will be placed
- Soil or aggregate bases or sub-bases on which less than 5 in (125 mm) total thickness of hot mix asphaltic concrete will be placed

Prime is not required on driveway construction and paved shoulders.

A. Weather Limitations

Do not apply bituminous prime under any of these conditions:

- Surface is wet.
- Air temperature is below 40 °F (4 °C) in the shade.
- Rain is imminent.
- Weather conditions may prevent proper prime coat construction.

B. Condition of Surface

Ensure that the surface to which the prime is to be applied has been finished to the line, grade, and cross section specified.

Ensure that the surface is uniformly compacted and bonded. Correct surface irregularities according to the Specifications for the construction being primed.

C. Cleaning

Remove from the road loose material, dust, caked clay, and other material that may prevent bonding of the prime with the surface. Use power sweepers or blowers the full width of the prime and 2 ft (600 mm) more on each side. Where necessary, sweep by hand.

D. Moisture

Ensure that the surface is only slightly damp. If the surface is too wet, allow it to dry. If it is too dry, the Engineer may require that it be sprinkled lightly just before priming.

E. Temperature and Surface Texture

The surface texture and condition of the surface determine the bituminous material grades to be used.
The following table shows the bituminous material grades and application temperatures as they are applied to various surface textures.

<table>
<thead>
<tr>
<th>Base Texture</th>
<th>Tight</th>
<th>Average</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials and grade</td>
<td>MC-30 RC-30</td>
<td>RC-70 or MC-70</td>
<td>RC-250 or MC-250</td>
</tr>
<tr>
<td>Application</td>
<td>80–120 (27–49)</td>
<td>105-180 (41–82)</td>
<td>145–220 (63–104)</td>
</tr>
<tr>
<td>temperature °F (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Engineer will determine the temperature for applying bituminous prime within the limits shown above.

Heat and apply bituminous materials as specified in Subsection 424.3.05.D, “Heating Bituminous Material” and Subsection 424.3.05.E, “Applying Bituminous Material.”

F. Amount and Extent of Prime

The Engineer will determine the exact amount of bituminous material to be used within minimum and maximum rates of 0.15 to 0.30 gal/yd² (0.7 to 1.4 liters/m²). Apply the specified amount as follows:

1. Apply the determined amount uniformly and accurately. Ensure that the amount applied to any 0.5-mile (800 m) section is within 5 percent of the amount specified.
2. Apply the prime the full width of the proposed wearing surface that will be superimposed plus 6 in (150 mm) more on each side.

G. Protection, Curing, and Maintenance

Do the following after priming the surface:

1. Close to Traffic
 Do not allow traffic on the primed surface. Leave the surface undisturbed until the prime thoroughly cures and does not pick up under traffic.

2. Roll
 If the surface becomes soft after it is primed, roll the surface longitudinally with a pneumatic-tired roller at no more than 6 mph (10 kph) until the surface is firmly set.

3. Blot
 If necessary to prevent the prime from being picked up, spread clean, dry, sharp sand over the surface by hand or mechanically. Apply sand only to places that are tacky and use the least amount needed to prevent pick up. No extra payment for this work or material will be made.

4. Open to Traffic
 After rolling and sanding (if required), open the primed surface to ordinary traffic subject to the conditions in Subsection 412.3.05.G.1, “Close to Traffic.”

5. Maintenance
 Maintain the prime coat and the primed course surface until it is covered by other construction. Remove excess bituminous material.

412.3.06 Quality Acceptance
General Provisions 101 through 150.

412.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

412.4 Measurement

Bituminous material for prime is not measured for separate payment.

412.4.01 Limits
General Provisions 101 through 150.
412.5 Payment
Bituminous material for prime is not paid for separately. The cost to clean the surface, furnish, haul and apply materials including water and sand, roll, and perform repairs and maintenance is included in the Unit Price bid for each individual Base Item.

412.5.01 Adjustments
General Provisions 101 through 150.

Section 413—Bituminous Tack Coat

413.1 General Description
This work includes furnishing and applying a bituminous tack coat on a prepared road surface including cleaning the road surface.

413.1.01 Definitions
General Provisions 101 through 150.

413.1.02 Related References
A. Standard Specifications
 Section 109—Measurement and Payment
 Section 400—Hot Mix Asphalitic Concrete Construction
 Section 424—Bituminous Surface Treatment
 Section 427—Emulsified Asphalt Slurry Seal
 Section 820—Asphalt Cement
 Section 824—Cationic Asphalt Emulsion

B. Referenced Documents
 General Provisions 101 through 150.

413.1.03 Submittals
General Provisions 101 through 150.

413.2 Materials
Ensure that materials meet the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt cement, performance grade PG 58-22, PG 64-22, or PG 67-22</td>
<td>820.2.01</td>
</tr>
<tr>
<td>Cationic emulsified asphalt CRS-2h or CRS-3</td>
<td>824.2.01</td>
</tr>
</tbody>
</table>

Asphalt cement of performance grade PG 58-22, PG 64-22 or PG 67-22 is used for bituminous tack coat in work performed in Section 400. Use cationic emulsified asphalt as a special application material only if directed by the Engineer.

The Department may change the grade or type of bituminous materials without a change in the Contract Unit Price if the Engineer determines that the grade or type selected is not performing satisfactorily.

413.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

413.3 Construction Requirements
413.3.01 Personnel
General Provisions 101 through 150.
413.3.02 Equipment
Provide equipment in good repair, including the following units that meet the requirements of Subsection 424.3.02, Equipment."

- Power broom and blower
- Pressure distributor

413.3.03 Preparation
General Provisions 101 through 150.

413.3.04 Fabrication
General Provisions 101 through 150.

413.3.05 Construction
A. Seasonal and Weather Limitation
 Do not apply tack coat if the existing surface is wet or frozen. Do not place emulsified asphalt if the air temperature in the shade is less than 40 °F (4 °C).

B. Application
 Coat the entire areas to be paved with the tack coat unless directed otherwise by the Engineer. Apply tack coat with distributor spray bars instead of hand hoses, except in small areas that are inaccessible to spray bars.

C. Temperature of Material
 Apply bituminous materials within the temperature ranges specified below.

<table>
<thead>
<tr>
<th>Bituminous Materials</th>
<th>Temperature of Application °F (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt cement</td>
<td>350 - 400 (175 - 205)</td>
</tr>
<tr>
<td>CRS-2h</td>
<td>140 - 180 (60 - 80)</td>
</tr>
<tr>
<td>CRS-3</td>
<td>140 - 180 (60 - 80)</td>
</tr>
</tbody>
</table>

D. Cleaning
 Immediately before applying the tack coat, clean the entire area free of loose dirt, clay, and other foreign materials.

E. Application Rate
 The Engineer will determine the application rate of the bituminous tack coat.

F. Limitations and Areas Coated
 Apply only enough tack coat to the prepared road surface that can be covered with the new pavement course the same working day the tack coat is applied.

G. Maintenance and Protection
 After applying the tack coat material, allow it to break until it is tacky enough to receive the surface course. Do not allow traffic on the tack.

413.3.06 Quality Acceptance
General Provisions 101 through 150.

413.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

413.4 Measurement
Bituminous materials for tack coat applied and accepted are measured as outlined in Subsection 109.02, “Measurement of Bituminous Materials.”

Diluting emulsified tack coat is not ordinarily allowed except when used underneath slurry seal. The composition of diluted emulsified tack coat defined in Subsection 427.3.05, “Construction” is measured by the gallon (liter) of diluted mix.
413.4.01

413.4.01 Limits
General Provisions 101 through 150.

413.5 Payment
The accepted volume of bituminous material will be paid for at the Contract Unit Price per gallon (liter) for bituminous tack coat of the type and grade approved by the Engineer, complete in place. Payment is full compensation for preparing, cleaning, furnishing, hauling, applying material, and providing incidentals to complete the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 413</th>
<th>Bituminous tack coat</th>
<th>Per gallon (liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 413</td>
<td>Diluted emulsified asphalt tack coat</td>
<td>Per gallon (liter)</td>
</tr>
</tbody>
</table>

413.5.01 Adjustments
General Provisions 101 through 150.

Section 414—Hot Asphalt—Rubber Seal Treatment for Stress Relieving Interlayer

414.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 424—Bituminous Surface Treatment

424.1 General Description
This work includes placing one or more applications of bituminous material and aggregate on a previously prepared base or pavement.

424.1.02 Related References
A. Standard Specifications
 - Section 105—Control of Work
 - Section 800—Coarse Aggregate
 - Section 820—Asphalt Cement
 - Section 824—Cationic Asphalt Emulsion
B. Referenced Documents
 - QPL 65

424.1.03 Submittals
General Provisions 101 through 150.
424.2 Materials

A. Bituminous Material

Select the bituminous material from any type and grade listed in the materials table below. Notify the Engineer at least 10 days before ordering the bituminous material. The Engineer must approve the bituminous material choice.

For a list of latex sources, see QPL 65. Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Cement, Performance Grade PG 58-22 or PG 64-22*</td>
<td>820.2.01</td>
</tr>
<tr>
<td>Cationic Asphalt Emulsion, Grade CRS-2h or CRS-3*</td>
<td>824.2.01</td>
</tr>
<tr>
<td>Coarse Aggregate, Class A Crushed Stone or Crushed Slag, Group I or II</td>
<td>800.2.01</td>
</tr>
</tbody>
</table>

* Use PG 64-22 or CRS-3 only at the Engineer’s direction. (See Subsection 424.3.05.B.)

B. Aggregates

The size and group of aggregates used in the surface treatment are specified in the Proposal under the appropriate Line Item.

Do not use unconsolidated limerock unless provided for in the Plans or Proposal.

Use Class B aggregates only where the surface treatment is used for shoulder construction or where it is to be overlaid with asphaltic concrete.

424.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

424.3 Construction Requirements

424.3.01 Personnel

General Provisions 101 through 150.

424.3.02 Equipment

Have the Engineer approve equipment types and quantities before using equipment on the Project.

Ensure that the equipment used to construct the surface treatment:

- Produces work that complies with the standards in this section
- Is on the Project and in proper working order before construction begins

A. Aggregate Spreader

The Department will inspect annually the aggregate spreader before it is used in the work. If the spreader is approved, the Department will attach an equipment certification sticker to the spreader.

Use a self-propelled aggregate spreader that can apply aggregate at the desired rate uniformly and accurately without corrugation, overlaps, or excess deficient areas.

Ensure that the spreader can spread courses to the required widths. Provide spreaders to promptly cover the full width of the asphalt application.

B. Pressure Distributor

The Department will inspect annually the pressure distributor before it is used in the work. If the distributor is approved, the Department will attach an equipment certification sticker to the distributor. The pressure distributor should be equipped as follows:

1. Mount the pressure distributor on pneumatic tires wide enough to prevent damage to the road surface.
2. Design, equip, maintain, and operate the distributor so that the bituminous material will be heated and applied evenly throughout the length of the spray bars. Ensure that it maintains a constant, uniform pressure on the nozzles.
3. Install screens between the tank and the nozzles and clean them frequently to prevent clogging.
4. Use an adjustable distributor that can deliver controlled amounts of bituminous material from 0.04 to 1.0 gal/yd², ± 0.02 gal/yd² (0.18 to 4.53 L/m², ± 0.10 L/m²) up to 24 ft (7.2 m) wide without atomization, streaking, or pulsation in the flow.
5. Use a distributor equipped with the following:
 - A tachometer and thermometers to indicate the application rate and the temperature of the tank contents
 - Measuring devices to accurately indicate the amount of bituminous material, in gallons (liters), in the distributor before and after each application
 - Full circulating spray bars that can be adjusted laterally to conform to a stringline and capable of vertical and horizontal adjustment.
 - A positive shut-off control to prevent dripping bituminous material on the roadway
 - A distributor tank equipped with a sample valve in a safe and convenient location to obtain bituminous material samples

C. Heating Equipment
Ensure that heating equipment will heat and maintain the bituminous material uniformly at the temperature required. Provide an accurate thermometer.

D. Smooth-Wheeled Rollers
Use self-propelled, tandem-type smooth-wheeled rollers that can be alternated with pneumatic-tired wheels. The rollers shall weigh from 3 to 8 tons (3 to 7 Mg). Ensure that the roller weights within these limits can properly compact the materials.

E. Pneumatic-Tired Rollers
Use self-propelled pneumatic-tired rollers with treads that will not disturb the aggregates. Rollers with pneumatic-tired wheels that can be alternated with a steel drum are also permitted.

F. Power Broom and Power Blower
Provide at least one power broom and one power blower, or a combination power broom and blower, that can remove dust or loose materials from the road surface.

424.3.03 Preparation
Firmly compact, finish, and prime new bases. Ensure that the bases conform to the lines, grades, and cross sections within the tolerances specified.

A. Removing Foreign Material
 Use power brooms, power blowers, hand brooms, or other means to remove loose material, dust, dirt, clay, and other materials that prevent bituminous materials from adhering to the base.

 Take special care to clean the outer edges thoroughly. Where necessary, use a motor grader blade to remove excess material off the paving edge.

B. Condition of Prime
 Check the condition of prime as follows:
 1. Ensure the prime is cured before placing the mat course.
 2. Repair the prime if it is loose, soft, unbonded, removed, or damaged.
 3. Remove concentrations of excess prime.
 4. Perform additional rolling with a pneumatic-tired roller before surface treatment when directed by the Engineer.

424.3.04 Fabrication
General Provisions 101 through 150.

424.3.05 Construction
A. Observing Seasonal and Weather Limitations
 Apply bituminous surface treatment and corresponding bituminous materials only between the dates given in Table 1, below. The dates are given by zones shown on the Georgia Geographic Map, below

 No exceptions are permitted except as authorized by the Engineer.
Table 1—Surface Treatment Seasonal Restrictions

<table>
<thead>
<tr>
<th>Zone</th>
<th>Asphalt Cement</th>
<th>Emulsified Asphalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>May 1–September 15</td>
<td>April 10–September 15</td>
</tr>
<tr>
<td>2</td>
<td>April 15–October 5</td>
<td>April 1–October 5</td>
</tr>
<tr>
<td>3</td>
<td>April 10–October 20</td>
<td>March 25–October 20</td>
</tr>
<tr>
<td>4</td>
<td>April 1–November 1</td>
<td>March 15–November 1</td>
</tr>
</tbody>
</table>

Do not apply asphalt cement to a wet surface or when the temperature is below 65 °F (18 °C). Never apply emulsions if the temperature is below 55 °F (13 °C).

NOTE: If hot mix asphaltic concrete will be applied over the surface treatment, the Engineer may waive the seasonal and temperature limitations providing that traffic is not permitted on the surface treatment until it is covered with hot mix asphaltic concrete.

B. Using PG 64-22 or CRS-3

Only use PG 64-22 or CRS-3 when directed by the Engineer due to a problem with excessive aggregate pickup during high ambient temperature.
C. Observing Sequence of Operations and Quantities of Materials

 The sequence of operations and quantities of materials are shown in Table 2 (Table 2—metric).

 The Engineer will determine the material quantities to be used during construction and may change the minimum or maximum application rate of any course during construction if the total quantities are within the amounts shown in Table 2 (Table 2—metric). Any deviation, or minus from the table quantities, will require a negotiated adjustment of the Contract price, which will be authorized by an approved Supplemental Agreement.

D. Heating Bituminous Material

 Evenly heat the entire mass of bituminous material for each application under positive control. While the material is being applied, maintain it within the specified temperature range.
Section 424—Bituminous Surface Treatment – Table 2

<table>
<thead>
<tr>
<th>Application Description</th>
<th>Stone Sizes</th>
<th>Single</th>
<th>Type Construction</th>
<th>Double</th>
<th>Triple</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st appl.</td>
<td>2nd appl.</td>
<td>3rd appl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#89</td>
<td>#7</td>
<td>#6</td>
<td>#7</td>
<td>#6</td>
</tr>
<tr>
<td>Control Tolerance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Application Stone (ft³/ft²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Application Bituminous Materials (gal/ft²)</td>
<td>PG 58-22 or PG 64-22</td>
<td>± .02</td>
<td>.18–24</td>
<td>.24–31</td>
<td>± .02</td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Application Stone (ft³/ft²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Application Bituminous Materials (gal/ft²)</td>
<td>PG 58-22 or PG 64-22</td>
<td>± .02</td>
<td>.18–24</td>
<td>.18–24</td>
<td>± .02</td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Application Stone (ft³/ft²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS-2h, CRS-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Stone (ft³/ft³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- The bituminous material and stone for each application may be varied by the Engineer, at no increase in cost, outside of the minimum or maximum shown in the table provided the total of the materials is within the limits of the total minimum and total maximum of all courses.
- Maintain the control tolerances shown above or stop the work until the necessary corrections are made.
- Apply at least one seal coat to the mat course on the same day when multiple applications are specified.
Section 424—Bituminous Surface Treatment – Table 2 (Metric)

<table>
<thead>
<tr>
<th>Application</th>
<th>Stone sizes</th>
<th>Single</th>
<th>Type Construction</th>
<th>Double</th>
<th>Triple</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st appl.</td>
<td>2nd appl.</td>
<td>3rd appl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Application Bituminous Materials (L/m²) PG 58-22 or PG 64-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS–2h, CRS–3</td>
<td>± .09</td>
<td>.77–.86</td>
<td>.82–1.13</td>
<td>1.00–1.36</td>
<td>± .09</td>
</tr>
<tr>
<td>1st Application Stone (m³/m²)</td>
<td>± .001</td>
<td>.005–.006</td>
<td>.0060–.009</td>
<td>.01–.014</td>
<td>± .001</td>
</tr>
<tr>
<td>2nd Application Bituminous Materials (L/m²) PG 58-22 or PG 64-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS–2h, CRS–3</td>
<td>± .09</td>
<td>.91–1.00</td>
<td>.95–1.31</td>
<td>1.13–1.58</td>
<td>± .09</td>
</tr>
<tr>
<td>2nd Application Stone (m³/m²)</td>
<td>± .001</td>
<td>.005–.006</td>
<td>.0060–.009</td>
<td>.01–.014</td>
<td>± .001</td>
</tr>
<tr>
<td>3rd Application Bituminous Materials (L/m²) PG 58-22 or PG 64-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS–2h, CRS–3</td>
<td>± .09</td>
<td>.95–1.26</td>
<td>1.27–1.63</td>
<td>1.04–1.45</td>
<td>± .09</td>
</tr>
<tr>
<td>3rd Application Stone (m³/m²)</td>
<td>± .001</td>
<td>.005–.006</td>
<td>.0060–.009</td>
<td>.01–.014</td>
<td>± .001</td>
</tr>
<tr>
<td>Total Bituminous Materials (L/m²)</td>
<td>± .09</td>
<td>.77–.86</td>
<td>.82–1.13</td>
<td>1.00–1.36</td>
<td>± .14</td>
</tr>
<tr>
<td>PG 58-22 or PG 64-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS–2h, CRS–3</td>
<td>± .09</td>
<td>.91–1.00</td>
<td>.95–1.31</td>
<td>1.13–1.58</td>
<td>± .14</td>
</tr>
<tr>
<td>Total Stone (m³/m²)</td>
<td>± .001</td>
<td>.005–.006</td>
<td>.006–.009</td>
<td>.01–.014</td>
<td>± .0013</td>
</tr>
</tbody>
</table>

Notes:
- The bituminous material and stone for each application may be varied by the Engineer, at no increase in cost, outside of the minimum or maximum shown in the Table provided the total of the materials is within the limits of the total minimum and total maximum of all courses.
- Maintain the control tolerances shown above or stop the Work until the necessary corrections are made
- Apply at least one seal course to the mat course on the same day when multiple applications are specified.
E. Applying Bituminous Material

The following are temperatures at which bituminous material shall be applied.

<table>
<thead>
<tr>
<th>Bituminous Material</th>
<th>Asphalt Cement</th>
<th>CRS-2h</th>
<th>CRS-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application temperature °F (°C)</td>
<td>275–350 (135– 175)</td>
<td>140– 180 (60– 80)</td>
<td>140– 180 (60– 80)</td>
</tr>
</tbody>
</table>

NOTE 1: Do not store emulsified asphalts at temperatures exceeding 150 °F (65 °C) for any extended time.

NOTE 2: Do not place bituminous asphalt at temperatures exceeding 150 °F (65 °C), except for paved shoulders, until the asphaltic concrete has been in place at least 30 days.

The Engineer will designate the maximum area to which bituminous material may be applied at one time. Apply the material as follows:

1. After applying the bituminous material to the section, immediately cover it with the correct application rate of aggregate before beginning the next section.
 Do not apply the bituminous material to the full width of the pavement unless the aggregate spreader can immediately cover the full width of the applied material.

 NOTE: Never allow bituminous material to chill, set up, dry, or reach a condition that impairs the retention of cover aggregate before the aggregate is applied.

2. When a longitudinal joint is necessary:
 - Do not overlap the applications more than 4 in (100 mm).
 - Do not leave any area uncovered.
 - Never allow excess quantities of bituminous materials to build up.

3. On curves that require widening:
 a. Shoot the extra width on the outside first.
 b. Shoot the normal width with the distributor and follow the inside paving edge.

4. Ensure that the spray of bituminous material is uniform at all times. If the spray is not uniform:
 a. Stop the work.
 b. Change equipment, personnel, or methods to attain the required uniformity.
 c. Apply bituminous material at one-half the width of the roadway, if necessary.

5. If streaking develops:
 a. Stop the distributor and correct the problem before proceeding.
 b. Use a hand hose or a hand pouring pot to cover the streaked areas at approximately the same application rate of bituminous material.

6. If a part of the work cannot be reached by the distributor, treat it by hand hoses with nozzles.

7. Protect curbs, gutters, handrails, and other structures from discoloration by the bituminous material. Remove bituminous material that is sprayed or spilled on these structures.

8. Ensure that the bituminous material joins neatly in place by beginning and ending the asphalt application from a heavy paper or tight trough that is longer than the width of the treatment being applied. Place it to catch and hold the surplus material.

9. When cleaning and emptying the distributor, empty it where the bituminous material can be covered with dirt and completely disposed of without damaging the Rights-of-Way.

F. Spreading Aggregates

Spread the aggregates as follows:

1. Ensure that aggregates do not contain free moisture when spread.
2. Apply aggregate immediately after applying bituminous materials.
3. Uniformly spread the aggregate at the specified rate without corrugations, overlaps, excess, or deficient areas.
4. Move the spreader at a uniform speed, regardless of the grade.
5. Ensure that the distance that the aggregate free falls remains constant during spreading.
6. Remove corrugations. Operate the spreader to prevent overlap of aggregates. If overlap occurs, remove the excess aggregate before rolling.

7. Ensure a uniform aggregate spread by handspotting and brooming as necessary.

G. Rolling

Select a rolling pattern and speed that will thoroughly key the aggregate into the bituminous material. The Engineer must approve the pattern and speed.

If a steel wheel roller will fracture the aggregate, use pneumatic-tired rollers only.

H. Brooming

Use a revolving broom as necessary, supplemented by hand brooming, to remove or redistribute excess stone. Take care not to unseat bonded stone when brooming.

I. Controlling Traffic

Do not allow traffic on an individual course until the bituminous material has cooled or set enough to ensure that the aggregates will not be loosened, dislodged, or whipped off by slow-moving traffic.

When traffic is permitted back on the course, the Engineer will determine the speeds and specify the control devices to limit the speed. Continue this control until the Engineer permits the road to be opened for general traffic.

424.3.06 Quality Acceptance

General Provisions 101 through 150.

424.3.07 Contractor Warranty and Maintenance

Maintain and protect the surface course as specified in Section 105 until the Project has been accepted. Make repairs as the Engineer directs. The cost of maintenance, protection, and repair is included in the Unit Prices Bid for the Item for which they apply.

424.4 Measurement

The area to be measured is the number of square yards (meters) of each type surface treatment completed and accepted.

424.4.01 Limits

The length is measured along the surface. The width is specified on the Plans, plus or minus any authorized changes. Irregular areas are measured by the surface square yard (meter) within the lines shown on the Plans or authorized changes.

424.5 Payment

The accepted area of surface treatment will be paid for at the Contract Unit Price per square yard (meter) complete for each type and stone size specified.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 424</th>
<th>Single surface treatment stone size__ group__</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 424</td>
<td>Double surface treatment stone size__ and __ group__</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 424</td>
<td>Triple surface treatment stone sizes __, __ and , group</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

424.5.01 Adjustments

If a supplemental agreement is approved, payments will be adjusted as per the Contract Unit Price.

Section 427—Emulsified Asphalt Slurry Seal

427.1 General Description

This work includes placing slurry seal. Emulsified asphalt slurry seal is a thin application of a mixture of fine non-plastic aggregate, emulsified asphalt, mineral filler, and water.

427.1.01 Definitions

General Provisions 101 through 150.
427.1.02 Related References

A. Standard Specifications
 Section 413—Bituminous Tack Coat
 Section 802—Aggregates for Asphalitic Concrete
 Section 822—Emulsified Asphalt
 Section 824—Cationic Asphalt Emulsion
 Section 830—Portland Cement
 Section 882—Lime
 Section 883—Mineral Filler

B. Referenced Documents
 GDT 91
 GDT 43

427.1.03 Submittals

A. Slurry Seal Design
 At least two weeks before beginning the work, submit to the Office of Materials and Research (OMR) design samples of each ingredient to be used in the slurry seal mix. Include in the samples information concerning sources, type of materials, and project number. Do not begin slurry seal work until the OMR has approved the slurry mix design.
 Submit the slurry seal mix design that will be used on the Project to the Engineer.

B. Equipment Calibration
 Before placing slurry seal, furnish the Engineer with a calibration of the slurry mixing equipment.

427.2 Materials

Ensure that the materials to be used meet the following specifications:

A. Aggregate
 Ensure that the aggregate used in emulsified asphalt slurry seal meets the requirements of Subsection 802.2.01. Except, use aggregate manufactured from Group II, Class A or B crushed stone or slag with a sand equivalent value of at least 50.
 Ensure that the aggregates shipped to the project are uniform and do not require blending or premixing at the storage area before use.

B. Mineral Filler

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>830 and 883</td>
</tr>
<tr>
<td>Hydrated Lime</td>
<td>882 and 883</td>
</tr>
</tbody>
</table>

C. Emulsified Asphalt

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsified Asphalt: SS-1h</td>
<td>822</td>
</tr>
<tr>
<td>Cationic Asphalt Emulsion: CSS-1h</td>
<td>824</td>
</tr>
</tbody>
</table>

D. Water

Ensure that water for slurry seal mixtures is clear and free of oil, salt, acid, alkali, organic, and other harmful substances.

The Engineer may require a water sample be sent to the OMR for evaluation before work begins on the Project.
E. Mixture Composition

Use an emulsified asphalt slurry seal that is a uniform mixture of aggregate, emulsified asphalt, mineral filler, and water. The Engineer may require any element to be adjusted or replaced to produce an acceptable slurry seal. Proportion the elements to produce a uniform mixture that meets the requirements of the Table below:

<table>
<thead>
<tr>
<th>Mixture Control Tolerances, %</th>
<th>Sieve Size</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>±0</td>
<td>3/8 in (9.5 mm)</td>
<td>100</td>
</tr>
<tr>
<td>±6</td>
<td>No. 4 (4.75 mm)</td>
<td>90 to 100</td>
</tr>
<tr>
<td>±5</td>
<td>No. 8 (2.36 mm)</td>
<td>65 to 90</td>
</tr>
<tr>
<td>±4</td>
<td>No. 50 (300 µm)</td>
<td>20 to 45</td>
</tr>
<tr>
<td>±3</td>
<td>No. 200 (75µm)</td>
<td>8 to 16</td>
</tr>
</tbody>
</table>

Design Requirements

<table>
<thead>
<tr>
<th></th>
<th>Range for percent residual asphalt</th>
<th>*7.5 to13.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>±0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>±0.2 (5)</td>
<td>Flow inch (mm), GDT 91</td>
<td>1 (25)</td>
</tr>
<tr>
<td>N/a</td>
<td>Wear lb/ft² (g/m²) GDT 43 maximum</td>
<td>0.220 (1075)</td>
</tr>
</tbody>
</table>

*Percent residual asphalt is based on weight of the dry aggregate.

Emulsified asphalt slurry seal is used to seal small cracks and correct moderate surface condition. Apply this type at a rate of 10 to 20 lbs/yd² (5.5 to 11 kg/m²) based on dry aggregate weight.

If more than 20 lbs/yd² (11 kg/m²) of emulsified asphalt slurry seal is required, apply additional lifts of the same mixture.

Maintain the gradation and percent residual asphalt as shown on the slurry seal design or as established by the Engineer within the mixture control tolerances listed.

427.2.01 Delivery, Storage, and Handling

A. Transporting and Storing Asphalt Emulsions

Transport asphalt emulsions using containers free of foreign material. Asphalt emulsion will not be accepted if a transporting vehicle has leaked or spilled during transit.

Store the asphalt emulsion in stationary rail or truck tanks that can be used to fill the slurry seal truck tanks. Equip the storage and truck tanks to prevent water from entering the emulsion. Provide heat if necessary to prevent freezing.

B. Stockpiling Aggregates

Stockpile the aggregate in an area that drains readily. Take precautions to prevent stockpile contaminations such as soil, vegetation, or oversize rock. Load the aggregate on to the slurry seal trucks without segregating it.

427.3 Construction Requirements

427.3.01 Personnel
General Provisions 101 through 150.

427.3.02 Equipment

Equipment, tools, and machines used to perform this work are subject to the Engineer’s approval. The Engineer may discontinue the work if more equipment and tools are needed to place the materials. Do not use malfunctioning equipment to perform the work.

A. Slurry Mixing Equipment

Before slurry seal placement begins, furnish the Engineer with a calibration of the slurry mixing equipment. Ensure that the mixing machine is equipped with the following:

- Revolution counter to count the feeder belt revolutions continuously or intermittently as desired by the Engineer
- Water pressure system and a fog-type spray bar to fog the surface prior to spreading the slurry mix
Continuous flow mixing unit that can deliver a predetermined proportion of aggregate, water, mineral filler, and asphalt emulsion to the mixing chamber and discharge the thoroughly mixed product continuously. Pre-wet the aggregate and mineral filler in the machine immediately before mixing it with the emulsion.

NOTE: Use caution when mixing to ensure that the emulsion does not set up prematurely.

B. Slurry Spreading Equipment
Use a mechanical squeegee spreader with a flexible strike-off that contacts the surface (ensure that the spreader is adjustable to spread evenly and to prevent loss of slurry on varying grades and crowns)
Use a spreader equipped with augers, a steering device, a flexible strike-off, and a device to adjust the coverage width.
Keep the spreader box clean and free of asphalt and aggregate build-up. The type of flexible strike-off and the burlap drags or other drags are subject to the Engineer’s approval.

C. Cleaning Equipment
Ensure that power brooms, power blowers, air compressors, water flushing equipment, and hand brooms can thoroughly clean cracks and the old surface.

D. Auxiliary Equipment
Provide hand squeegees, hand brooms, shovels, and other equipment needed to perform the work.

427.3.03 Preparation
Immediately before applying the slurry:
1. Remove loose material, silt spots, vegetation, and other objectionable material from the pavement. If the pavement has considerable cracks, do not flush it with water.
2. Prepare the surface as specified in the Standard Specifications for slurry seal.

427.3.04 Fabrication
General Provisions 101 through 150.

427.3.05 Construction
A. Observe Weather Limitations
Do not apply slurry seal if the pavement or ambient temperature is 55 °F (13 °C) or below and falling. If both the ambient and pavement temperatures are 45 °F (7 °C) or above and rising, the slurry seal may be applied.
If the relative humidity exceeds 80 percent or the weather is overcast, the Engineer will determine when to apply the slurry seal.

B. Apply Tack Coat
Before placing the slurry seal, apply a bituminous tack coat consisting of one part emulsion and three parts water to the old surface as follows:
1. Apply a tack coat with the same asphalt emulsion type and grade as used in the slurry seal.
2. Apply the tack coat according to Section 413.
3. Apply the tack coat with an asphalt distributor.
4. Apply the tack coat at a rate of 0.05 to 0.10 gal/yd² (0.23 to 0.46 L/m²) of the diluted emulsion. The Engineer will determine the exact application rate.

C. Prepare the Mix
Prepare the mix as follows:
1. Thoroughly mix the material proportions approved for use. Do not mix for more than four minutes.
2. Adjust the amount of water or mineral filler to reach the desired consistency.
3. If the proper slurry consistency cannot be maintained, stop the work and correct the problem by changing the proportions or material sources.
D. Apply the Slurry Seal

Place the slurry seal uniformly across the width of the traffic lane unless otherwise specified or directed by a Special Provision in the proposal or the Engineer. Carry enough slurry seal in the spreader to completely cover the surface.

Apply the slurry seal as follows:

1. Adjust the squeegee action to permit the mix to flow freely and leave a smooth surface.
2. If local conditions require, pre-wet the surface with water by fogging ahead of the slurry box. Closely control pre-wetting to prevent water runoff or puddling.
3. Do not deposit slurry mixture that is not the desired consistency.
4. After depositing the slurry, do not add additional elements.
5. Prevent the following:
 - Lumping, balling, or unmixed aggregate
 - Segregation of the emulsion and aggregate fines from the coarse aggregate
 - Excessive buildup or unsightly appearance on longitudinal or transverse joints
6. If the coarse aggregate settles to the bottom of the mix, remove the slurry from the pavement.
7. Place longitudinal joints on two-lane roadways as close to the center of the pavement as possible.
 If the roadway has more than two lanes of traffic, place the longitudinal joints as close as possible to where traffic stripes will be placed.

E. Apply by Hand

Use approved squeegees to spread slurry in areas that are not accessible to the slurry spreader. Do not leave unsightly marks from the hand work.

F. Control Traffic

Do not allow traffic on the slurry seal until it has cured enough to withstand marring and tearing, and until no water will be pumped to the surface. Control traffic as necessary to prevent damage to the slurry. Repair any traffic damage to the slurry seal at the Contractor’s expense.

G. Observe Seasonal Limitations

Apply slurry seal between the dates given in the Table below. The dates are given by zones shown on the Georgia Geographic Map, below. The Engineer shall authorize any exceptions.

<table>
<thead>
<tr>
<th>Zones</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>April 15 – October 1</td>
</tr>
<tr>
<td>2</td>
<td>April 10 – October 25</td>
</tr>
<tr>
<td>3</td>
<td>April 1 – October 31</td>
</tr>
<tr>
<td>4</td>
<td>April 1 – October 31</td>
</tr>
</tbody>
</table>
427.3.06 Quality Acceptance
General Provisions 101 through 150.

427.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

427.4 Measurement
Emulsified asphalt slurry seal is measured by the square yard (meter) complete in place and accepted. The lengths and widths to compute square yards (meters) are specified in Section 109.

Diluted emulsified tack coat is measured and paid for according to Section 413.

427.4.01 Limits
General Provisions 101 through 150.

427.5 Payment
Emulsified asphalt slurry seal is paid for at the full Contract Price per square yard (meter) and is full compensation for furnishing materials, including bituminous materials, equipment, work, and labor.
427.5.01

Payment will be made under:

| Item No. 427 | Emulsified asphalt slurry seal type ___ stone, Group II | Per square yard (meter) |

427.5.01 Adjustments
General Provisions 101 through 150.

Section 428—Micro Surfacing

428.1 Description
This work covers the materials, equipment, construction, and application procedures for placing micro-surfacing material for filling ruts and surfacing existing paved surfaces. Properly proportion, mix, and spread all ingredients on the paved surface according to this Specification and as directed by the Engineer.

428.1.01 Definitions
General Provisions 101 through 150.

428.1.02 Related References
A. Standard Specifications
 Section 413—Bituminous Prime
 Section 424—Bituminous Surface Treatment
 Section 824—Cationic Asphalt Emulsion
B. Referenced Documents
 GDT 125

428.1.03 Submittals
A. Invoices
 When the Department requests, furnish formal written invoices from a supplier for all materials used in production of micro surfacing. Show the following on the invoice(s):
 □ Date shipped
 □ Quantity in tons (megagrams)
 Purchase LRA-modified emulsion from a supplier who will provide copies of invoices upon the Department’s request.
B. Mix Design
 Submit the proposed mix design for approval at least two weeks before beginning the mixing operations. As a minimum, the design shall include the following:
 □ Aggregate test properties
 □ Aggregate target gradation
 □ Results of Table 1 mixture design properties
 □ Design percent asphalt residue based on dry weight of the aggregate
 □ Mineral filler percentages based on dry weight of the aggregate
 □ Quantitative effects of moisture content on the unit weight of the aggregate (bulking effect)
 Submit to the Office of Materials and Research (OMR) representative samples of each ingredient to be used in the micro-surfacing mixture for design verification at least two weeks before beginning mixing operations. Include information about sources, type of materials, and project number.
 Do not begin micro-surfacing work until the OMR has approved the micro-surfacing design and accepted the mixture.
 The Engineer’s acceptance of the design is solely for quality control and does not release the Contractor from performing acceptable work under this Specification.
Ensure the mixture has sufficient working life to allow for proper placement at the existing ambient temperature and humidity. Redesign the mixture if a constituent must be replaced, or gradation changed, in order to produce an acceptable mixture. Proportion the constituents to produce a uniform mixture meeting the requirements of Table 1.

Table 1—Mixture Design Properties

<table>
<thead>
<tr>
<th>Micro-Surfacing</th>
<th>Type I</th>
<th>Type II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixture Control</td>
<td>Grading Requirements</td>
<td>Percent Passing</td>
</tr>
<tr>
<td>±0%</td>
<td>3/8-inch (9.5 mm)</td>
<td>100</td>
</tr>
<tr>
<td>±6%</td>
<td>No. 4 (4.75 mm)</td>
<td>90-100</td>
</tr>
<tr>
<td>±5%</td>
<td>No. 8 (2.36 mm)</td>
<td>65-90</td>
</tr>
<tr>
<td>±4%</td>
<td>No. 50 (300 ×m)</td>
<td>20-45</td>
</tr>
<tr>
<td>±3%</td>
<td>No. 200 (75 ×m)</td>
<td>5-15</td>
</tr>
</tbody>
</table>

Design Requirements

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO T-245 (Modified)</td>
<td>Flow</td>
<td>6-16</td>
</tr>
<tr>
<td>AASHTO T-245 (Modified)</td>
<td>Min. Stability, lb (kg), 50 Blow Marshall</td>
<td>1800 (8000)</td>
</tr>
<tr>
<td>ISSA TB-100</td>
<td>Wet Track Abrasion Loss (Maximum)</td>
<td>6-day soak 1 lb/yd² (538 g/m²) 1-hour soak 1.5 lb/yd² (807 g/m²)</td>
</tr>
<tr>
<td>ISSA TB-147A or 147C</td>
<td>Vertical Displacement (Maximum)</td>
<td>10%</td>
</tr>
<tr>
<td>ISSA TB-109</td>
<td>Excess Asphalt by LWT (Maximum)</td>
<td>1 lb/yd² (538 g/m²)</td>
</tr>
<tr>
<td>ISSA TB-113</td>
<td>Mixing Time Test @ 100°F (38 °C) (Minimum)</td>
<td>45 Seconds</td>
</tr>
<tr>
<td>ISSA TB-139</td>
<td>Set Time Test (Minimum)</td>
<td>@ 30 minutes 12 kg-cm @ 60 minutes 20 kg-cm</td>
</tr>
<tr>
<td>ISSA TB-102</td>
<td>Water Resistance Test @ 30 Minutes</td>
<td>No Discoloration</td>
</tr>
<tr>
<td>ISSA TB-114</td>
<td>Wet Stripping Test (Minimum Retained)</td>
<td>90%</td>
</tr>
<tr>
<td>ISSA TB-115</td>
<td>System Compatibility</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Note 1: Base percent residual asphalt and percent mineral filler on weight of the dry aggregate.

Note 2: Maintain the gradation and percent residual asphalt as shown on the micro-surfacing design or as established by the Engineer within the listed Mixture Control Tolerances. Meet mix control tolerances or make immediate adjustments to bring the gradation and percent residual asphalt back within tolerances, or the work will not be allowed to continue.

Note 3: Modify procedures stated in AASHTO T-245 for determining Flow and Marshall Stability to permit air drying of the mixture at 70 - 77 °F (21 - 25 °C) for 3 days before reheating and fabricating Marshall specimens.
428.2 Materials

The materials to be used and their specifications are listed below:

A. Aggregate

Use aggregate in micro-surfacing that meets the requirements of Subsection 802.2.02.

EXCEPTION: Aggregate shall be manufactured from Group II, Class A or B crushed stone or slag, and the Sand Equivalent Value shall not be less than 65 when tested according to AASHTO T-176.

Ensure that aggregates shipped to the project are uniform and do not require blending or pre-mixing at the storage area before use. Aggregates must meet the appropriate gradation as shown in Table 1.

B. Mineral Filler

Use mineral filler that is Portland cement or hydrated lime which meets the following requirements:

<table>
<thead>
<tr>
<th>Portland cement</th>
<th>Section 830 and 883</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrated Lime</td>
<td>Section 882 and 883</td>
</tr>
</tbody>
</table>

C. Cationic Asphalt Emulsion

Ensure that the emulsified asphalt is a cationic type CSS-lh(LRA) or CSS-1P that meets the requirements for CSS-1h of Section 824, modified to waive the cement-mixing test.

D. Latex Rubber Additive (LRA)

Ensure the LRA is a natural latex or an unvulcanized styrene-butadine rubber in an emulsified latex form. Provide certification from the LRA manufacturer that the LRA meets the following requirements:

<table>
<thead>
<tr>
<th>Rubber Solids content, Minimum %, ASTM D 1417</th>
<th>60 (by weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brookfield Viscosity, cps Maximum, ASTM D 1417</td>
<td>5000</td>
</tr>
<tr>
<td>Total Ash, Maximum %, ASTM D 297</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Co-mill the LRA and the special emulsifiers with the asphalt cement while manufacturing the emulsified asphalt to produce a homogeneous mixture. Add the LRA in the necessary proportions to result in 3% neat latex by weight of residual asphalt cement in the emulsion. Ensure the LRA modified emulsified asphalt, when left undisturbed for 24 hours, shows no separation of emulsion and LRA and no color striations, but has a uniform color throughout.

Ensure that the residue from the LRA modified emulsified asphalt has a minimum softening point of 135 °F (60 °C) when tested according to AASHTO T-53.

EXCEPTION: The maximum test temperature shall not exceed 350° F (176°C) and the duration shall not exceed 20 minutes.

Formulate the emulsified asphalt to allow the paving mixture to cure at a rate that will permit traffic on the pavement within 1 hour after application without damaging the pavement surface.

E. Bituminous Tack Coat

Use a cationic asphalt emulsion CSS-lh or CQS-lh for the bituminous tack coat that meets Section 824 and is diluted according to Subsection 428.3.05.D.

F. Water

Use water for the micro-surfacing mixture that is potable and free of contaminants detrimental to the mixture.

G. Other Additives

Provide other additives as required to control the set time of the mixture in the field.
428.2.01 Delivery, Storage, and Handling

A. Aggregate Storage

Store or stockpile mineral aggregates in a manner that will prevent segregation, mixing of the various materials or sizes, and contamination with foreign materials. Do not use construction equipment on, or to ramp the stockpiled aggregate. Pass the aggregate over a scalping screen immediately before transferring it to the micro-surfacing mixing machine to remove oversized material.

B. Storage of Bituminous Material

Ensure that the bituminous storage is adequate to meet the requirements of the production rate. Always keep clean all equipment used to store and handle bituminous material and operate it in such a manner to prevent contamination with foreign matter.

428.3 Construction Requirements

428.3.01 Personnel

General Provisions 101 through 150.

428.3.02 Equipment

Obtain the Engineer’s approval for all equipment, tools, and machines used to perform this Work. Do not attempt work with malfunctioning equipment. The Engineer may stop the work if equipment and tools are not sufficient to place the materials satisfactorily.

A. Mixing Equipment

Blend the paving mixture using a self-propelled micro-surfacing mixing machine that is:

- A continuous flow mixing unit
- Able to accurately deliver and proportion the aggregate, LRA-modified emulsion, mineral filler, field control additives, and water to a revolving multi-blade, twin shafted mixer
- Able to Discharge the mixed product on a continuous flow-...

EXCEPTION: Blending the paving mixture may be accomplished with a truck mounted micro-surfacing mixing machine that meets the above specification, except for continuous flow, when placing the mixture on short streets or projects that are less than one-half mile (800 m) in length.

For streets or projects less than one-half mile (800 m) in length, individual truck-mounted units may be used for placement of micro-surfacing. For streets or projects one-half mile (800 m), or greater, in length, place micro-surfacing mixture with a machine that is equipped as follows:

- Has self-loading devices that load raw materials while continuing to lay micro-surfacing, thereby minimizing construction joints
- Has opposite side driving stations to optimize longitudinal alignment
- Allows the operator to have full hydrostatic control of the forward and reverse speed while applying micro-surfacing material

Thoroughly blend the mixture so that no uncoated aggregate is visible upon discharge from the mixing unit or in samples taken from the roadway.

1. Water Pressure System

 Use a mixing machine equipped with a water pressure system and nozzle-type spray bar to provide a water spray ahead of and outside the spreader box when required.

2. Proportioning Devices

 Use a machine equipped with individual volume or mass controls or other gauging devices for measuring and proportioning each material added to the mix. Properly calibrate, mark, and positively interlock each material control device.
Ensure that the aggregate feed to the mixer is equipped with a revolution counter or similar device to determine the amount of emulsion used at any time. Before beginning the work, calibrate each mixing unit and provide a copy of the calibration worksheet to the Engineer. Once calibrated, do not change the aggregate and emulsion flows without the Engineer’s approval. The water and additive may be adjusted in the field to control the mix properties to produce an acceptable mix.

3. Emulsion Pump
 The emulsion pump shall be a heated, positive displacement type pump.

4. Spreading Equipment
 Uniformly spread the micro-surfacing mixture using a mechanical-type spreader box attached to the mixer, equipped with paddles or other devices to agitate and spread the materials throughout the box. Use paddles that are designed to maintain sufficient turbulence in the mixture to prevent the material from setting-up in the box or causing side buildup and lumps. Provide a front seal to prevent loss of the mixture at the road contact surface.

 Provide an adjustable rear seal to act as a strike-off. Maintain the spreader to prevent the loss of the paving mixture during surfacing super-elevated curves. Design and operate the spreader box and rear strike-off to achieve a uniform consistency and produce a free flow of material to the rear strike-off without causing skips, lumps, or tears in the finished surface. Use a spreader box capable of lateral movement or with side-shift abilities to ensure proper alignment with the roadway.

B. Auxiliary Equipment
 Provide a pressure distributor, power-broom, and power blower which meets requirements of Subsection 424.3.02.

 Provide suitable crack and surface cleaning equipment, barricading equipment, hand tools, and other support equipment necessary to perform the work.

428.3.03 Preparation
 General Provisions 101 through 150.

428.3.04 Fabrication
 General Provisions 101 through 150.

428.3.05 Construction
 A. General
 Produce, transport, and place the specified materials according to these specifications and as approved by the Engineer. Produce a finished micro-surfacing that has a uniform texture free from excessive scratch marks, tears, or other surface irregularities. Ensure that the cured mixture fully adheres to the underlying surface. Based on a visual examination or test results, the Engineer may reject any work due to poor workmanship, loss of texture, raveling, or apparent instability.

 B. Weather Limitations
 Spread the micro-surfacing mixture only when:
 - The ambient temperature for 48 hours immediately prior to placement has been at least 50 °F (10 °C).
 - The current pavement surface and the ambient temperature is at least 50 °F (10 °C) and rising. Supply a surface temperature thermometer and a sling psychrometer and take temperature and humidity measurements as directed by the Engineer.
 - The weather is not foggy or rainy.
 - There is no forecast of temperatures below 32 °F (0 °C) within 48 hours from the time of placement.

 Whenever the relative humidity exceeds 80 percent or the weather is overcast, the placement of micro-surfacing will be at the discretion of the Engineer.

 C. Surface Preparation
 Before applying the micro-surfacing mixture, thoroughly clean all cracks and the area to be surfaced to the Engineer’s satisfaction.

 D. Tack Coat
 Use a tack coat which consists of cationic asphalt emulsion CSS-1h or CQS-1h. Dilute it at the rate of one part emulsion and three parts water, and apply with an asphalt distributor. The application rate is 0.05 to 0.10 gal/yd² (0.23 to 0.45 L/m²) of diluted emulsion per square yard (meter). Apply the tack coat according to Section 413. If the surface course is
placed within 30 days of the leveling course or if the Engineer determines that excessive tracking of material is evident, a tack coat will not be required between the leveling and surface course.

E. Application

Pre-wet the surface by spraying water ahead of and outside of the spreader box at a rate that dampens the surface without allowing water to flow freely ahead of the spreader box.

Spread the paving mixture on the prepared surface to produce a uniform finished surface. Take care when filling ruts to restore the designed profile of the pavement cross section. Excess crowning or overfilling of the rut area is not permitted. Use squeegees and lutes to spread the mixture in areas inaccessible to the spreader box and areas requiring hand spreading. Carry a sufficient amount of material at all times in all parts of the spreader box to ensure complete coverage.

Make adjustments to the additive, if necessary, to provide a slower setting time during hand spreading. If hand spreading is necessary, pour the mixture in a small window along one edge of the surface to be covered and uniformly spread with a hand squeegee or lute. Provide a smooth, neat seam where two passes meet. Immediately remove excess material from the ends of each run.

F. Traffic Control

Do not allow traffic on the micro-surfacing mixture until it has cured sufficiently to prevent pick up or marring of the surface. Repair any damage done by traffic to the mixture at no expense to the Department.

G. Rut Filling and Leveling (Scratch) Course

When required on the Plans, provide micro-surfacing materials to fill ruts, utility cuts, depressions in the existing surface, etc. before the final surface course is placed. When ruts are no more than 1/2 inch (13 mm) in depth, construct the leveling/scratch course using a full width spreader box with a steel strike-off. Fill ruts deeper than 1/2 inch (13 mm) independently with a rut-filling spreader box, 6 ft (1.8 m) in width, or as directed by the Engineer.

Place and open to traffic the rut filling and leveling (scratch) course at least 24 hours before surfacing.

H. Workmanship

Excessive buildup, uncovered areas, or unsightly appearance are not permitted on longitudinal or transverse joints. Place longitudinal joints on lane lines. Excessive overlap is not permitted. Ensure straight lines along the roadway centerline, lane lines, shoulder, or edge lines. Keep lines at intersections straight to provide a neat and uniform appearance.

1. Finished Surface: Ensure that the finished micro-surfacing has a uniform texture free of excessive scratch marks, tears, or other surface irregularities. Excessive tear marks are considered 4 marks that are 1/2 inch (13 mm) wide or wider and 6 inches (150 mm) or more long per 100 square yards (85 meters), or any marks 1 inch (25 mm) wide or wider or 4 inches (100 mm) long. Ensure that the edges of the micro-surfacing appear neat and that longitudinal alignment is parallel to the roadway centerline.

2. Joints and Seams: Produce neat and uniform longitudinal and transverse joints. Construct transverse joints as butt-type joints. Place longitudinal joints on lane lines when possible. Do not allow gaps between applications. Joints are acceptable if there is no more than a 1/2 inch (13 mm) vertical space for longitudinal joints nor more than 1/4 inch (6 mm) for a transverse joint between the pavement surface and a 4 ft (1.2 m) straightedge placed perpendicular on the joint.

3. Areas the Mixing Machine Cannot Reach: Surface these areas using hand tools to provide complete and uniform coverage. Clean and lightly dampen the area to be handworked before placing the mix. Ensure areas that require handwork produce a finished surface that is uniform in texture, dense, and has a neat appearance similar to that produced by the spreader box. Micro-surfacing material required to repair deficiencies due to unsatisfactory workmanship and the work required to mix and place the materials according to the Specifications, will be provided at no expense to the Department.

428.3.06 Quality Acceptance

Take two samples of mixture for determining quality acceptance for each day of operation. Test the second sample only if the results of the first sample are outside mixture control tolerances. Test the samples according to GDT 125. The deviation in test results from the Job Mix Formula will be used to determine compliance with the mixture control tolerances. If more than one sample is tested, the average deviation shall be used to determine compliance.

A mixture adjustment period will be provided during the first two days of operation. If the average deviation of sample results for the first day are outside the mixture control tolerances, you may adjust equipment settings to provide a mixture within the tolerances. Samples will be taken the second day (after equipment changes, if any, have been made) and the average deviation in test results will be calculated. If the average deviation of test results for the second day is within mixture...
control tolerances, mixture quality will be accepted for the first two days of operation. If the average deviation from the second day is not within mixture control tolerances for percent residual asphalt content, a 2% reduction in unit price will be assessed for each 0.1 percent the residual asphalt content is outside the mixture control tolerances for each of the first two days that tolerances were exceeded.

A. Emulsified Asphalt

Maintain the percent residual asphalt and gradation as shown on the micro-surfacing design, or as established by the Engineer, within the Mixture Control Tolerances listed in Table 1.

After the adjustment period, a 2% reduction in unit price will be applied for each 0.1 percent the residual asphalt content is outside the Mixture Control Tolerance given in Table 1 for the day’s production represented by the sample. The average deviation of the samples will be used to determine conformance to the Mixture Control Tolerance. Do not continue to operate and place materials outside the mixture control tolerances. Adjust the placement operation as necessary to maintain production within the tolerances given.

B. Aggregate Application Rate

Control the target spread rate for micro-surfacing to within plus or minus 2 lbs/yd² (1 kg/m²) of the spread rate specified in the Proposal based on the weight of dry aggregate. Mix placed in excess of the upper spread rate tolerance will not be paid for. The unit price will be reduced by 5% for each pound (0.5 kg) of aggregate per square yard (meter) less than the spread rate tolerances established above for each day’s placement of material. Accept pay reduction for deficient daily production, or overlay the deficient area at full plan width and depth at the Contractor’s expense. Do not continue to operate and place materials outside the spread rate tolerances. Adjust the placement operation as necessary to maintain production within the tolerances given.

428.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

428.4 Measurement

A. Micro-Surfacing

Micro-Surfacing, Type I or II surface course, is measured and accepted as completed by the in-place square yard (meter). In computing square yards (meters), the lengths and widths used shall be as specified in Section 109, “Measurement and Payment”.

B. Leveling (Scratch Course)

A leveling (scratch course) is measured and paid for by the ton (megagram) of dry aggregate used. Tons (megagrams) of aggregate used shall be determined using the total daily revolutions of the aggregate feed belt and the corresponding gate setting and weight per revolution shown on the mixing unit calibration worksheet.

C. Tack Coat

Diluted emulsified tack coat is measured and paid for according to Section 413.

428.4.01 Limits

General Provisions 101 through 150.

428.5 Payment

Micro-surfacing will be paid for at the contract unit price, which is full compensation for furnishing all materials, including LRA modified bituminous materials, and for furnishing all equipment, work, and labor.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>428</td>
<td>Micro-Surfacing, type I</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>428</td>
<td>Micro-Surfacing, type I leveling</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>428</td>
<td>Micro-Surfacing, type II</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>428</td>
<td>Micro-Surfacing, type II leveling</td>
<td>Per ton (megagram)</td>
</tr>
</tbody>
</table>

428.5.01 Adjustments

General Provisions 101 through 150.
Section 429—Rumble Strips

429.1 General Description
This work includes furnishing and placing rumble strips according to Plan details and this Specification.

429.1.01 Definitions
General Provisions 101 through 150.

429.1.02 Related References
A. Standard Specifications
 - Section 400—Hot Mix Asphaltic Concrete
 - Section 413—Bituminous Tack Coat

B. Referenced Documents
 - General Provisions 101 through 150.

429.1.03 Submittals
General Provisions 101 through 150.

429.2 Materials
Ensure that asphaltic concrete conforms to Section 400, Types 12.5 mm Superpave, or 9.5 mm Superpave mixes.

Ensure that the tack coat conforms to Section 413.

429.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

429.3 Construction Requirements
429.3.01 Personnel
General Provisions 101 through 150.

429.3.02 Equipment
A. Hand Rollers
 - Use nonvibrating hand rollers to compact the strips.

B. Forms
 - Ensure the form confines and spaces the hot mix according to the Plan details.

429.3.03 Preparation
General Provisions 101 through 150.

429.3.04 Fabrication
General Provisions 101 through 150.

429.3.05 Construction
Complete this procedure to install rumble strips:
 1. Tack the entire 20 ft (6 m) strip length.
 2. Place the oiled form, and ensure that the first strip coincides with the beginning of the first unit.
 3. Place and level the plant mix. Roll the strips with the forms in place.
 4. Remove the forms and compact the strips to the Engineer’s satisfaction.
 5. Repeat this operation to install the entire 20ft (6 m) rumble strip. Install additional units as designated on the Plans using the same methods and procedures.

NOTE: Do not place strips on wet or frozen pavement.
429.3.06 Quality Acceptance
General Provisions 101 through 150.

429.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

429.4 Measurement
Rumble strips are measured per each strip constructed.

429.4.01 Limits
General Provisions 101 through 150.

429.5 Payment
Rumble strips will be paid for per each strip completed and accepted. Payment is full compensation for furnishing materials and performing the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 429</th>
<th>Rumble strips</th>
<th>Per each</th>
</tr>
</thead>
</table>

429.5.01 Adjustments
General Provisions 101 through 150.

Section 430—Portland Cement Concrete Pavement

430.1 General Description
This work includes constructing pavement composed of Portland cement concrete, with or without reinforcement as specified, on a prepared subgrade or subbase course.

Follow the requirements of these Specifications and conform to the lines, grades, thicknesses, and cross sections shown on the Plans or by the Engineer.

430.1.01 Definitions
General Provisions 101 through 150.

430.1.02 Related References
A. Standard Specifications
 Section 106—Control of Materials
 Section 152—Field Laboratory Building
 Section 431—Grind Concrete Pavement
 Section 461—Sealing Roadway and Bridge Joints and Cracks
 Section 500—Concrete Structures
 Section 800—Coarse Aggregate
 Section 801—Fine Aggregate
 Section 830—Portland Cement
 Section 831—Admixtures
 Section 832—Curing Agents
 Section 833—Joint Fillers and Sealers
 Section 853—Reinforcement and Tensioning Steel
Section 880—Water
Section 886—Epoxy Resin Adhesives

B. Referenced Documents

AASHTO T 126
AASHTO T 97
AASHTO T 22
AASHTO T 23
ACI 214
ASTM C 94, Requirements for Uniformity
ASTM C 684, Method A
GDT 26
GDT 27
GDT 28
GDT 31
GDT 32
GDT 72
GDT 78
SOP 34

Report form, furnished by the Engineer
Requests for certification

430.1.03 Submittals

A. Profilograph Equipment and Operator Certification

Include in the Contract Unit Bid Price the cost to furnish and operate a Rainhart (Model 860) Profilograph to measure pavement profile deviations.

Before paving, ensure that the operator and the profilograph are certified by the Office of Materials and Research in accordance with Standard Operating Procedure No. 34, Certification of Contractor Personnel and Equipment for Smoothness Testing of Portland Cement Concrete Pavement with the Rainhart Profilograph. Certification includes a mechanical check of the profilograph functions and a written examination by the operator.

Request certification in writing to the Office of Materials and Research at least two weeks before it is needed.

B. Concrete Design

Submit for approval a concrete design that is prepared by a testing laboratory approved by the Office of Materials and Research. The Contractor will transmit the design to the Engineer for approval at least 35 days before use.

C. Approval of Mix Design Proportions

Obtain approval from the Office of Materials and Research for proposed concrete mix designs. Class 1 and 2 concrete mix designs will be verified for early compressive strength according to ASTM C-684, Method A. Class HES concrete mix designs will be verified for compressive strength development at 72 hours according to AASHTO T 126 and AASHTO T 22.
430.2 Materials

Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland cement</td>
<td>830.2.01</td>
</tr>
<tr>
<td>Portland Pozzolan cement</td>
<td>830.2.03</td>
</tr>
<tr>
<td>Water</td>
<td>880.2.01</td>
</tr>
<tr>
<td>Fine Aggregate, Size No. 10</td>
<td>801.2.02</td>
</tr>
<tr>
<td>Coarse Aggregate, Class A or B Crushed Stone or Gravel, Sizes as Specified</td>
<td>800.2.01</td>
</tr>
<tr>
<td>Steel Bars for Reinforcement</td>
<td>853.2.01</td>
</tr>
<tr>
<td>Steel Wire for Concrete Reinforcement</td>
<td>853.2.06</td>
</tr>
<tr>
<td>Welded Steel Wire Fabric for Concrete Reinforcement</td>
<td>853.2.07</td>
</tr>
<tr>
<td>Dowel Bars and Bar Coatings</td>
<td>853.2.08</td>
</tr>
<tr>
<td>Curing Agents</td>
<td>832</td>
</tr>
<tr>
<td>Air Entraining Admixtures</td>
<td>831.2.01</td>
</tr>
<tr>
<td>Fly Ash and Slag</td>
<td>831.2.03</td>
</tr>
<tr>
<td>Joint Fillers and Sealers</td>
<td>833</td>
</tr>
<tr>
<td>Low Modulus Silicone Sealant for Roadway Construction Joints</td>
<td>833.2.06</td>
</tr>
<tr>
<td>Epoxy Adhesive for Repairing Cracks</td>
<td>886.2.01</td>
</tr>
<tr>
<td>Chemical Admixtures</td>
<td>831.2.02</td>
</tr>
</tbody>
</table>

A. Fly Ash

Use fly ash, if appropriate, as a concrete additive to promote workability and plasticity. It may be used as a partial replacement for Portland cement in concrete, but follow these limits:

1. Do not replace the cement quantity more than 15 percent by weight.
2. Replace cement with fly ash at the rate of 1.25 to 2.0 lbs (1.25 to 2.0 kg) of fly ash to 1 lb (1.0 kg) of cement.
3. Ensure that the fly ash mix conforms to Subsection 430.3.06, “Quality Acceptance.”
4. Do not use Type IP cement in fly ash mixes.

B. Granulated Iron Blast-Furnace Slag

If high early strengths are not desired, use granulated slag as a partial replacement for Portland cement in concrete. Follow these limits:

1. Replace the quantity of cement 50 percent or less by weight if the 5-day forecast of the National Weather Service expects temperatures higher than 60 °F (15 °C).
 a. If the 5-day expected low temperature is less than 60 °F (15 °C) but not less than 40 °F (4 °C), replace the quantity of cement 30 percent or less by weight.
 b. If the 5-day expected low temperature is less than 40 °F (4 °C), do not use granulated slag.
2. Replace cement with slag at the rate of 1 lb (1 kg) of slag to 1 lb (1 kg) of cement.
3. Ensure that the granulated slag mix conforms to Subsection 430.3.06, “Quality Acceptance.”
4. Do not use Type IP cement or fly ash in slag mixes.

C. Composition of Concrete

Design the concrete mix to conform to the following requirements:

1. Coarse Aggregate

 Use coarse aggregate size No. 467, 67, or 57 for plain Portland cement concrete pavement.
 Use size No. 67 or 57 coarse aggregate for continuous reinforced concrete pavement.
Separate size No. 467 or 456 in individual stockpiles of size No. 4 and size No. 67. Blend according to approved mix proportions.

2. Fine Aggregate
 Use fine aggregate that meets the requirements for size No. 10.
 When using two sizes or sources of fine aggregate to produce the proper gradation, blend according to the approved design proportions.

D. Protective Materials
 Provide materials to protect the concrete edges and surface from rain, including:
 - Standard metal forms or wood planks to protect the pavement edges
 - Covering material such as burlap or cotton mats, curing paper, or plastic sheeting material to protect the pavement surface

430.2.01 Delivery, Storage, and Handling
 Store aggregate from different sources in separate stockpiles.

430.3 Construction Requirements

430.3.01 Personnel
A. Certified Operator
 Before paving, have the Office of Materials and Research, certify a profilograph equipment operator. Certification includes a written examination by the operator.

430.3.02 Equipment
A. Equipment Requirements
 Provide equipment and tools to perform the work. Provide equipment that allows the paver to operate at a constant production rate and rarely start and stop. The Engineer may limit the production rate or batch size if equipment does not keep pace with the other operations or causes poor workmanship.

B. Scales
 Before use, the Engineer will inspect and approve the scales to weigh concrete materials and the devices to measure water. Tolerances are ± 1.0 percent throughout the operating range. Measure admixtures to ± 3.0 percent.

C. Paving Equipment
 Ensure that equipment operating on the pavement has rubber-tired wheels or flat steel wheels. Wait to operate concrete or shoulder paving equipment on the pavement until the concrete slab is 14 days old or has 2,500 psi (15 MPa) compressive strength.
 Paving equipment may be either slip-form or fixed form.

D. Surface Finish Equipment
 Use mechanical equipment to produce the surface finish of the mainline and transverse plastic concrete grooving. Ensure that the equipment uses rectangular-shaped steel tines of the same size and uniform length. Use tines with a width between 0.08 in (2 mm) and 0.130 in (3.5 mm). Space the tines approximately 1/2 in (13 mm) apart.

E. Field Laboratory
 Provide a field laboratory according to Section 152.

F. Mechanical Sprayers
 Provide fully atomizing spraying equipment with a tank agitator to place curing compounds.

430.3.03 Preparation
A. Prepare the Road Bed
 Prepare the roadbed as required by the Plans and Specifications before placing concrete pavement.
B. Observe Condition of Subgrade and Subbase

Check the subgrade and subbase as follows:

1. Prepare the full width of the subgrade and subbase according to the Plans and Specifications.
2. Ensure that the surface immediately under the concrete pavement allows proper pavement thickness and yield.
3. Trim high areas to the proper elevation.
4. Ensure that the subbase can support paving equipment without rutting or bogging.

430.3.04 Fabrication

General Provisions 101 through 150.

430.3.05 Construction

A. Mix the Concrete

Produce Portland cement concrete by combining authorized proportions of materials in batches according to the construction methods in this Specification.

Mix the concrete produced in a stationary central mix plant for at least 60 seconds after all materials have entered the drum. Reduce the mix time if representative tests show that the concrete meets requirements of ASTM C 94, Requirements For Uniformity. Never reduce the mix time to less than 50 seconds.

B. Set Forms

Set the forms as follows:

1. Compact the foundation under the forms true to grade. Set the form so that it firmly contacts the foundation for the entire length at the specified grade.
2. Prevent the forms from settling or springing under the finishing machine.
3. Clean and oil the forms before placing the concrete.

C. Dowel Bars

Provide dowel bars at transverse joints unless otherwise noted in the Contract Plans.

D. Place Concrete

After depositing the concrete on the grade, avoid rehandling. Unload and place it as follows:

1. Unload the concrete into an approved spreading device and mechanically spread it on the grade.
2. Place the concrete continuously between transverse joints without using intermediate bulkheads.
3. Hand spread the concrete with shovels, not rakes.

NOTE: Do not allow personnel to walk in freshly mixed concrete with shoes coated with dirt or other materials.

4. Thoroughly consolidate the concrete against the faces of forms and along the full length and sides of joint assemblies.
5. Ensure that vibration does not cause puddling or grout accumulation on the surface.
 For construction or expansion joints, do not use grout that accumulates ahead of the paver.
6. Deposit concrete near the formed joints. Dump or discharge concrete only in the center of a joint assembly.
7. Take slab depth measurements as follows:
 a. Probe the plastic concrete behind the paver.
 b. Record the station number and depth measurements at least every 500 ft (150 m) at 3 random increments across the slab.
 c. Provide these measurements to the Engineer when requested.
8. Take air and slump determination tests at a rate of at least three of each test evenly distributed during the workday. Provide the results to the Engineer when requested.
9. Keep reinforcing steel free of dirt, oil, paint, grease, mill scale, and loose or thick rust that could impair the bond of the steel to the concrete.
10. Arrange operations to prevent “leave-outs” in continuous reinforced concrete pavement. The Engineer may approve “leave-outs” in emergencies if a Plan is approved to increase the reinforcement. The Department will not pay for extra leave-outs.

E. Place Reinforcement

Place reinforcement according to the Plans and as follows:
1. Do not insert lane tie bars in unsupported sides of fresh concrete.
2. Ensure that the steel placement method does not damage or disrupt concrete.
3. Use bent lane tie bars if needed in longitudinal formed joints construction. However, replace broken or damaged bars at no additional cost to the Department.

F. Construct the Ramps

Prevent pavement slab stress by constructing a ramp of compacted earth or other material for movement on and off the pavement. Do not allow equipment that exceeds legal load limits on the pavement.

G. Consolidate and Finish

Ensure that the sequence of operations is continuous from placement to final finish.

1. Consolidation

Perform vibration for the full width and depth of the pavement as follows:
 a. Do not allow the vibrators to misalign load transfer devices, or to contact forms or base.
 b. Ensure that the vibrator amplitude is within the range recommended by the manufacturer.
 - Use spud vibrators with an adjustable operating frequency between 8,000 and 12,000 vibrations per minute.
 - Use surface pan vibrators with an adjustable operating frequency between 3,000 and 6,000 vibrations per minute.
 c. If appropriate, use surface vibrators and internal vibrators on concrete greater than 8 in (200 mm) thick.
 d. If appropriate, use surface vibrators exclusively on pavements less than 8 in (200 mm) thick.
 e. Stop vibration when the machine cannot go forward.
 f. Obtain uniform consolidation and density throughout the pavement.
 - If it is not uniform, stop the operation and provide methods or equipment that will produce pavement that conforms to the Specifications.

2. Finishing

After striking off and consolidating the concrete, follow these steps:

 a. Smooth and true the concrete using a float or finishing machine to minimize or eliminate hand finishing.
 - Perform hand finishing only under the following conditions:
 - Irregular dimension areas where operating mechanical equipment is impractical
 - Mechanical equipment breakdown (only finish the concrete already deposited when the breakdown occurred)
 - Abnormal circumstances approved by the Engineer
 b. Ensure that the pavement surface final finish is true to grade, uniform in appearance, and free of irregular, rough, or porous areas.
 c. Prevent the surface within 6 in (150 mm) of the pavement edge to deviate more than 0.25 in (6 mm) in 10 ft (3 m) when tested with a 10 ft (3 m) straightedge in both transverse and longitudinal directions.
 d. Use mechanical equipment to produce a surface finish of transverse plastic concrete grooving for the mainline and ramps.
 e. Have the Engineer determine the texture depth by conducting pavement surface tests such as GDT 72 at selected locations.
 f. Transversely saw-groove mainline and ramp areas with a surface texture depth less than 0.018 in (0.5 mm). Meet the depth requirement of 0.035 in (0.9 mm) or greater.
Perform saw-grooving to meet the following dimensions:

<table>
<thead>
<tr>
<th>Width</th>
<th>1/8 in (3 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>3/16 in (5 mm)</td>
</tr>
<tr>
<td>Spacing</td>
<td>3/4 in (19 mm) center-to-center</td>
</tr>
</tbody>
</table>

g. If required, use hand tools to texture ramps, acceleration lanes, and deceleration lanes to surface texture mainline requirements. Finish irregular sections to a surface texture of at least 0.025 in (0.64 mm) as shown in GDT 72.

3. Numbering Stations
 Cast Station numbers with a die in the pavement every 500 ft (200 m) and 1 ft (300 mm) from the right edge of the travel lane.

4. Protection From Rain
 Protect the unhardened concrete from rain. See Subsection 430.2.D, “Protective Materials.”
 When rain is imminent, stop paving operations and place forms against the sides of the pavement. Cover the surface of the unhardened concrete with the protective covering.

H. Remove Forms
 Do not remove forms from freshly placed concrete until it has set for at least 12 hours, unless otherwise provided.
 1. Remove forms carefully to avoid damaging the pavement.
 2. After removing the forms, immediately cure the sides of the slab using the same method used to cure the pavement surface.
 3. Remove and replace major honeycombed areas.

I. Work at Night
 Provide adequate lighting for work performed at night. If lighting will not be provided at night, stop the concreting operation in time to finish and saw during daylight hours.

J. Provide Joints
 Ensure that joints are designed, configured, and located as shown on the Plans or required by the Specifications.
 1. Provide dowel bars at transverse joints unless otherwise noted.
 2. Remove and replace plain concrete pavement that cracks during construction with no additional cost to the Department, at the Engineer’s discretion.
 3. When chipping out random cracks for sealing, use nonrigid epoxy on cracks that are not under expansion-contraction influence and that meet Subsection 886.2.01.
 4. Seal continuous cracks that are under movement with sealant that meets Subsection 833.2.06.
 5. When removing and replacing a pavement section, remove an area at least 6 ft (1.8 m) long and the full width of the lane.
 a. Saw to vertical face the sections to be removed and replace the concrete as a construction joint with dowels.
 b. Use deformed bars as dowels in the saw-cut construction joint. Use the size specified for contraction joints in the Plans.
 6. Thoroughly clean the drilled holes of contaminants and set the dowels into the hardened concrete face of the existing pavement with a Type VIII epoxy bonding compound. See Section 886 for epoxy bonding requirements.
 7. For contraction joints, use undamaged and properly positioned dowels in existing construction or slab replacement areas. Coat the protruding dowel portions with a thin film of heavy grease.
 8. When both sides of an existing construction or contraction joint require slab replacements, replace slabs continuously from saw-cut construction joint to saw-cut construction joint. Use dowels specified for contraction joints.
 9. Before placing concrete, uniformly apply a thin coat of heavy grease to epoxy-coated dowels.
 10. When placing slabs continuously across transverse contraction joint locations, use saw-cuts to provide planes of weakness according to the requirements of this Specification and the standard drawing for contraction joints.
K. Types of Joints

1. Longitudinal Joints
 For longitudinal joints, use unpainted and uncoated deformed steel bars that are the size and length specified on the Plans.
 Place the bars perpendicular to the joint using a mechanical device, or rigidly secure the bars in place with supports.

2. Longitudinal Formed Joints
 Construct longitudinal formed joints while the concrete is in a plastic state.
 Use methods and equipment that locate the joint reinforcement properly without disrupting it during construction.

3. Longitudinal Sawed Joints
 Cut longitudinal sawed joints with a mechanical saw within three days after the concrete is placed and before traffic or equipment enters the pavement.

4. Transverse Joints
 Transverse joints consist of construction joints, contraction joints, or expansion joints constructed at required locations.
 a. Construct transverse joints in partial width or adjoining lanes to abut the same joint of adjacent lanes unless otherwise specified on the Plans.
 b. Ensure that transverse joints in plain Portland cement concrete requiring load transfer devices contain either plastic-coated or epoxy-coated dowels.
 c. Before placing concrete, secure dowel bars in place with supporting assemblies.
 d. Secure the assemblies in position on the subbase to keep the dowels from moving during concrete placement.
 e. Place dowel bars to a vertical and horizontal tolerance of plus or minus 1 in (25 mm) of the Plan position. Do not misalign the dowel bar more than 3/8 in per 1 ft (10 mm per 300 mm) in the horizontal or the vertical plane.
 f. Remove and replace dowel assemblies displaced from the Plan position more than the tolerances in Subsection 430.3.05.J.
 g. When using epoxy-coated dowels, coat the entire surface with a thin film of heavy waterproof grease.
 h. Ensure accurate positioning of transverse sawed joints by marking the position of dowel bar assembly locations.

5. Construction Joints
 Construct transverse construction joints when interrupting concreting operations for more than one hour.

 NOTE: Do not construct transverse construction joints within 10 ft (3 m) of an expansion joint, contraction joint, or transverse plane of weakness.

 a. Move an unanticipated construction joint back to the last Plan joint, if necessary. Remove and dispose of excess concrete.
 b. Form construction joints by securing in place a removable bulkhead or header board.
 1) Place the board so that it conforms to the full cross section of the pavement. Secure it flush with the subbase and parallel to the normal transverse joints.
 2) Slot or drill the board to allow placement of reinforcement as required by the Plans.

 NOTE: Do not use the roll of laitance and grout that forms in front of the paver adjacent to transverse construction joints.

 c. Consolidate to full width and depth concrete adjacent to transverse construction joints with mechanical hand-type spud vibrators. Keep one auxiliary vibrator available in case of mechanical malfunctions.
 d. Before applying the final finish to the concrete, stringline and correct variations of the concrete surface within 30 ft (9 m) on either side of the transverse construction joints. Provide equipment and tools such as:

 - Work bridges
 - Personnel
 - String lines
 - Straightedges
 - Lighting
e. While the concrete is in a plastic condition, stringline the surface longitudinally and correct surface deviations greater than 1/8 in per 15 ft (3 mm per 4.6 m) in any direction.

f. When using plain Portland cement concrete pavement, place dowel bars in construction joints. Cast half the length of each dowel bar in the concrete during each phase of joint construction.

g. When using epoxy coated dowels, coat the protruding half of each dowel bar with a thin film of heavy waterproof grease before resuming joint construction. Grease coating is not required on plastic coated dowels.

h. After the concrete has hardened, dismantle the bulkhead supporting the dowels. Do not disturb the dowels.

6. Contraction Joints

Create planes of weakness in plain Portland cement concrete pavement by cutting joints in the pavement surface. Create the planes according to the Plans as follows:

a. Saw transverse contraction joints before the pavement cracks. Begin sawing when the concrete has hardened enough to prevent surface raveling, usually 4 hours after placement, but no more than 24 hours.

b. Continue sawing day and night regardless of weather conditions.

7. Expansion Joints

Transverse expansion joints are required at locations shown on the Plans.

a. Form expansion joints by securing a removable bulkhead that conforms to the full cross section of the pavement. Use bulkheads that can construct a vertical expansion wall without offsets, indentations, or burrs.

b. Use expansion joint filler required by the Plans.

c. Furnish and install preformed joint filler in lengths equal to the pavement width or the width of one lane. Do not use damaged or repaired joint fillers.

d. Position the expansion joint filler vertically in the joint and at the proper grade. Use an installing bar or other device to secure the expansion joint filler at the proper grade and alignment.

L. Cure the Concrete

Immediately after finishing the concrete, cure the entire surface when the concrete will not mar. Use one or more of these methods:

1. Impervious Membrane Method

To use this method:

a. Spray the entire surface of the pavement with white pigmented curing compound immediately after finishing the surface and before the concrete has set.

 If the pavement is cured initially with cotton mats, burlap, or cotton fabric, apply the compound after removing the mats.

 NOTE: Do not apply curing compound during rain.

b. Use mechanical sprayers to apply curing compound under pressure at a minimum rate of 1 gal per 150 ft² (1 L per 3.5 m²).

c. Thoroughly mix the compound with uniformly dispersed white pigments.

d. During application, use a mechanical device to stir the compound continuously.

e. Use a hand sprayer (if required) to spray odd widths, odd shapes, and concrete surfaces exposed by removing forms.

f. Do not apply curing compound to the inside faces of joints to be sealed.

g. If the membrane film becomes damaged within the curing period, repair the damaged portions immediately with additional compound.

2. White Polyethylene Sheeting

To use this method:

a. Cover the top surface and sides of the pavement with polyethylene sheeting. Lap the units at least 18 in (450 mm).

b. Place the sheeting and weigh it down so that it contacts the surface.

c. Extend the sheeting beyond the edges of the slab at least twice the thickness of the pavement.

d. Unless otherwise specified, maintain the covering in place for 72 hours after placing the concrete.
3. Burlap, Cotton Fabric, or Other Methods
 Contractors may cure the pavement with burlap, cotton fabrics, or other materials if the section remains wet for the duration specified by the Engineer.

4. Cold Weather Curing
 To use this method:
 a. Remove and replace concrete that freezes before the initial set time at no cost to the Department.
 b. Use polyethylene or canvas to protect concrete that has set but is exposed to freezing temperatures within 24 hours of placement. Ensure that the internal concrete temperature is above freezing for at least 24 hours after placing the concrete.
 c. Obtain approval from the Engineer to use other protection methods such as hay, straw, or grass, or to change the duration of the protection.

M. Seal the Joints
 Clean and seal the joints according to Section 461 and the Plans.
 Immediately after completing the curing period, fill in the joints with joint sealing material before opening the pavement to traffic.
 During sealing, do not spill the material on the concrete surface. Immediately remove excess material on the concrete surface and clean the surface.
 Do not use sand or similar material as a cover for the seal. Seal joints according to the Plans.

N. Open Pavement to Traffic
 Wait to open the pavement slab to traffic, except for joint sawing vehicles, until the concrete is 14 days old unless representative compressive tests show that the slab has a compressive strength of 2,500 psi (15 MPa). Cure compressive test specimens used for traffic opening as near as possible to the roadway.
 Protect the pavement against traffic from the public, employees, and agents.
 1. Erect and maintain barricades. Employ watchmen to block traffic from the newly constructed pavement for the period required in this Specification.
 2. Arrange the barriers away from public traffic on lanes remaining open.
 3. Maintain signs that clearly indicate the lanes open to public traffic.
 4. If traffic must go across the pavement, construct crossings satisfactory to the Engineer to bridge over the concrete. Construct the crossing without additional compensation.
 5. Repair or replace pavement damaged by traffic or other causes before Final Acceptance without additional compensation. Make repairs to the Engineer’s satisfaction.

430.3.06 Quality Acceptance
The typical section sheet in the Plans gives specific uses for each concrete classification. Refer to this Specification for the minimum requirements of the concrete classifications for concrete design approval, concrete mix design proportions, batching control responsibilities, and acceptance of hardened concrete based upon compressive strength development.

A. Transit Mixed Concrete
 Ensure that transit mixed concrete meets the requirements of Subsection 500.2, “Materials.”

B. Mix Design Criteria
 Proportion concrete mix designs using the following requirements:

<table>
<thead>
<tr>
<th></th>
<th>Minimum Cement Content per Cubic Yard Concrete (CWT)</th>
<th>Max. Water-Cement Ratio (lbs/lb)</th>
<th>Design Air Content Range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>5.41</td>
<td>0.53</td>
<td>4.0 to 5.5</td>
</tr>
<tr>
<td>Class 2</td>
<td>5.64</td>
<td>0.50</td>
<td>4.0 to 5.5</td>
</tr>
<tr>
<td>Class HES</td>
<td>6.58</td>
<td>0.47</td>
<td>4.0 to 5.5</td>
</tr>
</tbody>
</table>
C. Approval of Mix Design Proportions

The Department will approve each proposed combination of materials and mix designs based on the use of approved materials, compliance with Subsection 430.3.06.B, “Mix Design Criteria,” and the following:

1. Flexural Strength

Prepare at least 9 normally cured flexural specimens and test according to AASHTO T 126 and T 97 to ensure that the demonstrated laboratory flexural design strength at 28 days meets the following minimum Design Acceptance Requirement (DAR).

NOTE: Take the 9 flexural specimens from 3 separate trial batches. Make 3 specimens from each batch.

<table>
<thead>
<tr>
<th>Class No.</th>
<th>Concrete DAR = 600 psi + .67 s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concrete DAR = 4.1 MPa + .67 s</td>
</tr>
<tr>
<td>Class No. 2</td>
<td>Concrete DAR = 700 psi + .50 s</td>
</tr>
<tr>
<td></td>
<td>Concrete DAR = 4.8 MPa + .50 s</td>
</tr>
<tr>
<td>Class HES</td>
<td>Concrete DAR = 700 psi + .50 s</td>
</tr>
<tr>
<td></td>
<td>Concrete DAR = 4.8 MPa + .50 s</td>
</tr>
</tbody>
</table>

s = a standard deviation of all 28-day flexural specimens for a given combination of materials and mix proportions prepared together. Do not use a value of “s” greater than 37 psi (255 kPa) to calculate DAR.

2. Compressive Strength

Prepare and test at least 6 cylinders according to AASHTO T 126 and T 22 to ensure that the demonstrated laboratory compressive strength at 28 days for Class 1 and 2 concrete exceeds the minimum Job Performance Value (JPV).

Produce similar evidence that demonstrates strength development at 72 hours for Class HES concrete.

Class 1	Concrete JPV Minimum = 3,000 psi + .18 R
	Concrete JPV Minimum = 20 MPa + .18 R
Class 2	Concrete JPV Minimum = 3,500 psi + .21 R
	Concrete JPV Minimum = 25 MPa + .21 R
Class HES	Concrete JPV Minimum = 3,000 psi + .05 R
	Concrete JPV Minimum = 20 MPa + .05 R

R = the difference between the largest observed value and the smallest observed value for all compressive strength specimens at 28 days for a combination of materials and mix proportions prepared together.

a. Class 1 and 2 Concrete

1) Submit early compressive strength test results made at 24 hours plus or minus 30 minutes for at least 12 cylinders. Prepare and test according to ASTM C 684, Method A.

2) Prepare cylinders from three separate trial batches, and make four specimens from each batch.

3) Determine the average strength, standard deviation, and coefficient of variation for the design according to ACI 214. Do not use designs that produce a coefficient variation greater than 10 percent.
b. Class HES Concrete
 Submit evidence that designs proposed for use as Class HES concrete have compressive strength development potential at 72 hours of 3,000 psi (20 MPa) plus .05 R.

D. Field Adjustments on Concrete Mixes
 Determine the aggregate surface moisture and apply free moisture corrections to the approved mix design. The Engineer will verify that the corrections are made properly.
 Adjust the approved proportions of the fine and coarse aggregate and water as desired, provided:
 1. The cement factor is not decreased.
 2. The water-cement ratio is not increased.
 3. Adjustments produce concrete proportions according to this Specification.
 4. The Engineer is notified before use.

E. Concrete Mix Tolerances
 Keep concrete consistency and air content to vary within the following limits:
 1. Consistency
 Immediately before placement, use GDT 27 to determine concrete slump. Do not use concrete for Portland cement concrete pavement with a slump value greater than 2.5 in (65 mm).
 2. Air Content
 Immediately before placement, use GDT 26, GDT 28, or GDT 32 to determine the air content of the concrete. Concrete will not be accepted that has an air content outside of these limits:

<table>
<thead>
<tr>
<th>Lower acceptance limit</th>
<th>Upper acceptance limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.0%</td>
</tr>
<tr>
<td></td>
<td>6.5%</td>
</tr>
</tbody>
</table>

F. Concrete Strength Acceptance
 The concrete strength of Portland cement concrete pavement is accepted based upon the compressive strength development at a specific time.
 Strength development is determined by a lot acceptance plan. The pavement is subdivided into separate concrete lots of approximately 5,334 yd³ (4400 m³) placed continuously, except for required work stoppages.
 1. Ramps
 Ramps may be set apart as individual lots. Include acceleration or deceleration lanes, wedges, or other varied width sections in other lots if the total paving quantity is not greater than 7,500 yd³ (6300 m³). The Engineer will randomly select three production units from each lot for strength determination tests.
 2. Class 1 and 2 Concrete
 a. Cast at least two cylinder sets for each production unit selected for acceptance testing. A set is two 6 by 12 in (150 by 300 mm) cylinders. Cure one set according to ASTM C-684, Method A. Cure the other set according to AASHTO T 23.
 b. After curing, test each concrete cylinder according to AASHTO T 22. The test result is the average strength of the two cylinders.
 3. Acceptance Based on 24-Hour Strength
 Concrete may be accepted by early strength determinations. However, concrete will not be accepted based on early strength development when the difference between the largest observed strength value and the smallest observed strength value exceeds 35 percent of the average.
 a. Compute the average (X) and the range (R) from the three acceptance tests results.
 b. Have the Engineer establish the minimum early strength (S) to be used for concrete acceptance.
 The minimum early acceptance strength is the average strength at 24 hours plus or minus 30 minutes of the laboratory design less 1.5 times the standard deviation of the laboratory design.
 c. If the average (X) of the three lot acceptance tests equal or exceed the value (S), the lot will be accepted at the full contract price, and 28 day cylinders for this lot can be discarded.
430.3.06

d. If the average of the three lot acceptance tests fails to meet the acceptance limit, the Engineer will contact the Contractor immediately. The Contractor may immediately remove the concrete in the lot or leave it in place pending acceptance or rejection from the 28-day strength test results.

4. Acceptance Based on 28-Day Strength Tests
When a lot is potentially defective based on the early strength determinations and the Contractor leaves the lot in place to be judged by the 28-day strength tests results, retain and cure all 3 sets of 28-day cylinders.

a. If the average 28-day strength of the lot does not meet the lower acceptance limit for a 0.70 pay factor, the Engineer may either:
 □ Order removal of the concrete in the lot
 □ Apply a pay factor of 0.50 for the lot

b. The Unit Price of concrete pavement will be reduced for areas represented by each lot that does not meet the specified compressive strength at 28 days according to the following schedule:

<table>
<thead>
<tr>
<th>Pay Factor Schedule for Strength Determinations at 28 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance Limits for Pay Factor Levels</td>
</tr>
<tr>
<td>1.00 LAL*</td>
</tr>
<tr>
<td>Concrete Class 1, 3,000 psi (20 MPa) + 0.18 R</td>
</tr>
<tr>
<td>Concrete Class 2, 3,500 psi (25 MPa) + 0.21 R</td>
</tr>
</tbody>
</table>

* Lower acceptance limit (LAL)

5. Classification HES Concrete
Cast at least two sets of cylinders for each production unit selected for acceptance testing.

a. Cure one set for 72 hours under conditions similar to those under which the pavement is cured. Cure the other set of cylinders for 28 days according to AASHTO T 23.

b. Test each cylinder according to AASHTO T 22 when the specified curing is complete. The test results are the average strength of the two cylinders.

c. The Engineer may accept the concrete at full contract price if the average of the three 72-hour test results exceeds the JPV established in Subsection 430.3.06.C.

d. When the 72-hour strength tests determine that a lot is potentially defective, the Engineer will immediately notify the Contractor. At this time, the Engineer may require the immediate removal of the pavement in question.

 If the Engineer does not require immediate removal of the pavement, select removal or acceptance on the basis of the 28-day strength development.

e. When the 72-hour strength tests determine that a lot is potentially defective and the concrete is retained for subsequent judgment, conduct acceptance tests at 28 days on selected cylinders cured according to AASHTO T 23.

 Questionable lots will be accepted based on the 28-day strength and provisions for testing, computations, and payment for Classification No. 2 concrete in Subsection 430.3.06.F.2, “Class 1 and 2 Concrete.”

G. Smoothness

Pavement smoothness will be accepted only after the Engineer determines that the work was performed according to this and other Specifications. The completed pavement, including corrective work, must meet the applicable profile index value requirements.

Perform smoothness testing as follows:

1. Ensure that the mainline riding surface produces a profile index value no greater than 7 in/mile (100 mm/ km) on each travel lane. Conduct tests according to GDT 78.

2. Determine a profile index value for each tracing for each 0.25 mile (0.5 km) segment. Correct individual bumps or depressions that exceed the blanking band by more than 0.2 in (5 mm) at no additional expense to the Department.

3. If a paving operation exceeds a profile index value of 7 in/mile (100 mm/km) per lane for any segment, suspend the paving operation and take corrective action approved by the Engineer.
4. Use GDT 78 to test ramps and acceleration and deceleration lanes to attain an average profile index value no greater than 12 in/mile (200 mm/km) by Rainhart Profilograph for the entire section length. Correct individual bumps or depressions that exceed 0.2 in (5 mm) from the blanking band at no additional expense to the Department.

5. Take pavement profiles that are 4 ft (1.2 m) away from and parallel to the new pavement edges on pavements greater than 16 ft (4.8 m) wide and up to 24 ft (7.2 m) wide. Test pavement 6 to 16 ft (1.8 to 4.8 m) wide parallel to and at the center line of the pavement section.

6. Begin the 0.25 mile (0.5 km) record segments at the first day’s placement and continue until Project completion, except as noted in this Specification.

7. Combine pavement sections less than 700 ft (200 m) long that approach a bridge. Use the previous 0.25 mile (0.5 km) segment to determine the profile index. Calculate as a separate record segment 700 ft (200 m) sections or greater that approach a bridge. This exception applies also to sections at Project limits.

8. Determine a separate profile index value using GDT 78 for the 100 ft (30 m) of roadway approaching each end of a bridge up to and including the joint with the approach slab. Average the profile index from the right and left wheelpaths for each 100 ft (30 m) segment for each lane for each approach. The average profile index value shall not exceed 30 in/mile (500 mm/km).

9. Before paving farther, perform and evaluate profiles from the first day’s placement.
 a. After completing and evaluating this test run, adjust equipment as required by the Engineer to improve smoothness before paving continues.
 b. Complete the report form furnished by the Engineer and attach to the profilograph tracings of each day. Include the following information in each trace:
 - Project number
 - Beginning and ending station numbers
 - 500 ft (150 m) paving stations
 - Traffic direction
 - Lane number
 - Date paved and tested
 - Construction joint locations

 Have the certified profilograph operator obtain and evaluate the traces and submit the evaluation to the Engineer. Provide results no later than the end of the second work day following placement.

10. For mainline pavement, correct 0.25 mile (0.5 km) segments not meeting the profile index requirement using one of these methods:
 a. Grind the entire lane surface of the 0.25 mile (0.5 km) segment to a profile index value less than 7 in/mile (100 mm/km). Use equipment that meets requirements in Section 431.
 b. Grind roughness in small segment areas no more than 50 ft (15 m) of full lane width to produce a profile index value no greater than 7 in/mile (100 mm/km).
 If more than 50 ft (15 m) of grinding is required, grind the complete 0.25 mile (0.5 km) segment according to Method a, above.

11. Correct ramps and acceleration and deceleration lanes that do not meet the profile index requirement to a profile index no greater than 12 in/mile (200 mm/km). Prevent individual bumps from exceeding 0.2 in (5 mm) from the blanking band. Use equipment specified in Section 431.

12. Correct 100 ft (30 m) bridge approach sections that do not meet the profile index requirement.
 a. Grind according to Section 431.
 b. If appropriate, use a bump grinder to correct bumps with a baseline of 5 ft (1.5 m) or less.
 c. Grind the full lane width even when grinding including individual bumps.
 d. Retest pavement segments containing corrective slab replacements for Final Acceptance.

13. Correct segments that do not meet the profile index criteria of this Specification at no additional expense to the Department. Retest segments after correction with the Rainhart Profilograph.

14. Notify the Engineer before profile testing. The Engineer will verify the results by randomly selecting a minimum of 1 out of every 10 consecutive record segment profiles to compute the profile index and to compare with Contractor results.
The Engineer may conduct profilograph tests at any time to verify Contractor results. The Department may test record segments if the Engineer determines that the Contractor test results are inaccurate. See Subsection 430.5.01, “Adjustments.”

H. Thickness

The Engineer shall determine the pavement thickness using average core measurements tested according to GDT 31. The following table contains units for paving widths:

<table>
<thead>
<tr>
<th>Paving Widths – Feet (meters)</th>
<th>Length of Unit (Bridges Excluded)—Feet (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 24.0 (0 – 7.2)</td>
<td>1000 (300)</td>
</tr>
<tr>
<td>24.1 – 36.0 (7.2 – 10.8)</td>
<td>750 (225)</td>
</tr>
<tr>
<td>36.1 – 48.0 (10.8 – 14.4)</td>
<td>500 (150)</td>
</tr>
</tbody>
</table>

Areas of equal depth in intersections, entrances, crossovers, ramps, etc. are considered one unit, and the thickness of each unit is determined separately. If appropriate, include small irregular areas as part of another unit.

1. Take one core for each 2,000 yd³ (1675 m³) of pavement, or fraction of pavement, in each unit where the Engineer selects.
 The Department will take one core at random in each unit.
 a. When the core measurement is deficient 0.2 in (5 mm) or less from the Plan thickness, full payment is made.
 b. When the measurement is deficient more than 0.2 in (5 mm) and not more than 1 in (25 mm) from the plan thickness, two additional cores are secured from the unit and used to determine the average thickness.
 c. A random selection process determines where to secure additional cores. However, do not secure cores within 50 ft (15 m) of other thickness measurement cores. The adjusted Unit Price in Subsection 430.5.01.A, “Concrete Pavement Thickness Deficiency” is used to determine payment for the unit.

2. Consider pavement more than 0.2 in (5 mm) thicker than the specified thickness to be the specified thickness plus 0.2 in (5 mm). Measurements more than 1 in (25 mm) less than the specified thickness are not included in the average.

3. When the core measurement is at least 1 in (25 mm) less than the specified thickness:
 a. Determine the pavement thickness in the affected location by taking additional cores at no less than 10 ft (3 m) intervals parallel to the center line in each direction.
 b. Continue until a core is found that is not deficient by more than 1 in (25 mm).
 c. Have the Engineer evaluate areas more than 1 in (25 mm) deficient in thickness. Remove deficient areas and replace with concrete pavement of the thickness shown on the Plans, if the Engineer requires.

Exploratory cores for deficient thickness are not used in averages for adjusted Unit Price.

430.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

430.4 Measurement
The area that will be paid for under this Item is the number of square yards (meters) of concrete pavement accepted as measured complete in place. The pavement width measured is shown on the typical cross section of the Plans, including additional widening as required or widening directed in writing by the Engineer.

The length is measured along the pavement surface.

Work is accepted lot-to-lot according to Section 106 and this Specification.

430.4.01 Limits
General Provisions 101 through 150.

430.5 Payment
Concrete pavement completed and accepted that meets the Specification requirements will be paid for at the full Contract Unit Price per square yard (meter).
Payment for other accepted concrete pavement will be based on an adjusted Unit Price per square yard (meter). This price will be adjusted for payment for concrete pavement accepted but deficient in depth or compressive strength at 28 days. Price adjustments are specified in Subsection 430.5.01, “Adjustments.”

No additional payment over the Contract Unit Price will be made for pavement units with an average thickness greater than on the Plans. No additional payment over the Contract Unit Price will be made for a lot of concrete that develops more strength at 28 days than the compressive strength established in Subsection 430.3.06.F, “Concrete Strength Acceptance.”

Payment is full compensation for furnishing and placing materials, reinforcements, dowel and joint materials, supplies, and incidentals to complete the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 430</th>
<th>Plain Portland cement concrete pavement, class no. 1 concrete _____ in (mm) thick</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 430</td>
<td>Plain Portland cement concrete pavement class no. 2 concrete _____ in (mm) thick</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 430</td>
<td>Plain Portland cement concrete pavement, class HES concrete _____ in (mm) thick</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 430</td>
<td>Continuously reinforced concrete pavement, class no. 1 concrete _____ in (mm) thick</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 430</td>
<td>Continuously reinforced concrete pavement, class no. 2 concrete _____ in (mm) thick</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 430</td>
<td>Continuously reinforced concrete pavement, class HES concrete _____ in (mm) thick</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

430.5.01 Adjustments

The Contract Unit Price per square yard (meter) of concrete pavement will be adjusted for concrete pavement accepted but deficient in thickness or compressive strength at 28 days. Adjusted Unit Prices per square yard (meter) of concrete pavement are based on one or both of the following conditions:

A. Concrete Pavement Thickness Deficiency

1. If the core is deficient 0.2 in (5 mm) or less from the Plan thickness, full payment will be made. If the core is deficient in thickness more than 0.2 in (5 mm), but not more than 1 in (25 mm) from the Plan thickness, 2 additional cores will be taken from the area.

a. If the average measurement of these 3 cores is deficient 0.2 in (5 mm) or less from the Plan thickness, full payment will be made.

b. Where the average pavement thickness is deficient by more than 0.2 in (5 mm), but not more than 1 in (25 mm), payment will be made at a portion of the Unit Price per square yard (meter) of concrete pavement as shown in the following table:

<table>
<thead>
<tr>
<th>Concrete Pavement Deficiency</th>
<th>Proportional Part of Contract Price Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiency in Thickness Determined by Cores–in (mm)</td>
<td>100 percent</td>
</tr>
<tr>
<td>0.0 through 0.20 (0.0 through 5.0)</td>
<td>100 percent</td>
</tr>
<tr>
<td>0.21 through 0.25 (5.1 through 6.4)</td>
<td>95 percent</td>
</tr>
<tr>
<td>0.26 through 0.30 (6.5 through 7.6)</td>
<td>91 percent</td>
</tr>
<tr>
<td>0.31-0.40 (7.7 through 10.0)</td>
<td>86 percent</td>
</tr>
<tr>
<td>0.41-0.50 (10.1 through 12.8)</td>
<td>80 percent</td>
</tr>
<tr>
<td>0.51-0.75 (12.9 through 19.2)</td>
<td>70 percent</td>
</tr>
<tr>
<td>0.76-1.00 (19.3 through 25.0)</td>
<td>60 percent</td>
</tr>
</tbody>
</table>

c. When the thickness of pavement is deficient by more than 1 in (25 mm) and the Engineer determines that the deficient area should not be removed or replaced, 50 percent of the Contract Unit Price will be paid.
2. No payment or compensation for cost will be made for removing concrete according to this provision.

B. Compressive Strength Deficiency

When the compressive strength at 28 days, expressed as an average strength (X) for a lot of concrete pavement is less than the values established by the Pay Factor Table, payment will be made at a reduced Unit Price per square yard (meter) as shown in the Pay Factor Table.

C. Combined Deficiencies

When a pavement section is deficient in thickness and compressive strength, the Contract Unit Price will be adjusted by the total reduction from applying the percentages in Subsections 430.5.01.A and Subsection 430.5.01.B, above.

For combined deficiencies of 50 percent or more, the Engineer may leave the pavement in place at the combined payment reduction or order the deficient areas removed and replaced at no additional cost to the Department.

If the Engineer orders removal of the pavement, payment will not be made for the original pavement or removal. Pavement replaced will be paid for at the appropriate Unit Price.

D. Profilograph Testing

If, based on the Department’s profilograph tests, the Engineer determines that the Contractor profilograph test results are inaccurate, the Contractor will be charged for profilograph testing at $500 for each trace mile ($250 for each trace kilometer), with a minimum charge of $500.

Section 431—Grind Concrete Pavement

431.1 General Description
This work includes grinding existing Portland cement concrete pavement to eliminate joint faulting or to restore proper drainage and riding characteristics to the pavement surface. Perform the work according to these Specifications and the Plans.

431.1.01 Definitions
General Provisions 101 through 150.

431.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 GDT 78
 GDT 126

431.1.03 Submittals
General Provisions 101 through 150.

431.2 Materials
General Provisions 101 through 150.

431.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

431.3 Construction Requirements
431.3.01 Personnel
General Provisions 101 through 150.
431.3.02 Equipment

A. Grinding Equipment

Use power driven, self-propelled grinding equipment with these characteristics:
- Diamond blades designed to smooth and texture Portland Cement concrete pavement
- Effective wheel base of at least 12 ft (3.6 m)
- Pivoting tandem bogey wheels at the front of the machine
- Rear wheels arranged to travel in the track of the freshly cut pavement
- Grinding head with the center no further than 3 ft (900 mm) forward from the center of the back wheels

Ensure that the equipment:
- Cuts or planes at least 3 ft (900 mm) wide
- Operates without encroaching on traffic movement outside the work area
- Grinds the surface without causing spalls at cracks, joints, or other locations

Periodically check the equipment to ensure that it is in proper working order, especially the wheel “roundness” on the grinding equipment. Immediately correct “out-of-round” wheels.

B. Rainhart Profilograph

Use the Rainhart Profilograph to test ground pavement surfaces on ramps, acceleration and deceleration lanes, and other areas not suitable for testing with the Road Profiler for Pavement Profile Index value.

431.3.03 Preparation

Complete spall repairs, slab replacements, and pressure grouting in the area to be ground before beginning grinding operations.

431.3.04 Fabrication

General Provisions 101 through 150.

431.3.05 Construction

Grind the pavement surface areas designated on the Plans. Only grind bridge decks and roadway shoulders when they are indicated on the Plans, required to promote drainage, or required to conform to smoothness requirements if the work is new construction or bridge decks.

Grind the surface areas as follows:

1. Schedule the construction operation to produce a uniform finished surface.
2. Maintain a constant cross slope between grinding extremities in each lane to ensure that grinding provides positive lateral drainage.
3. Transition auxiliary or ramp lane grinding from the mainline edge and at the end of the cut to provide positive drainage and acceptable riding surface.
4. Grind the entire area designated on the Plans until the pavement surfaces of the adjacent sides of transverse joints and cracks are in the same plane.
5. Eliminate the faulting at joints and cracks, and ensure that the overall riding characteristics are within the limits specified.
6. Texture the pavement surface, but do not grind extra depth to eliminate minor depressions.
7. Remove grinding residue before it is blown by traffic action or wind. Do not allow residue to flow into gutters, drainage facilities, or across lanes used by public traffic.
8. Ensure that the operation produces pavement that conforms to the typical cross section and requirements in Subsection 431.3.06, “Quality Acceptance.”

431.3.06 Quality Acceptance

Produce a pavement surface that is true to grade and uniform with a longitudinal line-type texture.

A. Texture

Ensure that the line-type texture contains corrugations that are parallel to the outside pavement edge and have a narrow ridge corduroy-type appearance.
B. Grooves

Ensure that the peaks of the ridges are 1/16 in, ± 1/32 in (1.6 mm, ± 0.8 mm) higher than the bottoms of the grooves with 57 to 60 (185 to 200) evenly spaced grooves per foot (meter). Select the number of grooves per foot (meter) to produce the surface finish for each aggregate type that is in the concrete surface on the project. Groove spacing that does not meet the specified surface finish will not be accepted.

C. Finished Pavement Surface

Correct deficiencies in the final surface finish from improper operation or equipment at no expense to the Department. This includes, but is not limited to:

- Pavement corrugation due to “out of round” wheels on grinding equipment
- Improper cutting head operations that cause the head to ride in and out of the pavement when encountering light and heavy cuts
- Depressions created from improper starting and stopping during the cutting operation
- Unground ridges left in the pavement from defective blades in the grinding head

Closely check the ground pavement surface during grinding, and take corrective action if any of the above deficiencies occur. The finished pavement surface will be measured for riding quality using the Laser Road Profiler according to test procedure GDT 126.

Follow these requirements to ensure that the grinding produces an acceptable riding surface:

1. Ensure that the ground pavement surfaces on the mainline meet a pavement ride index value not exceeding 900 on each 0.25 mile segment (0.5 km segment) for each vehicle lane.
2. Conduct tests according to GDT 126. Calculate and report smoothness values for each 0.25 mile (0.5 km) section of each vehicle lane.
3. Regrind areas that do not meet the smoothness requirements at no additional cost to the Department.

D. Regrinding

To regrind areas to meet the smoothness or final surface finish:

1. Regrind the entire lane width in the area to be corrected. Regrind of just a portion of the lane width will not be permitted
2. Perform spot regrinding on moderate to major deviations throughout the deficient 0.25 mile (0.5 km) section of the lane to meet the smoothness and final surface finish requirements. Spot regrinding of just the largest deviations of a portion of the deficient 0.25 mile (0.5 km) lane section will not be permitted.

The Engineer may require profilograph traces before regrinding to locate deviations within a failed area. The Department will perform profilograph testing according to GDT 78. Provide traffic control for profilograph testing at no cost to the Department.

The Engineer may require profilograph testing of ground surfaces on the mainline that meet the smoothness requirements. Testing will be performed according to GDT 78 to isolate locations with individual bumps or depressions greater than 0.20 in (5 mm) outside the blanking band. Perform corrective grinding to eliminate these bumps or depressions at no additional cost to the Department.

Ensure that the Pavement Profile Index value readings on ramps, acceleration and deceleration lanes, and other areas not suitable for Road Profiler testing do not exceed 7 in/mile (100 mm/km) when tested in accordance with GDT 78. If they are exceeded:

- Regrind the areas that exceed this value at no additional cost to the Department.
- Regrind individual bumps or depressions greater than 0.20 in (5 mm) outside the blanking band on the profilograph trace at no additional cost to the Department.

Inspect transverse joints and random cracks to ensure that adjacent surfaces are in the same plane. Grind surface misalignments greater than 1/16 in (2 mm) of the surface planes on adjacent sides of the joints or cracks until the surfaces are flush.

E. Pavement Transverse Slope

Ensure that the pavement transverse slope is uniform and that depressions or slope misalignments are not greater than 1/8 in. in 12 ft (3 mm in 3.6 m) when tested with a straightedge placed perpendicular to the centerline.
1. Minimize vertical alignment mismatches between adjacent cuts, 1/16 in (2 mm) maximum.
2. Check the transverse slope closely as the work progresses. Correct mismatches immediately.
3. If one or more lanes are not to be ground, ensure that the vertical interface edge between the ground and unground lanes is not misaligned more than 1/8 in. (3 mm).
 Feather the cut from the ground lanes into the unground lanes to meet this requirement.

431.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

431.4 Measurement
Pavement grinding on existing pavements is measured by the square yard (meter). Determine the quantity of pavement grinding by multiplying the finished ground width by the total length ground.

431.4.01 Limits
General Provisions 101 through 150.

431.5 Payment
The Contract Price per square yard (meter) for grinding concrete pavement is full compensation for furnishing labor, materials, tools, equipment, and incidentals grinding the existing surface, removing residue, and cleaning the pavement according to these Specifications and as shown on the Plans.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 431</th>
<th>Grind concrete pavement</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
</table>

431.5.01 Adjustments
General Provisions 101 through 150.

Section 432—Mill Asphalactic Concrete Pavement

432.1 General Description
This work includes milling existing asphalactic concrete pavement to restore proper grade and/or transverse slope, removing structurally unsound material, providing clearance for overlay in curb and gutter sections, or other purposes deemed necessary due to existing conditions. Perform the work according to these Specifications and Plan details.

432.1.01 Definitions
General Provisions 101 through 150.

432.1.02 Related References
A. Standard Specifications
 Section 109—Measurement and Payment
B. Referenced Documents
 GDT 93

432.1.03 Submittals
General Provisions 101 through 150.

432.2 Materials
432.2.01 Delivery, Storage, and Handling
When specified, stockpile the milled material at locations shown on the Plans.
 1. Uniformly stockpile the materials approximately 6 – 8 ft (1.8 – 2.4 m) high.
 2. Maintain the existing drainage pattern of water from the stockpile storage area.
 3. Dress the reclaimed asphalt area to drain rainwater from the material.
4. Obtain the Engineer’s approval of the stockpile locations and the method used to prevent milled material degradation, segregation, and reconsolidation.

432.3 Construction Requirements

432.3.01 Personnel
General Provisions 101 through 150.

432.3.02 Equipment
A. Milling Equipment

Use power-driven, self-propelled milling equipment that is the size and shape that allows traffic to pass safely through areas adjacent to the work. Also, use equipment that is:

- Designed to mill and remove a specified depth of existing asphalt paving
- Equipped with grade and slope controls operating from a stringline or ski and based on mechanical or sonic operation
- Capable of removing pavement to an accuracy of 1/8 in (3 mm)
- Furnished with a lighting system for night work, as necessary
- Provided with conveyors capable of side, rear, or front loading to transfer the milled material from the roadway to a truck

B. Dust Control

Provide power brooms, vacuum sweepers, power blowers, or other means to remove loose debris or dust. Do not allow dust control to restrict visibility of passing traffic or to disrupt adjacent property owners.

432.3.03 Preparation
General Provisions 101 through 150.

432.3.04 Fabrication
General Provisions 101 through 150.

432.3.05 Construction
A. Milling Operation

Follow the Plans to mill the designated areas and depths including bridge decks, shoulders, and ramps, as required. Ensure the following requirements are met:

1. Schedule the construction operation. Use milling methods that will produce a uniform finished surface and maintain a constant cross slope between extremities in each lane.
2. Provide positive drainage to prevent water accumulation on the milled pavement, as shown on the Plans or directed by the Engineer.
3. Bevel back the longitudinal vertical edges greater than 2 in (50 mm) that are produced by the removal process and left exposed to traffic. Bevel them back at least 3 in for each 2 in (75 mm for each 50 mm) of material removed. Use an attached mold board or other approved method.
4. When removing material at ramp areas and ends of milled sections, taper the transverse edges 10 ft (3 m) to avoid creating a traffic hazard and to produce a smooth surface.
5. Protect with a temporary asphaltic concrete tie-in (paper joint) vertical edges at other areas such as bridge approach slabs, drainage structures, and utility appurtenance greater than 1/2 in that are left open to transversing vehicles. Place the temporary tie-in at taper rate of at least 6 to 1 horizontal to vertical distance.
6. Remove dust, residue, and loose milled material from the milled surface. Do not allow traffic on the milled surface and do not place asphaltic concrete on the milled surface until removal is complete.

The reclaimed asphaltic pavement becomes the Contractor’s property unless otherwise specified.

432.3.06 Quality Acceptance

Ensure that the milling operation produces a uniform pavement texture that is true to line, grade, and cross section.

Milled pavement surface acceptance testing will be performed using the Laser Road Profiler method in GDT 126. Milled pavement will be evaluated on individual test sections, normally 1 mile (1 km) long.
When the milled surface is to be left as the final wearing surface, ensure that indices do not exceed:

- 1025 on milled pavement surfaces on interstates when the milled surface will be the final wearing surface
- 1175 for other on-system routes when the milled surface will be the final wearing surface
- 1175 on Interstates and 1325 for other on-system routes if the milled surface will be overlaid

Remill mile (kilometer) areas to meet the specified limits when the indices are exceeded. Remill at no additional cost to the Department.

Milled pavement surfaces are subject to visual and straightedge inspection. Keep a 10 ft (3 m) straightedge near the milling operation to measure surface irregularities of the milled pavement surface. Remill irregularities greater than 1/8 in per 10 ft (3 mm in 3 m) at no additional cost to the Department.

Ensure that the cross slope is uniform and that no depressions or slope misalignments greater than 1/4 in per 12 ft (6 mm in 3.6 m) exist when the slope is tested with a straightedge placed perpendicular to the center line.

432.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

432.4 Measurement
Milling existing asphaltic concrete pavement is measured by the square yard (meter) as described in Subsection 109.01, “Measurement and Quantities.”

432.4.01 Limits
General Provisions 101 through 150.

432.5 Payment
Milling asphaltic concrete pavement, measured as specified, will be paid for at the Contract Unit Price bid per square yard (meter). The price bid for this item includes the credit value of all Reclaimed Asphalt Pavement (RAP) recovered, and no adjustment in the unit price for this item or other items will be considered for variations in the amount of RAP actually recovered.

Payment is full compensation for furnishing equipment, milling, hauling, stockpiling milled material, and satisfactorily performing the work.

Payment will be made under:

| Item No. 432 | Mill asphaltic concrete pavement, ___ in (mm) depth | Per square yard (meter) |

432.5.01 Adjustments
General Provisions 101 through 150.

Section 433—Reinforced Concrete Approach Slabs

433.1 General Description
This work includes building reinforced concrete approach slabs for bridges on completed and accepted subgrades.

433.1.01 Definitions
General Provisions 101 through 150.

433.1.02 Related References
A. Standard Specifications
 - Section 430—Portland Cement Concrete Pavement
 - Section 441—Miscellaneous Concrete
 - Section 500—Concrete Structures
 - Section 511—Reinforcement Steel
 - Section 621—Concrete Barrier
433.1.03

Section 853—Reinforcement and Tensioning Steel

B. Referenced Documents

General Provisions 101 through 150.

433.1.03 Submittals

General Provisions 101 through 150.

433.2 Materials

Ensure that materials meet these requirements:

A. Concrete

Use concrete specified as Class A concrete (see Section 500) or pavement concrete (see Section 430).

B. Steel Bars for Concrete Reinforcement

See Subsection 853.2.01.

C. Forms

Use steel or wood forms that meet the requirements of Section 430 or Section 500.

D. Concrete and Reinforcement Steel

Ensure that concrete for approach slabs is proportioned, mixed, placed, and cured according to Section 430 or that it meets the requirements for Class A concrete (Section 500).

Place reinforcement steel according to Section 511.

433.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

433.3 Construction Requirements

433.3.01 Personnel

General Provisions 101 through 150.

433.3.02 Equipment

General Provisions 101 through 150.

433.3.03 Preparation

General Provisions 101 through 150.

433.3.04 Fabrication

General Provisions 101 through 150.

433.3.05 Construction

Construct the approach slab before placing the adjacent roadway paving, unless otherwise specified in the Plans.

A. Approach Slabs

Finish, cure, and protect the approach slabs as specified in Subsection 500.3.05.Q, “Place Concrete” and Subsection 500.3.05.Z.3, “Bridge Deck Curing.”

B. Curbs

Construct curbs of the dimensions required monolithic with the approach slab, when specified on the Plans. Place, finish, and cure the curb as specified in Section 441.

C. Barriers

Construct and finish the barriers according to Section 500, Section 621 and Plan details. Use concrete that is Class A or better and proportioned and mixed according to Section 500.
D. Final Finish

When the concrete has hardened and standing water and moisture sheen have disappeared, give the concrete a final finish, manually or mechanically, according to requirements in Section 500 for bridge decks.

433.3.06 Quality Acceptance
The riding quality of approach slabs will be tested with the Rainhart Profilograph as part of the bridge deck according to Subsection 500.3.06.E, “Ride Quality Test”.

433.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

433.4 Measurement
The quantity for payment for reinforced concrete approach slabs is the number of square yards (meters) complete in place and accepted. The pay area is computed by the overall length and width of the approach slabs as shown on the Plans, with no deductions for areas with end posts and expansion joints.

433.4.01 Limits
Curbs, barriers, and reinforcing steel are not measured for payment, but their cost is included in the price bid for the individual Contract item.

433.5 Payment
The area measured will be paid for at the Contract Unit Price per square yard (meter).

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 433</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 433</td>
<td>Reinforced concrete approach slab</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 433</td>
<td>Reinforced concrete approach slab, including curb</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 433</td>
<td>Reinforced concrete approach slab, including barrier</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 433</td>
<td>Reinforced concrete approach slab, including sloped edge</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

433.5.01 Adjustments
General Provisions 101 through 150.

Section 434—Asphalt Paved Ditches

434.1 General Description
This work includes paving ditches, spillways, and other similar waterways with hot asphalt mixture.

434.1.01 Definitions
General Provisions 101 through 150.

434.1.02 Related References
A. Standard Specifications
 Section 400—Hot Mix Asphalitic Concrete Construction
 Section 802—Aggregates for Asphalitic Concrete
 Section 820—Asphalt Cement
 Section 828—Hot Mix Asphalitic Concrete Mixtures

B. Referenced Documents
 GDT 7
 GDT 66
 GDT 115
434.1.03 Submittals
General Provisions 101 through 150.

434.2 Materials
Ensure that materials meet the requirements of Section 802, Section 820, and Section 828.

434.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

434.3 Construction Requirements

434.3.01 Personnel
General Provisions 101 through 150.

434.3.02 Equipment
Use equipment that meets the requirements in Section 400 for mixing and transporting the asphaltic concrete.

A. Hand-Operated Roller
 Use a hand-operated roller that weighs at least 300 lbs (135 kg).

B. Small Power Roller
 Use a small power roller satisfactory to the Engineer.

C. Vibratory Device
 Use a vibratory device satisfactory to the Engineer.

D. Hand Tamper
 Use hand tampers to compact areas that cannot be reached with rollers or vibrators.

E. Forms
 Use forms that are satisfactory to the Engineer, if required.

434.3.03 Preparation
General Provisions 101 through 150.

434.3.04 Fabrication
General Provisions 101 through 150.

434.3.05 Construction
Use ditch paving construction methods that allow water to flow continuously and that keep the ditch unobstructed to prevent ponding or standing water. Protect the ditch paving areas under construction from flowing water, elements, and other disturbances until the materials are fully set.

A. Develop the Asphalt Mixture
 Use a uniform, homogeneous asphalt mixture of aggregate and bituminous material. A job mix formula is not required; however, base the mixture on an approved design analysis that meets the requirements of either a 4.75 mm mixture or 9.5 mm Superpave mixture (Level A) as described in Section 828 except that testing for moisture susceptibility, GDT 66 and rutting susceptibility, GDT 115, will not be required. The asphalt content for ditch paving shall be set 1.0% higher than the optimum asphalt content determined during the mix design analysis. Control the mixture within the mixture control tolerances for the respective mix given in Section 828. Do not continue operation outside the mixture control tolerances.

B. Form the Subgrade
 Form the subgrade as follows:
 1. Form the subgrade at the required depth below and parallel to the finished surface of the ditch or waterway required by the Plans.
 2. Remove soft, yielding, or otherwise unsuitable material and substitute with suitable material.
3. Compact the subgrade to 90 percent of the maximum dry density as determined by GDT 7. Finish to a smooth, firm surface.
4. If shown on the Plans, place and compact the subgrade material to the required thickness.

C. Stake the Forms

If forms are required, stake them securely into position at the correct line and elevation.

D. Place the Asphalt Mixture

Place the mixture on the prepared subgrade only when the subgrade is properly prepared and weather conditions are suitable. Place as follows:

1. Place the mixture within the temperature limits of 275 °F to 325 °F (135 °C to 160 °C).
2. Smooth the mixture by raking or screeding.
3. Thoroughly compact the mixture as follows:
 a. Roll with a hand-operated roller, small power roller, or vibratory device satisfactory to the Engineer.
 b. Use hand tampers to compact areas that cannot be reached with rollers or vibrators.
 c. Compact until the surface is smooth and even and the texture is dense and uniform. The thickness, lines, grades, and cross section shall be as shown on the Plans.
4. Remove forms, if used, and replace with compacted backfill. Shape the shoulders and slopes and complete them to conform to the required section.

434.3.06 Quality Acceptance

General Provisions 101 through 150.

434.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

434.4 Measurement

A. Asphalt Ditch Paving

Asphalt for ditch paving is measured in tons (megagrams) as mixed, placed, and accepted. The actual weight is determined by using an approved motor truck scale to weigh each loaded vehicle as the material is hauled to the roadway. The weight measured includes all materials.

B. Incidental Items

Incidental items such as preparing the subgrade and excavating unsuitable material and backfill are not measured for separate payment, unless otherwise specified. Those costs are included in the Unit Price Bid.

434.4.01 Limits

General Provisions 101 through 150.

434.5 Payment

A. Asphalt Ditch Paving

Asphalt for ditch paving will be paid for at the Contract Unit Price per ton (megagram) complete in place and accepted. Payment is full compensation for furnishing materials, bituminous material, and equipment and for preparing the subgrade, hauling, stockpiling, mixing, spreading, and rolling.

B. Incidental Items

Unless otherwise specified, no separate payment will be made for incidental items.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Per ton (megagram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>434</td>
<td>Asphalt ditch paving mixture</td>
<td></td>
</tr>
</tbody>
</table>

434.5.01 Adjustments

General Provisions 101 through 150.
Section 435—Rapid Setting Cement Concrete End Dams and Patches

435.1 General Description
This work includes constructing bridge joint end dams and partial or full depth patches in concrete structures. Use rapid-setting cement concrete under these conditions:
- Quick traffic return is required.
- The required minimum depth is 1 in. (25 mm)

435.1.01 Definitions
General Provisions 101 through 150.

435.1.02 Related References
A. Standard Specifications
 Section 461—Sealing Roadway and Bridge Joints and Cracks
 Section 500—Concrete Structures
 Section 504—Twenty-Four Hour Accelerated Strength Concrete
 Section 833—Joint Fillers and Sealers
 Section 886—Epoxy Resin Adhesives
 Section 934—Rapid Setting Patching Materials for Portland Cement Concrete

B. Referenced Documents
 General Provisions 101 through 150.

435.1.03 Submittals
A. Mix Design
 Submit rapid-setting cement concrete mix designs and materials to the Office of Materials and Research for verification and approval at least 35 days before use.

435.2 Materials
Use these materials to construct bridge joint end dams or repair concrete:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid-setting Cement Material</td>
<td>934</td>
</tr>
<tr>
<td>Epoxy Adhesive, Type II</td>
<td>886</td>
</tr>
<tr>
<td>Silicone Sealant</td>
<td>461.3.05.C.2 and 833.2.06</td>
</tr>
<tr>
<td>Preformed Foam Joint Filler</td>
<td>833.2.10</td>
</tr>
</tbody>
</table>

435.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

435.3 Construction Requirements

435.3.01 Personnel
General Provisions 101 through 150.

435.3.02 Equipment
General Provisions 101 through 150.
435.3.03 Preparation
Prepare the surfaces for construction as follows:

1. Scarify the surface within the repair area using a concrete scabbler to remove unsound concrete and concrete laitance down to sound coarse aggregate.
2. After scarifying the surface, sandblast it to remove loose or unsound concrete or other contaminants.
3. Clean the prepared area with compressed air.
4. Completely coat the bottom and vertical side walls of the prepared area with a film of Type II epoxy approximately 10 to 20 mils (0.25 to 0.50 mm) thick.

435.3.04 Fabrication
General Provisions 101 through 150.

435.3.05 Construction
Repair the bridge joint end dams in the locations or areas indicated on the Plans or as designated by the Engineer.

Remove asphaltic concrete from the end dams areas according to Figure 1 (Figure 1 metric).

![Diagram of construction process]

Figure 1
A. Weather Limitations

Place rapid-setting cement concrete within the temperature range of 40 °F to 100 °F (4 °C to 38 °C). Do not apply epoxy bonding adhesive to a damp substrate.

B. Mix Design

Do not use aggregate that is larger than one-quarter the depth of the repair.

C. General Instructions

Handle, mix, place, and finish rapid-setting cement concrete according to the manufacturer’s instructions. Ensure that the finished rapid-setting cement concrete surface is the same elevation and cross slope as the adjacent pavement.

D. Placement

Place the rapid-setting cement concrete as follows:

1. Deposit it in the area while the epoxy is still tacky.
2. Vibrate it to completely fill the area of the end dam or patch.
3. Finish the concrete to the proper grade; do not disturb it until the watersheen disappears from the surface.
E. Curing

Cure the rapid-setting cement concrete according to Subsection 500.3.05.Z “Cure Concrete,” and as follows:

1. Cure it long enough to develop the concrete strength in place as required in Subsection 435.3.05.G, “Compressive Strength.”
2. Use the compressive strength test procedures in Subsection 504.3.06.A, “Compressive Strength Testing,” except the Laboratory may reduce the number of test cylinders.

F. Joint Reestablishment

Reestablish the joint as follows:

1. Place temporary joint material that conforms to Subsection 833.2.10 in the joint so to place and screed the full width of the end dams or patches and to bridge the temporary joint material with the screeding apparatus.
2. If patching a joint, reestablish the joint opening to match the existing joint; if constructing an end dam, match the Plan details.
3. Remove the temporary joint material. Sandblast the vertical faces of the joint opening to remove loose material and to produce a coarse texture conducive to bonding sealant.
4. Immediately after sandblasting, seal the opening according to Figure 1 (metric) and Subsection 461.3.05.C.2.

G. Compressive Strength

Do not allow traffic on end dams or patches until the rapid-setting cement concrete obtains a minimum compressive strength of 2,500 psi (15 MPa).

435.3.06 Quality Acceptance

A. Correction of Defects

Remove and replace, at the Contractor’s expense, completed end dams or patches that contain cracks, are disbonded from asphalt or slab, or are damaged from construction or traffic before Final Acceptance.

Replace, at the Contractor’s expense, silicone joint sealant that fails or that is not within the depth tolerances of Figure 1 (Figure 1 metric).

435.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

435.4 Measurement

The area measured for payment is the rapid-setting cement concrete in cubic feet (meters) used in bridge joint end dams or patches completed in place and accepted.

435.4.01 Limits

General Provisions 101 through 150.

435.5 Payment

The joints measured will be paid for at the Contract Unit Price per cubic foot (meter) for bridge joint and end dams, and per cubic foot (meter) for patches. Payment is full compensation for:

- Sawing as required
- Removing the asphaltic concrete material or spalled, broken, or damaged Portland Cement Concrete
- Cleaning the substrate by sandblasting or abrading and planing
- Mixing, placing, finishing, and curing the concrete
- Providing equipment, tools, and labor
- Performing incidentals to complete the work, including sealing the joints

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 435</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rapid-setting cement concrete bridge joint end dams</td>
<td>Per cubic foot (meter)</td>
</tr>
<tr>
<td></td>
<td>Rapid-setting cement concrete patching Portland cement concrete</td>
<td>Per cubic foot (meter)</td>
</tr>
</tbody>
</table>
436.1 General Description
This work includes constructing asphaltic concrete curbs according to these Specifications. Construct curb that conforms to the lines and grades shown on the Plans or established by the Engineer.

436.1.01 Definitions
General Provisions 101 through 150.

436.1.02 Related References
A. Standard Specifications
 - Section 400—Hot Mix Asphaltic Concrete Construction
 - Section 413—Bituminous Tack Coat
 - Section 802—Aggregates for Asphaltic Concrete
 - Section 820—Asphalt Cement

B. Referenced Documents
 - GDT 7
 - GDT 66
 - GDT 115

436.1.03 Submittals
General Provisions 101 through 150.

436.2 Materials
Ensure that materials meet the requirements of Section 802, Section 820, and Section 828.

Use a uniform, homogeneous asphalt mixture of aggregate and bituminous material. A job mix formula is not required; however, base the mixture on an approved design analysis that meets the requirements of either a 4.75 mm mixture or 9.5 mm Superpave mixture (Level A) as described in Section 828 except that testing for moisture susceptibility, GDT 66 and rutting susceptibility, GDT 115, will not be required. The asphalt content for asphaltic concrete curb shall be set 1.0% higher than the optimum asphalt content determined during the mix design analysis. Control the mixture within the mixture control tolerances for the respective mix given in Section 828. Do not continue operation outside the mixture control tolerances.

436.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

436.3 Construction Requirements

436.3.01 Personnel
General Provisions 101 through 150.

436.3.02 Equipment
Use equipment that meets the requirements in Section 400 for mixing and transporting the asphaltic concrete.

A. Self-Propelled Curbing Machine
 - For curb construction, use an approved self-propelled curbing machine equipped with:
 - A hopper
 - A power-driven screw or other device that forces the mixture through a tube and then through a die attached to the tube
Design the mold to produce the desired cross section of the curb. Ensure that the curbing machine can:

- Thrust against the asphalt mixture to eliminate objectionable surface voids as the mixture passes through the mold
- Produce curbing with a uniform texture, shape, and density

Use hand methods adjacent to structures.

436.3.03 Preparation

Prepare the curb foundation as follows:

1. Excavate subgrades for header type curbs to the required depth.
2. Remove and replace soft or unstable material with stable material.
3. Compact and finish the subgrade to 90 percent of the maximum density as determined by GDT 7.
4. Shape the subgrade to the required line, grade, and cross section.
5. When placing the curb on existing pavement, thoroughly remove dirt and objectionable matter from the area receiving the curb.
6. Apply a tack coat at the rate directed by the Engineer to the full width of the curb being placed.

NOTE: Place sections of curb only after constructing adjoining spillways and drainage outlets.

436.3.04 Fabrication

General Provisions 101 through 150.

436.3.05 Construction

A. Mixing Asphaltic Concrete

Ensure that the asphaltic concrete manufacturer meets the requirements of Section 400, as applicable.

B. Placing Curb Material

When beginning construction, determine the working temperature of the asphaltic mixture to achieve the best results. Do not place curb material on an area where the surface temperature is below 40 °F (4 °C).

When the machine used to lay the asphaltic curb does not give adequate compaction as determined by the Engineer, take corrective measures to compact the finished curb adequately. These measures include, but are not limited to:

- Adjusting the mix
- Loading the machine with additional weight
- Using other corrective measures

C. Observing Tolerance

If the grade line is uniform, the curb can slump 0.25 in (6 mm) below the specified height.

D. Curing and Protecting the Curb

Protect the newly laid curb from traffic by using a barricade or other methods until the asphaltic mixture has cooled to air temperature. Once the curb is cool, immediately backfill it.

436.3.06 Quality Acceptance

General Provisions 101 through 150.

436.3.07 Contractor Warranty and Maintenance

Maintenance includes protecting the finished curb until Final Acceptance.

Remove and replace curb or curb sections displaced, destroyed, or damaged from Contractor negligence at no additional cost to the Department.

436.4 Measurement

Asphaltic concrete curb complete in place and accepted is measured in linear feet (meters) along the face of the curb.

Tack coat is measured and paid for according to Section 413.
436.4.01

436.4.01 Limits
General Provisions 101 through 150.

436.5 Payment
Asphaltic concrete curb measured for payment will be paid for at the Contract Unit Price per linear foot (meter) for each curb height. Payment is full compensation for furnishing materials, including bituminous material, preparing the subgrade or pavement surfaces, cleaning, hauling, mixing, placing and replacing if required, and maintaining the curb to complete the Item.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 436</th>
<th>Asphaltic concrete curb ___ in(mm)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
</table>

436.5.01 Adjustments
General Provisions 101 through 150.

Section 437—Granite Curb

437.1 General Description
This work includes furnishing and installing granite curb including excavating, and backfilling. Construct curb that conforms to the lines and grades shown on the Plans or established by the Engineer.

437.1.01 Definitions
General Provisions 101 through 150.

437.1.02 Related References
A. Standard Specifications
 Section 805—Rip Rap and Curbing Stone
B. Referenced Documents
 General Provisions 101 through 150.

437.1.03 Submittals
General Provisions 101 through 150.

437.2 Materials
Use granite curbing that meets the requirements of Subsection 805.2.02.
Ensure that Type A curbing with dressed surfaces is free from drill marks or other artificial blemishes.

437.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

437.3 Construction Requirements

437.3.01 Personnel
General Provisions 101 through 150.

437.3.02 Equipment
General Provisions 101 through 150.

437.3.03 Preparation
Prepare and excavate the foundation as follows:
 1. Thoroughly tamp the bottom of the trench. Remove soft or yielding material to the depth ordered by the Engineer.
 2. Refill the trench with stable material and tamp the material in 4 in (100 mm) layers or less.
 3. Place the granite curb on a dry, firm foundation.
437.3.04 Fabrication
General Provisions 101 through 150.

437.3.05 Construction
A. Setting the Curb
 Set the curb true to line and grade and closely fit the adjacent sections as follows:
 1. Thoroughly ram and maul the curbing into place.
 2. Immediately after setting the curb, place and compact the backfilling in 4 in (100 mm) layers or less. Use backfill material approved by the Engineer.
 3. When setting the curb on a fill or placing more than 6 in (150 mm) of the curb above the surrounding ground, protect the curb by placing at least an 18 in (450 mm) wide bank of dirt behind it level with the top of the curb.
 4. Divert the water away from the trench on steep grades or wherever there is a danger of water getting into the trench.
 5. Lower the curb for driveways and alleys as directed. Cut and round curb sections adjacent to lowered curbs to 45 degrees.
 6. Provide weep holes and drainage openings as indicated on the Plans.

437.3.06 Quality Acceptance
General Provisions 101 through 150.

437.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

437.4 Measurement
Granite curb complete and in place is measured for payment by the linear foot (meter) along the inner top exposed edge nearest the roadway centerline.

Measurement for payment is not made for foundation excavation, preparation, compaction, weep holes, or drainage openings.

437.4.01 Limits
General Provisions 101 through 150.

437.5 Payment
This item will be paid for at the Contract Unit Price per linear foot (meter) for straight curbs, radial, or curved curbs, complete in place and accepted.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 437</th>
<th>Straight granite curb, [thick] in (mm) x [depth] in (mm), type ___</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 437</td>
<td>Circular granite curb, [thick] in (mm) x [depth] in (mm), type ___</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

437.5.01 Adjustments
General Provisions 101 through 150.

Section 438—Precast Concrete Header Curb

438.1 General Description
This work includes furnishing and installing precast concrete header curb according to the Plans.

438.1.01 Definitions
General Provisions 101 through 150.

438.1.02 Related References
A. Standard Specifications
 Section 441—Miscellaneous Concrete
438.1.03

Section 500—Concrete Structures
Section 853—Reinforcement and Tensioning Steel
Section 866—Precast Concrete Catch Basin, Drop Inlet, and Manhole Units

B. Referenced Documents

General Provisions 101 through 150.

438.1.03 Submittals

General Provisions 101 through 150.

438.2 Materials

Use concrete materials that meet the requirements of Section 500, Class AA-1, air entrained, and the following Specifications:

<table>
<thead>
<tr>
<th>Reinforcing and Tensioning Steel</th>
<th>853.2.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dowel Bars and Tie Bars</td>
<td>853.2.08</td>
</tr>
</tbody>
</table>

Ensure that the manufacture and testing of concrete cylinders meet the requirements of Section 866, as applicable.

438.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

438.3 Construction Requirements

438.3.01 Personnel

General Provisions 101 through 150.

438.3.02 Equipment

General Provisions 101 through 150.

438.3.03 Preparation

General Provisions 101 through 150.

438.3.04 Fabrication

General Provisions 101 through 150.

438.3.05 Construction

A. Excavation

Excavate the subgrade to the required grade and cross section shown on the Plans or as directed by the Engineer.

Remove unsuitable material in the subgrade and backfill as necessary.

B. Precast Concrete Header Curb

Use precast concrete header curb as an alternate for granite curb when specified in the Plans.

1. Do not use it with existing or required granite curb, unless shown on the Plans or directed by the Engineer.

2. Make precast header curb in tangent sections only.

3. Pour curbed portions in place according to Section 441. Provide dowels or dowel holes in poured-in-place portions for tying in precast sections.

4. Ensure that precast sections conform to the dimensions and details on the Plans.

438.3.06 Quality Acceptance

General Provisions 101 through 150.

438.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.
438.4 Measurement
Precast concrete header curb complete in place is measured per linear foot (meter). Excavation and backfill are not measured separately for payment.

438.4.01 Limits
General Provisions 101 through 150.

438.5 Payment
This Item measured for payment includes the required excavation, backfill, and incidentals to complete the Item.
Payment will be made under:

| Item No. 438 | Precast concrete header curb [height] in (mm) | Per linear foot (meter) |

438.5.01 Adjustments
General Provisions 101 through 150.

Section 439—Portland Cement Concrete Pavement (Special)

439.1 General Description
This work includes constructing pavement composed of Portland cement concrete, with or without reinforcement as specified, on a prepared subgrade or subbase course.

Follow the requirements of these Specifications and conform with the lines, grades, thicknesses, and typical cross-sections shown on the Plans or established by the Engineer.

439.1.01 Definitions
General Provisions 101 through 150.

439.1.02 Related References
A. Standard Specifications
 Section 152—Field Laboratory Building
 Section 430—Portland Cement Concrete Pavement
 Section 431—Grind Concrete Pavement
 Section 461—Sealing Roadway and Bridge Joints and Cracks
 Section 500—Concrete Structures
 Section 800—Coarse Aggregate
 Section 801—Fine Aggregate
 Section 830—Portland Cement
 Section 831—Admixtures
 Section 832—Curing Agents
 Section 833—Joint Fillers and Sealers
 Section 853—Reinforcement and Tensioning Steel
 Section 880—Water
 Section 886—Epoxy Resin Adhesives

B. Referenced Documents
 AASHTO T 126
 AASHTO T 22
439.1.03

AASHTO T 23
ASTM C 94, Requirements for Uniformity
GDT 26
GDT 27
GDT 28
GDT 32
GDT 72
GDT 78
SOP 34

439.1.03 Submittals
A. Profilograph Certification

Before paving, ensure that the profilograph and operator are certified by the Office of Materials and Research in accordance with Standard Operating Procedure No. 34, Certification of Contractor Personnel and Equipment for Smoothness Testing of Portland Cement Concrete Pavement with the Rainhart Profilograph. Certification includes a mechanical check of the profilograph functions and a written examination by the operator.

Request certification in writing to the Office of Materials and Research at least two weeks before it is needed.

B. Report Form

Refer to Subsection 439.3.06.L, “Smoothness Testing” for report form and submittal requirements.

C. Concrete Design

Submit for approval a concrete design prepared by a testing laboratory approved by the Office of Materials and Research. The Contractor will transmit the design to the Engineer for approval at least 35 days before use.

Or, submit for approval concrete mix proportions with commonly used materials without preparation by a laboratory. The Office of Materials and Research may approve proportions based upon the past performance of the material combination.

439.2 Materials

Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland cement</td>
<td>830.2.01</td>
</tr>
<tr>
<td>Portland Pozzolan cement</td>
<td>830.2.03</td>
</tr>
<tr>
<td>Water</td>
<td>880.2.01</td>
</tr>
<tr>
<td>Fine Aggregate, Size No. 10</td>
<td>801.2.02</td>
</tr>
<tr>
<td>Coarse Aggregate, Class A or B Crushed Stone or Gravel, Sizes as Specified</td>
<td>800.2.01</td>
</tr>
<tr>
<td>Steel Bars for Reinforcement</td>
<td>853.2.01</td>
</tr>
<tr>
<td>Steel Wire for Concrete Reinforcement</td>
<td>853.2.06</td>
</tr>
<tr>
<td>Welded Steel Wire Fabric for Concrete Reinforcement</td>
<td>853.2.07</td>
</tr>
<tr>
<td>Dowel Bars and Bar Coatings</td>
<td>853.2.08</td>
</tr>
<tr>
<td>Curing Agents</td>
<td>832</td>
</tr>
<tr>
<td>Air Entraining Admixtures</td>
<td>831.2.01</td>
</tr>
<tr>
<td>Fly Ash and Slag</td>
<td>831.2.03</td>
</tr>
</tbody>
</table>
A. Fly Ash

Fly ash may be used as a concrete additive to promote workability and plasticity. Use it as a partial replacement for Portland cement in concrete, but follow these limits:

1. Do not replace the cement quantity more than 15 percent by weight.
2. Replace cement with fly ash at the rate of 1.25 to 2.0 lbs (1.25 to 2.0 kg) of fly ash to 1 lb (1.0 kg) of cement.
3. Ensure that the fly ash mix conforms to Subsection 430.3.06, “Quality Acceptance.”
4. Do not use Type IP cement in fly ash mixes.

B. Granulated Iron Blast-Furnace Slag

If high early strengths are not desired, use granulated slag as a partial replacement for Portland cement in concrete. Follow these limits:

1. Replace the quantity of cement 50 percent or less by weight if the 5-day forecast of the National Weather Service expects temperatures higher than 60 °F (15 °C).
 a. If the 5-day expected low temperature is less than 60 °F (15 °C) but not less than 40 °F (4 °C), replace the quantity of cement 30 percent or less by weight.
 b. If the 5-day expected low temperature is less than 40 °F (4 °C); do not use granulated slag.
2. Replace cement with slag at the rate of 1 lb (1.0 kg) of slag to 1 lb (1.0 kg) of cement.
3. Ensure that the granulated slag mix conforms to Subsection 430.3.06, “Quality Acceptance”.
4. Do not use Type IP cement or fly ash in slag mixes.

C. Composition of Concrete

Design the concrete mix to conform to the following requirements:

1. Coarse Aggregate
 Use coarse aggregate size No. 467, 67, or 57 for plain Portland Cement concrete pavement.
 Use size No. 67 or 57 coarse aggregate for continuous reinforced concrete pavement.
 Separate size No. 467 or 456 in individual stockpiles of size No. 4 and size No. 67. Blend according to approved mix proportions.

2. Fine Aggregate
 Use fine aggregate that meets the requirements for size No. 10.
 When using two sizes or sources of fine aggregate to produce the proper gradation, blend according to the approved design proportions.

439.2.01 Delivery, Storage, and Handling

Store fine aggregate from different sources in different stockpiles.

439.3 Construction Requirements

439.3.01 Personnel

A. Certified Operator

Before paving, have the Office of Materials and Research certify a profilograph equipment operator. Certification includes a written examination by the operator.
439.3.02 Equipment

A. Equipment Requirements
 Provide equipment and tools to perform the work. Provide equipment that allows the paver to operate at a constant production rate and minimizes starting and stopping. The Engineer may limit the production rate or batch size if equipment does not keep pace with the other operations or causes poor workmanship.

B. Ramp Screeds and Hand Finishing Tools
 Ramp screeds and hand finishing tools may be used instead of conventional mainline paving equipment.

C. Scales
 Before use, the Engineer will inspect and approve the scales to weigh concrete materials and the devices to measure water. Tolerances are ± 1.0 percent throughout the operating range. Measure admixtures to ± 3.0 percent.

D. Protective Equipment
 Provide materials to protect the concrete edges and surface against rain, including:
 - Standard metal forms or wood planks to protect the pavement edges
 - Covering material such as burlap or cotton mats, curing paper, or plastic sheeting material to protect the pavement surface

E. Auxiliary Vibrator
 Keep one auxiliary vibrator available in case of mechanical malfunctions.

F. Texturing Equipment
 Ensure that the tines on the equipment:
 - Are the same size and length and are rectangular shaped
 - Have approximately 0.5 in (13 mm) of space between them
 - Are between 1/16 in and 1/8 in (2 mm and 3 mm) wide

439.3.03 Preparation

A. Prepare the Roadbed
 Prepare the roadbed as required by the Plans and Specifications before placing concrete pavement.

B. Observe Condition of Subgrade and Subbase
 Check the subgrade and subbase as follows:
 1. Prepare the full width of the subgrade and subbase according to the Plans and Specifications.
 2. Ensure that the surface immediately under the concrete pavement allows proper pavement thickness and yield.
 3. Trim high areas to the proper elevation.
 4. Ensure that the subbase can support paving equipment without rutting or bogging.

439.3.04 Fabrication
 General Provisions 101 through 150.

439.3.05 Construction

A. Set Forms
 Set the forms as follows:
 1. Compact the foundation under the forms true to grade. Set the form so that it firmly contacts the foundation for the entire length at the specified grade.
 2. Prevent the forms from settling or springing under the finishing machine.
 3. Clean and oil the forms before placing the concrete.

B. Place Concrete
 After depositing the concrete on the grade, avoid rehandling it. Unload and place it as follows:
 1. Unload the concrete into an approved spreading device and mechanically spread it on the grade.
2. Place the concrete continuously between transverse joints without using intermediate bulkheads.
3. Perform any necessary hand spreading of concrete with shovels, not rakes.

NOTE: Do not allow personnel to walk in freshly mixed concrete with shoes coated with dirt or other materials.

4. Thoroughly consolidate the concrete on both sides of joint assemblies.
5. Ensure that vibration does not cause puddling or grout accumulation on the surface.
 For construction or expansion joints, do not use grout that accumulates ahead of the paver.
6. Deposit concrete near the formed joints. Do not dump or discharge concrete on a joint assembly unless the concrete is centered on the joint assembly.
7. Keep reinforcing steel free of dirt, oil, paint, mill scale, and loose or thick rust that could impair the bond of the steel to the concrete.

C. Consolidate and Finish

Ensure that the sequence of operations is continuous from placement to final finish.

1. Consolidation
 Perform vibration for the full width and depth of the pavement as follows:
 a. Do not allow the vibrators to misalign load transfer devices or contact forms or the foundation.
 b. Ensure that the operating frequency is within these ranges.
 - Use spud vibrators with an operating frequency of at least 7,000 vibrations per minute.
 - Use tube vibrators with an operating frequency of at least 5,000 vibrations per minute.
 - Use surface pan vibrators with an operating frequency of at least 3,500 vibrations per minute.
 c. Use hand-held vibrators if needed.
 Ensure that the operating frequency is at least 4,500 vibrations per minute. The intensity shall be sufficient to affect the mass of concrete having a 1 in (25 mm) slump through a radius of at least 18 in (450 mm).
 d. Obtain uniform consolidation and density throughout the pavement.
 If the pavement is not uniform, stop the operation and provide methods or equipment that will produce pavement that conforms to the Specifications.
 e. Keep a standby vibratory unit available in case a primary unit malfunctions.

2. Finishing
 After striking off and consolidating the concrete, follow these steps:
 a. The concrete may be smoothed and trued using a hand float.
 b. Ensure that the surface within 6 in (150 mm) of the pavement edge shows no more than a ¼ in (6 mm) deviation in 10 ft (3 m) when tested with a 10 ft (3 m) straightedge in both transverse and longitudinal directions.
 c. Ensure that mainline riding surface produces a profile index value of less than 7 in/ mile (100 mm/km) on each travel lane.

D. Protection from Rain

Protect the unhardened concrete from rain. See Subsection 439.3.02.D, “Protective Equipment.”

When rain is imminent, stop paving operations and place forms against the sides of the pavement. Cover the surface of the unhardened concrete with the protective covering.

E. Remove Forms

Remove forms from in-place concrete after it has set for at least 12 hours, unless otherwise provided.

1. Remove forms carefully to avoid damaging the pavement.
2. After removing the forms, immediately cure the sides of the slab using the same method used to cure the pavement surface.
3. Remove and replace major honeycombed areas.
F. Work at Night

Provide adequate lighting for work performed at night. If lighting will not be provided at night, stop the concreting operation in time to finish and saw during daylight hours.

G. Provide Joints

Ensure that joints are designed, configured, and located as shown on the Plans or required by the Specifications.

1. At the Engineer’s discretion, remove and replace plain concrete pavement that cracks during construction with no additional cost to the Department.
2. When chipping out random cracks for sealing, use nonrigid epoxy that meets Subsection 886.2.01 on cracks that are not under expansion-contraction influence.
3. Seal continuous cracks under movement with sealant that meets Subsection 833.2.06.
4. When removing and replacing a pavement section, replace an area at least 6 ft (1.8 m) long and the full width of the lane.
 a. Saw to vertical face the sections to be removed and replace the concrete as a construction joint with dowels.
 b. Use deformed bars as dowels in the saw-cut construction joint. Use the size specified for contraction joints in the Plans.
5. Thoroughly clean the drilled holes of contaminants and set the dowels into the hardened concrete face of the existing pavement with a Type VIII epoxy bonding compound. See Section 886 for epoxy bonding compound requirements.
6. For contraction joints, undamaged and properly positioned dowels may be used in existing construction or slab replacement areas. Coat the protruding dowel portions with a thin film of heavy grease.
7. When both sides of an existing construction or contraction joint require slab replacements, slabs may be replaced continuously from saw-cut construction joint to saw-cut construction joint. Use dowels specified for contraction joints.
8. Before placing concrete, uniformly apply a thin coat of heavy grease to epoxy-coated dowels.
9. When placing slabs continuously across transverse contraction joint locations, use saw-cuts to provide planes of weakness according to the requirements of this Specification and the GDOT construction standard for contraction joints.
10. Seal the joints according to the Plans.

H. Determine Types of Joints

1. Longitudinal Joints
 Longitudinal joints shall contain unpainted and uncoated deformed steel bars that are the size and length specified on the Plans.
 Place the bars perpendicular to the joint using a mechanical device, or rigidly secure the bars in place with supports.
2. Longitudinal Formed Joints
 Construct longitudinal formed joints while the concrete is in a plastic state.
 Use methods and equipment that locates the joint reinforcement properly without disrupting it during construction.
3. Longitudinal Sawed Joints
 Cut longitudinal sawed joints with a mechanical saw within three days after the concrete is placed and before traffic or equipment enters the pavement.
4. Transverse Joints
 Transverse joints consist of construction joints, contraction joints, or expansion joints constructed at required locations.
 a. Construct transverse joints in partial width or adjoining lanes to abut the same joint of adjacent lanes unless otherwise specified on the Plans.
 b. Ensure that transverse joints in plain Portland Cement concrete requiring load transfer devices contain either plastic-coated or epoxy-coated dowels.
 c. Before placing concrete, secure dowel bars in place with supporting assemblies.
 d. Secure the assemblies in position on the subbase to keep the dowels from moving during concrete placement.
 e. Place dowel bars to a vertical and horizontal tolerance of ± 1 in (± 25 mm) of the Plan position. Do not misalign the dowel bar more than 3/8 in per foot (10 mm per 300 mm) in the horizontal or vertical plane.
f. Remove and replace dowel assemblies displaced from the Plan position more than the tolerances in Subsection 430.3.05.J, “Provide Joints.”
g. When using epoxy-coated dowels, coat the entire surface with a thin film of heavy waterproof grease.
h. Ensure accurate positioning of transverse sawed joints by marking the position of dowel bar assembly locations.
5. Construction Joints
Construct transverse construction joints when interrupting concreting operations for more than one hour.

NOTE: Do not construct transverse construction joints within 10 ft (3 m) of an expansion joint, contraction joint, or transverse plane of weakness.

a. Move an unanticipated construction joint back to the last Plan joint and remove and dispose of excess concrete.
b. Form construction joints by securing in place a removable bulkhead or header board.
 1) Place the board so that it conforms to the full cross section of the pavement. Secure it flush with the subbase and parallel to the normal transverse joints.
 2) Slot or drill the board to allow placement of reinforcement as required by the Plans.

NOTE: Do not use the roll of laitance and grout that forms in front of the paver adjacent to transverse construction joints.
c. Consolidate to full width and depth concrete adjacent to transverse construction joints with mechanical hand-type spud vibrators. Keep one auxiliary vibrator available in case of mechanical malfunctions.
d. Before applying the final finish to the concrete, stringline and correct variations of the concrete surface within 30 ft (9 m) on either side of the transverse construction joints. Provide equipment and tools such as:
 - Work bridges
 - Personnel
 - String lines
 - Straightedges
 - Lighting
e. While the concrete is in a plastic condition, stringline the surface longitudinally and correct surface deviations greater than 1/8 in. in 15 ft (3 mm in 4.6 m) in any direction.
f. When using Plain Portland cement concrete pavement, place dowel bars in construction joints. Cast half the length of each dowel bar in the concrete during each phase of joint construction.
g. After the concrete has hardened, dismantle the bulkhead supporting the dowels. Do not disturb the dowels.
h. When using epoxy coated dowels, coat the protruding half of each dowel bar with a thin film of heavy waterproof grease before resuming joint construction. Grease coating is not required on plastic coated dowels.
6. Contraction Joints
Create planes of weakness in plain Portland cement concrete pavement by cutting joints in the pavement surface. Create the planes according to the Plans and as follows:
 a. Saw transverse contraction joints before the pavement cracks. Begin sawing when the concrete has hardened enough to prevent surface raveling, usually 4 hours after placement but no more than 24 hours.
 b. Continue sawing day and night regardless of weather conditions.
7. Expansion Joints
Transverse expansion joints are required at locations shown on the Plans.
 a. Form expansion joints by securing a removable bulkhead that conforms to the full cross section of the pavement. Use bulkheads that can construct a vertical expansion wall without offsets, indentations, or burrs.
 b. Use expansion joint filler required by the Plans.
 c. Furnish and install preformed joint filler in lengths equal to the pavement width or the width of one lane. Do not use damaged or repaired joint fillers.
 d. Position the expansion joint filler vertically in the joint and at the proper grade. Use an installing bar or other device to secure the expansion joint filler at the proper grade and alignment.

I. Seal the Joints
Clean and seal the joints according to Section 461 and the Plans.
Immediately after completing the curing period, fill in the joints with joint sealing material before opening the pavement to traffic.

J. Cure the Concrete

Immediately after finishing the concrete, cure the entire surface when the concrete will not mar. Use one or more of these methods:

1. Impervious Membrane Method
 To use this method:
 a. Spray the entire surface of the pavement with white pigmented curing compound immediately after finishing the surface and before the concrete has set.
 If the pavement is cured initially with cotton mats, burlap, or cotton fabric, apply the compound after removing the mats.

 NOTE: Do not apply curing compound during rain.

 b. Use mechanical sprayers to apply curing compound under pressure at a minimum rate of 1 gal per 150 ft² (1 L per 3.5 m²).
 Use fully atomizing spraying equipment that is equipped with a tank agitator.
 c. Thoroughly mix the curing compound immediately before use.
 d. During application, use a mechanical device to stir the compound continuously.
 e. If required, use a hand sprayer to spray odd widths, odd shapes, and concrete surfaces exposed by removing forms.
 f. Do not apply curing compound to the inside faces of joints to be sealed.
 g. If the membrane film becomes damaged within the curing period, repair the damaged portions immediately with additional compound.

2. White Polyethylene Sheeting
 To use this method:
 a. Cover the top surface and sides of the pavement with polyethylene sheeting. Lap the units at least 18 in (450 mm).
 b. Place the sheeting and weigh it down so that it contacts the surface.
 c. Extend the sheeting beyond the edges of the slab at least twice the thickness of the pavement.
 d. Unless otherwise specified, maintain the covering in place for 72 hours after placing the concrete.

3. Burlap, Cotton Fabric, or Other Methods
 Contractors may cure the pavement surface with burlap, cotton fabrics, or other materials if the section remains wet for the duration specified by the Engineer.

4. Cold Weather Curing
 To use this method:
 a. Remove and replace concrete that freezes before the initial set time at no additional cost to the Department.
 b. Use polyethylene or canvas to protect concrete that has set but is exposed to freezing temperatures within 24 hours of placement. Ensure that the internal concrete temperature is above freezing for at least 24 hours after placing the concrete.
 c. Obtain approval from the Engineer to use other protection methods such as hay, straw, or grass, or to change the duration of the protection.

K. Open Pavement to Traffic

Wait to open the pavement slab to traffic, except for joint sawing vehicles, until the concrete is 14 days old unless representative compressive tests show that the slab has a compressive strength of 2,500 psi (15 MPa).

Prevent pavement slab stress by constructing a ramp of compacted earth or other material to move on and off the pavement. Do not allow equipment that exceeds legal load limits on the pavement.

Protect the pavement against traffic from the public, employees, and agents.

1. Erect and maintain barricades. Employ watchmen to block traffic from the newly constructed pavement for the period required in this Specification.
2. Arrange the barriers away from public traffic on lanes remaining open.
3. Maintain signs that clearly indicate the lanes open to public traffic.
4. If traffic must go across the pavement, construct crossings satisfactory to the Engineer to bridge over the concrete. Construct the crossing without additional compensation.
5. Repair or replace pavement damaged by traffic or other causes before Final Acceptance without additional compensation. Make repairs to the Engineer’s satisfaction.

439.3.06 Quality Acceptance

The typical section sheet in the Plans specifies concrete classifications for specific uses.

This Specification establishes minimum requirements for these concrete classifications for concrete design approval, concrete mix design proportions, batching control responsibilities, and acceptance of hardened concrete based upon compressive strength development.

Produce Portland cement concrete by combining proportions of approved materials in batches according to the construction methods specified in this Specification.

Mix concrete produced in a stationary central mix plant for at least 60 seconds after the materials enter the drum. Mix time may be reduced if the representative tests show that the concrete meets requirements of ASTM C 94, Requirements for Uniformity. Never mix less than 50 seconds.

A. Transit Mixed Concrete

Ensure that transit mixed concrete meets the requirements of Subsection 500.3.04.E.3, “Transit-Mixed Concrete.”

B. Mix Design Criteria

Proportion concrete mix designs using the following requirements:

<table>
<thead>
<tr>
<th>Class</th>
<th>Minimum Cement per Cubic Yard Concrete (CWT)</th>
<th>Maximum Water-Cement Ratio (lbs/lb)</th>
<th>Design Air Content Range (%)</th>
<th>Minimum Strength at 28 Days (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 3</td>
<td>5.64</td>
<td>0.53</td>
<td>4.0 to 5.5</td>
<td>3,000</td>
</tr>
<tr>
<td>Class HES</td>
<td>6.58</td>
<td>0.47</td>
<td>4.0 to 5.5</td>
<td>3,500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Minimum Cement per Cubic Meter Concrete (kg)</th>
<th>Maximum Water-Cement Ratio (kg/kg)</th>
<th>Design Air Content Range (%)</th>
<th>Minimum Strength at 28 Days (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 3</td>
<td>335</td>
<td>0.53</td>
<td>4.0 to 5.5</td>
<td>20</td>
</tr>
<tr>
<td>Class HES</td>
<td>390</td>
<td>0.47</td>
<td>4.0 to 5.5</td>
<td>25</td>
</tr>
</tbody>
</table>

C. Compressive Strength

Prepare and test at least 6 cylinders according to AASHTO T 126 and T 22 to ensure that the demonstrated laboratory compressive strength at 28 days for Class 3 concrete is at least 4,000 psi (30 MPa), and the minimum laboratory compressive strength for Class HES concrete is 3,000 psi (20 MPa) at 72 hours.

D. Field Adjustments on Concrete Mixes

Determine the aggregate surface moisture and apply free moisture corrections to the approved mix design. The Engineer will verify that the corrections are made properly.

Adjustment may be made to the approved proportions of the fine and coarse aggregate and water provided:

- The cement factor is not decreased.
- The water-cement ratio is not increased.
- Adjustments produce concrete proportions according to this Specification.
- The Engineer is notified before use.
E. Concrete Mix Tolerances

Ensure that concrete consistency and air content is maintained within the following limits:

1. Consistency
 Immediately before placement, use GDT 27 to determine concrete slump. Do not use concrete for Portland cement concrete pavement with a slump value greater than 3.5 in (90 mm).

2. Air Content
 Immediately before placement, use GDT 26, GDT 28, or GDT 32 to determine the air content of the concrete. Concrete will not be accepted that has an air content outside of the following limits:

<table>
<thead>
<tr>
<th>Acceptance Limit</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>3.0%</td>
</tr>
<tr>
<td>Upper</td>
<td>6.5%</td>
</tr>
</tbody>
</table>

F. Concrete Strength Acceptance

1. Class 3
 Portland cement concrete pavement strength will be accepted based on compressive strength development at 28 days. The compressive strength value shall be at least 3,000 psi (20 MPa).
 a. Fabricate and cure specimens for field acceptance according to AASHTO T 23.
 b. After curing, the OMR will test the cylinders according to AASHTO T 22. The test frequency is outlined in the Department’s Sampling and Testing information.

2. Class HES
 High early concrete strength pavement may be accepted based on compressive strength development at 72 hours. The compressive strength value shall be at least 3,000 psi (20 MPa).
 When concrete is defective based on the 72-hour strength test and the concrete is retained for acceptability judgment, acceptance will be based on test results conducted at 28 days. The acceptance strength value shall be at least 3,500 psi (25 MPa).
 a. Cure specimens fabricated for 72-hour strength for 72 hours under conditions that are similar to those under which the pavement will be cured.
 b. Cure specimens fabricated for 28-day evaluation per AASHTO T 23.
 c. Test all specimens per AASHTO T 22.

G. Depth Measurement

The Engineer will designate pavement areas to be examined for depth measurement compliance with the Plan and Specifications.

Remove and replace areas deficient more than 1/4 in (6 mm). The Engineer may require a reduction in payment. Correct deficiencies in slab depth as directed by the Engineer.

H. Final Finish

Ensure that the final finish produces a pavement surface that is true to grade, uniform, and free of irregular, rough, or porous areas.

Produce the final surface finish using mechanical or hand-operated equipment to groove the plastic concrete. Use texturing equipment with rectangular-shaped spring steel tines.

I. Texture Depth Testing

Test the pavement surface to determine the texture depth by using GDT 72 at locations selected by the Engineer.

Transversely saw-groove areas that have a surface texture depth less than 0.02 in (0.5 mm). Ensure that the areas meet the average depth requirement of 0.04 in (0.9 mm) or greater. Saw-groove the areas to meet these dimensions:

- Width—1/8 in (3 mm)
- Depth—3/16 in (5 mm)
- Spacing—3/4 in center-to-center (19 mm)
J. Smoothness Profile

Include in the Contract Unit Bid Price the cost to furnish and operate a Rainhart (Model 860) Profilograph to measure pavement profile deviations.

Measure and correct pavement profile deviations as follows:

1. Ensure that the mainline riding surface produces a profile index value no greater than 7 in/mile (100 mm/km) on each travel lane. Conduct tests according to GDT 78.
 Determine a profile index value for each tracing in each ¼ mile (0.5 km) segment.
2. Correct individual bumps or depressions that exceed the blanking band by more than 0.2 in (5 mm) at no additional expense to the Department.
3. Suspend paving operations if a profile index value exceeds 7 in/mile (100 mm/km) per lane for any segment. Take corrective action approved by the Engineer.
4. Test ramps, acceleration lanes, and deceleration lanes using GDT 78 to ensure that the average profile index value does not exceed 12 in/mile (200 mm/km) for the entire section length.
5. Correct individual bumps or depressions that exceed 0.2 in (5 mm) from the blanking band at no additional expense to the Department.
6. Take pavement profiles 4 ft (1.2 m) from and parallel to the new pavement edges for pavements greater than 16 ft (4.8 m) wide and up to 24 ft (7.2 m) wide. Test pavement 6 to 16 ft (1.8 to 4.8 m) wide parallel to and at the center line of the pavement section.
7. Begin the 0.25 mile (0.5 km) record segments at the first day’s placement and continue until project completion, except as noted in this Specification.
 Combine pavement sections less than 650 ft (200 m) approaching a bridge with the previous 0.25 mile (0.5 km) segment to determine the profile index.
8. Calculate as separate record segment sections 650 ft (200 m) or greater approaching a bridge and sections at Project limits.
9. Determine a separate profile index value according to GDT 78 for the 100 ft (30 m) of roadway approaching each end of a bridge, up to and including the joint with the approach slab.
 Average the profile index from the right and left wheelpaths for each 100 ft (30 m) segment for each lane for each approach. Ensure that the average profile index value is no greater than 30 in/mile (500 mm/km).
10. Notify the Engineer before profile testing. The Engineer will verify the results by randomly selecting at least 1 out of every 10 consecutive record segment profiles to compute the profile index and to compare with Contractor results.

K. Pavement Tolerances

For Projects that include weigh-in-motion truck scales, follow these pavement tolerances:

1. Ensure that the Rainhart Profilograph readings do not exceed 5 in/mile (80 mm/km) in the 600 ft (180 m) approach to the scales and the 200 ft (60 m) beyond the scales.
2. Ensure that the rolling straightedge measurements show no deviation greater than 1/16 in (2 mm) within 10 ft (3 m).

L. Smoothness Testing

Perform smoothness testing as follows:

1. Perform and evaluate profiles from the first day of placement before continuing paving.
 When the test run is complete and evaluated, the Engineer may require equipment adjustments to improve smoothness before paving continues.
2. Complete the report form furnished by the Engineer, and attach it to each day’s profilograph tracings. Include the following information in each trace:
 - Project number
 - Beginning and ending station numbers
 - 500 ft (150 m) paving stations
 - Traffic direction
 - Lane number
□ Date paved and tested
□ Construction joint locations

3. Have the certified profilograph operator obtain and evaluate traces to be submitted to the Engineer. Provide results no later than the end of the second work day following placement.

4. For mainline pavement, correct 0.25 mile (0.5 km) segments that do not meet the profile index requirement by using one of these methods:
 a. Grind the entire lane surface of the 0.25 mile (0.5 km) segment to a profile index value no greater than 7 in/mile (100 mm/km). Use equipment that meets the requirements in Section 431.
 b. Grind roughness in small segment areas no more than 50 ft (15 m) of full lane width to produce a profile index value no greater than 7 in/mile (100 mm/km).
 If more than 50 ft (15 m) of grinding is required, grind the complete 0.25 mile (0.5 km) segment according to Method a, above.

5. Correct ramps and acceleration and deceleration lanes that do not meet the profile index requirement to a profile index no greater than 12 in/mile (200 mm/km). Prevent individual bumps from exceeding 0.2 in (5 mm) from the blanking band. Use equipment specified in Section 431.

6. Correct 100 ft (30 m) bridge approach sections that do not meet the profile index requirement.
 a. Grind according to Section 431.
 b. Use a bump grinder to correct bumps with a baseline of 5 ft (1.5 m) or less.
 c. Grind the full lane width even when grinding individual bumps.
 d. Retest pavement segments containing corrective slab replacements for Final Acceptance.

7. Correct segments that do not meet the profile index criteria of this Specification at no additional expense to the Department. Retest segments after correction with the Rainhart Profilograph as specified.

8. The Engineer may conduct profilograph tests at any time to verify Contractor results. The Department may test record segments if the Engineer determines that the Contractor test results are inaccurate. If this occurs, see Subsection 439.5.01, “Adjustments.”

M. Acceptance

Pavement smoothness will accepted when:

□ The Engineer determines that the work was satisfactorily performed according to the Specifications.
□ The completed pavement, including corrective Work, meets the applicable profile index value requirements.

439.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

439.4 Measurement

Portland cement concrete pavement (special) complete, in-place and accepted, is measured by the square yard (meter).

439.4.01 Limits

General Provisions 101 through 150.

439.5 Payment

Concrete pavement completed and accepted will be paid for at the full Contract Unit Price per square yard (meter).

Payment is full compensation for furnishing and placing materials, reinforcements, dowels, joint materials, supplies, and incidentals to complete the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 439</th>
<th>Plain Portland cement concrete pavement, Class 3</th>
<th>Concrete _____ in (mm) thick</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 439</td>
<td>Plain Portland cement concrete pavement, Class HES</td>
<td>Concrete _____ in (mm) thick</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>
440.1 General Description
The work includes constructing plain Portland cement concrete shoulders on a prepared subgrade or subbase according to these Specifications. Construct the shoulders to conform with lines, grades, thicknesses, and cross sections shown on the Plans or established by the Engineer.

440.1.01 Definitions
General Provisions 101 through 150.

440.1.02 Related References
A. Standard Specifications
Section 340—Portland Cement Concrete Pavement
Section 461—Sealing Roadway and Bridge Joints and Cracks
Section 500—Concrete Structures
Section 815—Graded Aggregate
Section 830—Portland Cement

B. Referenced Documents
AASHTO T 22
AASHTO T 23
ASTM C 94, Requirements for Uniformity
AASHTO T 97
AASHTO T 126
GDT 26
GDT 27
GDT 28
GDT 32

440.1.03 Submittals
A. Concrete Mix Design
Submit to the Engineer a concrete mix design prepared by a qualified testing laboratory. The Engineer will transmit the design to the Office of Materials and Research for approval. Ensure that the concrete mix design conforms to Subsection 440.2.A, “Composition of Class SP Concrete.”

<table>
<thead>
<tr>
<th>Item No. 439</th>
<th>Continuously reinforced concrete pavement, Class 3</th>
<th>Concrete ____ in (mm) thick</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 439</td>
<td>Continuously reinforced concrete pavement, Class HES</td>
<td>Concrete ____ in (mm) thick</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

439.5.01 Adjustments
A. Profilograph Tests
If based on the Department’s profilograph tests, the Engineer determines that the Contractor profilograph test results are inaccurate, the Contractor will be charged for profilograph testing at $500 for each trace mile ($250 for each trace kilometer) with a minimum charge of $500.
440.2 Materials
Use materials that conform to Subsection 430.2, “Materials,” for Portland cement concrete pavement, or Subsection 815.2.01 for graded aggregate. Gradation requirements are modified to require 30 to 45 percent by weight to pass the No. 10 (2 mm) sieve for graded aggregate.

A. Composition of Class SP Concrete

Ensure that the concrete mix design conforms to the following requirements:

1. Aggregates
 a. Shoulders Not Constructed In Continuity With Travel Lanes
 1) Graded Aggregate meeting the requirements in Subsection 815.2.01 and as modified in Subsection 440.2, “Materials” may by used if the shoulders are not constructed in continuity with travel lanes.
 2) Graded aggregate may be used as the coarse and fine aggregate portions of the concrete mix except that the gradation is modified to require 30 to 45 percent passing the No. 10 (2 mm) sieve.
 3) Use aggregates manufactured to meet the gradation at the quarry or blended at the plant site to produce the desired results. Ensure a uniform aggregate gradation when charging the mixer.
 b. Shoulders Constructed In Continuity with Travel Lanes
 Use concrete aggregate in shoulders constructed in continuity with travel lanes as specified in Subsection 430.2.C, “Composition of Concrete” and Subsection 430.2.C.2, “Fine Aggregate”.

2. Mix Design Criteria
 Base the proportions of Class SP concrete mix designs on the following requirements:

<table>
<thead>
<tr>
<th></th>
<th>Minimum Cement Content per Cubic Yard (meter) Concrete CWT (kg)</th>
<th>Maximum Water-Cement Ratio lbs/lb (kg/kg)</th>
<th>Design Air Content Range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class SP Concrete</td>
<td>4.25 (250)</td>
<td>0.75 (0.75)</td>
<td>5.0 to 7.0</td>
</tr>
</tbody>
</table>

3. Fly Ash
 Use fly ash as an additive in concrete to promote workability and plasticity or as a partial replacement for Portland cement if the following limits are met:
 a. Replace the cement quantity no more than 15 percent by weight.
 b. Replace cement with fly ash at the rate of 1.25 to 2 lbs (1.25 to 2.0 kg) of fly ash to 1 lb (1.0 kg) of cement.
 c. Do not use type IP cement in fly ash mixes.
 Calculate the water-cement ratio based on the total cement material in the mix including fly ash.
 Construct Portland cement concrete shoulders with the same class of concrete required in the adjacent sections when constructed in continuity with travel lanes, ramps, acceleration lanes, deceleration lanes, or other sections.
 Produce evidence that the proportions have the potential for strength development at 28 days as required in Subsection 440.3.06.B, “Approval of Mix Design Proportions”.

440.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

440.3 Construction Requirements

440.3.01 Personnel
General Provisions 101 through 150.

440.3.02 Equipment
Use equipment that meets the requirements in Subsection 430.3.02, “Equipment.”

440.3.03 Preparation
Prepare the roadbed as required by the Plans and Specifications before placing the concrete shoulder.
Ensure that the foundation immediately under the concrete shoulder and the areas supporting the paving equipment will not contribute to deficient shoulder thicknesses or excessive yield losses.

440.3.04 Fabrication
General Provisions 101 through 150.

440.3.05 Construction

A. Placing Concrete

Place concrete as follows:

1. Deposit the concrete on the grade; do not rehandle it if possible.
2. Unless truck mixers, truck agitators, or non-agitating hauling equipment are equipped to discharge concrete without segregation, concrete shall be unloaded into an approved spreading device and mechanically spread on grade.
3. Place it continuously between transverse joints without using the intermediate bulkheads.
4. Perform any necessary hand spreading with shovels.

NOTE: Do not allow personnel to walk in freshly mixed concrete with shoes coated with harmful substances.

5. Thoroughly consolidate with vibration the concrete against and along the form faces and along the full length and both sides of joint assemblies.
6. Do not continue vibration if puddling or excessive grout accumulates on the surface.

NOTE: Do not use grout that accumulates ahead of the paver in construction or expansion joints.

7. Deposit concrete near formed joints. Do not dump or discharge concrete onto a joint assembly unless the concrete is centered on the joint assembly.

B. Placing Reinforcement

Place the reinforcement according to details on the Plans. Do not allow reinforcement placement to disrupt or damage the concrete. Do not insert lane tie bars into unsupported sides of fresh concrete.

C. Achieving Consolidation

Vibrate the full width and depth of the shoulder. Do not allow the vibrators to contact the foundation, load transfer devices, side forms, or joints.

If the vibrator does not produce uniform consolidation and density, stop the operation to furnish methods or equipment that will produce pavement according to the Specifications.

D. Finishing

Finish the concrete pavement as follows:

1. Smooth and true the concrete to the proper cross-section with hand floats or mechanical floats.
2. Ensure that the surface conforms to the required cross section and contains no irregular, rough, or porous areas.
3. Make the surfaces flush at the joint between the roadway and shoulder.
4. Finish the surface to provide a uniform texture in all areas except rumble strips. Use mechanical equipment for grooving plastic concrete, brooming, or burlap drag.
5. Form rumble strips in the shoulder surface according to the Plans.

E. Cleaning Up

Immediately after finishing, remove the loose material and clean the grout from the surface of adjacent lanes.

F. Constructing Joints

Use the joint, type of filler, and type of sealer designated in the Plans.

Construct joints according to Subsection 430.3.05.J, “Provide Joints,” Section 461, and the following:

1. Transverse Contraction Joints

Saw transverse contraction joints in the shoulder to abut like joints in the roadway, or construct joints as shown on the Plans.
2. Longitudinal Joints
 a. On the longitudinal joint adjacent to the adjoining lane, place reinforcement at locations shown on the Plans.
 b. Secure the reinforcement in place with supporting assemblies or by inserting into supported sides of fresh concrete, or by using mechanical equipment to insert them while placing concrete.

3. Construction Joints
 Form transverse construction joints when concreting operations will be interrupted for more than 1 hour. Construct the joint according to Subsection 430.3.05.K.5, “Construction Joints,” except stringline requirements are 1/4 in (6 mm) maximum deviations in 15 ft (4.5 m).

G. Curing
 Cure concrete according to Subsection 430.3.05.L, “Cure the Concrete.”

H. Permitting Traffic on Shoulders
 Before using a shoulder as a haul road for loaded or unloaded vehicles:
 1. Ensure that compressive strength tests show the concrete has developed at least 2,000 psi (14 MPa) and is at least 7 days old.
 2. Construct earth ramps to facilitate movement across the shoulder. Place barricades to prevent traffic encroachment.
 3. Seal the joints before permitting vehicles or equipment on the shoulder.

440.3.06 Quality Acceptance

A. Concrete Mixing
 Produce Portland cement concrete shoulders using Class SP concrete as follows:
 1. Combine authorized proportions of approved materials in homogenous batches according to the construction methods in this Specification.
 2. Mix concrete produced in a stationary central mix plant for at least 60 seconds after placing materials in the drum.
 3. Reduction of the mix time may be allowed if representative tests show that the concrete meets requirements of ASTM C 94, Requirements for Uniformity, but never reduce the mix time to less than 50 seconds.

B. Approval of Mix Design Proportions
 The Office of Materials and Research will review concrete mix designs and will verify that compressive strength development is according to AASHTO T 126 and T 22.

 The Department will approve material combinations and mix designs using approved materials and complying with Subsection 440.2.A, “Composition of Class SP Concrete,” and the following:
 1. Flexural Strength
 Take at least 5 normally cured flexural specimens to ensure that the 28-day laboratory flexural design strength is according to AASHTO T 126 and T 97 and is within the following design acceptance range (DAR).

 \[
 \text{Class SP Concrete DAR} = 400 \text{ psi} \pm .67s \ (2.8 \text{ MPa} \pm .67s) \\
 \text{where } s = \text{ The standard deviation of 28-day flexural specimens for a combination of materials and mix proportions prepared together. Do not use a value of } s \text{ greater than 37 psi (255 kPa) to calculate DAR.}
 \]

 A mixture may be used that exceeds the upper limit of the DAR.

 2. Compressive Strength
 Prepare and test 6 cylinders according to AASHTO T 126 and T 22 to determine the 28-day laboratory compressive strength for Class SP concrete. Ensure that it exceeds the following minimum laboratory performance value (LPV).

 \[
 \text{Class SP Concrete LPV} = 2,000 \text{ psi} + .18R \ (13.8 \text{ MPa} + .18R) \\
 \text{where } R = \text{ The difference between the largest observed value and the smallest observed value for 28-day compressive strength specimens for a combination of materials and mix proportions prepared together.}
 \]
C. Field Adjustments on Concrete Mixes

Determine the aggregate surface moisture and apply free moisture corrections to the approved mix design. The Engineer will verify that these corrections are made properly.

Adjustments to the approved proportions of the fine aggregate, coarse aggregate, and water may be made according to these guidelines:

☐ Do not decrease the cement factor.
☐ Do not increase the water-cement ratio.
☐ Ensure that adjustments produce concrete proportions according to this Specification.
☐ Notify the Engineer before making adjustments.

D. Concrete Mix Tolerances

Ensure that variations in consistency and concrete air content are within the following limits:

1. Consistency
Immediately before placing, determine concrete slump using GDT 27. Concrete for Portland cement concrete shoulders will not be accepted if the slump value is greater than 3 in (75 mm).

2. Air Content
Determine the concrete air content immediately before placement using GDT 26 or GDT 32.
Concrete will not be accepted with an air content outside the following limits:

<table>
<thead>
<tr>
<th>Lower acceptance limit</th>
<th>3.0 percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper acceptance limit</td>
<td>7.5 percent</td>
</tr>
</tbody>
</table>

E. Acceptance of Concrete Strength

Portland cement concrete shoulder strength shall be accepted based upon its 28-day compressive strength development.

1. Subdivide the shoulder into separate lots of approximately 7,000 yd³ (5850 m³) of concrete shoulder placed continuously, except for overnight or other minimal discontinuance.
2. Randomly select three production units from each lot for strength determination tests.
3. Cast one set of cylinders for each production unit being tested.
4. A set consists of two 6 by 12 in (150 by 300 mm) cylinders cured according to AASHTO T 23. The test is the average strength of the two cylinders tested according to AASHTO T 22.
5. Determine lot strength acceptance according to the limits in the Pay Factor Schedule for Strength Determinations at 28 Days table.
 a. If the average strength of the lot, based on the three acceptance tests, does not meet the lower acceptance limit shown in the 1.00 pay factor, the Contractor may leave the lot in place at a reduced Unit Price according to the Pay Factor Schedule for Strength Determinations at 28 Days.
 b. If the average strength of the lot does not attain the lower acceptance limit shown for a 0.70 pay factor, the Engineer may order the removal of any or all of the concrete in the lot.

<table>
<thead>
<tr>
<th>Pay Factor Schedule for Strength Determinations at 28 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance Limits for Pay Factor Levels</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.00 LAL*</td>
</tr>
<tr>
<td>Class SP Concrete</td>
</tr>
</tbody>
</table>

* Lower Acceptance Limit (LAL)

The pay factor is 0.50 for concrete that remains in place when outside the 0.70 pay factor limits for compressive strength.
440.3.07

F. Thickness Tolerances

Determine the thickness by measuring the fresh concrete depth at the shoulder edges at least every 500 ft (150 m) of shoulder length.

The Engineer will evaluate areas deficient by more than 1 in (25 mm) thick. If the Engineer requires removal, remove and replace the shoulder pavement in full cross sections according to Plan requirements.

If removal and replacement are not required, payment is made at 50 percent of the Contract Unit Price for areas deficient by more than 1 in (25 mm). Areas that are deficient by more than 0.5 in (13 mm) through 1 in (25 mm) will be paid for at 70 percent of the Contract Price per square yard (meter).

440.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

440.4 Measurement

The work to be paid for under this Item is the number of square yards (meters) of Portland cement concrete shoulders completed and accepted as measured in place. The measurement width is the shoulder width shown on the Plan typical cross-section. The measurement length is along the surface at the inside edge of the paved shoulder.

440.4.01 Limits

General Provisions 101 through 150.

440.5 Payment

The work will be paid for at the Contract Unit Price per square yard (meter). Payment is full compensation for providing materials, reinforcement, equipment, and labor, mixing, hauling, handling, placing, and providing incidentals to complete the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 440</th>
<th>Plain Portland cement concrete shoulders, type...</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
</table>

440.5.01 Adjustments

The Contract Unit Price per square yard (meter) of concrete shoulder will be adjusted for concrete shoulder accepted with a 28-day compressive strength or thickness deficiency.

If a shoulder section is deficient in thickness and compressive strength, the Contract Unit Price will be adjusted by the total reduction of the application of the two individual percentages shown in the Pay Factor Schedule and Subsection 440.3.06.F, “Thickness Tolerances.”

For combined deficiencies of 50 percent or more, the Engineer may allow the shoulder to stay in place or require its removal. If the Engineer requires shoulder pavement removal, the original pavement nor its removal will be paid for. Pavement replaced satisfactorily will be paid for at the appropriate Unit Price.

Section 441—Miscellaneous Concrete

441.1 General Description

This work includes placing Portland cement concrete as follows:

- As slope paving on end rolls, cut slopes, paved ditches, spillways, and ditch slopes
- In median pavement
- As sidewalks
- In concrete curbs, gutters, curb and gutters, and valley gutters
- As nonreinforced headwalls
- As velocity dissipators and concrete slope drains
- As concrete spillways
- Curb cut wheel chair ramps
At other locations designated on the Plans or as directed

This work includes subgrade preparations including:

- Fine grading and backfilling
- Forming, furnishing, placing, and finishing concrete
- Constructing weep holes and furnishing and placing the coarse aggregate
- Furnishing and placing preformed joint fillers as shown on the Plans
- Placing driveway concrete as shown on the Plans. Nominal 4 in (100 mm) or 6 in (150 mm) thick as specified or to match existing pavement.

441.1.01 Definitions
General Provisions 101 through 150.

441.1.02 Related References
A. Standard Specifications
 - Section 209—Subgrade Construction
 - Section 430—Portland Cement Concrete Pavement
 - Section 500—Concrete Structures
 - Section 832—Curing Agents
 - Section 833—Joint Fillers and Sealers
 - Section 853—Reinforcement and Tensioning Steel
B. Referenced Documents
 General Provisions 101 through 150.

441.1.03 Submittals
General Provisions 101 through 150.

441.2 Materials
Use concrete that conforms to the minimum requirements for Class “B,” as specified in Section 500, except that a one-bag mixer may be used. The requirements of Subsection 500.1.03.G, “Cold Weather Concrete Curing and Protection Plan” and Subsection 500.3.05.X, “Pour Concrete in Cold Weather” for cold weather concrete placement are deleted.

Place miscellaneous concrete only when the air temperature is 40 °F (4 °C) and rising. Protect concrete from freezing for the first 24 hours. Hand finishing is allowed.

Other materials and their Specifications are as follows:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Bars for Concrete Reinforcement</td>
<td>853.2.01</td>
</tr>
<tr>
<td>Membrane Curing Compound, Type 2</td>
<td>832.2.03</td>
</tr>
<tr>
<td>Dowel and Tie Bars and Reinforcing Steel</td>
<td>853.2.03</td>
</tr>
<tr>
<td>Joint Fillers and Sealers</td>
<td>833</td>
</tr>
<tr>
<td>Welded Steel Wire for Concrete Reinforcement</td>
<td>853.2.07</td>
</tr>
</tbody>
</table>

441.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

441.3 Construction Requirements

441.3.01 Personnel
General Provisions 101 through 150.
441.3.02 Equipment
A. Forms
 Forms are subject to the Engineer’s approval. Use forms that are:
 - Wood or metal that is readily available
 - Straight and oiled before each use
 Use metal divider plates and templates.
 Use the slip form placement method when applicable. If the slip form method does not produce a product with the proper quality, shape, grade, or alignment, the Engineer may require using fixed forms.

B. Weep Holes
 Provide weep hole drain pockets filled with coarse aggregate to use with weep hole drain pipe or formed openings according to the Plan details.

441.3.03 Preparation
Before placing the concrete, excavate for toe walls, edge walls, and weep hole drain pockets; place coarse aggregate in weep hole drain pockets; and grade, finish, and compact the subgrade surface. Use mechanical tamps for compaction if necessary.

441.3.04 Fabrication
General Provisions 101 through 150.

441.3.05 Construction
A. Extent and Thickness of Pavement
 See the Plans to determine the areas to be paved and the dimensions.
 Thicknesses are subject to a minus tolerance of 0.5 in (13 mm). Do not perform overlay pours.

B. Preparation of Subgrade
 Finish the subgrade for miscellaneous concrete to the line and grade on the Plans and the following:
 1. Compact the subgrade to the same degree as the roadway on which it is placed. Compact the subgrade according to Section 209.
 2. If a Contract involves a Roadway and a Bridge Contractor, the Roadway Contractor shall complete the grading for the slope paving.
 The Bridge Contractor shall complete final grading, compacting, dressing, placing, and maintenance to the structures until completion.
 3. When placing paving on the front slopes of ditches and shoulders, place any required special materials during the roadway construction.
 4. Do not excavate for velocity dissipators, spillways, and slope drains below the foundation elevation. Do not excavate wider than necessary to provide working space or to remove soft, unsuitable material. Backfill with selected material.
 5. When fitting spillways to concrete pavement, set the specified dowel bars into the pavement when it is laid. Use metal parting strips to hold the ends of dowels bent into the grooves.

C. Concrete
 1. Mixing
 Mix Class B concrete as specified in Section 500 with the following exceptions:
 a. Use of small capacity job-site batchers and one-bag mixers is allowed. The rate of concrete placement in Subsection 500.3.05.P, “Meet the Minimum Placement Rates” is waived for miscellaneous concrete.
 b. Proportion concrete ingredients volumetrically if the Engineer has approved equipment calibration and operation and the operator is certified by the Office of Materials and Research.
 2. Placing and Finishing
 Place and finish concrete as follows:
 a. Deposit concrete within forms or against other pavements on a compacted and wetted subgrade to the depth to produce the specified thickness.
b. Vibrate the headwalls.

c. Strike off the concrete to a plane surface and finish it with a Type IV or Type V finish as defined in Subsection 500.3.5.0.AB, “Finish Concrete” and complete the following:

1) Concrete Slope Paving. Give a final finish with a stiff-bristle broom. With the Engineer’s approval, mechanically convey the concrete to the forms.

2) Concrete Sidewalks. Give a Type V finish unless otherwise noted on the Plans. Test the surface with a 10 ft (3 m) straightedge laid parallel to the center line. Eliminate irregularities greater than 0.25 in (6 mm) per 10 ft (3 m) while the concrete is still plastic.

Ensure that concrete sidewalk constructed as curb cut (wheelchair) ramps has a rough or textured finish.

3) Concrete Paved Ditches. Ensure that the surface of the bottom and sides of paved ditches are uniform and true to grade and cross section.

Ensure that straight-grade tangents do not deviate more than 1 in (25 mm) within 10 ft (3 m) when tested with a 10 ft (3 m) straightedge. Do not allow deviation if it reduces the ditch paving thickness, causes water to pond, or alters the direction of flow.

Finish the ditch paving by floating with wood or metal floats to bring mortar to the surface to cover the coarse aggregate.

Use reinforcing that conforms to Plan details if required.

4) Concrete Curbs, Gutters, and Median. Finish according to Subsection 441.3.05.C.2, “Placing and Finishing.” Remove face forms as soon as possible and finish the exposed surfaces with a wood float.

Use a straightedge to test the edge of the gutter and top of the curb and median to conform to the requirements for the adjacent pavement. Irregularities shall not exceed 0.25 in (6 mm) in 10 ft (3 m).

Place the curb and gutter using a machine as long as the results are satisfactory.

5) Curb Cut Wheel chair Ramps. Construct a Type I, II, or III ramp according to Georgia Standard 9031W. Tie ramps into adjacent paved or unpaved sidewalk and use a rough or textured finish.

3. Joints

Follow these procedures to construct joints on slopes, ditches, sidewalks, and curbs, gutters, and medians.

a. Slope Paving

Place paving on slopes in horizontal or vertical courses, but not a mixture of both.

1) Construct horizontal courses approximately level and at least 3 ft (1m) but no more than 6 ft (1.8 m) wide measured along the slope.

When needed, construct trapezoidal courses at the top and bottom to accommodate sloping berm and ditch line conditions.

2) Edge the paving at construction joints between courses with a 0.25 in (6 mm) radius tool.

3) Provide vertical contraction or construction joints spaced along the horizontal course at right angles to the horizontal construction joints at approximately 40 ft (12 m) intervals, in line not staggered.

No other vertical lines will be required in horizontal courses.

When using vertical contraction joints, cut them with a tool one-third the depth of the paving during the finishing operation. Edge the contraction joints the same as construction joints.

Vertical courses approximately equal and at least 3 ft (1 m) but no more than 5 ft (1.5 m) wide across the plane of the slope. The desired width is 4 ft (1.2 m). Horizontal lines are not required in vertical courses.

Separate slope paving from the masonry of structures, sidewalks, curbs, and rigid-type roadway pavements of preformed joint filler that are 0.5 in (13 mm) thick.

b. Concrete Paved Ditches

Form joints in concrete paved ditches as follows:

1) Space contraction joints at 30 ft (9 m) intervals.

2) Place expansion joints only where the paved ditch joins the roadway pavement or some other structure.

3) Do not use joint sealers for expansion or contraction joints.
441.3.06

c. Concrete Sidewalk
Form transverse contraction joints using a tool designed to form a groove one-third the depth of the sidewalk at intervals shown on the Plans.
Where sidewalks abut the curb and gutter, ensure that alternate joints coincide. Round the edges with a 0.25 in (6 mm) edger. Make expansion joints according to the materials, dimensions, and locations specified on the Plans.
d. Concrete Curbs, Gutters, and Medians
Form contraction joints or expansion joints on curbs, gutters, and medians.
1) Contraction Joints. Ensure that joints in curb, gutters, and medians are spaced the same as the joints in paving. Form joints by using metal divider plates or sawing them as in Section 430.
Form joints at least one-fifth but not greater than one-fourth the depth of the concrete. Except for sawed joints, finish the joints with a 0.25 in (6 mm) edging tool.
For curbs, gutters, and medians adjacent to pavement other than concrete, contraction joints shall be as follows:
 □ For header curb and combination curb and gutter, install contraction joints spaced no more than 20 ft (6 m) apart.
 □ For gutter median, install a contraction joints spaced no more than 20 ft (6 m) apart.
2) Expansion Joints. Form expansion joints according to the Plan details or as directed. Ensure that they coincide with the expansion joints in the adjoining pavement or gutter.
Cut the joint fillers to the same cross section as the construction. Trim flush the material that protrudes after the concrete is finished.
When miscellaneous concrete items are not adjacent to concrete construction, provide expansion joints at an interval of at least 500 ft (150 m).
e. Curb Cut Wheelchair Ramps
Locate and form expansion joints for curb cut wheelchair ramps according to Georgia Standard 9031W for ramp Type I, II, or III.

4. Curing
Use curing methods specified in Subsection 430.3.05.L, “Cure the Concrete.” Ensure that the membrane curing compound is Type 2, if used. Pack honeycombed areas immediately after removing the forms.

D. Backfilling
Backfill the areas as soon as possible without damaging the work.

E. Clean-Up
When concrete work is complete, clean each surface. Protect the work from stains or other damage until Final Acceptance.

441.3.06 Quality Acceptance
General Provisions 101 through 150.

441.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

441.4 Measurement
A. Concrete Slope Paving
Concrete slope paving is measured for payment in square yards (meters) of accepted surface area of paving of the specified thickness. Concrete in toe or edge walls, excavation, backfill, weep holes, and aggregates are not measured for separate payment.

B. Concrete Sidewalks
Concrete sidewalks are measured in square yards (meters) of the specified thickness, complete in place and accepted. The length is the actual measured length along the surface. The width is the Plan width or as directed. Excavation and backfill are not measured separately for payment.
C. Concrete Paved Ditches

The area measured for payment is the square yards (meters) of exposed surface area, exclusive of top edges, of the specified thickness placed according to the Plans or as directed. Reinforcing steel, excavation, preparation of subgrade including Type I backfill, forms, and concrete in toe or edge walls are not measured separately for payment.

Type II backfill, when required, will be paid according to Section 207.

D. Concrete Curbs, Gutter, Median, Pavement, and Combination Curb and Gutter

The following are measured by the linear foot (meter) along the face of the curb:

- Concrete curb and gutter
- Concrete curb
- Concrete header curb

The following are measured by the square yard (meter) or by the linear foot (meter), whichever is specified:

- Concrete gutter
- Concrete valley gutter
- Concrete valley gutter with curb
- Concrete median pavement
- Concrete gutter with raised edge

The length used to compute the square yards (meters) or linear foot (meter) is measured along the center line of the gutter. The width is the total width of the gutter including the curb or raised edge. Concrete doweled integral curb includes dowels.

E. Concrete Headwalls

Headwalls are measured for payment according to Subsection 500.4.01.B, “Payment per Cubic Yard (Meter)” and Subsection 500.5.01.E, “Filler Concrete.” Filler concrete, where required, will be paid for at 60 percent of the Contract Unit Price for Class B concrete.

F. Concrete Spillways

Concrete spillways regardless of the type specified are measured by the actual number poured complete and accepted.

G. Concrete Slope Drains

Concrete slope drains are measured in square yards (meters) along the surface, complete and accepted.

H. Velocity Dissipators

Velocity dissipators are measured in square yards (meters), surface measure, complete and accepted.

I. Concrete Driveways

Driveway pavement is measured along the surface from the paving edge or back of the curb where old and new concrete join. The width is the average width constructed.

J. Curb Cut Wheelchair Ramps

For new construction, curb cut wheelchair ramps will not be measured. For new construction, linear feet (meters) of curb and gutter will include the transitioned curb in front of ramps and square yards (meters) of concrete sidewalk will include ramps. No additional payment will be made for curb cut ramps.

For existing sidewalks, curb cut wheelchair ramps are measured as the actual number formed and poured, complete and accepted. No additional payment will be made for sawing existing sidewalk and removal and disposal of removed material for new ramp construction.

441.4.01 Limits

General Provisions 101 through 150.

441.5 Payment

These Items, measured as specified above, will be paid for at the Contract Unit Price per each, per square yard (meter), per linear foot (meter), or per cubic yard (meter).
Payment will be made under:

A. **Slope Paving**

| Item No. 441 | Concrete slope paving [thick] in (mm) | Per square yard (meter) |

B. **Sidewalks**

| Item No. 441 | Concrete sidewalk [thick] in (mm) | Per square yard (meter) |

C. **Concrete Ditches**

| Item No. 441 | Plain concrete ditch paving [thick] in (mm) | Per square yard (meter) |
| Item No. 441 | Reinforced concrete ditch paving [thick] in (mm), including reinforcing steel | Per square yard (meter) |

D. **Curb s, Gutters, Combination Curb and Gutter, Headers, and Medians**

Item No. 441	Concrete curb and gutter, [thick] in (mm)x [width] in (mm) type	Per linear foot (meter)
Item No. 441	Concrete header curb, [height] in (mm), type	Per linear foot (meter)
Item No. 441	Concrete valley gutter, [thick] in (mm)	Per square yard (meter)
Item No. 441	Concrete valley gutter with curb, [thick] in (mm)	Per square yard (meter)
Item No. 441	Concrete gutter with raised edge, [thick] in (mm)	Per square yard (meter)
Item No. 441	Concrete median [thick] in (mm)	Per square yard (meter)
Item No. 441	Concrete median, corrugated [thick] in (mm)	Per square yard (meter)
Item No. 441	Concrete doweled integral curb, type including dowels	Per linear foot (meter)

E. **Spillways, Drains and Velocity Dissipators**

Item No. 441	Concrete spillway type	Per each
Item No. 441	Concrete slope drain	Per square yard (meter)
Item No. 441	Velocity dissipators	Per square yard (meter)

F. **Headwalls**

| Item No. 441 | Concrete headwalls | Per cubic yard (meter) |

G. **Driveway Concrete**

| Item No. 441 | Driveway concrete [thick] in (mm) | Per square yard (meter) |

H. **Curb Cut Wheelchair Ramps**

| Item No. 441 | Curb cut wheelchair ramps, Type | Per each |

441.5.01 Adjustments

General Provisions 101 through 150.
Section 443—Elastomeric Profile Bridge Joint Seals

443.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 444—Sawed Joints in Existing Pavements

444.1 General Description
This work includes sawing joints in existing Portland cement concrete pavements such as roadway pavements, intersections, driveways, parking areas, and sidewalks when removing existing pavements is shown on the Plans or required by the Engineer.

444.1.01 Definitions
General Provisions 101 through 150.

444.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 General Provisions 101 through 150.

444.1.03 Submittals
General Provisions 101 through 150.

444.2 Materials
General Provisions 101 through 150.

444.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

444.3 Construction Requirements

444.3.01 Personnel
General Provisions 101 through 150.

444.3.02 Equipment
A. Mechanical Saw
 Use an adequately powered, water-cooled, mechanical saw with a diamond-edge blade or an abrasive wheel that will cut a straight joint to the required depth.

 The Engineer may require that a guide be used with the saw to produce a satisfactory joint.

444.3.03 Preparation
General Provisions 101 through 150.

444.3.04 Fabrication
General Provisions 101 through 150.

444.3.05 Construction
A. Joints
 Saw joints true to the lines designated by the Engineer.

 Saw the joints at least 2 in (50 mm) deep, or deeper if the Engineer directs, to remove pavement along true lines and to prevent spalling or overbreaking of pavement that will remain in place.
Saw with diamond blades. Do not dry saw with abrasive blades.

B. Removal of Pavement
 After joints have been sawed to completely isolate a pavement to be removed:
 1. Begin removing the pavement.
 2. Protect the edges of the pavement that will remain. Do not use removal methods that may damage these edges.

C. Traffic Control
 After removing the pavement, do not allow traffic or other equipment to cross the exposed edges of the remaining pavement until new pavement is constructed in its place.

444.3.06 Quality Acceptance
General Provisions 101 through 150.

444.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

444.4 Measurement
The length of sawed joints measured for payment is the actual linear feet (meters) of joints acceptably sawed.

444.4.01 Limits
General Provisions 101 through 150.

444.5 Payment
Sawed joints as described above will be paid for at the Contract Unit Price per linear foot (meter).
Payment will be made under:

| Item No. 444 | Sawed joints in existing pavements | Per linear foot (meter) |

444.5.01 Adjustments
General Provisions 101 through 150.

Section 445—Waterproofing Pavement Joints and Cracks

445.1 General Description
This work includes waterproofing joints and cracks in the pavement by cleaning the existing surface and placing a membrane over joints and random cracks as shown on the Plans.

445.1.01 Definitions
General Provisions 101 through 150.

445.1.02 Related References
A. Standard Specifications
 Section 150—Traffic Control
 Section 400—Hot Mix Asphalitic Concrete Construction
 Section 888—Waterproofing Membrane Material

B. Referenced Documents
 General Provisions 101 through 150.

445.1.03 Submittals
General Provisions 101 through 150.
445.2 Materials
Use membranes that meet the requirements of Subsection 888.2.02. For a list of sources, see QPL 22.

445.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

445.3 Construction Requirements

445.3.01 Personnel
General Provisions 101 through 150.

445.3.02 Equipment
General Provisions 101 through 150.

445.3.03 Preparation
A. Primer

Place primer on:

- Portland cement concrete
- Old asphaltic concrete surfaces

The Engineer will determine when to place primer on new asphaltic concrete surfaces.

Before placing the membrane:

1. Prime the surface according to the manufacturer’s recommendations.
2. Correct spalls greater than 3 in. (75 mm) in diameter that will prevent the material from bonding to the pavement or that will leave a cavity under the material.
 Repair spalls using asphaltic concrete that meets the requirements of Section 400 or other materials such as cold mixes approved by the Engineer.
3. Place the primer on the surface at the rate specified by the primer manufacturer. Extend it 1 in (25 mm) wider than the membrane. Before applying the membrane, allow the primer to dry until it is tack-free.
4. Cover the sections that are primed with membrane within the same day or repriming will be required.

445.3.04 Fabrication
General Provisions 101 through 150.

445.3.05 Construction
A. Placing the Membrane

Place the membrane on joints and cracks on the mainline and the ramp pavements that will be resurfaced, unless otherwise noted on the Plans.

1. Place the membrane only when the temperature is above 40 °F (4 °C) and the pavement surfaces are dry and free of dirt or debris.
2. Install the membrane in widths of at least 11-3/8 in (290 mm) and center them over the joint or crack within a 2 in (50 mm) tolerance.
3. Seal joints as follows:
 a. Seal transverse joints and cracks first, starting at the outside edge of the pavement and extending the full length of the joints.
 b. Seal the longitudinal joint(s) after the transverse joints, placing the membrane in the direction that the Project will be paved.

If laps are needed, place them in the transverse and longitudinal membranes with an overlap of at least 2.5 in (65 mm).

4. Install the membrane straight and wrinkle-free with no curled or uplifted edges. Slit and fold down wrinkles over 3/8 in (10 mm) wide.
5. Press the membrane against the concrete or asphalt surface using a hand roller or other equipment to ensure proper bonding.
6. Bond the edges and corners of the strips securely to the surface. Before placing the overlay, rebond or replace strips that have loose edges or corners at no expense to the Department.
7. Place the asphaltic concrete overlay when the membrane surface is dry.
8. Traffic will be allowed to enter the section between the time of placing the membrane and placing the paving, for a maximum of 7 calendar days. Before paving, replace damaged or disbonded membrane at no additional cost to the Department.
9. Fill joints or cracks flush with the pavement if they are wider than 0.5 in (13 mm) or deeper than 3/8 in (10 mm) and not adequately filled to provide support for the membrane over the joint. Use PG 64-22 asphalt cement, hot pour, or other approved sealant material before placing the membrane as directed by the Engineer.
10. Clean the joint to remove dirt and debris before filling the joint. Comply with the short-term pavement marking requirements of Section 150.

445.3.06 Quality Acceptance
General Provisions 101 through 150.

445.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

445.4 Measurement
The membrane quantity, complete in place and accepted, is measured in linear feet (meters). The length for transverse joints waterproofed is based on the typical cross section in the Plans, except that, where widening occurs for extra lanes, field measurements are made to determine the exact length waterproofed.
The length for longitudinal joints and random cracks waterproofed are measured in place along the center line of the joint on the surface of the pavement. No allowance is made for laps.

445.4.01 Limits
General Provisions 101 through 150.

445.5 Payment
Payment will be made at the Contract Unit Price per linear foot (meter) of joint and crack waterproofed, which will include cleaning the surface and furnishing and placing the primer and membrane.
Payment will be made under:

| Item No. 445 | Waterproofing pavement joints and cracks (width) | Per linear foot (meter) |

445.5.01 Adjustments
General Provisions 101 through 150.

Section 446—Placement of Pavement Reinforcement Fabric

446.1 General Description
This work includes installing Type II pavement reinforcement fabric and high strength pavement reinforcement fabric over cracks, joints, and patches in existing pavement. Install the fabric in strips or full width before placing an overlay where shown on the Plans or as directed by the Engineer. Install high strength pavement reinforcement fabric on interstate projects.

446.1.01 Definitions
General Provisions 101 through 150.

446.1.02 Related References
A. Standard Specifications
 Section 150—Traffic Control
 Section 400—Hot Mix Asphaltic Concrete Construction
 Section 820—Asphalt Cement
 Section 881—Fabrics

356
B. Referenced Documents
 General Provisions 101 through 150.

446.1.03 Submittals
General Provisions 101 through 150.

446.2 Materials
Use the reinforcement fabric that meets the requirements of Subsection 881.2.06.

Bituminous binder materials, when required, shall meet the requirements of Section 413, “Bituminous Tack Coat” for the
standard strength fabric and for the non-self adhesive high strength fabric. A primer coat meeting requirements of Section
822, “Emulsified Asphalt” shall be used when applying self-adhesive high strength fabric on milled surfaces.

446.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

446.3 Construction Requirements
446.3.01 Personnel
General Provisions 101 through 150.

446.3.02 Equipment
A. Template
 When using fabric strips, use a template or other method satisfactory to the Engineer to apply the bituminous binder
 uniformly.

B. Mechanical Device
 Use a mechanical device approved by the Engineer when placing the fabric full width on the pavement to ensure the
 fabric is placed smooth, free of wrinkles, and with no uplifted edges.

C. Roller
 Place the fabric in total contact with the underlying pavement. Roll the fabric with a static drum or pneumatic roller to
 ensure adequate adhesion to the pavement surface.

446.3.03 Preparation
Before an existing pavement surface is milled, mark the location of joints and cracks with an offset reference so that they can
be located after milling has been completed.

A. Cleaning the Pavement
 Immediately before applying the asphalt binder, clean the pavement surface to remove rocks, dirt, debris, and other
 materials that may prevent a clean bonding surface.

B. Repairing Potholes, Spalls, or Cracks
 Before placing the fabric, repair potholes, spalls, or cracks greater than 3/16 in (5 mm) wide. Repair spalls and potholes
 using asphaltic concrete that meets the requirements of Section 400 or other materials such as cold mixes approved by
 the Engineer.
 Fill cracks with PG 64-22 asphalt cement or other materials approved by the Engineer.

446.3.04 Fabrication
General Provisions 101 through 150.

446.3.05 Construction
When ambient temperatures are a minimum of 70 °F (21 °C) and rising, reinforcement fabric with a self-adhesive backing
may be installed at the Contractor’s option. Do not apply reinforcement fabric with the self-adhesive backing when ambient
temperatures are below 70 °F (21 °C). If temperatures are between 45°F (7 °C) and 70°F (21°C), reinforcement fabric without
a self-adhesive backing may be installed. Do not install reinforcement fabric when ambient temperatures are less than 45 °F
(7 °C).

A. Applying Bituminous Binder
 When self-adhesive reinforcing fabric is applied on new or existing surfaces a bituminous application will not be
 necessary. When self-adhesive reinforcing fabric is applied to a milled surface, thoroughly clean the pavement of all dust
 and debris. Apply a prime coat of SS-1h meeting requirements of Section 822, “Emulsified Asphalt” at a rate of 0.10
 gal/yd² (0.45 L/m²).
Use PG 64-22 asphalt cement to bond non-self-adhesive fabric to the pavement and apply at a rate of 0.10 gal/yd² (0.45 L/m²) over non-milled surfaces and 0.25 gal/yd² (1.13 L/m²) over milled surfaces. Heat the PG 64-22 asphalt cement and apply within a temperature range of 350 °F to 375 °F (175 °C to 190 °C).

Where using fabric strips, use a template or other method satisfactory to the Engineer to apply bituminous binder uniformly.

Do not allow the width of the binder applied to exceed the width of the fabric by more than 1 in (25 mm) on each side.

B. Placing the Fabric

For self-adhesive reinforcement fabric, remove the release liner of the fabric and place the adhesive side to the pavement. Place non-self-adhesive reinforcement fabric a minimum of 24 hours in advance of the paving operations, if possible, to ensure proper adhesion of the fabric to the pavement. Place fabric on the pavement immediately after the bituminous binder has been applied to the pavement. Place the non-woven polyester side of the fabric on the pavement.

Install the fabric so that it is smooth, free of wrinkles with no uplifted edges. Provide a minimum of 5 in (125 mm) overlap on all sides of the repair area. Center the material over the repair area within a 2 in (50 mm) tolerance. When placed full width, use a mechanical device approved by the engineer to place the fabric on the pavement.

Immediately after the fabric is placed on the pavement, ensure that the fabric is in total contact with the underlying pavement. Roll the material with a static drum or pneumatic roller to ensure adequate adhesion to the pavement surface.

Any fabric with loose edges, corners or other improperly bonded areas shall be replaced at the expense of the Contractor prior to placement of the overlay or opening the fabric section to traffic.

C. Overlapping Fabric

If more than one strip of fabric is required to cover the repair area, the seams that are created shall be butt or lapped seams. When waterproofing is required, use lap seams with a minimum 2 in (50 mm) overlap. Make all lapped seams in the direction of the paving operation to prevent pickup by the paving train. The width of the fabric strips shall be shown on the plans.

Make joint overlaps to prevent pickup by the paving train that places the asphaltic concrete.

D. Protecting Fabric

When full width fabric is used, schedule work so that the fabric will be covered with asphaltic concrete prior to reopening the section to traffic. Do not allow traffic, other than necessary construction equipment or emergency vehicles, on unprotected fabric. If approved by the Engineer, traffic will be allowed to use a section with applied fabric strips for a maximum of 7 days. Coordinate all activities to conform to this restriction. Replace any damaged fabric prior to paving at the Contractor’s expense. When short-term pavement markings are required, the markings shall meet the requirements of Section 150.

When in-place fabric is exposed to moisture prior to application of the overlay, make sure the fabric is completely dry before the overlay is placed.

If the fabric sticks to tires of trucks or paving equipment during the construction overlays, hot mix asphalt may be broadcast over the fabric for protection.

E. Placing Overlay

Use an asphaltic concrete overlay that meets the requirements of Section 400.

Prior to placement of the overlay, apply a bituminous tack coat over the fabric at a rate determined by the Engineer as described in Subsection 400.3.03.A.3.

The minimum overlay thickness shall be 2 in (50 mm). When using a vibratory roller for compaction, avoid the use of excessive amplitude. The use of excessive amplitude during the compaction process may result in an undesirable riding surface.

446.3.06 Quality Acceptance

General Provisions 101 through 150.

446.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

446.4 Measurement

The reinforcement fabric and asphalt cement binder, complete, in place, and accepted is measured by the square yard (meter) for full-width fabric, or by the linear foot (meter) for fabric strips. No allowance will be made for laps.
446.4.01 Limits
General Provisions 101 through 150.

446.5 Payment
Payment will be made at the Contract Unit Price per square yard (meter) or per linear foot (meter) of reinforcement fabric as shown in Subsection 446.4, “Measurement.” Payment is full compensation for the work specified in this section, including cleaning the surface and furnishing and placing the asphalt cement binder and pavement reinforcement fabric. Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 446</th>
<th>Pavement reinforcement fabric strips, type___ including bituminous binder</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 446</td>
<td>Pavement reinforcement fabric full width, type___ including bituminous binder</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 446</td>
<td>High Strength Pavement Reinforcement Fabric _______ inch (meter) Width</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

446.5.01 Adjustments
General Provisions 101 through 150.

Section 447—Modular Expansion Joints

447.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 448—Portland Cement Concrete End Dams and Patches

448.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 449—Bridge Deck Joint Seals

449.1 General Description
This work consists of furnishing and installing bridge deck joint sealing systems at the locations shown on the Plans. These bridge deck joint sealing systems consist of a joint seal and may include concrete headers. Use a joint seal material that conforms to one of the following:

- A preformed elastomeric neoprene profile seal, or
- A low-density, closed cell, cross-linked, ethylene vinyl acetate, polyethylene copolymer, nitrogen-blown seal.

Use either epoxy concrete or elastomeric concrete for header material. Mix and use elastomeric and epoxy concrete material according to the manufacturer’s guidelines.

449.1.01 Definitions
General Provisions 101 through 150.

449.1.02 Related References
A. Standard Specifications
 Section 106—Control of Materials
 Section 501—Steel Structures
B. Referenced Documents
 GDT 111
449.1.03

ASTM A 36
ASTM D 395
ASTM D 570
ASTM D 588
ASTM D 624
ASTM D 638
ASTM D 1299
ASTM D 2240
ASTM D 2628
ASTM D 4070

449.1.03 Submittals

A. Working Drawings

Furnish working drawings covering the proposed joint installation. Before the joint is installed, the Bridge Engineer will review these drawings and indicate this review on the drawings.

The Department is not responsible for the accuracy of the drawings.

Assume responsibility for conforming to the Specifications and Plans. Include these items in the submission:

- Manufacturer’s brochure on the proposed joint, showing component physical dimensions, installation procedures, material certifications, and a table of variable temperatures and dimensions
- Drawings that detail the joint installation and indicates the length of component members, treatment of directional changes, and field splicing of steel locking rails
- Expansion joint fabricator documentation

Ensure that the expansion joint fabricator is AISC Category I, shop approved. Supply documentation with the shop drawings.

B. Submissions for Preformed Elastomeric Neoprene Profile Seals

Furnish the manufacturer of the performed elastomeric neoprene profile seal a working drawing for each installation. This drawing shall include all of the following information:

- Identification and orientation of each joint
- Length of each joint including a minimum 6 in (150 mm) turn up at both barrier faces
- Total projected movement range of the joint
- Use a full-length seal if a full bridge width installation can be made. If traffic conditions require that the joint seal installation be in stages, indicate the splice points

In addition to the above, if existing edge beams are to remain as joint headers, furnish the manufacturer of the seal the following:

- Joint width measurements taken at 2 ft (600 mm) intervals along the full length of the joint plus a measurement of the joint width of each barrier in the area of the turn ups
- Ambient temperature, taken when width measurements are made

Have the manufacturer of the preformed elastomeric neoprene profile seal use this information to determine quantities of materials needed and the profile size or sizes for each joint.

Have the manufacturer enter this data on the working drawing, and verify that the data is accurate and submit a copy to the Engineer for review. Show an indication of such verification on the drawings.

Engineer approval is required before installing the joint seal. The Department review will be considered a service to assist the Contractor. The Department will assume no responsibility for the accuracy of the drawings, and the Contractor will not be relieved of any responsibility for conforming to the Specifications and Plans.
449.2 Materials

A. Elastomeric Concrete Material

Elastomeric concrete material includes two-component elastomer and prebagged fillers. Mix the elastomeric concrete material and use it according to the manufacturer’s recommendations. This may require using heat to accelerate curing and ensure a quality bond to the concrete and steel.

Use the Elastomeric Concrete Material with these features:

- Compatible with the concrete and steel to which it is bonded
- Smooth riding surface across the joint
- Can be mixed using normal equipment
- Can be mixed and placed between 45 °F to 100 °F (7 °C to 38 °C)

B. Joint Sealing System

Use a joint sealing system designed for HS 20 truck loading and impact according to AASHTO design parameters. Ensure that the system can accommodate the movements indicated in the Plans.

C. Preformed Elastomeric Neoprene Profile Seal

The preformed elastomeric neoprene profile seal shall as a minimum:

- Have the capability to be evacuated of air during installation
- Have the capability to be pressurized with air during the adhesive curing time
- Be compatible with the epoxy and elastomeric concrete header materials (if required)
- Be designed to withstand 50% expansion, 50% contraction (total 100%)
- Withstand the effects of vertical and lateral movements, skew movement and rotational movement without adhesive or cohesive failure.

Ensure the preformed elastomeric neoprene profile meets the requirements of ASTM D 2628.

Ensure the adhesive used with the preformed elastomeric neoprene profile seals is a two-component epoxy based thixotropic paste meeting the seal manufacturer’s requirements.

D. Low-Density, Closed Cell, Cross-Linked, Ethylene Vinyl Acetate, Polyethylene Copolymer, Nitrogen-Blown Seal

The low-density, closed cell, cross-linked, ethylene vinyl acetate, polyethylene copolymer, nitrogen-blown seal shall as a minimum be:

- Held in place by a two-component, 100% solid, modified epoxy adhesive.
- Compatible with the epoxy and header materials.
- Preformed, resistant to abrasion, oxidation, oils, gasoline, salt, and other materials that may be spilled on or applied to the surface.
- Grooved, with the grooves approximately 1/8 in. (3 mm) wide by 1/8 in. (3 mm) deep and spaced between 1/4 in. to 1/2 in. (6 mm to 13 mm) apart, and run along the entire length of the bond surface side of the seal.
- Designed so that, when compressed to 50% of original width, the center portion of the top will not extend upward above the original height of the seal by more than 1/4 in. (6 mm).
- Recessed below the riding surface throughout the normal limits of joint movement.
- Resistant to ultra violet rays.
- Beige or gray color.
- Shop marked to indicate the top or bottom side of the seal in such a way as to be clearly visible during installation.

Ensure the low-density, closed cell, cross-linked, ethylene vinyl acetate, polyethylene copolymer, nitrogen-blown seal has a working range of 30% tension and 60% compression.

Ensure the seal meets the following physical properties:

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirements</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>50 psi (345 kPa)</td>
<td>ASTM D3575 (Suffix T)</td>
</tr>
</tbody>
</table>
The adhesive used with the low-density, closed cell, cross-linked, ethylene vinyl acetate, polyethylene copolymer, nitrogen-blown seals shall be a two-component, 100% solid, modified epoxy adhesive meeting the requirements of ASTM C881, Type I, Grade 2, Class B & C.

The adhesive shall also have the following physical properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>3500 psi (24 MPa) min.</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>7000 psi (48 MPa) min.</td>
</tr>
<tr>
<td>Shore D Hardness</td>
<td>75 psi (0.5 MPa) min.</td>
</tr>
<tr>
<td>Water Absorption</td>
<td>0.25% by weight</td>
</tr>
</tbody>
</table>

For applications on moist or hard to dry concrete surfaces, the adhesive shall be as specified by the joint material manufacturer.

E. Epoxy Concrete Material

Ensure the epoxy concrete material is as a minimum:

- Compatible with all allowable joint seal materials, and concrete or steel to which it is bonded.
- Capable of providing a smooth riding surface across the joint.
- Capable of being mixed using normal equipment.
- Capable of being mixed and placed at temperatures of 55 ºF (13 ºC) and above.

Use header material that is a two-component rapid curing epoxy with aggregate that cures to a dense semi-flexible, weather, abrasion, and impact-resistant epoxy concrete.

Ensure the material has the following physical properties:

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirements</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Epoxy without Aggregate: (Before and after oven aging at 158º F (70º C) for 72 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Strength (min.)</td>
<td>900 psi (6.2 MPa)</td>
<td>ASTM D 638</td>
</tr>
<tr>
<td>Elongation at Break (min.)</td>
<td>40%</td>
<td>ASTM D 638</td>
</tr>
<tr>
<td>Shore “D” Hardness</td>
<td>45-75</td>
<td>ASTM D2240</td>
</tr>
<tr>
<td>Pot Life (max.)</td>
<td>45 minutes</td>
<td>GDT 111</td>
</tr>
<tr>
<td>Mixed Epoxy with Aggregate:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressive Strength at 24 hours (min.)</td>
<td>2,500 psi (17.2 MPa)</td>
<td>ASTM C-39 (3” cylinders)</td>
</tr>
<tr>
<td>Resilience at 5% Deflection (min.)</td>
<td>75%</td>
<td>GDT 111</td>
</tr>
<tr>
<td>Bond Strength to Concrete (min.*)</td>
<td>375 psi (2.6 MPa)</td>
<td>GDT 111</td>
</tr>
<tr>
<td>Wet Bond Strength to Concrete (min.*)</td>
<td>250 psi (1.7 MPa)</td>
<td>GDT 111</td>
</tr>
<tr>
<td>Thermal Compatibility</td>
<td>No Delamination</td>
<td>ASTM C 884</td>
</tr>
</tbody>
</table>

*Minimum psi or concrete failure.

Have the manufacturer furnish the aggregate used in epoxy concrete. Use well-graded, clean and dry aggregate meeting the following gradation requirement:
<table>
<thead>
<tr>
<th>Size</th>
<th>Percent Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 4 Sieve</td>
<td>100</td>
</tr>
<tr>
<td>No. 80 Sieve</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Note: Test according to AASHTO T 27.

F. Elastomeric Concrete Material

Ensure the elastomeric concrete material is as a minimum:

☐ Compatible with all allowable joint seal materials and concrete or steel to which it is bonded.
☐ Provides a smooth riding surface across the joint.
☐ Capable of being mixed using normal equipment.
☐ Capable of being mixed and placed between 45 °F and 100 °F (7 °C and 38 °C).

G. Elastomeric Concrete Cured Binder Material

Ensure elastomeric concrete cured binder material (without filler) has the following physical properties:

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirements</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before oven aging:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile strength (min.)</td>
<td>750 psi (5.2 MPa)</td>
<td>ASTM D 638</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>200 – 350%</td>
<td>ASTM D 638</td>
</tr>
<tr>
<td>Hardness Type D durometer</td>
<td>38, ± 8</td>
<td>ASTM D 2240</td>
</tr>
<tr>
<td>Compression set, 22 hrs at (max.) 158° F (70° C)</td>
<td>50%</td>
<td>ASTM D 395 Method B</td>
</tr>
<tr>
<td>Tear resistance (min.)</td>
<td>150 lbs/in (2.7 kg/mm)</td>
<td>ASTM D 624—2 in/min (50 mm/min)</td>
</tr>
<tr>
<td>Water absorption (max.)</td>
<td>1.2%</td>
<td>ASTM D 570</td>
</tr>
<tr>
<td>Heat shrinkage (max.)</td>
<td>1.6%</td>
<td>ASTM D 1299</td>
</tr>
<tr>
<td>Impact strength (min.)</td>
<td>7 ft-lbs/min (9.5 N ·m)</td>
<td>GDT 111</td>
</tr>
</tbody>
</table>

Properties after oven aging at 158° F (70° C) for 72 hrs:

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirements</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength (min.)</td>
<td>750 psi (5.2 MPa)</td>
<td>ASTM D 638</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>150 – 350%</td>
<td>ASTM D 638</td>
</tr>
<tr>
<td>Hardness Type D durometer</td>
<td>42, ± 5</td>
<td>ASTM D 2240</td>
</tr>
<tr>
<td>Impact strength (min.)</td>
<td>7 ft-lbs/min (9.5 N ·m)</td>
<td>GDT 111</td>
</tr>
</tbody>
</table>

H. Elastomeric Concrete Binder Material

Ensure that the elastomeric concrete binder material (with filler) has the following physical requirements:

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirements</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resilience at 5% deflection (min.)</td>
<td>80%</td>
<td>GDT 111</td>
</tr>
<tr>
<td>Bond strength to concrete (min.*)</td>
<td>375 psi (2.6 MPa)</td>
<td>GDT 111</td>
</tr>
<tr>
<td>Wet bond strength to concrete (min.*)</td>
<td>250 psi (1.7 MPa)</td>
<td>GDT 111</td>
</tr>
<tr>
<td>Pot life (min.)</td>
<td>5 minutes</td>
<td>GDT 111</td>
</tr>
</tbody>
</table>

*Minimum psi (MPa) or concrete failure
I. Temporary Joint Filler

Use temporary joint filler when epoxy concrete material is used. The temporary joint filler shall be an extruded rigid cellular polystyrene with enough compressive strength to maintain the correct joint width and to obtain relatively smooth and straight faces upon removal of the material.

449.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

449.3 Construction Requirements

449.3.01 Personnel
General Provisions 101 through 150.

449.3.02 Equipment
General Provisions 101 through 150.

449.3.03 Preparation

A. Surface Preparation

Ensure that the compressed air used to sandblast and/or blow debris is free of moisture and oil. Use air compressors for cleaning joints that are equipped with suitable traps capable of removing surplus water and oil in the compressed air. Check the compressed air daily for contamination. Do not use contaminated air. Use a compressor that can deliver compressed air at a continuous pressure of at least 90 psi (620 kPa).

1. Preparation for Headers

 Remove loose, eroded, and unsound concrete from the surface within the joint area. Provide horizontal bonding areas by cutting all angular areas of concrete blockouts. Immediately before placing the epoxy or elastomeric concrete, sandblast the concrete surfaces or abrade free of oil, dust, dirt, traces of asphaltic concrete, or other contaminants.

2. Preparation for Joint Seal

 Remove loose, eroded, and unsound concrete from the surface within the joint area. Immediately before placing the seal, sandblast the concrete surfaces or abrade free of oil, dust, dirt, traces of asphaltic concrete, or other contaminants. Saw-cutting of the concrete deck maybe necessary to provide an acceptable attachment surface for the joint seal.

449.3.04 Fabrication

A. Joint Fabrication

 Have the joint fabricated full width of the bridge deck, except in stage construction (one lane at a time) or when joint length prohibits shipment.

449.3.05 Construction

Use an installer trained by the manufacturer to install the bridge deck joint sealing system. A manufacturer’s representative shall be present during the installation of the epoxy or elastomeric concrete headers. Install the joint system according to the manufacturer’s recommendations and the following:

A. Blockouts

 Blockouts shall be according to the Plan details.

B. Weather Limitations

 Do not perform any part of the installation in rainy weather or when rain is expected within one hour of installation. Ensure the surface is completely dry before applying adhesive or primer.

 The ambient temperature must not be less than 55 °F (13 °C) during installation of the epoxy concrete material and preformed elastomeric neoprene profile seal.

 Ensure the ambient temperature is between 45 °F (7 °C) and 100 °F (38 °C) while installing the elastomeric concrete material.
Ensure the ambient and surface temperatures are between 45 °F (7 °C) and 75 °F (24 °C) while installing the low-density, closed cell, cross-linked, ethylene vinyl acetate, polyethylene copolymer, nitrogen blown seal.

C. General Safety, Handling, Mixing, Finishing, and Curing

Handle, place, finish, and cure elastomeric concrete joint systems according to the manufacturer’s instructions and the following:

1. Fill the blockout, as shown in the Plans, to the correct grade.
2. After filling the blockouts on both sides cure the material according to the manufacturer’s instructions.

Mix and place the epoxy mortar according to the manufacturer’s recommendations and the following:

1. Before adding the aggregate, thoroughly mix the two components (resin and hardener) of the epoxy mortar.
2. Mix the epoxy mortar in a mechanical mortar mixer by combining one volume of mixed epoxy (resin plus hardener in the required proportions) with three volumes of aggregate meeting the requirements of this Specification.
3. Prime the surface of the concrete in accordance with the manufacturer's recommendations before applying the epoxy concrete.
4. Place and finish the epoxy concrete within one half hour of mixing.

The cure time of epoxy mortar is directly related to temperature. Use the following table as a general guideline for cure time at various temperatures.

<table>
<thead>
<tr>
<th>Air and Deck Temperature °F (°C)</th>
<th>Approximate Cure Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 (4)</td>
<td>5</td>
</tr>
<tr>
<td>50 (10)</td>
<td>4</td>
</tr>
<tr>
<td>60 (16)</td>
<td>3</td>
</tr>
<tr>
<td>70 (21)</td>
<td>2.5</td>
</tr>
<tr>
<td>80 (27)</td>
<td>1.5</td>
</tr>
<tr>
<td>90 (32)</td>
<td>1</td>
</tr>
<tr>
<td>100 (38)</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Postpone the installation process if the ambient temperature is not 55 °F (13 °C) and rising. If you cannot postpone the operation, use supplemental heat to complete the operation and reopen the lane in a reasonable time. If using supplemental heat, ensure that the cure has progressed throughout the mass of the header.

D. Mixing and Placing Elastomeric Concrete Material

Handle, place, finish, and cure the elastomeric concrete material according to the manufacturer’s instructions. Allow the elastomeric concrete to cool and solidify for at least one hour before opening to traffic.

E. Preformed Elastomeric Neoprene Profile Joint Seal Application

1. After the epoxy or elastomeric concrete has developed enough strength to be traffic ready, remove the temporary joint filler (when called for) and thoroughly clean the joint faces of all joint filler.
2. Lightly sandblast the joint to remove all residue.
3. Apply the adhesive according to the manufacturer’s recommendations.
4. Install the preformed elastomeric neoprene profile seal so that it is recessed approximately 1/4 inch (6 mm) below the riding surface.
5. After a joint has been sealed, promptly remove all surplus residue on the bridge deck.

F. Low-Density, Closed Cell, Cross-Linked, Ethylene Vinyl Acetate, Polyethylene Copolymer, Nitrogen-Blown Seal Application

1. After the epoxy or elastomeric concrete (if required) has developed enough strength to be traffic ready, remove the temporary joint filler (when called for) and thoroughly clean the joint faces of all joint filler.
2. Lightly sandblast the joint to remove all residue.
3. Apply the epoxy adhesive to both sides of the joint opening and into the grooves of the joint seal material.
4. Splice the seal using the heat welding method by placing the joint seal material ends against a Teflon heating iron of 350 °F (177 °C) for 7-10 seconds and pressing the ends together tightly.

365
5. Install the joint seal material in one piece.
6. Begin installation at the low end of the joint. Install the joint seal material by compressing the material and pushing it down into the joint opening until it has recessed approximately 1/4 inch (6 mm) below the deck surface. Do not push the joint seal material into the joint at an angle that will stretch the seal material.
7. Once installation of the joint seal material has begun, do not stop the process until it has been completed.
8. Immediately and thoroughly clean off excess epoxy from the surface of the joint material. Do not use solvents to clean the top surface of the joint seal material.

G. Opening to Traffic
Do not permit traffic to drive over sealed joints until the epoxy or elastomeric concrete has hardened enough to resist displacement of the seal due to deck movement or other causes. Allow the elastomeric concrete to cool and solidify for at least one hour before opening to traffic. Allow the epoxy concrete to cure for at least two hours before opening to traffic.

449.3.06 Quality Acceptance

A. Acceptance
Provide evidence from the manufacturer that the joint system has been used successfully in installations with similar environmental and project conditions. Failure to perform adequately in actual use shall be cause for rejection.

B. Correction of Defects
At the Contractor’s expense, repair, or remove and replace, joint seals that are complete and have leaks, have adhesive or cohesive failure, or that are damaged during construction or by traffic before final acceptance.

449.3.07 Contractor Warranty and Maintenance
To comply with Subsection 106.05, “Materials Certification,” provide certification from the manufacturer that shows that the bridge deck joint sealing system materials conform to the requirements stated in Subsection 449.2. Transfer to the Department the manufacturer’s standard five-year performance warranty on each installation. A warranty claim may be filed for cohesive or adhesive failure of the materials supplied or material failure due to weathering.

449.4 Measurement
When listed as a pay item in the Proposal, bridge deck joint seal will be measured and paid for at the Contract price linear foot (meter) complete in-place joint at the location specified on the Plans. Payment is full compensation for the removal of any old sealant, cleaning the joint, and furnishing and installing the new seal and header if required and all incidentals.

No separate measurement and payment will be made unless a pay item for the work is included in the Proposal. If no pay item is included in the Proposal, the cost of the joint seal shall be included in the overall bid price submitted.

No separate measurement or payment will be made for any saw-cutting required to install the joint.

449.4.01 Limits
General Provisions 101 through 150.

449.5 Payment
When shown in the schedule of Items in the Proposal, the following items will be paid for separately:

<table>
<thead>
<tr>
<th>Item No. 449</th>
<th>Performed Elastomeric Neoprene Profile Joint Seal with Epoxy Concrete Headers Bridge No.Bent No.</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 449</td>
<td>Performed Elastomeric Neoprene Profile Joint Seal with Elastomeric Concrete Headers Bridge No.Bent No.</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 449</td>
<td>Low-Density, Closed Cell, Cross-linked, Ethylene Vinyl Acetate, Polyethylene Copolymer, Nitrogen-Blown Seal with Epoxy Concrete Headers Bridge No.Bent No.</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 449</td>
<td>Low-Density, Closed Cell, Cross-linked, Ethylene Vinyl Acetate, Polyethylene Copolymer, Nitrogen-Blown Seal with Elastomeric Concrete Headers Bridge No.Bent No.</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 449</td>
<td>Low-Density, Closed Cell, Cross-linked, Ethylene Vinyl Acetate, Polyethylene Copolymer, Nitrogen-Blown Seal Bridge No.Bent No.</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 449</td>
<td>Elastomeric Profile Bridge Joint Seals, Bridge No.Bent No.</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>
449.5.01 Adjustments
General Provisions 101 through 150.

Section 450—Pressure Grouting Portland Cement Concrete Pavement

450.1 General Description
This work includes pumping a slurry type grout mixture through holes drilled in the pavement into voids underneath the slabs to stabilize and underseal Portland cement concrete pavement.

Use a grout mixture that can form a hard and durable mass to fill voids under the pavement. Regrout unstable slabs after initial undersealing and stabilizing as directed by the Engineer.

450.1.01 Definitions
Initial set: 200 psi (1380 kPa) with a 0.25 in² (161 mm²) probe according to AASHTO T 197 (Proctor Needle Test).

450.1.02 Related References
A. Standard Specifications
 Section 452—Full Depth Slab Replacement
 Section 609—Removal of Portland Cement Concrete Roadway Slabs
 Section 801—Fine Aggregate
 Section 830—Portland Cement
 Section 831—Admixtures
 Section 880—Water
 Section 882—Lime
 Section 883—Mineral Filler
 Section 884—Chlorides

B. Referred Documents
 GDT 84
 AASHTO T 197 (Proctor Needle Test)

450.1.03 Submittals
General Provisions 101 through 150.

450.2 Materials
A. Fine Aggregate
 Ensure that fine aggregate meets the requirements of Subsection 801.2.02, except mortar-making properties are not required.

B. Grout Mixtures
 The Bid Item designates the required undersealing grout mixture types. The mixture contains the proportions listed in the Table of Grout Mixtures below.

 Use enough mixing water with the dry ingredients to produce a grout consistency that makes the efflux time from the flow cone at least 14 seconds and no more than 20 seconds. Use GDT 84 to determine the grout consistency.

 Add cement, cement and limestone dust, cement and fly ash, or cement and fine aggregate in the proper proportions to a mixed batch to produce the required consistency.
Table of Grout Mixtures

<table>
<thead>
<tr>
<th>Grout Types Dry materials</th>
<th>Mix Proportions, Percent by Weight of Dry Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement (min.)</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Limestone dust</td>
<td>25 25 25 25 25</td>
</tr>
<tr>
<td>Fly ash</td>
<td>— 25 75 50 —</td>
</tr>
<tr>
<td>Fine aggregate</td>
<td>25 — — 25 75</td>
</tr>
<tr>
<td></td>
<td>50 50 — — —</td>
</tr>
</tbody>
</table>

Ensure that materials meet the requirements of these Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement Types I or III</td>
<td>Section 830</td>
</tr>
<tr>
<td>Mineral Filler (Limestone Dust)</td>
<td>Section 883</td>
</tr>
<tr>
<td>Calcium Chloride, Type I</td>
<td>Section 884**</td>
</tr>
<tr>
<td>Fly Ash, Type F</td>
<td>Section 831</td>
</tr>
<tr>
<td>Water</td>
<td>Section 880</td>
</tr>
<tr>
<td>Fine Aggregate Size No. 20</td>
<td>Subsection 801.2.02</td>
</tr>
<tr>
<td>Agricultural Lime</td>
<td>Subsection 882.2.02*</td>
</tr>
</tbody>
</table>

* Agricultural lime used for undersealing shall have at least 95% passing the No. 30 (600 μm) sieve and 30% passing the No. 200 (75 μm) sieve.

** The Laboratory may approve other commercially available accelerators that may be substituted for calcium chloride.

450.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

450.3 Construction Requirements

450.3.01 Personnel
Provide personnel to control the lifting on every slab that is undersealed.
Furnish a truck driver and sufficient workers to assist operating static load measuring gauges on the slab stabilization testing equipment.

450.3.02 Equipment

A. Batching Equipment

The batching equipment includes weight hoppers and scales for each dry material or calibrated volumetric batch hoppers. Calibrate volumetric batch hoppers in increments equivalent to one 94 lb (42.6 kg) bag of cement. Use aggregate scales accurate to ±1 percent and cement scales accurate to plus or minus 0.5 percent.
Equip conveyor belts with windproof covers if the belts convey the dry materials into the mixer.

B. Mixing Equipment

For mix types one through four, use a watertight, batch-type mixer or high-speed colloidal mixer capable of blending the materials into a homogeneous mixture. Use a high-speed colloidal mixer for mix type five.

C. Grout Pumping Equipment

Use grout pumping equipment with a positive displacement plunger or piston-type pump or a screw-type worm pump.

1. Ensure that the discharge line is equipped with the following:

- Pressure gauge at the pump capable of measuring from 0 to 200 psi (0 to 1380 kPa)
1. Positive cut-off valve at the nozzle end
2. Bypass return line for recirculating the grout back into a holding tank or mixer
3. Equip the end of the discharge line with a nozzle or device that remains secure in the drilled holes and is free of leaks.
4. Furnish a blow pipe with enough air pressure to dislodge loose debris.
5. Provide an auger of the proper size and length to open clogged holes.

D. Drilling Equipment

Provide the following drilling equipment:

- Air compressors—Provide air compressors with enough capacity to operate pneumatic hammers or drills.
- Pneumatic or hydraulic drills—Provide pneumatic or hydraulic drills equipped with bits that will cut 1.5 in (38 mm) or other approved diameter holes through the concrete pavement.

Operate the equipment so as to prevent damage to the pavement being drilled. Do not create excessive down pressure to force the bit through the concrete rapidly. The Engineer must approve the drilling procedure.

E. Slab Stabilization Testing Equipment

Furnish a two axle truck with dual rear wheels. Load the rear axle to 18 kips (8000 kg) evenly distributed between the two sides.

F. Slab Lift Measuring Equipment

Ensure that equipment used to measure the slab lift can simultaneously detect movement of the two outside slab corners adjacent to a joint and the adjoining shoulder. Ensure that the equipment can make these measurements to 0.001 in (0.025 mm).

450.3.03 Preparation
General Provisions 101 through 150.

450.3.04 Fabrication
General Provisions 101 through 150.

450.3.05 Construction

A. Observing Weather Limitations

Begin pressure grouting operations when the air temperature in the shade and away from artificial heat is at least 35 °F (2 °C) and rising. Stop pressure grouting if the temperature is 40 °F (4 °C) and falling or when the subgrade contains an abnormal amount of moisture.

B. Testing

Slab testing is performed to detect all slabs having a deflection greater than 0.030 in (0.76 mm).

Perform testing between 3:00 AM and 9:00 AM, unless otherwise directed by the Engineer. In hot weather, test between 3:00 AM and 7:00 AM if directed by the Engineer. Stop testing if slabs are beginning to “lock-up.”

1. Preliminary Testing by the Department

Preliminary testing is not required on slabs that require grouting but have been previously tested and marked by the Department.

2. Preliminary Testing by the Contractor

If the Department has not performed preliminary testing, use static methods to test each transverse joint and crack on the Project or within designated Project areas.

Do not test, however, transverse cracks in slabs that are to be replaced entirely. Test the joints and cracks as follows:

- Furnish four gauges on two gauge mounts (two gauges per mount) that can detect slab movement under the load to the nearest 0.001 in (0.025 mm).
- Maintain the gauges and mounts in operating order. Furnish the loaded truck, truck operator, and personnel to place and assist in operating the gauges.
- Position one set of gauges with one gauge referenced to the corner of each slab on both sides of the joint near the pavement edge. Zero in the gauges with no load on the slab on either side of the joint.
d. Move the test truck into position and stop it with the center of the test axle about 1 ft (300 mm) behind the joint and the outside test wheel approximately 1 ft (300 mm) from the pavement edge.

e. Read the back gauge and move the test truck across the joint to about 1 ft (300 mm) forward of the joint. Read the forward gauge.

f. Repeat this operation for each joint to be tested. The Inspector will read and record the gauges.

g. When required, perform additional tests on slabs that move more than 0.030 in (0.76 mm) or as shown on the Plans. Perform additional tests as follows:

1) Drill one hole in the corner of the slab where the movement was measured.

2) Drill the holes the same diameter as the undersealing holes and place the holes 18 in (450 mm) from the transverse and shoulder joint.

3) Fill the test holes with water and observe.

4) If the Engineer believes the pavement system readily drains the water poured into the test hole, pressure grout the slab. Based on the results of testing, deflection measurements, and water drainage observations, the Engineer will determine which slabs require undersealing.

h. After the designated slabs have been pressure grouted according to these Specifications, retest them according to Subsection 450.3.05.B.2, “Testing.”

i. Regrout and retest slabs that deflect more than 0.030 in (0.76 mm) or deflect the amount shown on the Plans, as directed.

Slabs will be accepted that continue to show movement greater than specified after two properly performed groutings.

C. Drilling Holes

The Plans show the location of holes to be drilled in each type of slab for undersealing. However, whenever possible, use the holes from previous undersealing work by redrilling.

To begin drilling:

1. Use the hole pattern and pumping sequence shown on the Plans with modifications to use as many holes from previous undersealing work as possible.

The Engineer may alter the hole pattern. Only the actual number of holes drilled will be considered for payment for the initial undersealing.

2. Drill the holes 1.5 in (38 mm) diameter or another size if approved by the Engineer. Ensure that the holes provide positive seal for the pumping nozzle.

3. For the first undersealing, drill the holes to approximately 8 in (200 mm) deep beneath the bottom of the concrete unless the Engineer approves an alternate depth.

The Engineer shall designate the number, depth, and location of holes for undersealing attempts after the initial attempt.

4. Be careful during operations to not break or crack the slabs.

5. Repair slabs that have cracks that extend through the drill hole at the Contractor’s expense. Make repairs according to Section 609 and Section 452.

D. Cleaning Holes

After drilling the holes, and immediately before pumping the underseal grout, insert a pipe with enough air pressure in each hole to remove debris and to provide a passage for the grout, if necessary.

E. Pumping Underseal Grout

Properly position the lift measuring device before pumping grout under a slab.

Fill the voids under a slab as follows:

1. Pump grout in holes designated by the Engineer.

2. Have the Engineer determine the time of day to perform pressure grouting. The Engineer may require pressure grouting during late night and early morning hours if the slabs cannot be stabilized with daytime grouting.

3. During pumping, watch the lift measuring device to prevent excessive pumping pressures, rapid lifting of slabs, or substantial rising of the adjacent shoulders.
4. Stop pumping in the hole when the cavities or voids are filled within the range of the hole being grouted. Grout flowing out of an adjacent hole or joint or the edge of the slab is sufficient evidence that the voids and cavities are filled and pumping should cease. Additional evidence is that the slab rises rapidly or the adjacent shoulder begins to rise.
 a. Lift the slab slightly to move grout into the existing cavities and voids.
 b. Do not lift more than 0.050 in (1.3 mm) for a slab measured at the outside joint corner unless approved by the Engineer.

 NOTE: Do not crack the slabs by differential lifting.

5. Secure the discharge hose nozzle in the hole to provide a seal that will maintain the grout pressure underneath the slab.
 Ensure that the nozzle end does not extend below the bottom of the concrete.

6. Continue pumping in a hole until a clear flow of grout comes out other holes, joints, or cracks, or until the slab begins to lift excessively.

7. Repeat this procedure in other holes until the voids are filled. Do not plug the holes during grouting operations.

8. When edge drains are near the shoulder or pavement interface, take precautions to minimize the amount of grout that flows into the edge drain system.
 Use the following procedure or an alternate approved by the Engineer to monitor grout flow into the edge drain system:
 a. Drill one or more “observation holes” in the asphaltic concrete shoulder as close as possible to the shoulder or pavement interface.
 b. Time the grouting operation to prevent and stop excess grouting in a hole to ensure that grout does not flow into the edge drain system.
 c. When grouting operations are complete, fill the “observation holes” with asphaltic concrete.

9. Prevent slabs from cracking during the undersealing operation. Remove and replace slabs cracked during this operation at the Contractor’s expense according to Section 609 and Section 452.

F. Cleaning Up
 Before permitting traffic on the section, remove grout deposits on the pavement or shoulders and clean the surface.
 Remove debris, bags, spillage, etc., from the Right-of-Way each day.

G. Permanently Sealing Holes
 Remove the grout from the holes and fill the holes with a stiff sand-cement mixture or an approved quick setting patching material.
 Repair filled holes that ravel out or become damaged. Also, repair unsatisfactorily filled holes from previous undersealing work at the Contractor’s expense, as directed by the Engineer.

H. Testing for Slab Stability
 After pumping the grout under the designated slab and permitting traffic over the slabs for at least 12 hours, test the slabs for stability.
 Conduct these tests by static loading as in Subsection 450.3.05.B.2.h and Subsection 450.3.05.B.2.i. Based on the test results and criteria on the Plans, the slabs will be accepted or designated for further undersealing as directed by the Engineer.

I. Opening to Traffic
 Do not permit traffic on the grouted slabs until the grout has taken an initial set (normally 4 to 6 hours).
 Schedule the operations so that the grout has initially set and the work area is cleared before traffic is allowed on the grouted slabs.

450.3.06 Quality Acceptance
General Provisions 101 through 150.

450.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.
450.4 Measurement
Portland cement incorporated into the pressure grout slurry is measured by the 94 lb (42.6 kg) bag.

A. Holes
 On an initial undersealing attempt, holes drilled through the existing concrete slabs at the locations and to the depths shown on the Plans or directed by the Engineer are measured per each.
 If holes drilled for the first stabilizing attempt are used for the second stabilizing attempt, holes are not paid for again by the Department. If new holes are drilled they are measured per each.

B. Preliminary Testing
 Preliminary testing described in Subsection 450.3.05.B.2.h and Subsection 450.3.05.B.2.i. is measured by the linear mile (linear kilometer), horizontal measure for each lane of each roadway tested, when required. Bridges are not included in the measurement.

C. Stability Testing
 Stability testing in Subsection 450.3.05.H is measured by the joint.

450.4.01 Limits
General Provisions 101 through 150.

450.5 Payment
A. Holes
 Holes will be paid for at the Contract Unit Price per each. Payment is full compensation for drilling and sealing the hole.
 If holes drilled for the first stabilizing attempt are used for the second stabilizing attempt, the Department does not pay for the holes again.

B. Portland Cement Pressure Grout Slurry
 Portland cement pressure grout slurry will be paid for at the Contract Unit Price bid per 94 lb (42.6 kg) bag of cement or fraction thereof. Payment is full compensation for furnishing materials to be incorporated into the grout slurry, hauling, mixing, pumping, and cleaning to stabilize the slabs.

C. Preliminary Testing
 Preliminary testing when shown on the Plans and in the Proposal as a payment Item will be paid for at the Contract Price bid per linear mile (kilometer), horizontal measure. Bridges will be excluded from the linear mile (kilometer) measurement.

D. Stability Testing
 Static testing of slabs performed according to Subsection 450.3.05.B.2.h and Subsection 450.3.05.B.2.i. will be paid for each time the joint is tested. Payment is full compensation for furnishing the load test truck, driver, and personnel necessary to assist in the testing.

E. Pumping Under Seal Grout
 No separate payment will be made for this work. Include the cost in the bid submitted for Portland cement pressure grout slurry. The precautions used will require prior approval of the Engineer.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 450</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 450</td>
<td>Holes</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 450</td>
<td>Portland cement pressure grout slurry (grout type___, ___ or ___)</td>
<td>Per bag 94 lb (42.6 kg)</td>
</tr>
<tr>
<td>Item No. 450</td>
<td>Preliminary testing</td>
<td>Per linear mile (kilometer)</td>
</tr>
<tr>
<td>Item No. 450</td>
<td>Stability testing</td>
<td>Per joint</td>
</tr>
</tbody>
</table>

450.5.01 Adjustments
General Provisions 101 through 150.
Section 451—Patching Portland Cement Concrete Pavement (Spall Repair)

451.1 General Description
This work includes partial depth patching of spalls and potholes in Portland cement concrete pavement by removing the broken, damaged, or disintegrated concrete pavement. This work also includes removing asphaltic concrete patches from spalled or damaged areas of the pavement surfaces and patching them with approved patching materials according to this Specification and the existing pavement cross-sections.

451.1.01 Definitions
General Provisions 101 through 150.

451.1.02 Related References
A. Standard Specifications
 Section 504—Twenty-Four Hour Accelerated Strength Concrete
 Section 800—Coarse Aggregate
 Section 801—Fine Aggregate
 Section 833—Joint Fillers and Sealers
 Section 886—Epoxy Resin Adhesives
 Section 934—Rapid Setting Patching Materials for Portland Cement Concrete
B. Referenced Documents
 QPL 27

451.1.03 Submittals
General Provisions 101 through 150.

451.2 Materials
Ensure that the materials used to repair and patch Portland cement concrete pavement conform to the rapid setting patching material requirements.

The laboratory may waive the setting time requirements of approved materials if the minimum compressive strength development is unaffected.

451.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

451.3 Construction Requirements

451.3.01 Personnel
General Provisions 101 through 150.

451.3.02 Equipment
To clean the repair areas, use air compressors equipped with traps that can remove surplus water and oil in the compressed air. Ensure that the compressor can deliver compressed air at a continuous pressure of at least 90 psi (620 kPa).

The Engineer will check the compressed air daily for contamination. Do not use contaminated air.

451.3.03 Preparation
A. Removing and Preparing the Repair Area
 Prepare to perform partial patching of spalled joints and potholes as follows:
 1. Partial Depth Patching of Spalled Joints
 a. “Sound” each transverse joint and longitudinal joint with a visual defect to determine the limits of the damaged or defective areas. Strike the pavement surface along the sides of each joint with a hammer, chain drag, or similar tool to detect unsound concrete that sounds flat or hollow.
b. Mark the limits of the defective areas on the pavement by making a rectangle 2 in (50 mm) beyond the outer limits of the unsound concrete area as a guide for sawing.

c. Mark spalled areas less than 2 ft (600 mm) from each other along a joint as one spall area. If separated by 2 ft (600 mm) or more, mark as separate spall areas.

Do not repair defective (spalled) joint areas less than 6 in (150 mm) long and 1.5 in (40 mm) wide under this Specification. Thoroughly clean and seal them with silicone sealant as part of the joint sealing operation specified in Section 461.

d. Saw the rectangular marked areas with near vertical faces at least 2 in (50 mm) but not more than 3 in (75 mm) deep.

e. Remove unsound material within the sawed area with a maximum 30 lb (135 N) chipping hammer.

f. Do not damage or fracture the sound concrete substrate to be left on the bottom of the spall area. Do not use sharp pointed bits.

g. If the unsound material is more than 4 in (100 mm) deep, the Engineer may direct a 6 ft (1.8 m) slab replacement be placed, which is classified and paid for under Section 609 and Section 452.

h. Before placing the patching material, saw the face of the existing transverse or longitudinal joints bordering the repair areas. Saw at least 5 in (125 mm) deep and 0.25 in (6 mm) wide with the full depth of the saw cut extending at least 1 in (25 mm) beyond the limits of the repair areas in each direction.

i. Immediately before placing the patching material, thoroughly clean the surfaces within the repair areas by sandblasting and air blasting to remove oil, dust, dirt, traces of asphaltic concrete, slurry from saw operation, and other contaminants.

j. Place a 0.25 in (6 mm) wide piece of closed cell polyethylene foam shaped to fit the saw cut in the joints bordering the repair areas.

If “back-to-back” repairs are made at a joint, support the 0.25 in (6 mm) closed-cell polyethylene foam during the placing operation to maintain a true, straight joint line.

Have the Engineer approve the method used. The polyethylene foam must be supported in a straight line when the patching material is placed so a straight joint line will be formed.

Maintain a straight line or the Engineer may require the repairs be repeated at no additional cost to the Department.

2. Partial Depth Patching of Pavement Potholes

The Engineer will determine which pavement potholes will be repaired.

Use the procedures given for repairing spalled joints to repair potholes within the pavement surface. The requirement of using the 0.25 in (6 mm) closed-cell polyethylene foam does not apply.

451.3.04 Fabrication

General Provisions 101 through 150.

451.3.05 Construction

A. Concrete Patching

Patch concrete one lane at a time, safely and rapidly to minimize inconvenience to the traveling public.

1. Accomplish the work with other operations in progress within an area if possible.

2. Complete the work before the grinding operation begins, if grinding is specified.

3. Remove and replace completed concrete patches that contain cracks, shrinkage, compression failures, or are damaged by construction or traffic before Final Acceptance at no additional cost to the Department.

B. Placing Patching Material

Use Repair Method 1 unless the State Materials Research Engineer gives written approval to use Repair Method 2. Use Repair Method 1 when the average daily temperature is 50 °F (10 °C) or above. Use of Repair Method 2, if approved, is limited to the manufacturer’s written recommendations.

For the following repair methods, begin the placement when the surface within the repair area is dry and thoroughly free of contaminants.

Ensure that the finished surface including joints meets a surface tolerance of 1/8 in (3 mm) per 10 ft (3 m).
Use approved measures as necessary to keep pavement surfaces adjacent to this operation free of excess grout and other materials. Unless otherwise specified, complete the patching operations and open the lanes to traffic before sunset each day.

1. Repair Method 1: Twenty-four Hour Accelerated Strength Concrete
 Use this method as follows:
 a. Completely coat the concrete surface areas within the repair area with a film of Type II epoxy approximately 10 to 20 mils (0.25 to 0.50 mm) thick.
 b. Mix the concrete on site in a portable mixer. Obtain approval for the mix design and mixing method from the laboratory. The material must meet a slump range of 1.0 in. (25mm) to 3.0 in. (75mm).
 c. Deposit the concrete in the repair area while the epoxy is still tacky. Vibrate it to form a dense, homogeneous mass of concrete that completely fills the patch area.
 d. Screed the concrete to the proper grade and do not disturb it until the water sheen disappears from the surface.
 e. Cover the concrete with wet burlap or membrane curing compound. Allow the curing to continue for at least three hours. The Engineer may require longer curing to ensure sufficient concrete strength development before opening to traffic.

2. Repair Method 2: Rapid Setting Patching Material for Portland Cement Concrete Pavement
 a. In addition to the requirements outlined in Subsection 451.3.03.A, “Removing and Preparing the Repair Area,” prepare the surfaces in the repair areas according to the manufacturer’s written recommendations.
 b. Perform the patching material handling, mixing, placing, consolidating, screeding, and curing according to the manufacturer’s written instructions as approved by the laboratory.
 c. Continue curing for at least one hour and until opening the section to traffic.

C. Special Requirements
 The following special requirements apply to this work:
 1. If repairing adjacent to an unstable shoulder, place a form the full depth of the repair area to maintain a true, straight shoulder joint and to prevent the patching material from intruding onto the shoulder area.
 2. After curing the patching material, remove the form and repair the shoulder at no cost to the Department.
 3. During sandblasting, protect traffic in the adjacent lanes.
 4. After the sandblasting operations:
 a. Thoroughly clean the area to be repaired with compressed air.
 b. Remove sand from the sandblasting operation from the roadway and shoulders.
 5. Do not “over-cut” the pavement beyond marked areas whenever possible.
 6. Remove saw slurry and other contaminates from the over-cutting.
 7. Repair the over-cuts by filling full-depth with an approved low-viscosity epoxy compound using a Type II epoxy adhesive specified in Section 886. Make these repairs as soon as possible, but not after the joint is resealed.
 8. Re-establish original transverse and longitudinal joints by sawing and sealing the joints with silicone that meets the requirements of Subsection 833.2.06, the Plan details, and Section 461.
 Re-establish the joints within 60 days after placing the patch. Ensure that re-established joints are at least 3/8 in (10 mm) wide.

451.3.06 Quality Acceptance
 General Provisions 101 through 150.

451.3.07 Contractor Warranty and Maintenance
 General Provisions 101 through 150.

451.4 Measurement
 The area measured for payment is the number of square yards (meters) of patching complete in place and accepted.

451.4.01 Limits
 General Provisions 101 through 150.
451.5 Payment

The area measured as specified above will be paid for at the Contract Unit Price per square yard (meter). Payment is full compensation for equipment, tools, labor, incidentals to complete the work, including but not limited to:

- Removing existing asphaltic concrete patching material or the spalled, broken, or damaged Portland cement concrete
- Cleaning the open area by sandblasting
- Furnishing, placing, finishing, and curing the patching material
- Sawing and sealing new transverse and longitudinal joints

Payment will be made under:

| Item No. 451 | Patching Portland cement concrete pavement | Per square yard (meter) |

451.5.01 Adjustments

General Provisions 101 through 150.

Section 452—Full Depth Slab Replacement

452.1 General Description

This work includes replacing Portland cement concrete pavement slabs, full or partial length. Remove the slabs according to the Plans or as directed by the Engineer. See Section 609.

452.1.01 Definitions

General Provisions 101 through 150.

452.1.02 Related References

A. Standard Specifications

- Section 431—Grind Concrete Pavement
- Section 461—Sealing Roadway and Bridge Joints and Cracks Section
- Section 504—Twenty-Four Hour Accelerated Strength Concrete Section
- Section 609—Removal of Portland Cement Concrete Roadway Slabs Section
- Section 833—Joint Fillers and Sealers
- Section 853—Reinforcement and Tensioning Steel
- Section 886—Epoxy Resin Adhesives

B. Referenced Documents

GDT 72

452.1.03 Submittals

Obtain approval of the mix design from the Office of Materials and Research before using the mix.

452.2 Materials

Ensure that materials used in full depth slab replacement conform to the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twenty-Four Hour Accelerated Strength Concrete</td>
<td>Section 504</td>
</tr>
<tr>
<td>Dowel Bars and Bar Coatings</td>
<td>Subsection 853.2.08</td>
</tr>
<tr>
<td>Epoxy</td>
<td>Section 886</td>
</tr>
<tr>
<td>Silicone Sealant</td>
<td>Subsection 833.2.06</td>
</tr>
</tbody>
</table>
452.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

452.3 Construction Requirements

452.3.01 Personnel
Furnish traffic control while the Department conducts slab movement testing described in Subsection 452.3.06.B. “Quality of Work” at no additional cost to the Department.

452.3.02 Equipment
Use sufficient equipment to perform work such as drilling dowel holes, setting dowels, spreading, striking off, consolidating, screening concrete, and sawing and sealing joints. Obtain the Engineer’s approval of the equipment before starting the work.

Place the dowels at the locations specified on the Plans by using pneumatic or hydraulic drills and bits that will drill a 1-3/8 in (35 mm) diameter hole in the existing concrete faces.

452.3.03 Preparation
A. Clean the Exposed Faces
 Before placing the concrete, thoroughly clean the vertical exposed faces of the existing slabs to remove contaminants.

 1. Use wire brushing or other methods approved by the Engineer.
 2. Remove existing silicone or other joint sealant from the exposed concrete faces.

B. Preparing Base
 Remove debris and standing water from the base. Thoroughly compact loose base material by hand tamping before placing concrete.

452.3.04 Fabrication
General Provisions 101 through 150.

452.3.05 Construction
A. Installing the Dowels
 Complete these steps to install the dowels:

 1. Use a pneumatic or hydraulic drill to drill a 1-3/8 in (35 mm) diameter hole in the existing concrete faces. Place the dowels at locations specified on the Plans.
 2. If the Engineer allows, drill a hole no greater than 1.5 in (38 mm) diameter to insert the dowel bars. Follow these guidelines:
 a. Operate the equipment so as to prevent damage to the pavement being drilled.
 b. Obtain the Engineer’s approval for the drilling procedure.
 c. Thoroughly clean the drilled holes of contaminants.
 3. Set the type and size of dowels specified in the Plans into the hardened concrete face of the existing pavement with Type VIII epoxy bonding compound that meets the requirements in Section 886.
 a. Place the dowels at locations noted on the Plans with one-half of the dowel protruding out of the pavement.
 b. Place the dowels at the correct horizontal and vertical alignment. Do not misalign them more than 3/8 in (10 mm) within the vertical or oblique plane.
 c. Place enough epoxy in the back of the hole to completely fill the entire cavity around the dowel upon insertion of the dowel bar. Remove excess epoxy.
 d. Use epoxy adhesive packaged in a cartridge with a mixing nozzle that thoroughly mixes the two components as they are dispensed. Use a mixing nozzle at least 8 in (200 mm) long.
 Or, use a machine that mixes the two components thoroughly to the proper ratio as the material is being placed.
 e. Allow the epoxy to harden before placing the concrete to prevent the dowels from moving during the concrete placement.
 4. At the free joints shown on the Plans, use epoxy-coated, plain, round, steel dowel bars that meet the requirements of Subsection 853.2.08.
 Coat the protruding portion of the epoxy coated dowels with a thin film of grease or other approved material to ensure proper bond-breaking characteristics.
5. Cleanly saw the edges of the epoxy-coated smooth dowels bars. Do not shear them.

NOTE 1: Never drive dowels into a dowel hole with a sledge hammer or other device.

NOTE 2: Coated dowels will be rejected if they cannot be freely inserted into a dowel hole.

B. Setting Forms

Forms are not required for this work. The vertical faces of the existing pavement and shoulder bordering the replaced slab or joint area serve as the forms.

However, if the shoulder is irregular or unstable:

1. Place a form the full depth of the replaced slab or joint area to maintain a true, straight shoulder joint and to prevent the concrete from intruding into the shoulder area.
2. Compact the foundation under the form true to grade so that the form, when set, will firmly contact the base at the correct grade.
3. Clean and oil the forms before placing the concrete.
4. Wait four hours to remove the forms from the freshly placed concrete, unless otherwise specified. Carefully remove the forms to avoid damaging the pavement.
5. Repair the shoulder to the Engineer’s satisfaction at no additional cost to the Department.

C. Placing and Finishing Concrete

The required concrete for the work will be 24-hour accelerated strength concrete that meets the requirements of Section 504. Obtain mix design approval from the Laboratory before use.

Place the concrete only when the ambient temperature is 40 °F (4 °C) and rising. Do not place concrete when the underlying base material is muddy or frozen.

1. Deposit the concrete within the slab replacement area in a way that requires as little rehandling as possible and prevents mix segregation.
2. Minimize hand spreading as much as possible. But where necessary, use shovels not rakes.

NOTE: Do not allow workmen to walk in fresh concrete with shoes coated with earth or other foreign substances.

3. Fill the replaced slab area with concrete and thoroughly consolidate by rodding, spading, and using sufficient vibration to form a dense homogeneous mass throughout the area.
4. Ensure the final surface area has a uniform appearance and is free of irregularities and porous areas.
 The finished surface, including joints, shall meet a surface tolerance of 1/8 in. in 10 ft (3 mm in 3 m) in any direction.
 For slab replacements done in preparation for resurfacing of the pavement, the finished surface, including joints, shall meet a surface tolerance of 3/16 in. in 10 ft (5 mm in 3 m) in any direction.

Perform necessary corrections by grinding according to Section 431. The Engineer may order replacement if any replaced slab is low in relation to adjacent slabs. The Engineer will require replacement if it is determined that excessive pavement grinding is necessary to match the profile of the full depth slab replacement or if grinding the adjacent pavement would create a drainage problem.

Do the following at no additional cost to the Department:

- Perform all necessary corrections
- Furnish all necessary traffic control personnel, materials, and equipment to detect deviations
- Grind or replace slabs to correct surface tolerance deviations

If the Project involves resurfacing or grinding the pavement surface, a flat finish will be satisfactory. Otherwise, a broom or hard-tine finish will be required that will produce a surface texture depth of 0.20 in. (5mm) or greater as measured by GDT 72. The Engineer shall approve the finishing method and any deficient areas corrected to his or her satisfaction and performed at your expense.
D. Curing Concrete

Use the applicable portions of Section 504 regarding concrete mix and curing in this work.

E. Sawing and Sealing Joints

Establish transverse and longitudinal joints within the slab replacement area by doing the following:

1. Saw and seal the joints with silicone sealant that meets the requirements of Subsection 833.2.06. Seal according to Plan details and Section 461.
2. Ensure that the width of the sawed joints is 3/8 in (10 mm), unless otherwise directed.
3. Saw and seal the joints as soon as possible, but not more than 60 days after placing the slab, unless the Plans specify otherwise.

Sawing and sealing of the reestablished joints is included in the bid cost for slab replacement.

F. Protecting from Rain

Properly protect the concrete from rain before the concrete hardens by following these guidelines:

1. Keep the materials to protect the concrete surface available at all times.
 - Protective materials include burlap or cotton mats, curing paper, or plastic sheeting material.
2. When rain is imminent, stop the paving operations and begin covering the surface of the unhardened concrete with the protective covering.

G. Working at Night

If night work is authorized on the Project, provide lighting for work performed at night for safety, traffic control, and work control and completion.

Correct unsatisfactory work to the Engineer’s satisfaction at no additional cost to the Department.

H. Opening to Traffic

Schedule slab replacements so that the concrete will have a curing time of at least four hours. Complete the work and open the lanes to traffic before sunset the day it is placed, unless authorized otherwise.

The Engineer may require a longer curing period, mix design adjustments, or other corrective action to ensure sufficient concrete strength development before opening to traffic.

452.3.06 Quality Acceptance

A. Surface Tolerance

Ensure that the finished surface tolerance, including joints, is 1/8 in per 10 ft (3 mm in 3 m) in any direction. Make corrections by grinding according to applicable items in Section 431.

B. Quality of Work

Complete work that meets the requirements in the Specifications and Plans.

Until Final Acceptance of this work, replace damaged or broken slabs due to the following:

- Improper or unsatisfactory methods, equipment, or materials
- Construction or public traffic

Replace the slabs at no additional cost to the Department. The Department may also require removal and replacement of repaired slabs with a differential movement at the transverse joints greater than 0.01 in (0.25 mm) at no cost to the Department. The Department will measure the movement using an 18,000 lb (8165 kg), single-axle load with dual tires and with the axial load centered 1 ft (300 mm) from the edge of the shoulders as close to the transverse joints as possible. Testing will be done between 3:00 AM and 9:00 AM when slab movement is the greatest. The movement will be measured using dial gauges that can detect movement to the nearest 0.001 in (0.025 mm).

The Engineer will determine whether the slab movement test is required.

452.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.
452.4 Measurement
Full depth replacement slabs are measured for payment by the cubic yard (meter) using the average squared dimensions times the average depth.
Dowels and dowel placement are not measured for separate payment but are included in the Unit Price bid for full depth slab replacement.

452.4.01 Limits
General Provisions 101 through 150.

452.5 Payment
Full depth replacement slabs will be paid for at the Contract Unit Price per cubic yard (meter). Payment is full compensation for:

- Furnishing materials including dowels, epoxy, and 24-hour accelerated strength concrete
- Performing work such as repairing shoulders if required, removing unsatisfactory material, sawing and sealing new joints, and performing other work specified in this Specification

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 452</th>
<th>Full depth slab replacement</th>
<th>Per cubic yard (meter)</th>
</tr>
</thead>
</table>

452.5.01 Adjustments
General Provisions 101 through 150.

Section 453—Portland Cement Concrete Whitetopping

453.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 455—Filter Fabric for Embankment Stabilization

455.1 General Description
This work consists of placing filter fabric for embankment stabilization as shown in the Plans or as directed by the Engineer.

455.1.01 Definitions
General Provisions 101 through 150.

455.1.02 Related References
A. Standard Specifications
 Section 881—Fabrics
B. Referenced Documents
 General Provisions 101 through 150.

455.1.03 Submittals
General Provisions 101 through 150.

455.2 Materials
Use filter fabric that meets the requirements of Subsection 881.2.08, “Filter Fabric for Embankment Stabilization”.

455.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.
455.3 Construction Requirements
455.3.01 Personnel
General Provisions 101 through 150.
455.3.02 Equipment
General Provisions 101 through 150.
455.3.03 Preparation
Prior to placing filter fabric, remove logs, stumps, and any other objects from the ground surface that would tend to puncture the fabric. Leave grasses that have formed root mats in place to provide support for fabric placement.
455.3.04 Fabrication
General Provisions 101 through 150.
455.3.05 Construction
A. Filter Fabric Placement
 Place and protect filter fabric as follows:
 1. Place filter fabric according to the locations and details shown on the Plans.
 2. Ensure the fabric is placed with the warp direction perpendicular to the roadway direction and sewn as shown on the Plans unless otherwise directed.
 3. Spread the filter fabric as uniformly as practical over the contour of the ground to avoid looseness.
 4. Ensure field sewn seams are made with a lock stitch and comply with the requirements for factory seams as given in the material specifications.
 5. Protect the filter fabric from chemicals and prolonged sunlight.
 6. Replace any filter fabric damaged by neglect at no additional cost to the Department.
B. Fill Placement Over Fabric
 Place fill over the filter fabric according to the Plans and applicable portions of Section 208. Maintain at least 8 in (200 mm) of soil between the fabric and any construction equipment.
455.3.06 Quality Acceptance
General Provisions 101 through 150.
455.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.
455.4 Measurement
This work is measured in square yards (meters) of accepted materials in place.
455.4.01 Limits
General Provisions 101 through 150.
455.5 Payment
Filter fabric for embankment stabilization is paid for at the Contract Price per square yard (meter), complete and in place. Payment is full compensation for furnishing materials, placing materials, sewing of fabric as required, and for all labor, equipment, tools and incidentals necessary to perform the work.
Payment will be made under:

| Item No. 455 | Filter fabric for embankment stabilization | Per square yard (meter) |

455.5.01 Adjustments
General Provisions 101 through 150.

Section 456—Indentation Rumble Strips

456.1 General Description
This work includes constructing milled rumble strips on asphaltic concrete shoulders by milling or grinding 1/2 in (13 mm) deep depressions into the finished surface as shown in the Plans.
456.1.01 Definitions

Ground in place skip rumble strips—Rumble strips placed with 28 ft (8.5 m) of strips and 12 ft (3.7 m) of clear space between.

Continuous ground in place rumble strips—Rumble strips placed continuously.

456.1.02 Related References

A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 General Provisions 101 through 150.

456.1.03 Submittals
 General Provisions 101 through 150.

456.2 Materials
 General Provisions 101 through 150.

456.2.01 Delivery, Storage, and Handling
 General Provisions 101 through 150.

456.3 Construction Requirements

456.3.01 Personnel
 General Provisions 101 through 150.

456.3.02 Equipment
 A. Cutting Tool

 Use a cutting tool that meets these requirements:

 □ Has independent suspension from the power unit to allow the tool to self-align with the slope of the shoulder
 □ Is equipped with guides to provide consistent alignment of each line of indentations in relation to the roadway
 □ Houses a single rotary-type milling head in line in the direction of travel
 □ The milling head is not more than 2 ft (600 mm) in diameter (outside diameter) and is at least 16 in (400 mm) long
 □ The cutting tips on the milling head are arranged to provide a smooth cut with no more than 0.05 in (1 mm) between the peaks and valleys

456.3.03 Preparation
 General Provisions 101 through 150.

456.3.04 Fabrication
 General Provisions 101 through 150.

456.3.05 Construction
 A. Indentations

 Form the rumble strip indentations as follows:

 1. For traveled ways opened to traffic, install the indentations within ten calendar days.
 2. Begin the indentations from 8 in (200 mm) up to 18 in (450 mm) from the edge of the final riding surface based on the typical section of the paved shoulder.
 3. Ensure the finished indentations conform to the following:
 a. Indentations have a concave circular shape and are spaced 12 in (300 mm) center to center.
 b. Indentation dimensions:
 □ 7 in (175 mm) wide with a 5 in (125 mm) gap in the direction of travel
☐ At least 16 in (400mm) long when measured perpendicular to the direction of travel.
☐ At least 1/2 in (13 mm) but not more than 5/8 in (16 mm) deep at center.

Excess waste material resulting from the operation may be swept to the grassed shoulder and spread where applicable. If an adjacent grassed shoulder is not available, or if directed by the Engineer, remove and dispose of the waste material in a manner approved by the Engineer.

456.3.06 Quality Acceptance
General Provisions 101 through 150.

456.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

456.4 Measurement
Milled indentation rumble strips are measured by the gross linear mile (kilometer). The Plan quantity is the pay quantity unless the Engineer makes authorized changes. No deductions will be made for intersections, ramps, bridges, or skips.

456.4.01 Limits
General Provisions 101 through 150.

456.5 Payment
Payment will be made at the Contract Unit Price bid per gross linear mile (kilometer). Payment is full compensation for furnishing equipment and labor and for satisfactorily performing the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 456</th>
<th>Indentation rumble strips—ground in place (continuous)</th>
<th>Per gross linear mile (kilometer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 456</td>
<td>Indentation rumble strips—ground in place (skip)</td>
<td>Per gross linear mile (kilometer)</td>
</tr>
</tbody>
</table>

456.5.01 Adjustments
General Provisions 101 through 150.

Section 457—Geogrid Reinforcement

457.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 461—Sealing Roadway and Bridge Joints and Cracks

461.1 General Description
This work includes removing the existing sealant material (if applicable), cleaning the joint, and installing silicone sealant in the roadway and bridge joints specified on the Plans. The Plans will designate the:

☐ Type of joint (transverse or longitudinal)
☐ Location of joint (mainline, shoulder, ramps, acceleration/deceleration lanes)
☐ Type of joint (roadway, bridge) to be resealed
☐ Which type silicone to use (Type A, B, C, or D)

The Engineer will determine the roadway and bridge cracks to be resealed. Unless otherwise specified on the Plans, use Type A silicone for roadway joints and use Type D silicone for bridge joints.

461.1.01 Definitions
General Provisions 101 through 150.
461.1.02 Related References

A. Standard Specifications
 - Section 430—Portland Cement Concrete
 - Section 500—Concrete Structures
 - Section 833—Joint Fillers and Sealers
 - Section 886—Epoxy Resin Adhesives

B. Referenced Documents
 - QPL 66

461.1.03 Submittals
General Provisions 101 through 150.

461.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicone Sealant and Bond Breakers</td>
<td>833.2.06</td>
</tr>
<tr>
<td>Epoxy Resin Adhesives</td>
<td>886</td>
</tr>
</tbody>
</table>

For a list of silicone joint sealant sources, please see QPL 66.

Select and use bond breakers [backer rod (if required) or tape] according to Subsection 833.2.06.A.2, “Bond Breakers”

461.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

461.3 Construction Requirements

461.3.01 Personnel
General Provisions 101 through 150.

461.3.02 Equipment
A. Air Compressors
 Use air compressors equipped with traps to remove surplus water and oil in the compressed air. Do not use contaminated air. Ensure that the compressor can deliver compressed air at a continuous pressure of at least 90 psi (600 kPa).
 The Engineer may check the compressed air for contamination.

B. Silicone Sealant Pump
 Apply silicone sealant by pumping only. Use a caulking gun with a cartridge for touch-up work or small applications only.
 Use a pump with sufficient capacity to deliver the necessary volume of silicone to completely fill the joint in a single pass.
 Ensure that the nozzle’s size and shape closely fits into the joint to fill the joint with sealant with enough force to prevent voids in the sealant and to force the sealant to contact the joint faces.

C. Caulking Gun
 Use a caulking gun with cartridge for the following situations:
 - Touch up work.
 - Placing vertical runs of Type A silicone in a bridge deck joint when Type B, C, or D silicone is used in the horizontal runs.
 - Sealing voids and cracks with Type A silicone where Type B, C, or D silicone (which will be applied on top of the Type A silicone) might leak through.
461.3.03 Preparation
Before installing a bond breaker or sealant, ensure that the joint is clean and dry. Complete all cleaning, air blasting, or air drying.

461.3.04 Fabrication
General Provisions 101 through 150.

461.3.05 Construction
A. Resealing Existing Joints
 1. Remove Existing Sealant
 Completely remove the existing sealant in the joints. Take care during removal and cleaning to prevent damaging or enlarging the existing width of the joint. Repair any damaged areas at no cost to the Department.
 2. Depth of Existing Joint
 Determine if the joint depth will accommodate the required sealant thickness and bond breaker and provide the required recess below the riding surface.
 Consider that the backer rod is thicker after it is squeezed into the joint.
 If necessary, saw the existing joint deeper and wider to provide the joint depth and width specified on the Plans.
 3. Clean the Joint
 Thoroughly clean the joint of all foreign material including oil, asphalt, curing compound, sealant adhesive, paint, rust, and existing sealant, if still present. Demonstrate to the Engineer that the proposed method of cleaning old sealant or foreign material from joints will not widen the joints by more than 0.040 in (1 mm). The method shall not alter the joint profile (including rounding of the top corner) or alter the texture of the concrete riding surface. Do not use chemical agents to clean the joint. Ensure that the cleaning process produces a new, clean concrete face on the vertical faces of the joint.

B. Sealing New Joints
 1. Sawing
 Saw the transverse and longitudinal joints according to the Specifications and Plan details.
 a. Make the initial cut and wait for the concrete to harden enough to prevent spalling or raveling:
 b. Make the second cut to the width and depth shown on the Plans.

 NOTE: Do not use a gang saw to make a completed cut in a single operation.

 c. If spalling of the sawed edge harms the joint seal, patch the spall with an approved epoxy patching compound and allow it to fully cure before installing the joint sealant.
 d. Make each patch to the intended neat lines of the finished cut joint.
 2. Cleaning Freshly Cut Sawed Joints
 Immediately after sawing the joint do the following:
 a. Completely remove the resulting slurry from the joint and clean the immediate area by flushing it with a jet of water under pressure. Use other tools as necessary.
 b. When the surfaces are thoroughly clean and dry and immediately before placing the joint sealer, use compressed air with a pressure of at least 90 psi (620 kPa) to blow out the joint and remove dust traces.
 c. If freshly cut sawed joints are contaminated before they are sealed, clean them according to Section 461.
 d. Ensure that cleaning methods do not alter the joint profile, the rounding of the top corners, or the concrete riding surface texture. Do not clean the joint with chemical agents.

C. Sealing Joints
 1. Install Bond Breakers
 Select and use bond breakers [backer rod (if required) or tape] according to Section 833.2.06.A.2.
a. Before installing a bond breaker, clean and dry the joint or crack. Before placing the bond breaker and sealant, complete the cleaning, air blasting, or air drying.

b. Ensure that the backer rod diameter is at least 25 percent larger than the joint width.

c. Install the backer rod in the joint at the depth specified on the joint detail in the Plans, as directed by the Engineer, and according to Subsection 461.3.05.B.

NOTE: The width of some bridge joints may require back-up material other than the typically shaped round backer rod.

d. Use material available in square or rectangular shapes, or cut the strips from sheet stock to fit properly into the joint. Use approved bond breaking tapes in place of backer rod in some applications. See Plan details for various joint types.

2. Install Silicone Sealant

Install the silicone sealant immediately after cleaning the joint or crack and installing the bond breaker. Keep the joint or crack clean and dry.

If the joint or crack becomes contaminated, damp, or wet, remove the bond breaker if it has been installed. Clean and dry the joint or crack and install a new bond breaker before placing the sealant.

Follow these guidelines when placing the sealant:

a. Ensure that the air temperature during placement is at least 40 °F (4 °C).

b. Use a pump to apply the silicone sealant. The pump must be able to completely fill the joint to the specified width and height of sealant in one pass.

 Use a nozzle with the proper size and shape to closely fit inside the joint. The sealant must be introduced inside the joint with enough pressure to prevent voids in the sealant and to force the sealant into contact with the joint faces.

c. Use a caulking gun with cartridge for touch-up work, small applications (such as vertical runs with Type A silicone in a bridge deck joint when Type B, C, or D silicone is used), and to seal voids and cracks with Type A silicone where Type B, C, or D silicone might leak through. You may also use a caulking gun to seal small cracks in the concrete.

d. After placing Type A silicone sealant, tool it to provide the specified recess, thickness, and shape as shown on the Plans. Apply sufficient force to the sealant in this tooling operation to force the sealant against the joint faces and to ensure proper wetting and bonding of the sealant to the joint faces.

 Type B, C, and D silicones are self-leveling and do not normally require tooling.

 e. Because of the consistency of Type B, C, and D silicones, ensure that the bond breaker completely closes off gaps and voids where the silicone might leak through.

 To ensure that the gaps are closed use any of the following methods:

 □ Stuff small pieces of backer-rod into the gaps and voids
 □ Place a piece of bond breaking tape over the void
 □ Use Type A silicone to seal the void.

 If using Type B, C, or D silicone and a backer-rod, ensure the backer rod is Type M. Do not use Type L backer-rod with Type B, C, and D silicone.

f. Place the sealant to conform to the specified recess and thickness shown in the Plans.

3. Clean Pavement

After sealing a joint or crack, immediately remove the surplus sealant or other residue on the pavement or structure surfaces.

4. Open to Traffic

Do not permit traffic on the sealed joints or cracks until:

□ The sealant is tack free.
□ The sealant has cured enough to resist displacement from slab movement or other causes.
□ Debris from traffic does not imbed into the sealant.
5. Special Requirements

The following requirements apply to this work:

a. Seal the joints and cracks for any one day’s work on resealing projects within 30 calendar days after surface
 grinding for that day is completed, unless otherwise specified on the Plans. Seal joints on new pavement after
 the curing period.

 When the Plans call for resealing before specified grinding, increase the recess depth and joint depth by 1/4 to
 3/8 in (6 to 10 mm) to compensate for the depth of the pavement removed during the grinding operation.

b. The Engineer will determine all cracks to be resealed.

c. Route cracks to the depth specified on the Plans by wet or dry sawing with diamond or abrasive blades. Remove
 sawing residue or other contaminants.

d. If the manufacturer recommends a primer, use it according to the recommendations. When required, install
 primer before the backup material.

e. Seal the bridge joints, including the approach slab, specified on the Plans.

 Only reseal non-armored joints (one-sealant receptacle and concrete surfaces on joint faces), unless otherwise
 indicated on the Plans.

461.3.06 Quality Acceptance

If a sealed joint fails due to any of the following reasons, it will be rejected.

- Adhesion or cohesion failure of joint material
- Unsatisfactory or improper quality of work
- Damage by operations or public traffic
- Damage to the sealant from displacing because of slab movements or insufficient curing before opening to traffic

Repair the joint to the Engineer’s satisfaction at no additional cost to the Department.

461.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

461.4 Measurement

When listed as a pay item in the Proposal, joints and cracks sealed and resealed will be measured in linear feet (meters).

No separate measurement and payment will be made unless a pay item for the work is included in the Proposal. If no pay
item is included in the Proposal, include the cost of the joint sealing and resealing in the overall bid price submitted.

No separate measurement or payment will be made for any sawcutting required to seal or reseal the joint.

461.4.01 Limits

General Provisions 101 through 150.

461.5 Payment

When listed as a pay item in the Proposal, joints and cracks sealed or resealed will be paid for at the Contract Unit Price bid
per linear foot (meter). Payment is full compensation for furnishing materials, equipment, tools, labor, and incidentals to
complete the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 461</th>
<th>Resealing roadway joints and cracks, type___</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 461</td>
<td>Resealing bridge joints, type___</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 461</td>
<td>Sealing roadway joints and cracks, type___</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 461</td>
<td>Sealing bridge joints, type___</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

461.5.01 Adjustments

General Provisions 101 through 150.
Section 500—Concrete Structures

500.1 General Description
This work consists of manufacturing and using Portland cement concrete to construct structures.

500.1.01 Definitions
General Provisions 101 through 150.

500.1.02 Related References
A. Standard Specifications
 Section 104—Scope of Work
 Section 211—Bridge Excavation and Backfill
 Section 431—Grind Concrete Pavement
 Section 507—Prestressed Concrete Bridge Members
 Section 511—Reinforcement Steel
 Section 530—Waterproofing Fabrics
 Section 531—Dampproofing
 Section 621—Concrete Barrier
 Section 800—Coarse Aggregate
 Section 801—Fine Aggregate
 Section 830—Portland Cement
 Section 836—Special Surface Coating for Concrete
 Section 838—Graffiti-Proof Coating for Concrete
 Section 853—Reinforcement and Tensioning Steel
 Section 865—Manufacture of Prestressed Concrete Bridge Members

B. Referenced Documents
 ASTM A 653/653M
 ASTM A 924/924/M
 ASTM A 681
 ASTM C 685
 ASTM D 260, Type I or Type II
 AASHTO Specifications
 AASHTO M 148 or C 309
 AASHTO M 171
 AASHTO M 194
 AASHTO T 22
 AASHTO T 126
 AWS D 2.0
 Laboratory Standard Operating Procedure, Quality Assurance for Ready Mix Concrete Plants in Georgia
 Standard Operating Procedure for Ready Mix Concrete
 American Iron and Steel Institute Specification for the Design of Cold Formed Steel Structural Members
Federal Specification TT-P-641d, Type II
Georgia Standards 4948 and 9031-L
QPL 10
QPL 17
QPL 23
GDT 78
DOT 525

500.1.03 Submittals
A. Concrete Mix Designs

The Contractor is responsible for all concrete mix designs. Ensure that concrete mixes contain enough cement to produce workability within the water- ratio specified in Table 1—Concrete Mix Table, below.

Design concrete mixes that meet the requirements of the Table 1—Concrete Mix Table, below. The Office of Materials and Research will determine the concrete properties using the applicable method in Section 500 of the Sampling, Testing, and Inspection Manual.

Table 1—Concrete Mix Table

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>(2) Coarse Aggregate Size No.</th>
<th>(1 & 6) Minimum Cement Factor lbs/yd³</th>
<th>Max Water/Cement ratio lbs/lb</th>
<th>(5) Slump acceptance Limits (in) Lower-Upper</th>
<th>(3 & 7) Entrained Air Acceptance Limits (%) Lower-Upper</th>
<th>Minimum Compressive Strength at 28 days (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“AAA”</td>
<td>67.68</td>
<td>675</td>
<td>.440</td>
<td>2 - 4</td>
<td>2.5 - 6.0</td>
<td>5000</td>
</tr>
<tr>
<td>“AA1”</td>
<td>67.68</td>
<td>675</td>
<td>.440</td>
<td>2 - 4</td>
<td>2.5 - 6.0</td>
<td>4500</td>
</tr>
<tr>
<td>“AA”</td>
<td>56.57,67</td>
<td>635</td>
<td>.445</td>
<td>2 - 4</td>
<td>3.5 - 7.0</td>
<td>3500</td>
</tr>
<tr>
<td>“A”</td>
<td>56.57,67</td>
<td>611</td>
<td>.490</td>
<td>2 - 4</td>
<td>2.5 (3) - 6.0</td>
<td>3000</td>
</tr>
<tr>
<td>“B”</td>
<td>56.57,67</td>
<td>470</td>
<td>.660</td>
<td>2 - 4</td>
<td>0.0 - 6.0</td>
<td>2200</td>
</tr>
<tr>
<td>“CS”</td>
<td>56.57,67</td>
<td>280</td>
<td>1.400</td>
<td>3½ - 4</td>
<td>3.0 - 7.0</td>
<td>1000 (4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>(2) Coarse Aggregate Size No.</th>
<th>(1 & 6) Minimum Cement Factor kg/m³</th>
<th>Max Water/Cement ratio kg/kg</th>
<th>(5) Slump acceptance Limits (mm) Lower-Upper</th>
<th>(3 & 7) Entrained Air Acceptance Limits (%) Lower-Upper</th>
<th>Minimum Compressive Strength at 28 days (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“AAA”</td>
<td>67.68</td>
<td>400</td>
<td>.440</td>
<td>50 - 100</td>
<td>2.5 - 6.0</td>
<td>35</td>
</tr>
<tr>
<td>“AA1”</td>
<td>67.68</td>
<td>400</td>
<td>.440</td>
<td>50 - 100</td>
<td>2.5 - 6.0</td>
<td>30</td>
</tr>
<tr>
<td>“AA”</td>
<td>56.57,67</td>
<td>375</td>
<td>.445</td>
<td>50 - 100</td>
<td>3.5 - 7.0</td>
<td>25</td>
</tr>
<tr>
<td>“A”</td>
<td>56.57,67</td>
<td>360</td>
<td>.490</td>
<td>50 - 100</td>
<td>2.5 (3) - 6.0</td>
<td>20</td>
</tr>
<tr>
<td>“B”</td>
<td>56.57,67</td>
<td>280</td>
<td>.660</td>
<td>50 - 100</td>
<td>0.0 - 6.0</td>
<td>15</td>
</tr>
<tr>
<td>“CS”</td>
<td>56.57,67</td>
<td>165</td>
<td>1.400</td>
<td>90 - 100</td>
<td>3.0 - 7.0</td>
<td>7 (4)</td>
</tr>
</tbody>
</table>

Notes:
1. Portland cement may be partially replaced with fly ash as provided in Subsection 500.3.04.D.4 or with granulated iron blast furnace slag as provide for in Subsection 500.3.04.D.5.
2. Specific size of coarse aggregate may be specified.
3. Lower limit is waived when air entrained concrete is not required.

4. The mixture will be capable of demonstrating a laboratory compressive strength at 28 days of 1000 psi (7 MPa) + 0.18 R*. Compressive strength will be determined based upon result of six cylinders prepared and tested in accordance with AASHTO T 22 and T 126.

 * Where R = Difference between the largest observed value and the smallest observed value for all compressive strength specimens at 28 days for a given combination of materials and mix proportions prepared together.

5. Designed slump may be altered by the Office of Materials and Research when Type “F” water reducers are used.

6. Minimum cement factor shall be increased by 50 lbs/yd^3 (30 kg/m^3) when size No. 7 coarse aggregate is used.

7. When Class A is specified for bridge deck concrete, the entrained air acceptance limits shall be 3.5% to 7.0%.

Submit all concrete mix designs to the Office of Materials and Research (OMR) for review. The Department will approve mixes that contain materials from approved sources and produce concrete that meets these Specifications.

Submit concrete mix design proportions for approval by one of the following methods:

1. Request Approval of Specific Proportions

 When requesting approval of specific concrete mix design proportions for classes of concrete, include the following information:
 - Source of each material
 - Apparent specific gravity of the cement and the fly ash, if used
 - Bulk specific gravity (saturated surface dry) of each aggregate
 - Percent absorption of each aggregate
 - Amount of each material required to produce a cubic yard (meter) of concrete
 - Proportions of admixtures per cubic yard (meter) of concrete and any use limitations
 - Proposed slump and air content of the design
 - Evidence that the proposed mixture complies with Subsection 500.1.03.

Concrete mix designs that do not have a proven performance record and have not been used by the Department must meet minimum laboratory strength requirements.

2. Obtain Ready-Mix Design Proportions for commonly used materials

 Get approved concrete mix designs from authorized ready-mix concrete plants.

 Ready-mix concrete plants approved according to Laboratory Standard Operating Procedure “Quality Assurance for Ready Mix Concrete Plants in Georgia” are authorized to submit concrete mix designs for approval. See QPL 10 for a list of approved plants.

3. Use Laboratory-Designed Proportions for commonly used materials

 Use laboratory-designed concrete mix proportions from either of the following sources:
 a. Laboratory-designed proportions are available for commonly used combinations of materials. Request these mixes in writing from the State Materials and Research Engineer. Request specific classes of concrete and specify the source of ingredients.
 b. Select a combination of materials from approved sources and request that the laboratory determine a mix that meets requirements in the Table 1—Concrete Mix Table above. The laboratory will establish proportions for strength and workability under laboratory conditions.

B. Delivery Tickets

 Have the concrete plant transmit delivery tickets (DOT Form 525) with each load of concrete delivered to the work site. Give the Engineer one of these delivery tickets.

 Ensure that the following information is on the delivery ticket:

 - Project designation
 - Date
Time
Class and quantity of concrete
Actual batch proportions
Free moisture content of aggregates
Quantity of water withheld
Concrete mixing revolutions

If available forms do not provide the required information, ask the Engineer to provide one.

C. Formwork Plans

The Engineer may require detailed formwork plans for review. If so, prepare the formwork plans and submit them to the Engineer. In no case will the Contractor be relieved of responsibility for the formwork plans.

When constructing permanent steel bridge deck forms, submit bar support details and types to the Department for approval before placing the deck form reinforcement.

D. Falsework Plans

Submit, for review by the Engineer, detailed falsework plans for spans under which traffic flows.

The Engineer may require plans for spans that do not accommodate traffic.

E. Shop and Erection Drawings

Submit fabricators’ shop and erection drawings to the Engineer for review and approval. Indicate the following in the drawings:

- Grade of steel
- Physical and section properties for permanent steel bridge deck form sheets
- Locations where the forms are supported by steel beam flanges subject to tensile stresses

F. Hauling Vehicle Information

Before hauling starts on new bridges, submit the following information for each vehicle:

- Weight on each axle, empty
- Weight on each axle, fully loaded
- Center-to-center distances of axles
- Center-to-center distances of wheels measured parallel to each axle

G. Cold Weather Concrete Curing and Protection Plan

Secure the Engineer’s approval of a “Cold Weather Concrete Curing and Protection Plan” for bridges and structures. Emphasize protection for the underside of bridge decks when using metal forms and include the protection procedures to be used.

Protection procedures shall keep the concrete above 50 °F (10 °C) for 72 hours after placement and above freezing for 6 days after placement. Choose the protection method from Table 2 based on the expected temperature within 48 hours after concrete placement.

Table 2—Cold Weather Protection

<table>
<thead>
<tr>
<th>Protection Procedure</th>
<th>Expected Temperatures Within 48 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heated enclosures</td>
<td>Below 25 °F (-4 °C)</td>
</tr>
<tr>
<td>Commercial blankets</td>
<td>Below 25 °F (-4 °C)</td>
</tr>
<tr>
<td>Batt insulation</td>
<td>Below 25 °F (-4 °C)</td>
</tr>
<tr>
<td>Heavy-duty polyethylene</td>
<td>25 °F (-4 °C) or above</td>
</tr>
</tbody>
</table>

500.2 Materials

Ensure that materials meet the Specification requirements of Table 3:
Table 3—Materials Specifications

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Aggregate (1)</td>
<td>800.2.01</td>
</tr>
<tr>
<td>Fine Aggregate Size No. 10</td>
<td>801.2.02</td>
</tr>
<tr>
<td>Dampproofing or Waterproofing Material (Bituminous)</td>
<td>826.2.01</td>
</tr>
<tr>
<td>Portland Cement (2)</td>
<td>830.2.01</td>
</tr>
<tr>
<td>Portland-Pozzolan Cement (2)</td>
<td>830.2.03</td>
</tr>
<tr>
<td>Admixtures:</td>
<td></td>
</tr>
<tr>
<td>Air-Entraining Admixtures</td>
<td>831.2.01</td>
</tr>
<tr>
<td>Retarding Admixtures</td>
<td>831.2.02</td>
</tr>
<tr>
<td>Water Reducing Admixtures</td>
<td>831.2.02</td>
</tr>
<tr>
<td>Granulated Iron Blast-Furnace Slag</td>
<td>831.2.03.A.3</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>831.2.03.A</td>
</tr>
<tr>
<td>Curing Agents</td>
<td>832</td>
</tr>
<tr>
<td>Joint Fillers and Sealers</td>
<td>833</td>
</tr>
<tr>
<td>Special Surface Coating</td>
<td>836</td>
</tr>
<tr>
<td>Linseed Oil</td>
<td>870.2.06.A.</td>
</tr>
<tr>
<td>Mineral Spirits</td>
<td>870.2.06.A.4</td>
</tr>
<tr>
<td>Water</td>
<td>880.2.01</td>
</tr>
<tr>
<td>Graded Aggregate (3)</td>
<td>815.2.01</td>
</tr>
<tr>
<td>Graffiti Proof Coating</td>
<td>838.2.01</td>
</tr>
<tr>
<td>Concrete used in Bridge Construction</td>
<td>500.3.04.F</td>
</tr>
</tbody>
</table>

1. Use either Class A or Class B coarse aggregate of the designated size, except when using limestone or dolomite in bridge structures. When using limestone or dolomite, use Class A coarse aggregate.

2. Use Type I or Type II Portland cement or Type IP Portland-Pozzolan cement unless otherwise specified. Do not use air-entraining cement.

3. The gradation requirements of graded aggregate are modified to require 30% to 45% by weight passing the No. 10 (2.00 mm) sieve.

Construct bridge sections containing duct enclosures for stressing tendons using concrete with a maximum stone size of No. 7.

Use concrete manufactured at plants that qualify as approved sources according to the Standard Operating Procedure for Ready Mix Concrete. See QPL 10 for a list of approved plants.

For a list of approved deck oil protective surface treatment sources, see QPL 23.

500.2.01 Delivery, Storage, and Handling

A. Aggregate Stockpile

Stockpile aggregate as follows:

1. Keep stockpile areas firm, reasonably level, well-drained, clean, and free of sod or foreign matter.
2. Stockpile aggregate separately by type and source.
3. Form stockpiles using methods and equipment that do not cause the aggregate to segregate, become contaminated, or degrade. The Engineer may reject improperly formed stockpiles.
4. Stockpile aggregate long enough for the moisture content to stabilize.
5. Do not use aggregates stored in pits or silos that contain water.
B. Aggregate Handling

Operate aggregate handling equipment carefully to minimize segregation, breaks, spills, contamination, and mixing of the sizes and types of aggregates.

C. Cement Storage

Store cement as specified below. Reject all caked, lumpy, or contaminated cement.

1. Bulk Cement
 Use bulk cement unless the Engineer allows bag cement to be used.
 Store bulk cement in bins or silos designed for this purpose. Provide moisture-proof storage containers with a mechanism that allows cement to flow freely from the discharge opening.

2. Different Brands
 Store and use cement of different brands and types, or from different mills separately.

D. Admixture Storage and Handling

Carefully store and dispense admixtures as recommended by the manufacturer to prevent contamination.

E. Concrete Handling and Placing

Handle and place concrete according to the following:

1. Haul Time Limitations
 Ensure that concrete reaches its final position in the forms within one hour after adding the cement to the aggregates. If retarders or water reducers are used, the allowable time limit increases to 1-1/2 hours. Test concrete immediately for acceptance tolerances before placing in forms using limits established in Table 1—Concrete Mix Table.

2. Placement Limitations
 After delivering the concrete to the job site or the staging area at the site or after mixing the concrete at the site, transport it carefully to the placement point to prevent excessive slump loss or segregation. Use any of the following equipment:
 - Buckets
 - Buggies
 - Pumps
 - Other approved means

F. Form Storage

Store forms off the ground.

G. Precast Unit Handling

Except as noted below, the applicable portions of Subsections 507.2.01, “Delivery, Storage, and Handling,” 507.3.05.A, “Prepare Bearing Areas,” 507.3.05.B, “Erecting PSC Bridge Members,” and 507.3.05.D, “Concrete Finish,” shall govern.

Handle precast, nonprestressed units as follows:

1. Do not lift the units from the casting bed until the concrete reaches a strength of at least 1,500 psi (10 MPa).
2. Do not transport or erect the units until they reach a strength of at least 3,000 psi (20 MPa).
3. Restrict live loads (including erection equipment) on the units until they reach a minimum strength of 4,500 psi (30 MPa).

500.3 Construction Requirements

500.3.01 Personnel

A. Supervision, Personnel, and Skilled Workers

Provide enough supervision, personnel, and skilled workers to do the following:

1. Properly produce, place, and finish concrete in each pour unit according to Subsection 500.3.05.P, Table 5—Minimum Placement Rates or as required by the Plans.
2. Check screed clearances and tolerances before beginning deck pours.
3. Place concrete without delays.

B. Plant Operator Certification

Volumetric proportioning requires that the operator be certified by the Office of Materials and Research.

500.3.02 Equipment

A. Equipment Restrictions

Do not use delivery, conveyance, or vibratory units that leak grout, water, oil, or gas.

Provide enough equipment, tools, and materials to properly produce, place, and finish concrete in each pour unit according to the Subsection 500.3.05.P, Table 5—Minimum Placement Rates or as required by the Plans.

The Engineer may prohibit equipment that delays concrete placement.

B. Volumetric Proportioning Equipment

When concrete ingredients are proportioned volumetrically, obtain the Engineer’s approval for the equipment and its calibration and operation.

Ensure the following:

- The equipment meets the specifications in ASTM C 685.
- The concrete producer conducts calibration tests at least every 6 months.
- The equipment is calibrated for each new concrete mix before production.

C. Batching Plant Equipment

Ensure that batching plants have the following equipment and that the equipment meets the standards listed.

1. Bins

Ensure that bins and bin compartments meet the following standards:

- Adequate capacity for the required concrete production
- Supported on a rigid framework on a stable foundation capable of holding the bins securely
- Designed to discharge efficiently and freely into the weigh hopper
- Positive means of control that slows down and shuts off the material flow when the weigh hopper has the correct quantity.
- Discharging mechanisms that prevent material leaks when closed
- Leak-free aggregate storage bins
- Divided aggregate storage bins for fine aggregate and each size of coarse aggregate
- Partitioned aggregate storage bin compartment that prevents the materials from mixing
- Leak-proof, moisture-proof cement bins with a vibrator or other mechanism to discharge cement

2. Weigh Hoppers

Ensure that weigh hoppers meet the following standards:

- Have suitable containers freely suspended from scales
- Have adequate capacity to maintain the Subsection 500.3.05.P, Table 5—Minimum Placement Rates
- Have a discharge mechanism that prevents material leaks when closed
- Have vents to permit air to escape
- Have vibrators or other equipment that ensures complete and efficient discharge of materials
- Have a dust seal and a port or valve for sampling cement

3. Scales

Scales used for weighing concrete materials shall have accuracy within plus or minus one percent under operating conditions.

Ensure the following:

- When directed by the Engineer, the owner demonstrates the accuracy of the scales.
☐ Scales are kept clean and in good operating condition.
☐ The scale operator can clearly see indicating devices.
☐ The scale operator can easily access controls.

D. Mixers and Agitators

Ensure that mixers and agitators meet the following requirements:

1. General Requirements for Mixers and Agitators
 Provide mixers and agitators that meet these requirements:
 a. Capacity Plates
 Ensure that the mixer or agitator has a legible metal plate or plates attached in an easily visible location. The plates shall indicate the rated capacity in cubic yards (meters) for mixing and agitating.
 b. Concrete Production
 The mixer shall produce concrete that meets the requirements in the Table 1—Concrete Mix Table.
 c. Mixer Performance Test
 The mixer or agitator may be required to pass a mixer performance test. Mixer performance will be evaluated at the discretion of the Engineer.
 Mixer performance tests will include the following by the OMR:
 1) Taking samples of concrete at the one-quarter and three-quarter points of the batch discharge
 2) Measuring the slumps of each concrete sample
 If the two slump values differ by more than 2 in (50 mm), do not use the mixer or agitator until it meets the requirements of the test.
 The Engineer may permit the equipment to be used if the 2 in (50 mm) tolerance can be met by using a longer mixing time or a smaller batch.

2. Mixing Speed
 Follow these guidelines for mixing speed:
 ☐ Do not exceed 150 revolutions at mixing speed.
 ☐ Discharge all concrete from truck mixers before drum or blades reach 300 revolutions, including revolutions at agitating speed.
 ☐ Use the mixing speed defined by the manufacturer for the mixing equipment.
 ☐ If the manufacturer’s definition of mixing speed is not available, use a mixing speed of 6 to 18 revolutions per minute.

3. Mixer and Agitator Maintenance
 Maintain mixers and agitators as follows:
 a. When mixers and agitators are discharged, remove the entire contents before adding materials for the next batch.
 b. Clean mixers and agitators often to prevent concrete and grout accumulation.
 c. Do not discharge cleaning water into any pipe, catch basin, or structure.
 d. If cement or aggregates accumulate in mixers and agitators when cleaning water is discharged, remove them immediately at no expense to the Department.

4. Mixer Types
 Use stationary mixers or truck mixers.
 a. Stationary Mixers
 Ensure that stationary mixers meet the following standards:
 1) Combine the concrete ingredients into a homogeneous, uniform mass within the specified time and when loaded to capacity.
 2) Efficiently and uniformly discharge the concrete within the tolerances allowed in Subsection 500.3.02.D.1.e, “Mixer Performance Test.”
 3) Permit discharge only after the specified mixing time has elapsed using a locking device.
b. Truck Mixers

Ensure that truck mixers meet the following standards:

- Meets the requirements listed in Subsection 500.3.02.D.4.a, “Stationary Mixers”
- Has an approved revolution counting device in good operating condition
- Does not haul more than the rated capacity in cubic yards (meters) as shown on the attached capacity plates

5. Agitator Types

Use truck agitators or truck mixers operating at agitating speed.

Ensure that agitators meet the following requirements:

a. Keeps the mixed concrete in a homogeneous, uniform mass
b. Efficiently and uniformly discharges the concrete within the tolerances allowed in Subsection 500.3.02.D.1.c, “Mixer Performance Test”

E. Concrete Buckets

Keep concrete buckets clean and in good working condition.

F. Concrete Buggies

Keep concrete buggies clean and in good working condition.

G. Concrete Pumps

Concrete pumping equipment is subject to the Engineer’s approval. Use pumping equipment that has adequate capacity and is suitable for the proposed work.

H. Chutes and Troughs

Do not use chutes longer than 50 ft (15 m) without the Engineer’s permission.

Flush chutes and troughs with water after each run. Do not discharge this water into freshly placed concrete or into conveyance unit.

Promptly remove hardened concrete from chutes and troughs.

Ensure that chutes and troughs meet the following requirements:

1. Metal or metal lined
2. Slope not exceeding one vertical to three horizontal
3. Baffles or a series of short lengths placed to reverse the direction of the concrete flow, when used on steep slopes

I. Pipes or Tubes

Use pipes or tubes to place concrete when the operation requires dropping the concrete more than 5 ft (1.5 m).

Thoroughly clean the pipes or tubes after each pour.

Use pipes made of metal or other approved material and long enough to deposit the concrete as close to its final position as possible.

J. Vibrators

Provide enough vibratory units, including at least one additional stand-by unit in good working condition, to compact concrete immediately after it is placed. Have a stand-by unit at the site before each pour is started.

On Projects consisting entirely of small pours (10 yd³ [8 m³] or less), the Engineer may waive the stand-by requirement.

Ensure that vibrators meet the following conditions:

- Approved internal rotation-type design
- A power supply that constantly vibrates the concrete at frequencies of not less than 4500 impulses per minute
- A vibration intensity that visibly affects a mass of concrete with a 1 in (25 mm) slump through at least a 18 in (450 mm) radius

K. Screeds

Do not use vibratory screeds (screeds that use a transverse strike-off motion) without the Engineer’s approval. Use screeds that are:
Mechanically operated
- Designed and constructed to screed with the strike-off parallel to the center line
- Readily adjustable
- Capable of maintaining proper adjustment throughout the screeding operation

The two screed types are:
1. Longitudinal Screeds
 - Unless otherwise noted on the Plans, use longitudinal screeds only on pour lengths of 70 ft (20 m) or less.
2. Transverse Screeds
 - Use transverse screeds on any pour, unless otherwise noted on the Plans. However, transverse screeds are required on pour lengths above 70 ft (20 m).

Support screeds outside the pour area that will receive a surface finish. Do not use intermediate supports or guides.

Adjust screeds to the camber specified on the Plans. Check the camber as often as necessary.

Have the Engineer approve the following for screeds and their supports:
- Weight
- Durability
- Adjustability
- Accuracy
- Mechanical condition
- Operational results

Furnish the equipment necessary to check screed clearances and tolerances before pouring decks.

L. Underwater Placement Equipment

Place concrete under water using the following underwater placement equipment:
1. Tremie
 - Use a tremie when depositing concrete in water above 10 ft (3 m) deep. Ensure that tremie is:
 - At least 8 inches in (200 mm) diameter
 - Constructed in sections with watertight couplings
2. Bottom Dump Bucket
 - Where the Engineer permits, use a bottom dump bucket in water up to 10 ft (3 m) deep.
 - Ensure that the bottom of the bucket opens only when it touches the surface that receives the charge and that the top of the bucket has a lid or cover.

M. Fogging Equipment

To supply additional moisture to the concrete, use fogging equipment with the following characteristics:
- A heavy-duty pump capable of delivering 2 gal (7.6 L) of water per minute to a 0.062 in (1.6 mm) diameter tip at an air pressure of 100 psi (700 kPa).
 - An example of a suitable pump is the Alemite Pump 7878-A.
- The ability to consume approximately 22 ft³/min (0.6 m³/min) of compressed air
- A 3/8 in (10 mm) inside diameter hose long enough to reach all areas of the deck
- An adjustable spray gun and tip to provide various patterns of atomized spray or fog for changing finishing conditions
 - An example of a suitable spray gun is the Gun Jet No. 43 with a 120-2 Multee Jet Nozzle.

If necessary, substitute other equipment that is capable of equal performance.
500.3.03 Preparation

A. Pre-Pour Conference

Before beginning deck placement operations on each Project, and for individual deck pours of an unusual nature, the Engineer will schedule a pre-pour conference with Project supervisory personnel and a representative of the concrete supplier, if applicable.

Conference topics of discussion include the following:

- Reinforcing steel support method
- Final screed setting check
- Anticipated placement rate
- Personnel number
- Equipment type
- Curing methods
- Adverse weather placement procedures
- Emergency procedures
- Other Work-related details

500.3.04 Fabrication

A. Measure Materials

Measure materials as follows:

1. Cement. Weigh bulk cement on scales to plus or minus one percent of the designated weight. If the Engineer allows bag cement, proportion the batch to use only whole bags.
2. Aggregates. Weigh all aggregates on scales to plus or minus two percent of the designated weight. Apply the proper corrections for aggregate surface moisture.
3. Water. Measure water by volume or weight to within plus or minus one percent.
 a. Construct the measuring system to be independent of water pressure fluctuation.
 b. Ensure that measuring systems have outside taps and valves to facilitate plant calibrations.
 c. You may use recycled wash water provided that it meets the requirements of Subsection 880.2.02.
4. Admixtures. Measure admixtures by weight or volume within plus or minus three percent of the required amount.

B. Control Concrete Batching

Control batching as follows:

1. Mix batches of concrete according to the proportions of an approved mix design.
2. Ensure that concrete materials are from the designated sources.
3. Correct the batch weights to account for surface moisture in aggregates.

C. Prestressed Concrete Deck Panel Requirements

Do not use prestressed concrete deck panels unless approved by the Engineer.

D. Add Admixtures to Concrete

Additives are required when specified herein or as directed by the Engineer.

1. Air-Entraining Admixtures
 a. All bridge structure concrete uses air-entraining additives, except for seal concrete and non-exposed footings.
 b. The Contractor may use air-entraining additives in other concrete to improve workability when job or material conditions dictate.

When using air-entraining additives as an option to improve workability or when required, do not exceed the upper limit of the entrained air content requirement in the Table 1—Concrete Mix Table.
2. Retarding Admixtures
 Use concrete-retarding additives in bridge concrete when the average temperature is above 65 °F (18 °C) (the average of the expected high and the predicted low).
 a. Normally, concrete-retarding additives are not required for bridge curbs, handrails, crosswalks, or other appurtenances constructed separately from the decks.
 b. The Engineer may waive the use of retarders in substructure concrete when concrete can be placed within one hour after batching.
3. Water-Reducing Admixtures
 The Contractor may use water-reducing admixtures in Class AA concrete for bridge decks when conditions do not require a retarder. The Contractor may use water-reducing admixtures in other concrete when job or material conditions dictate a reduction in water requirements or when minimal set retardation is desired.
 The laboratory may allow Type F water-reducing admixtures when the Contractor requests it. The Contractor may construct bridge sections containing duct enclosures for stressing tendons with concrete using Type F (AASHTO M 194) water reducer as approved by the laboratory.
4. Fly Ash
 The Contractor may use fly ash as an additive in concrete to promote workability and plasticity. The Contractor may use fly ash as a partial replacement for Portland cement in concrete if the following limits are met:
 a. Replace no more than 15 percent of the cement by weight.
 b. Replace cement with fly ash at the rate of 1.0 to 1.5 lbs (1.0 to 1.5 kg) of fly ash to 1.0 lb (1.0 kg) of cement.
 c. Ensure that the fly ash mix meets the requirements of Subsection 500.1.03.A, Subsection 830.2.03, “Portland Pozzolan Cement” and Subsection 831.2.03.A, “Fly Ash”.
 d. Calculate water-cement ratio based on the total cementitious material in the mix including fly ash.
 e. Do not use Type IP cement in mixes containing fly ash.
5. Granulated Iron Blast-Furnace Slag
 If high-early strengths are unnecessary, the Contractor may use granulated iron blast-furnace slag as a partial replacement for Portland cement in concrete if the following limits are met:
 a. Replace no more than 50 percent of the cement by weight.
 b. Replace the cement with slag at the rate of 1.0 lb (1.0 kg) of slag to 1.0 lb (1.0 kg) of cement.
 c. Ensure that the slag mix meets the requirements of Subsection 500.1.03.A, Subsection 830.2.02, “Portland Blast-Furnace Cement” and Subsection 831.2.03.A.3, “Granulated Iron Blast-Furnace Slag”
 d. Calculate the water-cement ratio based on the total cementitious material in the mix including granulated iron-blast furnace slag.
 e. Do not use Type IP cement or fly ash in slag mixes.
E. Mix Concrete
1. Central-Mixed Concrete
 Mix central-mixed concrete as follows:
 a. Establish the mixing time.
 The Engineer will determine the mixing time for central mixed concrete, but the minimum mixing time will be one minute for stationary mixers of up to 1 yd³ (1 m³) capacity. Mixing time may be adjusted in the following situations:
 □ The Engineer will increase the minimum time by 15 seconds for each additional cubic yard (meter) or fraction thereof.
 □ For mixers with a capacity above 3 yd³ (2 m³), the minimum mixing time may be 90 seconds if the resulting mixture is homogeneous and meets the requirements of Subsection 500.3.02.D.1.c, “Mixer Performance Test.”
 □ The Engineer may waive mixing time requirements for stationary mixers of improved types or new designs that produce homogeneous concrete in less time than that established for a particular capacity by the foregoing. For these types of mixers, the Engineer may establish a minimum mixing time of one minute.
b. Start the mixing time when all cement and aggregates have been placed in the mixer.
c. Add some water to the mixer before adding the cement and aggregates, but ensure all water is in the mixer by the end of the first 1/4 of the specified mixing time.

2. Shrink-Mixed Concrete

Mix shrink-mixed concrete as follows:

a. Mix the batches as specified in Subsection 500.3.02.D.2. “Mixers and Agitators.”
b. Do the initial mixing in a stationary mixer for at least 30 seconds to thoroughly mix the ingredients. Do the final mixing in truck mixers.
c. Discharge all concrete before the drum or blades exceed 300 revolutions.
d. Do not allow truck mixing at mixing speed to exceed 100 drum or blade revolutions except as allowed when adding water according to Subsection 500.3.05.M, “Add Water to Concrete.”

3. Transit-Mixed Concrete

Mix transit-mixed concrete as follows:

a. For concrete mixed completely in a truck mixer, place all concrete ingredients into the mixer at the concrete plant except the quantity of water that may be withheld according to Subsection 500.3.05.M, “Add Water to Concrete.”
b. After loading the truck, begin operating at either agitating or mixing speed; however, start the mixing speed within 30 minutes after loading the truck mixer.
c. Mix the concrete for 70 to 150 revolutions at mixing speed.
 For revolutions above those specified for mixing speed, use agitating speed.
d. Discharge all concrete before exceeding 300 drum or blade revolutions.

F. Concrete Used in Construction

1. Requirements

Use Type I or Type II Portland cement or Type IP Portland-Pozzolan cement for bridge construction, unless otherwise specified.

NOTE 1: Do not use air-entraining cement.

NOTE 2: Do not use accelerators (24-hour accelerated strength concrete) that contain chlorides in any bridges where the concrete containing the additive will contact the reinforcing steel.

a. Concrete Types: Use the tabulated results from the Table 1—Concrete Mix Table for the classes and specific requirements for each class of concrete. Use the appropriate class of concrete shown in the Plans or Specifications for each component of a structure, of the type as follows:
 - Class AAA—Prestressed concrete
 - Class AA1—Precast concrete as called for on the Plans
 If approved by the Engineer, you may use this class as high early-strength concrete and may use Type III cement in concrete used for this purpose.
 The Engineer may also specify the rate of compressive strength development when this concrete is used to expedite the contract.

NOTE: The Department will not add compensation to the Contractor for Class AA1 concrete when it is used at the request of the Contractor.

b. Class AA—Bridge superstructure concrete or precast concrete as called for on the Plans

c. Class A—General purposes

NOTE: Do not air-entrain Class A concrete deposited in water (seal concrete). Ensure that the concrete has 10 percent additional cement and sufficient water to provide a 6- to 8-in (150- to 200-mm) slump.

d. Class B—Massive sections or lightly reinforced sections or miscellaneous non-structural concrete

e. Class CS—(Portland cement concrete subbase). Use this class as a subbase where required by the Plans. Concrete subbase may be composed of a mixture of Portland cement and graded aggregate or Portland cement, aggregate, and sand.
2. Acceptance of Design
Determine laboratory acceptance strength by at least 8 compressive test specimens prepared and cured according to AASHTO T 126.
 a. Make the specimens from two or more separate trial batches.
 b. Make an equal number of specimens from each batch.
 c. Calculate the minimum average strength or acceptance strength (X) as follows:
 \[X = \bar{f}_c + 2.0s \]
 Where:
 \(\bar{f}_c \) = required minimum compressive strength for each class of concrete from the Table 1—Concrete Mix Table
 \(s \) = average standard deviation of all 28-day specimens made in the field representing concrete of a given class from all ready-mix plants

Use the standard deviations shown in Table 4:

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Standard Deviation (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psi</td>
</tr>
<tr>
<td>B</td>
<td>370</td>
</tr>
<tr>
<td>A</td>
<td>650</td>
</tr>
<tr>
<td>AA</td>
<td>620</td>
</tr>
<tr>
<td>AA1</td>
<td>540</td>
</tr>
<tr>
<td>AAA</td>
<td>500</td>
</tr>
</tbody>
</table>

500.3.05 Construction
A. Meet General Responsibilities
 General construction responsibilities include:
 1. Batch, mix, deliver, and place concrete according to the Specifications.
 2. Have enough production and placement capacity to continuously mix, place, and finish the concrete in each pour unit during daylight hours.
 If necessary, place concrete at night when adequate lighting facilities exist and the Engineer approves of the operations and facilities.
 3. If a pour cannot be completed, do the following:
 a. Form an approved construction joint.
 b. Remove the partial pour.
 c. Take other remedial measures directed by the Engineer at no additional expense to the Department.

B. Construct Falsework
Accept responsibility for the design, construction, protection, and performance of falsework. Repair or remove and replace (as the Engineer directs) concrete, other material, or portions of the structure that are damaged or destroyed due to falsework failure.

Construct falsework for prestressed post-tensioned concrete structures according to the Contract Special Provisions.

Construct falsework for structures other than post-tensioned box girders as follows:
1. Meet Design Criteria
 Ensure that falsework structural components that have similar functions in an individual permanent span have the same geometric properties and are made of the same materials.
 When designing and centering formwork, treat concrete as a liquid, and use the following weights:
 - 150 lbs/ft³ (23.6 kN/m³) for vertical loading
 - 85 lbs/ft³ (13.4 kN/m³) for horizontal loading
75 lbs/ft² (3.6 kN/m²) live load for deck placement operations

Use the following falsework design criteria:

- Design and construct falsework logically so the Bridge Design Office can analyze it using a commonly accepted structural design theory.
- Avoid exceeding safe working values for material stresses.
- Provide support for the imposed loads, without settling or deforming and a way to compensate for settlement, if it occurs.

2. Support Falsework

Support falsework using one of these methods:

- Support on piling driven and removed as directed
- Found on a footing approved by the Engineer

3. Construct Falsework

Construct and set falsework to provide the finished structure the specified camber and finished grade. Place “telltales” at locations directed by the Engineer to observe how much the falsework settles.

C. Meet Form Design Criteria

Ensure that forms meet the following design criteria:

- Provide wet concrete and other loads and forces of construction support without bulging between the supports or bracing and without deviating from the lines and contours shown on the Plans.
- Meet the design criteria for falsework in Subsection 500.3.05.B.1, “Meet Design Criteria.”
- Account for the use of retarded concrete.

Ensure that bracing, ties, and supports are placed accurately.

If the formwork appears to be inadequately supported, tied, or braced (before or during concrete placement), the Engineer may require that the Work stop until the defects are corrected.

D. Use Acceptable Form Materials

Except as noted, fabricate forms from the following materials:

- Lumber
- Plywood
- Metal
- Plastic
- Combinations of these

Use material free of defects that materially affect form strength or materially impair the accuracy or appearance of the concrete surface.

Use the form materials as follows:

1. Lumber Forms

Construct wood forms as follows:

a. Size and dress the lumber.
b. Use lumber at least 1 in (25 mm) thick.
c. Use lumber for header forms used as screed supports and for curb face forms at least 2 in (50 mm) thick.
d. Avoid using scrap material or doing patchwork.
e. Stagger all joints but those between abutting panels.
f. Line the lumber used to form outside vertical surfaces of exterior beams or girders with an approved form liner.
g. Use chamfer strips mill-produced from high-quality lumber, free of defects.
h. Dress and finish chamfer strips on all three sides.
i. Size chamfer strips to the proper dimensions.
2. Plywood Forms
Construct plywood forms as follows:
 a. If plywood is the type made for general concrete forms and is at least 5/8 in (16 mm) thick, use it in place of 1 in (25 mm) thick lumber to construct forms, if necessary.
 b. Ensure that plywood used to form open joints and to line forms is at least 1/4 in (6 mm) thick.
 c. When nailing plywood directly to form studs, do not space the studs more than 16 in (400 mm) apart.
 d. Use plywood in full sheets wherever practical. Do not do patchwork with small, irregular pieces.
 e. Have the Engineer inspect and approve plywood sheet layout.

3. Metal or Plastic Forms
Construct metal or plastic forms as follows:
 a. Use metal or plastic to form concrete only if the Engineer approves the forms and if the forms produce satisfactory results.
 b. Use metal forms that produce finished concrete equal to or superior to concrete made from comparable wooden forms.
 c. Countersink bolts and rivets in the surfaces of metal forms that touch concrete.
 d. Grind welds smooth in the surfaces of metal forms to provide a smooth plane surface.

4. Other Material Uses
 Use tempered fiberboard for form liners when necessary if it is at least 1/4 in (6 mm) thick. Use tempered fiberboard 1/8 in (3 mm) thick only to form open joints. Support the fiberboard with suitable spacers arranged properly.
 Use approved synthetic materials for forming open joints and for other special uses, if necessary.

E. Construct Form Supports
Construct form supports using metal ties, anchors, and hangers as follows:
 1. Construct supports that will remain in the finished concrete so they can be removed from the concrete face to a depth of at least 1 in (25 mm) without damaging the concrete.
 2. Weld form supports to girder or beam flanges in continuous or cantilever spans only in the flange areas which are in compression.
 3. When ordinary wire ties or snap ties are permitted, cut them back at least 3/8 in (10 mm) from the face of the concrete.
 4. Design metal tie fittings that minimize the cavities made when they are removed. Fill all cavities after removing metal tie fittings.

F. Construct Temporary Forms
Construct temporary forms as follows:
 1. Construct and maintain forms in a mortar-tight condition.
 2. Construct forms so that they can be removed easily without damaging the concrete, unless using forms that will remain in place.
 3. Build, line, and brace forms so that the formed concrete surface conforms with the dimensions, lines, and grades shown on the Plans.
 4. Build headwall forms for skewed pipe parallel to the roadway centerline or at right angles to the radius on curves. Construct headwall forms as follows:
 a. Lay enough pipe to extend through the headwall form.
 b. After the concrete is poured and hardened, carefully cut and dress the protruding pipe ends so no ragged edges remain.
 The Contractor may choose, as an alternate to the above method, to build a circular form that exactly fits the pipe circumference and face of the headwall form.
 5. Construct form liner using plywood or other approved form liner as follows:
 a. Use form liner in large sheets. Do not do patchwork.
 b. Avoid irregular joint location in form liners.
 c. Have the Engineer inspect and approve the proposed liner layout.
 6. Bevel forms at beam copings, girders, and other projections to ease removal.
7. Place chamfer strips to chamfer exposed edges of the concrete by the required amount. Use ¾ in (19 mm) chamfers unless otherwise shown on the Plans.

8. Patch with tin or other metal only in those areas of the superstructure lying between and including the inside faces of the exterior beams.

10. Immediately before erecting forms or just before placing bar reinforcement steel, coat forms with a clear oil or other bond breaker to keep concrete from sticking to the forms.
 a. Do not allow the substance to stain or soften the concrete surface.
 b. Do not apply by reaching or pouring through previously placed reinforcement steel.

11. Wait to place concrete in any form until the Department inspects and approves the form.

 Inspection and approval does not diminish the responsibility to produce concrete surfaces free of warping, bulging, or other defects.

12. When removing forms, remove chamfer strips, blocks, and bracing.

13. Do not leave any part of a wooden form in the concrete.

14. If concrete surfaces do not meet finish specifications, correct the problems with the following steps, as directed by the Engineer:
 - Repair the defects using approved methods.
 - Remove and replace the affected portion of the Work.

G. Reuse Forms

Reuse forms and form material in good condition and satisfactory as determined by the Engineer. Do not use forms or form materials that are warped, cracked, splint, bulging, have separated plies, or have unsatisfactory form liner.

Ensure that used forms are mortar tight and produce a finished concrete equivalent to that produced by new forms.

H. Construct Permanent Steel Bridge Deck Forms for Concrete Deck Slabs

Unless otherwise designated on the Plans, construct and use permanent steel bridge deck forms for concrete bridge deck slabs according to these Specifications. Do not use permanent steel bridge deck forms in panels where longitudinal deck construction joints are located between stringers.

Provide a structurally satisfactory slab when using permanent steel bridge deck forms.

1. Fabricate permanent steel bridge deck forms and supports from steel that conforms to ASTM A 653/653M and ASTM A 924/924M.

2. Design permanent steel bridge deck forms as follows:
 a. Account for the dead load of the following:
 - Form
 - Reinforcement steel
 - Plastic concrete
 b. Add 50 lbs/ft² (2.4 kN/m²) for construction loads.
 c. Ensure that the unit working stress in the steel sheet does not exceed 0.725 of the specified minimum yield strength for the material furnished. However, do not allow the unit working stress to exceed 36,000 psi (250 MPa).
 d. Account for deflection under the weight of the forms, the plastic concrete, and the reinforcement as follows:
 1) If deflection exceeds 1/180 of the design span or 1/2 in (13 mm), whichever is less, use intermediate supports.
 2) Do not base deflection on a total load of less than 120 lbs/ft² (5.7 kN/m²).
 e. Base the permissible form camber on the actual dead load condition.
 f. Do not use camber to compensate for deflection that exceeds the above limits.
 g. Compute the form sheets design span using the clear span of the form, plus 2 in (50 mm), measured parallel to the form flutes.
h. Compute physical design properties according to the requirements of the latest published edition of the American Iron and Steel Institute Specification for the Design of Cold Formed Steel Structural Members.

i. Ensure that all bottom reinforcement has a minimum concrete cover of 1 in (25 mm) as shown in Figure 1 (Figure 1 metric).

![Figure 1](image)

![Figure 1 (metric)](image)

j. Maintain the Plan dimensions of both layers of primary deck reinforcement from the top surface of the concrete deck.

k. Do not use precast mortar blocks to support the deck reinforcement.

l. Do not treat permanent steel bridge deck forms as lateral bracing for the compression flanges of supporting structural members.

3. Do not weld to flanges in tension or to structural steel bridge elements fabricated from non-weldable steel grades. Have welders certified by the Department weld metal deck forms or supports for metal deck forms.

I. Install Forms

Install and maintain forms in a mortar-tight condition and according to approved fabrication and erection Plans.

Place transverse construction joints at the bottom of a flute. Field drill 1/4 in (6mm) weep holes no less than 12 in (300 mm) on center along the line of the joint.

1. Highway Bridge Forms

Install highway bridge forms using either Method 1 or Method 2:

- Method 1. Place forms so the ribs of the forms align with how the bottom transverse reinforcing in the slab is spaced.
- Method 2. Place forms with a 1 in (25 mm) minimum clearance between the top of the form and the bottom of the main deck reinforcement. See Figure 1 (Figure 1 metric).

2. Railroad Bridge Forms

Install railroad bridge forms as follows:

a. Place the forms so the tops of the form ribs adjacent to the beam flange are at the bottom of the deck slab specified by the Plans.
b. Maintain the full slab depth detailed on the Plans.
c. Do not allow form ribs to project above the Plan bottom of the deck slab.
d. Do not place form sheets directly on top of the stringer or floor beam flanges.
e. Securely fasten form sheets to form supports using self-drilling screw fasteners, not by welding. If the Engineer approves, use fastener pins driven into place by a power tool.
f. Ensure that form sheets have a minimum bearing length of 1 in (25 mm) at each end.
g. Do not leave loose sheets or accessories on the deck at the end of a day’s work.
h. Place form supports so that they contact the flange of the stringer or floor beam.
i. Attach form supports using welds, bolts, clips, or other approved means.
j. Do not weld form supports to the flanges of non-weldable steel or to portions of the flange subject to tensile stresses.
k. Ensure that welding and welds comply with AWS D 2.0 for fillet welds. However, 1/8 in (3 mm) fillet welds are permitted.

J. Repair Damaged Forms

Repair permanently exposed form metal to the Engineer’s satisfaction if the galvanized coating is damaged.

1. Clean the damaged area.
2. Go over the damaged area with a wire brush.
3. Paint the area with two coats of zinc oxide-zinc dust primer that meet Federal Specification TT-P-641d, Type II and has no color added.
4. Do not touch up minor heat discoloration in weld areas.

K. Construct Runways

Provide runways into a deck pour area for moving buggies. If the Engineer approves, use runways to bridge a previous pour that has not reached the minimum strength or age requirements in Subsection 500.3.05.AF.4, “Live Loads—Pouring Equipment.”

Construct and support runways to protect the forms and the reinforcement steel position.

L. Construct Work Bridges

Provide a work bridge on deck pours. Support the bridge outside the area of the pour receiving a surface finish. If two or more spans will be poured on the same day, the Engineer may require two work bridges.

Design and construct work bridges to meet the following:

☐ Do not allow the bridge to sag into the fresh concrete.
☐ Construct the bridge so that transverse finish and curing material can be applied easily regardless of the screed type.

M. Add Water to Concrete

Add water to the concrete at the concrete plant. Do not add indiscriminate amounts of water at the job site.

If placement conditions require concrete of a more workable consistency, add small amounts of water at the job site if approved by the Engineer.

Add water at the job site as follows:

1. Determine the quantity of water required to provide the necessary consistency.

 The Engineer will not approve additions of water that cause the total amount of water to exceed the maximum water/cement ratio established in the Table 1—Concrete Mix Table.

 The Engineer will reject concrete with water added to it that produces a higher slump than specified in the Table 1—Concrete Mix Table.

2. Do not add water to concrete that has begun to set because of excessive mixing or to concrete that has exceeded mixing or haul time limitations.

3. When adding the water, carefully control the conditions.

4. Position the delivery so the measuring operation is not affected.

5. Measure the water carefully.
6. Inject the water into the mixer forcefully to facilitate uniform mixing.
7. Add water before discharging an appreciable amount of concrete.
8. Do not add more water after concrete discharge begins.
9. After adding the water, mix the concrete an additional 30 revolutions.
10. Finish mixing the concrete before the total revolutions at mixing speed exceed 150.

N. Volumetrically Proportion Concrete

Concrete ingredients may be proportioned volumetrically when non-air entrained concrete is used in miscellaneous concrete, non-exposed footings, or culverts smaller than bridge culvert size.

O. Prepare for Concrete Placement

Prepare for concrete placement as follows:

1. Ensure that an adequate supply of concrete will be furnished and placed to meet the requirements specified in Subsection 500.3.05.P, Table 5—Minimum Placement Rates.
2. To ensure a full bond between prestressed concrete deck panels and the cast-in-place concrete, clean the panel before placing the slab concrete.
3. Immediately before placing cast-in-place slab concrete, saturate the prestressed concrete deck panels with water.
4. Immediately before placing concrete in the forms, the concrete will be measured for acceptance tolerances. Acceptance tolerances for each class of concrete are listed in the Table 1—Concrete Mix Table.
 Conduct the applicable tests according to the procedures in the Sampling, Testing, and Inspection information.

P. Meet the Minimum Placement Rates

If concrete is not produced, placed, and finished according to the minimum placement rates, the Engineer may reject the pour. Concrete pours of a similar nature and size will not be allowed until the problem is corrected and the placement rate met.

The minimum placement rates are listed in Table 5:

Table 5—Minimum Placement Rates for Bridges, Culverts and Retaining Walls

<table>
<thead>
<tr>
<th>Pour Size in Cubic Yards (Meters)</th>
<th>Minimum Placement Rate in Cubic Yards (Meters) per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25 (0-19)</td>
<td>10 (8)</td>
</tr>
<tr>
<td>26-50 (20-39)</td>
<td>15 (12)</td>
</tr>
<tr>
<td>51-75 (40-59)</td>
<td>20 (15)</td>
</tr>
<tr>
<td>76-100 (60-75)</td>
<td>25 (20)</td>
</tr>
<tr>
<td>101 and over (76 and over)</td>
<td>30 (25) or as designated on the Plans or in the Special Provisions</td>
</tr>
</tbody>
</table>

The minimum placement rate for columns shall be the same as for culvert sidewalls and wingwalls.

2. Bridge Superstructure

<table>
<thead>
<tr>
<th>Pour Size in Cubic Yards (Meters)</th>
<th>Minimum Placement Rate in Cubic Yards (Meters) per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–25 (0-19)</td>
<td>15 (12)</td>
</tr>
<tr>
<td>26–50 (20–39)</td>
<td>20 (15)</td>
</tr>
<tr>
<td>51–75 (40–59)</td>
<td>25 (20)</td>
</tr>
<tr>
<td>76 and over (60 and over)</td>
<td>30 (25) or as designated on the Plans or in the Special Provisions</td>
</tr>
</tbody>
</table>

Pour handrail, parapet, curb, and barriers at a rate satisfactory to the Engineer.
3. Culverts

<table>
<thead>
<tr>
<th>Structure</th>
<th>Minimum Placement Rate in Cubic Yards (Meters) per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footings and slabs</td>
<td>Same as for bridge substructures</td>
</tr>
<tr>
<td>Sidewalls and wingwalls</td>
<td>Use placement rates so that fresh concrete is not placed on concrete that has attained its initial set. Cover all concrete with fresh concrete within 45 minutes.</td>
</tr>
</tbody>
</table>

4. Retaining Walls

<table>
<thead>
<tr>
<th>Structure</th>
<th>Minimum Placement Rate in Cubic Yards (Meters) per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footings</td>
<td>Same as for bridge substructures</td>
</tr>
<tr>
<td>Walls</td>
<td>Same as for culvert sidewalls and wingwalls</td>
</tr>
</tbody>
</table>

Q. Place Concrete

Place concrete as follows:

1. Do not allow aluminum to touch the concrete while mixing, transporting, handling, or placing it.
2. Transport, handle, and place concrete quickly so that it reaches its final position in the forms within the haul time limitations in Subsection 500.2.01.E.1, “Haul Time Limitations.”
3. Manipulate the delivery or conveyance unit to avoid vibration damaging to partially set concrete.
4. Immediately before placing the concrete, thoroughly clean and wet the forms.
5. Place concrete as close as possible to its final position in the forms.
6. Use chutes, troughs, or tubes to pour the concrete in the forms, without displacing reinforcement steel.
7. Modify or stop using the equipment if chutes, troughs, or tubes cause honeycombed or otherwise inferior concrete.
8. When placing concrete by pumping, operate the pumping equipment so that the concrete is produced in a continuous stream without air pockets.

NOTE: Convey and place concrete by pumping only when specified in the Contract or when authorized by the Engineer.

9. When concrete placement requires dropping the concrete more than 5 ft (1.5 m), use pipes or tubes to place the concrete.
 Do not allow concrete to free-fall more than 5 ft (1.5 m) from the pipe or tube.
10. Place concrete in horizontal layers no more than 18 in (0.5 m) thick.
11. Place and compact succeeding batches in each layer before the preceding batch takes its initial set.
12. Place each succeeding layer before the underlying layer sets.
13. Consolidate the concrete to avoid cold joints between layers.
14. If the forms sag or bulge while concrete is being placed, remove the concrete causing the distortion and the concrete in adjoining areas if the Engineer requires. Removal prevents cold joints and displaced or damaged reinforcement.
15. Work the concrete around reinforcement bars without displacing them.
17. Vibrate concrete where it is deposited and vibrate other concrete while it is fresh. Vibrate as follows:
 a. Insert and withdraw vibrators slowly.
 b. Manipulate vibrators to work the concrete around reinforcement and embedded fixtures and into corners of forms.
 c. Vibrate sufficiently to compact the concrete but avoid causing the concrete to segregate.
 d. Stop vibrating before local areas of grout are formed.
 e. Apply vibrators no farther apart than twice the radius through which the vibration is visibly effective.
 f. Do not use vibrators or any other means that could cause segregation to move masses of concrete in the forms.
 g. Do not apply vibrators to sections of concrete that are no longer plastic.
 h. Vibrate concrete-filled steel grid floors by applying the vibrators to the steel.
i. Vibrate concrete for precast or prestressed units as specified above in steps a through g, unless the Engineer approves alternate methods.

j. Stop vibration when a mortar line appears on the face of the form and when the coarse aggregate particles are submerged in the concrete mortar.

18. Supplement vibration with spading to ensure smooth surfaces and dense concrete along form faces and in locations difficult to reach with vibrators.

19. After concrete sets initially, do not disturb the forms or the projecting reinforcing bars.

R. Create Construction Joints

Place construction joints according to the Plans or as directed by the Engineer.

If an emergency affects continuous placement, the Engineer will decide if a construction joint is allowed. If allowed, the Engineer will provide instructions about where and how to make the joint.

The Engineer may eliminate certain construction joints if placement, finishing and forming methods can produce satisfactory results.

Create construction joints as follows:

1. Remove mortar splashed on form surfaces and projecting reinforcement steel before concrete reaches its initial set.
 a. Do not puddle dried mortar chips and dust into the plastic concrete.
 b. If excess mortar is not removed from reinforcement steel before the concrete reaches its initial set, delay cleaning until the concrete is thoroughly hardened.

2. If joining fresh concrete and hardened concrete, clean the hardened surface of laitance and incompletely bonded, loose, or foreign material.
 Ensure that laitance is completely removed from the following:
 - Joints between decks and curbs
 - Tops of seal courses
 - Construction joints in concrete exposed to sea water

3. Ensure that the surface of the concrete is dry before pouring the concrete against it.

4. Immediately before placing fresh concrete, tighten the forms against the existing concrete.

5. Use tremies or pumps to coat areas where fresh concrete will be poured with mortar or cement grout.

6. Begin placing concrete immediately after placing the mortar or grout.

7. Apply enough vibration to blend the material with the concrete at the construction joint.

S. Protect Fresh Concrete

Do not drive pile, blast, or perform other operations that vibrate the formwork or the concrete noticeably before the concrete reaches a strength of 2,000 psi (15 MPa) and is 3 days old.

Protect fresh concrete from rainfall with waterproof material such as tarpaulins or plastic film. Ensure that the waterproof material is ready before pouring and is sufficient to cover the area of the pour.

T. Place Bridge Deck Concrete

Do not use calcium chloride or any other admixture containing chloride salts in concrete placed on permanent steel bridge deck forms.

Ensure that the tolerances are accurate for bar reinforcement placement in cast-in-place concrete so the top clearance to the bar reinforcement complies with Subsection 511.3.05.G.6, “Bridge Deck Slab Tolerances.”

Place bridge deck concrete according to the Contract Specifications and as follows:

1. Before pouring decks, set substantial bulkheads or headers and shape them to the required deck surface cross section.

2. Ensure that pouring sequences, procedures, and mixes comply with the Plans and Specifications.

3. Pour the deck according to the numbered sequence as follows:
 a. Unless otherwise shown on the Plans, pour each deck in one continuous operation.
 b. When dividing deck pours within any one complete unit (a simple span or a continuous or cantilever unit), pour and finish the concrete in the numbered sequence shown on the Plans, beginning with the lowest number.
c. Make pours with the same number before pours with higher numbers. Make pours with the same number in any sequence.
The numbered sequence shown on the Plans also applies to sidewalk pours, but it need not apply to curb, parapet, and handrail pours.
d. Pour diaphragms between steel or prestressed concrete roadway beams at least 24 hours before pouring the deck slab.
e. Unless otherwise authorized by the Engineer, pour all diaphragms within a complete unit before pouring decks.
f. When constructing concrete T-Beams, place girder stems in uniform layers before placing slabs.
g. If T-Beam spans are supported without intermediate false bents, begin deck placement as soon as the first four stems are placed. After the first four stems, avoid getting more than three stems ahead of the advancing line of the deck pour and lagging by more than the space between stems.
h. If T-Beam spans are supported by intermediate false bents, place decks and stems the same as for T-Beam spans supported without intermediate false bents. However, ensure that the slab is placed before a cold joint develops between the stem and slab.

4. Do not make the deck pour until any previously poured concrete in the complete unit has set for 24 hours. This requirement may be waived under certain conditions if the succeeding pour can be completed (except for final finishing) within four hours of the initial placement of the day. The Engineer must give written approval for this requirement to be waived.

Unless otherwise shown on the Plans, do not place handrail, sidewalks, parapets, and curbs in a complete unit until all the deck slabs in the unit have been poured.

5. Ensure that the pour is the same as the overlap direction (as shown in the shop drawings).

6. Use the following deck pour method:
 a. If there is super-elevation, begin deck pours on either the high or the low side.
 b. Dump each batch against previously placed concrete.
 c. Pour at a rate that ensures fresh concrete along the advancing line of the pour.
 d. Vibrate or tamp concrete dumped on fresh concrete to make the grout flow as follows:
 - Forward with or slightly ahead of the concrete
 - Along the bottoms and sides of the forms
 - Around the reinforcement steel

7. Once the concrete is poured, vibrate it enough to avoid honeycomb and voids, especially at the following locations:
 - Construction joints
 - Expansion joints
 - Valleys and ends of form sheets Screed the concrete as follows:
 a. Use finishing devices operating parallel to the center line. As pouring proceeds, keep the concrete surface screeded to the required grade.
 b. Fill depressions ahead of the screed, and keep a small roll of grout on the leading edge of the screed. Perform further screeding with minimum disturbance to the surface already brought to the grade.
 c. Take care during the placement and screeding to obtain sound concrete at the construction joint located where the slab joins the curb, parapet, or sidewalk.
 d. Do not place excess grout on the leading edge of the screed and do not allow it to remain in this area.
 e. Use either a longitudinal screed or a transverse screed.
 - Longitudinal Screed
 Before doing the final screeding, place enough concrete in front of the screeding position to deflect the dead load.
 - Transverse Screed
 On beam or girder-supported spans with skew angles of 65° or less, place and operate the truss or beam supporting the strike-off parallel to the skew and make the advancing pour line parallel to the skew.
 On beam or girder-supported spans with skew angles between 65° and 90°, position the screed either on the skew or at right angles to the bridge center line.
On superstructures supported by non-deflecting falsework and on beam- or girder-supported spans with a total dead load deflection no more than 1/2 in (13 mm), position the screed at right angles to the bridge center line and make the advancing line of pour at right angles to the bridge center line.

f. As the pouring proceeds, keep the concrete surface screeded to the required grade.

g. Fill depressions ahead of the screed. Keep a small roll of grout on the leading edge of the screed.

h. Continue to screed without disturbing the surface already brought to the required grade.

i. Avoid producing unsound concrete where the slab joins the curb, parapet, or sidewalk. Remove excess grout from the leading edge of the screed at these construction joints.

8. Edge joints to be sealed, including dummy joints, as follows:

a. Edge before the initial set or after the final set.

b. If edging before the initial set, use edging tools of the proper radius as shown on the Plans.

c. Carefully remove concrete from pouring operations on adjacent pours to achieve the required rounded edge.

d. If edging after the final set, allow the joints to harden. After at least 12 hours, grind joints to approximate the plan radius either by hand or by mechanically operated grinding stones.

e. To achieve full and uniform bearing, finish areas that are recessed for receiving joint members.

9. Finish bridge decks as follows:

a. As soon as the concrete is hard enough and standing water and moisture sheen disappear, give the concrete a final finish by belting, brooming, or dragging.
 - Belt longitudinally using a wet canvas belt. Limit belting to spans no longer than 40 ft (12 m).
 - Drag transversely or longitudinally with a wet burlap drag.
 - Broom transversely using a stiff-bristled broom.

b. Finish the following areas carefully:
 - Gutter lines
 - Joints
 - Drains

c. After belting, dragging, or brooming and when shown on the Plans, groove the bridge deck and approach slabs perpendicular to the center line as follows:
 1) Do not begin grooving until the bridge deck is cured according to Subsection 500.3.05.Z, “Cure Concrete.”
 2) If necessary, groove in conjunction with planing required to make the surface corrections specified in Subsection 500.3.06.D, “Bridge Deck Surface Check.” Wait until the concrete is hard enough to support the equipment without distorting.
 3) Cut grooves into the hardened concrete using a mechanical saw device capable of producing grooves 0.125 in (3 mm) wide, 0.125 in (3 mm) deep, and 0.750 in (19 mm) apart, center-to-center.
 4) Extend the grooves across the slab to within 1 ft (300 mm) of the gutter lines.

U. Place Concrete Barriers or Parapets on Bridge Decks

Place concrete barriers or parapets on bridge decks. The slip form method with an approved self-propelled extrusion machine as specified in Section 621 is optional.

V. Place Seal Concrete

Deposit concrete in water only when required by the Plans or when considered necessary by the Engineer.

When depositing the seal concrete, follow these guidelines:
 - Keep the water as motionless as possible.
 - Place the concrete continuously from beginning to end.
 - Ensure that the concrete surface remains as horizontal as possible.

Place seal concrete as follows:

1. Place seal concrete carefully in a compacted mass as near to its final position as possible using a tremie, a bottom dump bucket, or other approved means.
a. Use tremies to place seal concrete as follows:
 1) Support tremies so that the discharge end can move freely over the entire top surface of the work.
 2) Support tremies so that they can lower rapidly to stop or retard the flow of concrete.
 3) At the beginning of the work, close the discharge end to keep water out of the tube.
 4) Keep the tube sealed.
 5) Keep the tremie tube full to the bottom of the hopper.
 6) When dumping a batch into the hopper, induce concrete flow by slightly raising the discharge end and keeping it within the previously deposited concrete. This maintains a seal and forces the concrete to flow into position by hydraulic head.

b. Use bottom-dump buckets to place seal concrete as follows:
 1) Ensure that the bottom-dump bucket is level full.
 2) Open the bucket only when it rests on the surface that will receive the charge.
 3) In lowering and raising the bucket, do not move the water unnecessarily.

c. When approved by the Engineer, place seal concrete by pumping.

2. Wait at least 24 hours after placement to begin dewatering seal concrete, unless the Engineer determines a longer waiting period is necessary.

3. Remove laitance from the seal concrete before placing the footing.

4. Bore seals under spread footings the entire depth of the seal as specified for foundations in Subsection 211.3.05.C, “Boring of Foundations and Seals.”

5. If laitance buildup on seals under spread footings exceeds 1/4 in/ft (20 mm/m) of seal depth, the Engineer may decide to core the seal to determine acceptability.

6. When placing concrete exposed to sea water, control the water content to produce concrete of maximum density and create construction joints and prepare their surfaces according to the requirements of Subsection 500.3.05.R, “Create Construction Joints.”

W. Pour CS Concrete

Pour CS concrete as follows:

1. Meet CS concrete depth and surface finish requirements.
 - Ensure that the minimum depth is the same as shown on the Plans.
 - Do not vary the depth variation more than 1 in (25 mm).
 - Ensure that the surface finish is generally smooth and uniform.
 - Smooth or fill float marks, voids, and other deformities exceeding 1/2 in (13 mm) before placing approach slabs.

2. To prevent bonding:
 a. Lay clean polyethylene sheeting uniformly over the CS concrete in the approach slab area before placing the slabs.
 b. Use new, unused polyethylene sheeting free of holes, rips, and tears.
 c. Use polyethylene bond-breaking material at least 8 mils (0.2 mm) thick with an overlap of at least 6 in (150 mm).

3. Maintain polyethylene sheeting in good condition throughout the construction process.
 Repair or replace sheeting deemed unsatisfactory as directed by the Engineer.

4. Cure CS concrete with the polyethylene sheeting used for bond breaking.

X. Pour Concrete in Cold Weather

When pouring concrete in cold weather, keep the concrete temperature at the point of delivery at least 50 °F (10 °C). Do not use accelerator-containing chlorides.

Mix and pour concrete in cold weather as follows:

1. Keep concrete materials at the right temperatures.
 - Do not use materials in concrete mix that contain frozen lumps.
 - Do not incorporate water and aggregates into the mix with temperatures more than 150 °F (65 °C).
If aggregates or water temperatures are above 100 °F (40 °C), discharge the aggregates and water into the mixer and allow the temperatures to equalize before adding the cement.

- Heat aggregate with steam, hot water coils, or other methods that do not damage the aggregates. Do not heat aggregates with direct flame.

2. Protect the poured concrete.
- Keep concrete above 50 °F (10 °C) for at least 72 hours after placement.
- Protect concrete from freezing for 6 days after placement.

Y. Pour Concrete in Hot Weather

Reduce hazards and difficulties related to placing and finishing concrete in hot weather before pouring. The Engineer may require measures to prevent concrete workability reduction, losses from cement hydration, evaporation, drying, or elevated concrete temperatures.

1. Place Concrete
 Cool forms and reinforcement with water immediately before placing concrete. Meet the minimum placement rates specified in Subsection 500.3.05.P. Table 5—Minimum Placement Rates.

2. Keep Bridge Deck Concrete Cool
 Keep bridge deck concrete cool as follows:
 a. Keep the concrete used for bridge deck construction at no more than 90 °F (35 °C) when measured at the point of discharge from the delivery unit.
 b. If the concrete temperature might exceed 90 °F (35 °C) during bridge deck concrete placement, begin placement when the air temperature cools if the Engineer requires.
 c. Cool the aggregates by fogging or other means that do not affect moisture content.
 d. Use chipped or crushed ice in the mix as a portion of the mixing water on a pound (kilogram) basis. If using ice, ensure that the ice melts before the batch is discharged from the mixing unit.
 e. If necessary, cool water by refrigeration to provide a lower concrete temperature.

3. Finish Concrete
 Do not “splash on” water to aid screeding or finishing operations.
 Fog the surface of bridge decks, when required, according to Subsection 500.3.05.Z.3, “Bridge Deck Curing.”
 If needed, use wind screens to prevent thermal or shrinkage cracks from concrete surface drying.

Z. Cure Concrete

Concrete curing is an integral part of the concrete placement operation. Improperly cured concrete will be considered defective.

If the Engineer determines that curing procedures do not comply with these Specifications, stop placing concrete. Resume concrete placement after taking remedial measures to ensure proper curing.

Begin curing unformed surfaces when the water sheen disappears from the surface or immediately after applying the surface finish. Continue curing for 5 days.

Cure the formed surfaces after removing the forms. Remove them within 5 days after placing concrete. Continue curing until the concrete is 5 days old (from the time it is poured).

Cure concrete surfaces exposed to air using methods that prevent premature drying or moisture loss. Ensure that curing conditions are the same throughout separate curing areas.

Use either or a combination of the two methods specified for curing concrete except bridge decks. Cure bridge decks as described in Subsection 500.3.05.Z.3, “Bridge Deck Curing.”

1. General Curing—Supplying Additional Moisture
 Do not use a method that causes the concrete to be alternately wet and dry.
 Cure concrete properly by supplying additional moisture through ponding, sprinkling, or fogging and then retaining the moisture as follows:
 a. Use cotton mats, burlap, sand, hay, or straw coverings.
 Cover with at least 2 in (50 mm) of sand. Cover with at least 3 in (75 mm) of hay or straw.
 b. Do not use sawdust or coverings that cause unsightly discoloration of concrete.
c. Place coverings after completing the finishing operations when there is no danger of surface damage.
d. Keep coverings moist continuously.

2. General Curing—Preventing Moisture Loss

Keep concrete moist before and during the rubbing from the Type III—Rubbed Finish.
Start curing immediately after the rub using approved waterproof paper, plastic sheets, or membrane-forming curing compounds, except when curing compounds are prohibited.
a. Waterproof Paper or Plastic Sheets
 Ensure that the sheets and paper meet the requirements of AASHTO M 171 and use them as follows:
 - Use the widest possible widths.
 - Lap adjacent sheets at least 6 in (150 mm).
 - Seal the laps with tape, mastic, glue, or other approved methods to form a waterproof cover of the entire area.
 - Keep the curing material from being displaced by wind.
 - Immediately replace or repair sheets or paper that tear, break, or become damaged during the curing period.
b. Membrane-Forming Curing Compounds
 Use as the curing agent AASHTO M 148, membrane-forming curing compounds, Type 1-D, Class A or B, or Type 2, Class A or B, white pigmented. Use the curing agent as follows:
 - Do not use membrane-forming curing compounds on bridge decks or prestressed concrete bridge members, or in construction joint areas.
 - When the water sheen disappears from the concrete surface, apply the curing compound uniformly to unformed areas.
 - Apply the compound to formed surfaces if the forms are removed during the 5-day curing period.
 - Cure the areas to be rubbed with liquid membrane-forming compounds for curing concrete, Type 1-D, Class A or B (non-acrylic).
 - Apply curing compound with fine-spraying equipment.
 - Thoroughly agitate the compounds just before using them.
 - Spray the surface again immediately after the first application at right angles to the first application.
 Apply at least 1 gal (1 L) for each 150 ft² (3.7 m²) of surface.
 - Do not apply curing compound to the following:
 - Joints where a concrete bond is required
 - Reinforcement steel
 - Joints where joint sealer will be placed
 - Close the surface to pedestrian or vehicular traffic for 7 days unless the surface is protected by planks, plywood, or a layer of sand at least 1 in (25 mm) thick.
 Do not place this protection until at least 12 hours after applying the curing compound.

3. Bridge Deck Curing

Cure bridge deck concrete as follows:
a. Immediately after the water sheen disappears and the surface finish is applied, fog the surface to keep a film of water on the surface.
b. If surface damage occurs, delay fogging.
c. Keep the surface wet until after applying the sheet curing covers.
d. Thoroughly soak curing covers on the fabric side.
e. As soon as the concrete sets enough to prevent damage, apply the covers with the white-poly side up.
f. Use two-layer sheet curing material for bridge concrete according to AASHTO M 171.
 For the bottom layer, use a polyethylene film. For the top layer, use a white, burlap polyethylene sheet or a white, co-polymer-coated, absorbent, non-woven synthetic fabric.
g. Ensure that sheet curing material for bridge concrete meets Specification requirements for reflection and moisture retention and has no holes or tears.
h. Use enough sheet curing material to cover the deck surface.
i. Place the curing covers so that adjoining sheets overlap at least 18 in (450 mm).
j. Weight all laps and side edges to prevent cover displacement before curing is completed.
k. Weight and overlap covers so the curing sheets maintain intimate contact with the concrete surface.
l. If there is no moisture under the curing covers during the 5-day curing period, apply additional moisture.

4. Parapet, Sidewalk, End Post, and Curb Face Curing

The surface of parapets, sidewalk, end post, and horizontal and vertical faces of curbs are not considered part of the bridge deck. Cure these structures using the general curing methods in Subsections 500.3.05.Z.1, “General Curing—Supplying Additional Moisture,” and 500.3.05.Z.2, “General Curing—Preventing Moisture Loss,” unless the surfaces will receive a special surface coating (Subsection 500.3.05.AB.4, “Type III—Special Surface Coating Finish”).

Do not cure surfaces receiving a special surface coating with membrane-forming curing compounds.

Do not cure surfaces receiving protection surface treatment (75 percent boiled linseed oil and 25 percent mineral spirits solution) with membrane-forming curing compounds that contain acrylics.

AA. Prevent Plastic Shrinkage Cracking

Take precautions to prevent plastic shrinkage cracking of concrete by doing the following:

- Provide wind screens
- Provide fogging equipment
- Apply temporary wet coverings before moisture loss begins

The Engineer will evaluate the effects of plastic shrinkage cracks and will require repair of cracks that create structural defects and corrode reinforcement steel.

AB. Finish Concrete

Concrete surface finishes are classified according to whether the surfaces are formed or unformed. Refer to Table 6.

When other Sections of the Specifications for concrete work state that the requirements of Section 500 apply, finish the concrete according to the other sections.

<table>
<thead>
<tr>
<th>Surface</th>
<th>Finish Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formed</td>
<td>Type I—Ordinary Formed Surface Finish</td>
</tr>
<tr>
<td></td>
<td>Type II—Special Formed Surface Finish</td>
</tr>
<tr>
<td></td>
<td>Type III—Rubbed Finish</td>
</tr>
<tr>
<td></td>
<td>Type III—Special Surface Coating Finish</td>
</tr>
<tr>
<td>Unformed</td>
<td>Type IV—Floated Surface Finish</td>
</tr>
<tr>
<td></td>
<td>Type V—Sidewalk Finish</td>
</tr>
<tr>
<td></td>
<td>Type VI—Stair Tread Finish</td>
</tr>
</tbody>
</table>

Except for bridge deck finishes, which are covered in Subsection 500.3.05.T, “Place Bridge Deck Concrete,” step 9, finish all structural concrete surfaces with one or more of the finishes described here, unless otherwise shown on the Plans.

1. Type I—Ordinary Formed Surface Finish

Complete formed concrete surfaces with this finish. However, leave concrete exposed directly to sea water undisturbed unless the Engineer requires additional work. See Subsection 500.3.05.V, “Place Seal Concrete,” step 6.

Achieve a Type I finish as follows:

a. Immediately after removing the forms, remove fins and surface irregularities.
b. Fill or point up the following:

- Cavities produced by forms or ties
- Holes
Broken corners or edges
- Defects
- Honeycombed edges

c. Remove and patch honeycombed areas to sound concrete.
d. Use patch mortar that consists of the same sand and cement as the concrete. Use the sand and cement in the same ratio as in the concrete.

Use epoxy mortars in areas where heat generation and moisture will not decrease patch performance.
e. Cure the patches using one of the general curing methods specified in Subsection 500.3.05.Z.1, “General Curing—Supplying Additional Moisture” and 500.3.05.Z.2, “General Curing—Preventing Moisture Loss.”
f. Produce a sound and uniform finish.
g. If the Type I finish is not satisfactory, give the surfaces a Type III—Rubbed Finish where the Engineer considers it necessary to achieve a uniform and pleasing appearance.

2. Type II—Special Formed Surface Finish
Give a Type II finish to the following:
- Exposed portions of pipe headwalls and culverts
- Parapets and wingwalls
- Ends of culvert slabs and walls

Achieve a Type II finish as follows:
a. Use a form liner unless the forms are made of plywood or steel.
b. Rub only when necessary if the surface has a pleasing, uniform appearance after completing the Type I finish and blending all pointed and patched areas.
c. If the surface finish is not satisfactory, give surfaces the Type III—Rubbed Finish where the Engineer considers it necessary to achieve a uniform and pleasing appearance.

3. Type III—Rubbed Finish
Apply a Type III finish to bridge areas checked in the table of Bridge areas Requiring a Type III Finish, below and to exposed areas of retaining walls, unless the Plans specify otherwise.

<table>
<thead>
<tr>
<th>Bridge Areas Requiring a Type III Finish (X)</th>
<th>Single Bridge Over Stream</th>
<th>Multiple Bridges Over Stream</th>
<th>Single Bridge Over Railroad</th>
<th>Multiple Bridges Over Railroad</th>
<th>Single Bridge Over Traffic Artery</th>
<th>Multiple Bridges Over Traffic Artery</th>
<th>Railroad Bridge Over Traffic Artery</th>
<th>Pedestrian Bridge Over Traffic Artery</th>
</tr>
</thead>
<tbody>
<tr>
<td>All exposed substructure areas, except tops and bottoms of caps. (5)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside surface of any exterior concrete beam, Lt. or Rt. (1), (2)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside surface of any exterior concrete beam, Lt. and Rt. (1), (3)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical surfaces of overhangs, curb, or sidewalk.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>All vertical surfaces outside of exterior beam, Lt. or Rt. (2)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All vertical surfaces outside of exterior beam, Lt. or Rt. (3)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End bent cap beyond outside beam or girder.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End bent end walls beyond outside beam or girder.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

416
End posts and end bent wingwalls all exposed surfaces.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
</table>

Traffic face of curbs.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
</table>

Entire handrails and posts, hand rail parapet, and barriers. (4), (5)

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
</table>

All other locations specified on Special Provisions.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
</table>

Notes:
1. Including Prestressed Concrete Bridge Members.
2. "Lt. or Rt."—Rub the applicable surface when it can be seen from any adjoining bridge.
3. "Lt. and Rt."—Rub the applicable surfaces on both sides of centerline of each bridge.
4. Rubbing of bottom surface of rail not required.
5. Bottoms of caps and handrails shall be given a Type II finish.

For bridges using PSC Beams or PSC Deck Units, a Type III Special Surface Coating Finish shall be used where a Type III finish is required for exterior beams. The Type III Special Surface Coating Finish shall also be used on the exterior vertical faces of the parapet, barrier, and overhangs where PSC Beams or PSC Deck Units are used.

Achieve a rubbed finish as follows:

a. Begin the first rub immediately after removing forms, completing the Type I finish, and ensuring that all patches are thoroughly set, but before applying the required curing compound.
 If finishing is postponed or there is not enough labor to keep it up-to-date, the Engineer will order a stop to any other work until the finishing is satisfactory.

b. Rub chamfered surfaces only once, but not during the first rubbing. Rub chamfered surfaces during either the second or the final rubbing.

c. To rub, wet the moist concrete on the curing surface with a brush and rub with a medium-coarse carborundum stone or equal abrasive until a paste comes to the surface.
 Keep the entire concrete surface moist during rubbing to assure adequate curing.

d. Continue rubbing until all form marks and projections disappear, leaving a smooth, dense surface with no pits or irregularities.

e. Spread the paste material carefully and uniformly over the entire surface and leave it.

f. No earlier than 24 hours after the first rub, do the final rub with a fine carborundum stone or equal abrasive, leaving a smoothly textured surface that is uniform in color.

g. Finish the final rub before applying protective surface treatment required by the Plans.

h. Do not “whitewash” finished areas by using separately mixed grout or paste on the rubbing stone or by spreading it on the surface to be rubbed.

i. Thoroughly clean and blend into the surrounding surfaces any areas that are disfigured by drips from concrete placement or rubbing.

4. Type III—Special Surface Coating Finish

A Type III—Special Surface Coating Finish may be substituted for a Type III—Rubbed Finish.

The special surface coating finish consists of either a Class A or a Class B coating system, applied to produce a masonry-like textured finish on concrete surfaces.

For contiguous structures, whether in the same Contract or in separate Contracts, use the same brand of special surface coating.

If contiguous structures are in separate contracts, coordinate the Work with the other Contractor so that coating is applied as near as possible to the same time.

If contractors cannot coordinate Work, the one who finishes the work last shall use the same brand or shall recoat all contiguous areas to provide a uniform appearance.

Achieve a special surface coating finish as follows:

a. Ensure that surface coating material meets the requirements of Section 836.
Select coating material from the QPL 17.

b. Do not use form oils that affect the bonding of surface coatings.

c. Do not use wax-based or other curing compounds incompatible with surface coatings.

Have the coating manufacturer or the laboratory determine compatibility.

d. Use the coating color required in Section 836.

e. On surfaces that will receive a coating finish, do not cure with membrane-curing compound or remove forms with bond-breaking agents or excessive oil.

f. Apply coatings as follows:

- Class A coatings at a rate that develops a 1 1/16 in (.5 mm) thick coating.
- Apply Class B coatings at a maximum rate of 60 ft² per gallon (1.5 m² per liter).
- Ensure that the temperatures of the air, concrete, and compound are above 50 °F (10 °C).
- Apply a test section as directed by the Engineer to determine the acceptance of a coating under field conditions.
- Apply the coatings using a method that produces an acceptable finish, such as spraying, rolling, or a combination of these.

g. Protect coated surfaces from rain or freezing temperatures for 24 hours after application.

h. Ensure that the final coating produces a smoothly textured surface that is uniform in color, thickness, and appearance.

i. Remove and reapply coatings that chip, crack, blister, peel, or present an unsatisfactory appearance.

j. If the final appearance is unsatisfactory, apply a rubbed finish to slip-formed and formed walls and barriers.

5. Type IV—Floating Surface Finish

Use a Type IV finish only on the horizontal surfaces of the following:

- Curbs and sidewalks
- Tops of caps and footings
- Surface of slope paving
- Other similar structures

Apply the Type IV finish as follows:

a. After compacting the surface and screeding to the correct cross sections, float the surface with a wood float.

b. While floating the surface, bring enough mortar to the surface to achieve the desired finish, but do not reduce the wearing quality of the surface.

c. Make the final finish with a wood float or stiff-bristle broom.

d. If brooming, make the marks transverse to the traffic.

6. Type V—Sidewalk Finish

Apply a Type V finish as follows:

a. After placing and compacting the concrete, strike it off and give it a Type IV finish.

b. Use an edging tool on all edges and along expansion joints unless the Plans require chamfers.

c. Mark off sidewalk surfaces in blocks with suitable grooving tools when required by the Plans or the Engineer.

d. Extend the rubbed finish on the traffic face of the curb to include the horizontal area of sidewalk between the curb corner and the longitudinal sidewalk groove.

7. Type VI—Stair Tread Finish

Achieve a Type IV finish using a stiff-bristled broom.

AC. Remove Forms

Do not remove forms and their supports, including falsework, until the Engineer approves. Use a removal method approved by the Engineer. Approval does not relieve responsibility for the safety of the Work.

1. Form Removal Time

Use a removal time shown on the Plans or specified by the Engineer.
Use Table 7 to help establish when forms can be removed safely. However, do not count days where the temperature at any time during the day is at or below 40 °F (4 °C), unless the cold weather concrete protective measures described in Subsection 500.1.03.G, “Cold Weather Concrete Curing and Protection Plan” were used.

Table 7—Estimate of Form Removal Time

<table>
<thead>
<tr>
<th>Form</th>
<th>Time Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom of beams</td>
<td>10 days</td>
</tr>
<tr>
<td>Bottom of caps, trestle pile bents</td>
<td>4 days</td>
</tr>
<tr>
<td>Bottom of all other caps</td>
<td>7 days</td>
</tr>
<tr>
<td>Overhangs and slabs, including culverts</td>
<td>7 days</td>
</tr>
<tr>
<td>Columns and retaining walls</td>
<td>18 to 48 hours</td>
</tr>
<tr>
<td>Sides of beams, posts, rails, caps, footings, wingwalls, and parapets</td>
<td>12 to 24 hours</td>
</tr>
<tr>
<td>Bottoms of cast-in-place rails and diaphragms</td>
<td>48 hours</td>
</tr>
<tr>
<td>Front face of curbs</td>
<td>3 hours</td>
</tr>
</tbody>
</table>

If using high‑early strength concrete, the Engineer may reduce the time limitations if the concrete develops satisfactory strengths.

2. **Form Removal Method**

 Remove forms and falsework without injuring the concrete surface or overstressing the concrete members.

 Ensure that the stress from the weight of the removal process is transferred gradually and uniformly to the concrete.

 At the Contractor’s request, time of removal may be controlled by field tests on cylinders, subject to the following conditions:

 a. No tests will be performed until concrete is a least 3 day s old.
 b. Required strengths will be shown on the Plans, as noted elsewhere in these Specifications, or as determined by the Engineer.
 c. The Engineer may specify a minimum time in conjunction with minimum strength requirements.
 d. Falsework and forms for culverts may be removed at such time as 75% of the concrete design strength is achieved.

AD. Apply Protective Surface Treatment

When the Plans specify a protective surface treatment, apply a boiled linseed oil mixture of 75 percent boiled linseed oil and 25 percent mineral spirits by volume to the concrete surfaces.

Use linseed oil that meets the requirements of ASTM D 260, Type I or Type II. Use a quality commercial mineral spirit that passes infrared spectroscopic analysis to the satisfaction of the laboratory.

Unless otherwise noted on the Plans or the manufacturer’s recommendations, apply the mixture as a preservative seal coat to the top surfaces of bridge decks, curbs, and sidewalks and to the inside vertical faces of curbs, parapets, and end posts. Protect metal handrailings and metal handrail posts from treatment.

Apply the protective surface treatment as follows:

CAUTION: Because the linseed oil‑petroleum spirits mixture has a low flash point and is readily flammable, protect the mixture from fire, especially cigarettes and sparks. Prohibit traffic from the treated area until the Engineer determines the concrete has regained its dry appearance.

1. Do not place the protective surface treatment until concrete work, including final rubbing, is completed and expansion joint sealing compound is placed.
2. Do not apply the treatment until the concrete is at least 14 days old.
3. Unless otherwise permitted by the Engineer, apply the treatment when the temperature of the concrete and air is at least 50 °F (10 °C).
4. Apply in time to allow the treatment to dry thoroughly before allowing traffic, including haul traffic, on the structure. If the structure meets the following exceptions, apply the treatment after using the structure for hauling.
 □ Temperature limitations prohibit application.
 The Engineer will send a written notification to the Contractor (or Bridge Contractor) if temperature requirements prohibit application.
 □ The structure is absolutely required for hauling to complete a Contract.
 Request a written approval from the Engineer if hauling across a structure before the treatment is placed.
5. If applying the treatment after using the structure for hauling, thoroughly clean the surfaces to be treated to allow the treatment to penetrate completely.
6. If there are separate bridge and roadway Contracts, have the roadway Contractor clean the surfaces immediately upon request by the Engineer.
7. Prepare the surface for the treatment as follows:
 a. Clean off oil, grime, and loose particles that prevent the mixture from penetrating.
 b. Ensure that the concrete surfaces have at least 48 hours to dry after rainfall or wet cleaning operations.
 c. Immediately before applying the treatment, direct an air blast over the surfaces to remove dust.
 d. Mask the exposed plates of joints.
8. Apply the mixture by hand or by spraying in one application at the rate of 1 gal (1 L) of mixture per 37.5 yd² (8.5 m²).
 a. Thoroughly clean the inside of spraying equipment before putting the surface treatment in.
 b. Keep spray nozzles within 18 in (600 mm) of the concrete unless otherwise directed by the Engineer, Plans, or manufacturer.

AE. Apply Graffiti-Proof Coating

When the Plans specify a graffiti-proof coating, apply the coating system to concrete surfaces or over special surface coatings. Use material that complies with Section 838.

Apply the coating as follows:
1. Apply the coating according to the manufacturer’s recommendations for:
 □ Weather conditions
 □ Material preparation
 □ Coating application
 □ Number of coats

AF. Expose New Concrete to Loads

Prohibit dead or live loads during or after construction except as described in this section. If using high early strength concrete, the Engineer may reduce time limitations if the concrete develops adequate strength.

1. Dead Loads on the Substructure
 After pouring footings, do not begin work on columns or piers for at least 12 hours.
 After pouring columns, do not begin cap construction for at least 24 hours.
 Do not place beams on caps or place falsework and forming for concrete T-Beam construction before the cap concrete reaches a minimum strength of 2,500 psi (17 MPa).

2. Dead Loads on the Superstructure
 If necessary, stockpile construction materials on decks within a complete unit (a simple span or continuous or cantilever unit) if the following conditions exist:
 □ The deck concrete of the complete unit reaches its 28-day cylinder strength.
 □ The deck concrete is at least 10 days old.
 □ The curbs are at least 5 days old.
 The Engineer must approve the location, height, and spread of the loads.
On composite-design bridges (those that have prestressed concrete beams or steel beams with shear connectors), do not pour curbs, parapets, or sidewalks until the deck concrete reaches a minimum strength of 1,500 psi (10 MPa) or is at least 3 days old.

3. Dead Loads on Concrete Box Culverts
Do not backfill any section of a concrete box culvert until the last concrete placed in that section is at least 14 days old, unless early cylinder breaks indicate otherwise.
If early cylinder breaks indicate that design strength has been achieved, backfill sections of culverts when the concrete placed last is at least 7 days old.

4. Live Loads—Pouring Equipment
Do not allow power-operated concrete buggies to cross a deck until the concrete reaches a minimum strength of 1,500 psi (10 MPa) or is at least 3 days old.
Allow hand-operated buggies to cross after the concrete is 24 hours old.

5. Live Loads—Mixing and Lifting Equipment
Do not place mixers on a deck in a complete unit (a simple span or continuous or cantilever unit) until the deck concrete of the complete unit reaches its 28-day cylinder strength and is at least 10 days old.
When deck concrete reaches its 28-day cylinder strength and is at least 10 days old, allow mixer trucks on the unit during the curb concrete pour only if the pour is completed within 45 minutes of being started.
Do not allow any equipment on the unit for 5 days after curb pours.
The Engineer may allow concrete placement procedures that use heavy lifting equipment on the decks if the following conditions exist:
☐ The deck concrete reaches its 28-day cylinder strength.
☐ The deck concrete is at least 14 days old.
☐ The curbs on the deck are at least 10 days old.

6. Live Loads—Hauling over Bridges
Use a new bridge for hauling only if no other practical haul routes are available and only if the Engineer permits it.

a. Govern hauling by the restrictions and requirements listed in Table 8. If any of the restrictions and requirements are violated, the Engineer will limit loads to the following:
☐ Single 32,000 lb (14 515 kg) axle when the bridge design loading is HS 20-44 and/or Military Loading
☐ Single 24,000 lb (10 886 kg) axle when the bridge design loading is HS 15-44 or H 15-44

<table>
<thead>
<tr>
<th>Axle Criteria</th>
<th>Bridge Design Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HS 20-44 and/or Military Loading</td>
</tr>
<tr>
<td>Maximum Axle Load Per Axle</td>
<td>60,000 lbs (27 216 kg)</td>
</tr>
<tr>
<td>Maximum Axle Load on Dual Axles Per Axle</td>
<td>45,000 lbs (20 412 kg)</td>
</tr>
<tr>
<td>Maximum Total Load</td>
<td>100,000 lbs (45 360 kg)</td>
</tr>
</tbody>
</table>

b. Ensure that bridge concrete, including curbs, parapets, barriers and sidewalks, is at least 14 days old and has a minimum compressive strength of 3,000 psi (20 MPa).
c. Apply the linseed oil special protective treatment, if required see (Subsection 500.3.05.AD, “Apply Protective Surface Treatment”).
d. After applying the protective treatment (if required), apply water-repellent silicone materials to the handrail, handrail posts, end posts, and curb faces before hauling begins.
e. Do not allow more than one vehicle at a time on a simple or multiple-span unit.
f. Ensure that vehicle speeds, loaded or unloaded, do not exceed 5 miles/hr (8 km/hr) when the following loads occur:
 - Bridges designed for HS 20-44 and/or Military Loading:
 - Loads on single axles exceed 32,000 lbs (14 515 kg)
 - Loads on each dual axle exceed 24,000 lbs (10 886 kg)
 - Bridges designed for HS 15-44 or H 15-44 loading:
 - Loads on single axles exceed 24,000 lbs (10 886 kg)
 - Loads on each dual axle exceed 16,000 lbs (7257 kg)
 When axle loads do not exceed these loads, ensure that vehicle speeds are 15 mph (24 kph) or less.

h. Place temporary guides on beams so wheels will track directly.

i. Keep earth approaches smooth and level with the bridge floor or approach slab to minimize impact.
 Stabilize sandy and other unstable soils (at no expense to the Department) with crushed stone or other suitable material for at least 10 ft (3 m) from the end of the bridge or approach slab.

j. Protect the ends of bridges or approach slabs with a timber strip at least 4 in (100 mm) wide, cut to rest on either the paving rest of the bridge end or the pavement subgrade at the end of the approach slab. Keep the strip in place for protection during incidental hauling. Remove it before constructing the adjacent pavement.
 Keep the top of each timber strip flush with the top of the concrete surface. Fit the strip tightly against the end of the bridge or approach slab. If the timber strip is displaced, stop hauling until the strip is reset or replaced.

AG. Complete Corrective Work

After the Department gives the deck surface a Ride Quality Test described in Subsection 500.3.06.E, “Ride Quality Test,” complete corrective work at no cost to the Department and before doing the final surface texturing.

Complete corrective work as follows:
1. Plane the deck according to Section 431.
2. Limit concrete removal by planing so that the final bar cover is not less than the Plan cover minus 1/2 in (13 mm).
3. If the final bar cover limits cannot be met, perform the corrective work as directed by the Engineer.
4. Ensure that the final riding surface complies with this Specification and the requirements for a grooved finish.
5. If necessary, use a bump grinder to correct bumps with a profile base line of 5 ft (1.5 m) or less.
6. Have planed decks retested as described in Subsection 500.3.06.E, “Ride Quality Test,” to ensure that the ride quality meets the requirements of this Specification.

AH. Plane the Deck

Schedule profilograph testing. Give at least 5 days’ advance notice. Ensure that the area to be tested is clean and clear of obstructions.

When possible, delay expansion joint installation and temporarily bridge the joint to operate profilograph and planing equipment across the joint.

Planing responsibilities are shown in Table 9:

<table>
<thead>
<tr>
<th>Area Planed</th>
<th>Person Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge decks</td>
<td>Bridge Contractor</td>
</tr>
<tr>
<td>Approach slabs constructed under the bridge Contract</td>
<td>Bridge Contractor</td>
</tr>
<tr>
<td>Approach slabs constructed under the roadway Contract</td>
<td>Roadway Contractor</td>
</tr>
</tbody>
</table>

AI. Perform Retaining Wall Incidentals

Retention wall incidentals are as follows:

1. Drainage
 Unless otherwise shown on the Plans or in the Special Provisions, ensure that drainage for retaining walls is either Alternate A or Alternate B on Georgia Standards 4948 and 9031-L.
Ensure that the Number 10 concrete sand complies with Subsection 801.2.02, “Fine Aggregate for Portland cement Concrete of All Types and for Mortar” and has a permeability coefficient of at least 100 ft (30 m) per day. The Engineer may waive the grading requirement for Number 10 concrete sand if the permeability coefficient of the material does not exceed 500 ft (150 m) per day. Omit the drainage blanket and stone for retaining walls only when the height does not exceed 6 ft (1.8 m). When the Plans specify different drainage details, furnish, place, or build the various items according to the Plan requirements.

2. Waterproofing and Dampproofing
 When waterproofing and dampproofing are specified in the Plans, comply with the requirements of Sections 530 and 531.

AJ. Place Utility Installation Hardware
 When the Plans require placing utility installation hardware, the utility company involved will furnish the items. Place the items as directed on the Plans or Shop Drawings. All other work, including painting as required, is the utility company’s responsibility.

AK. Widen Bases and Pavement
 When using narrow sections of Portland cement concrete to widen existing bases or bases and pavements, use Class B concrete as shown on the Plans or as directed by the Engineer.

AL. Open the Structure to Traffic
 Open a structure to traffic other than haul traffic after all concrete in the decks, parapets, or curbs (sidewalks) reaches its 28-day cylinder strength and is at least 14 days old.

500.3.06 Quality Acceptance

A. Strength Requirement Tests
 When job site test specimens fail to meet the strength requirements in the Table 1—Concrete Mix Table, determine the Final Acceptance or rejection of concrete in place by coring or non-destructive testing.
 At the Contractor’s request, the Department will determine the removal time for forms by conducting field tests on cylinders.
 Tests are subject to the following:
 1. Tests will be performed when the concrete is at least three days old.
 2. The Plans will show the required strengths.
 3. At the Contractor’s request, the Engineer may specify a minimum time with minimum strength requirements.

B. Honeycombed Area Check
 If there are honeycombed areas that extend beyond the reinforcement steel, the Engineer may reject the entire pour with the honeycombed area.

C. Bridge Deck Slab Concrete Inspection
 The Engineer will carefully observe the construction methods used during all phases of the bridge deck slab construction. These phases include the following:
 - Metal form installation
 - Reinforcement location and fastening
 - Concrete item composition
 - Mixing procedures
 - Concrete placement and vibration
 - Bridge deck finishing
 Provide the needed facilities for the Engineer to safely and conveniently inspect the concrete.
The concrete inspection procedure is as follows:

1. After the deck concrete has been in place for at least two days, the Engineer will sound a hammer on at least two areas of the deck for each slab pour. This test checks for concrete soundness and form bonding. The two areas will encompass at least 10 percent of the total area of the deck pour.

2. The Engineer will sound other areas of the deck randomly.

3. If the Engineer doubts the soundness of an area, or if the Engineer decides that the concrete placement procedures used call for an inspection of the underside of the deck, remove at least one section of the forms for each span in the Contract.

4. Remove the form section after the pour is strong enough and when the Engineer desires to provide visual evidence that the concrete mix and the placement procedures are acceptable.

5. Remove another form section if the Engineer decides changes in the concrete mix or in the placement procedures warrant additional inspection.

6. Where form sections are removed, do not necessarily replace the forms, but repair the adjacent metal forms and supports neatly and securely.

7. When the form is removed, the Engineer will examine the concrete surfaces for cavities, honeycombing, and other defects.

8. If the Engineer finds irregularities but determines that the irregularities do not justify rejection of the Work, repair the concrete as the Engineer directs and give it an ordinary surface finish according to the Contract Specifications.

9. If the concrete where the form is removed is not acceptable, remove additional forms as necessary to inspect and repair the slab.

10. Modify the construction methods as required by the Engineer to create satisfactory slab concrete.

11. Remove or repair all unsatisfactory concrete as the Engineer directs.

 If the construction methods used and the inspection results indicate that the slabs have sound concrete, the Engineer may moderate the amount of random sounding and form removal after a substantial amount of slab has been constructed and inspected.

D. Bridge Deck Surface Check

 After the final strike-off of the concrete and as close behind the final strike-off as possible, the Engineer will check the surface with a 10 ft (3 m) straightedge.

 Attach the straightedge to a broom-type handle for easy control and use.

 Bridges and approach slabs must meet a 1/8 inch in 10 ft (3 mm in 3 m) straightedge check made longitudinally and transversely.

E. Ride Quality Test

 After the bridge decks and approach slabs are completed, the Department will perform a Ride Quality Test using the Rainhart Profilograph and a profile index value determined according to GDT 78.

 The Department will conduct the test as follows:

1. Obtain Profile Index Values for bridge decks and approach slabs for:
 - State roads with four lanes or more
 - State roads with 2 lanes where the current traffic count is 2,000 vehicles per day or higher
 - Other roads designated on the Plans

 Bridges and approach slabs must meet the straightedge check limits described in Subsection 500.3.06.D, “Bridge Deck Surface Check.”

2. Obtain profiles in the wheel paths and in safety areas to within 6 ft (1.8 m) of barrier or curb lines.

3. Average the profile index values for bridge decks including the approach slabs for the left and right wheel path for each lane.

 The average value must not exceed 15 in/mile (235 mm/km) for each lane.

 After the test is complete, correct individual bumps or depressions that exceed 2/10 in (5 mm) from the blanking band on the profilograph trace.

 The deck surface must then meet a 1/8 inch in 10 ft (3 mm in 3 m) straightedge check made transversely.
Correct bridge decks and approach slabs that do not pass the Ride Quality Test as described in Subsection 500.3.05.AG, “Complete Corrective Work.”

500.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

500.4 Measurement

This work is measured for payment either per cubic yard (meter), per Lump Sum, or per linear foot (meter), whichever is shown on the Plans.

- Seal Concrete. The quantity of seal concrete to be measured for payment is calculated using the horizontal seal dimensions specified on the Plans.
- Grooving. Grooving on bridge decks and approach slabs, completed acceptably according to Subsection 500.3.05.T, “Place Bridge Deck Concrete,” step 9.c, will be measured and paid for by the square yard (meter). Payment is full compensation for furnishing the necessary equipment and performing the Work.
- Class B Concrete. Class B concrete used for base and pavement widening will be measured and paid for by the cubic yard (meter) complete in place and accepted.

500.4.01 Limits

A. Measurement for Separate Payment

There will be no separate measurement and payment for the following:

1. On permanent steel bridge deck forms for concrete deck slabs:
 - Extra reinforcing
 - Extra concrete
 - Other costs incurred because of the requirements of this Specification

 All costs are included in the Lump Sum prices bid for superstructure concrete and superstructure reinforcement.

B. Payment per Cubic Yard (Meter)

Measurement limits on payment per cubic yard (meter) are:

1. Bridges, Concrete Culverts, Headwalls, and Retaining Walls

 The quantity of concrete measured for payment is the algebraic summation of the Base Pay Quantity and authorized quantity changes.

 If additional quantities are necessary because of any of the following, these quantities are measured separately for payment:
 - Rocks were removed carefully but additional quantities are needed because footing depth and keyway dimension are irregular from unanticipated rock removal.
 - Voids or crevices exist within the spread footing area.
 - The Engineer authorized filling trenches cut in rock outside footing areas to ease dewatering.

 These additional quantities will be paid as filler concrete per cubic yard (meter).

2. Seals

 When the Plans do not require a seal but a seal becomes necessary, or when the Plans do not show seal dimensions, the maximum pay dimensions in each direction will be the Plan dimension of the structural footing plus 3 ft (1 m), with 18 in (600 mm) on each side.

 If the Contractor uses lesser dimensions, measurement is based on the lesser dimensions. Concrete placed beyond the maximum pay limits are not measured.

C. Payment per Lump Sum

For Lump Sum payment, determine the quantities required before submitting the bid.

The concrete quantity must conform to the Plan dimensions. Measurement is made as a unit, complete in place, and includes the following:

- Diaphragms
- Sidewalks
- Concrete parapets

Measurement does not include concrete in the following items that will be paid for separately:
- Concrete handrailings
- Barriers
- Prestressed bridge members.

Payment for parapets placed by slip-form method is included in the Lump Sum price bid for superstructure concrete.

Unless otherwise shown on the Plans, the cost of steel joints and metal bearing assemblies used in structures where there is no structural steel Pay Item are included in the Contract Price for superstructure concrete.

D. Retaining Wall Incidental

Retaining wall incidentals will be measured for payment as follows:

1. Drainage Systems

Drainage items required by Special Plans are measured for payment by the unit specified on the Plans only when they are set up as specific Pay Items and are paid for separately. Otherwise, their costs are included in the Contract Price for concrete.

Payment is full compensation for the costs of excavation and backfill necessary to place the drainage items required by Special Plans.

The following are not measured for separate payment. Costs are included in the Contract Price for concrete.
- Sand blankets
- Crushed or broken stone
- Weep holes

2. Miscellaneous

The following are not measured for separate payment. Costs are included in the Contract Price for concrete.
- Expansion material
- Rubber or polyvinyl plastic water stops

E. Utility Installation Hardware

The cost of placing utility hardware items is included in the Contract Price for the class of concrete the items are placed in.

500.5 Payment

This Work will be paid for at the Contract Price per cubic yard (meter), per Lump Sum, or per linear foot (meter), each complete in place and accepted.

Payment is full compensation for all things, including incidentals, and direct and indirect costs, to complete the Work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item</th>
<th>Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>Superstructure concrete class____, Bridge no.____</td>
<td>Per lump sum</td>
</tr>
<tr>
<td>500</td>
<td>Concrete handrailing (designation)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>500</td>
<td>Class____concrete</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>500</td>
<td>Class____concrete, high-early strength</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>500</td>
<td>Seal concrete</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>500</td>
<td>Class B concrete base or pavement widening</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>500</td>
<td>Class____concrete including reinforcement steel</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>500</td>
<td>Class A concrete—filler</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No.</td>
<td>Item</td>
<td>Payment</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>500</td>
<td>Class___ concrete—retaining wall</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>500</td>
<td>Grooved concrete</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>500</td>
<td>Concrete barrier</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

500.5.01 Adjustments

A. Contractor Costs

Assume the following costs:

1. Costs related to rejected concrete and removing rejected concrete
2. Costs of forming an approved construction joint, removing a partial pour, or completing other remedial measures requested by the Engineer unless the fault lies solely with the Department
3. Costs of repairing, removing, and replacing falsework as directed by the Engineer
4. Costs of repairing, removing, or replacing forms
5. Costs of air-blown mortar to repair honeycombed areas, if required by the Engineer
6. Costs of using a higher class of concrete to widen existing bases or bases and pavements

B. Profilograph Testing

The Department will conduct profilograph testing of bridge decks and approach slabs only twice per bridge at no cost to the Contractor.

The Department will conduct additional profilograph testing at the cost of $500 per test.

C. Plastic Shrinkage Crack Repair

The Engineer will determine how to repair cracks caused by plastic shrinking. Repair cracks at no cost to the Department.

D. Plan Quantities

For all bridges (except seal concrete), concrete culverts, headwalls, and retaining walls, the quantities shown on the Contract Plans, including Standard Plans, will be considered the Base Pay Quantity.

For seal concrete, the Plan quantities are approximate and are for estimating purposes only. The quantities will not be considered as Base Pay Quantities.

Calculated additions or deductions will be applied to the Base Pay Quantity when the Engineer makes authorized changes. Changes include, but are not limited to, authorized changes in the following:

- Footing dimensions
- Lengthening or shortening of concrete culverts
- Correcting Plan Quantities
- Dimension errors
- Multi-barrel culvert wall thicknesses
- Lengthening or shortening bridge columns
- Raising or lowering foundations

Calculations of the Base Pay Quantity and any changes will be made as follows:

1. No deductions will be made for the volume of concrete used by scorings, panels, and chamfers if the individual areas are less than 1 in² (625 mm²).
 The volume of concrete in the same area will be neglected.
2. The volume of structural steel and of steel and concrete piling encased in concrete will be deducted.
3. The volume of timber piling encased in concrete will be deducted on the basis of 0.8 ft³/linear foot (0.07 m³/linear meter) of pile.
4. No deduction will be made for the volume of concrete displaced by the following:
 - Steel reinforcement
 - Shear connectors
 - Floor drains (unless they are paid for as separate Pay Items)
 - Incidental materials such as expansion material
 - Joint sealing compound
 - Utility thimbles and hangers

E. Filler Concrete

Filler concrete, measured as described in Subsection 500.4.01.B.1, “Bridges, Concrete Culverts, Headwalls, and Retaining Walls,” will be paid at 40 percent of the Contract Price per cubic meter for Class A Concrete or Class AA Concrete.

F. Seal Concrete

If there is no Contract Price for seal concrete, payment will be per cubic yard (meter), measured as described in Subsection 500.4.01.B.2, “Seals,” and will be paid at 60 percent of the Contract Price per cubic yard (meter) for Class A concrete.

G. Lump Sum Payment Adjustments

Adjust the payment as follows:

1. Authorized Change Adjustments

 When authorized changes are made as described in Subsection 500.5.01.D, “Plan Quantities,” the lump sum payment may be adjusted on a proportional basis or according to Section 104 and as determined by the Engineer.

 The Plans show tabulated quantities as a service. This does not relieve any responsibility to conform to Plan details.

2. Optional Plan Feature Adjustments

 If exercising an optional Plan feature, the Base Pay Quantity will not be changed if it is the only quantity change involved.

 However, if other changes are necessary, the quantity change resulting from the optional feature will be considered in the necessary quantity adjustments.

3. Falsework for Post-Tensioned Box Girder Bridge Adjustments

 When the falsework is completed for post-tensioned box girder bridges, 20 percent of the Lump Sum superstructure concrete price will be paid.

 Additional payments made as the concrete is placed must be adjusted for the payment for falsework. In other words, payment for concrete placed will be based on 80 percent of the superstructure bid price.

4. When Metal Deck Forms are used and have been placed, payment in the amount of 5% of the Lump Sum Superstructure Concrete price will be made. For Post-Tensioned Box Girder Bridges, this percentage (5%) will apply to that part of the superstructure concrete in the top slab of the box only.

Section 501—Steel Structures

501.1 General Description

This work includes furnishing and building with structural steel and miscellaneous metals to the lines, grades, and dimensions shown on the Plans or established by the Engineer.

The work does not include bearing devices for prestressed concrete bridge members, utility installation hardware, or any metal covered under another Pay Item.

501.1.01 Definitions

HTS Bolts: High Tensile-Strength bolts.
501.1.02 Related References

A. Standard Specifications
 Section 109—Measurement and Payment
 Section 500—Concrete Structures
 Section 512—Shear Connectors
 Section 535—Painting Structures
 Section 851—Structural Steel
 Section 852—Miscellaneous Steel Materials
 Section 854—Castings and Forgings
 Section 857—Bronze Bushings, Bearings, and Expansion Plates
 Section 870—Paint
 Section 881—Fabrics
 Section 885—Elastomeric Bearing Pads

B. Referenced Documents
 ANSI/AASHTO/AWS D 1.5
 AISC Manual of Steel Construction
 ANSI B1.13 Class 2A
 ANSI 2.5, 3.2, 6.3, 12.5, 25, 46, 46.1 Part 1, 50
 ASTM A 6/A 6M
 ASTM A153/A 153M
 ASTM A 325 (A 325M)
 ASTM A 490 (A490M)
 ASTM A 919
 ASTM F 568M Class 4.6

501.1.03 Submittals

A. Pre-Inspection Documentation
 Furnish documentation required by the latest ANSI/AASHTO/AWS D 1.5 under radiographic, ultrasonic, and magnetic particle testing and reporting to the State’s inspector before the quality assurance inspection.

B. Shop Drawings
 Prepare Shop Drawings for structural steel and other metal materials to be fabricated. Show the details necessary for shop fabrication and field erection.
 1. Description. Use the standard sheet size of the Department’s Bridge Office. Submit at least two complete sets of preliminary prints marked “NOT FOR FIELD USE” to the Department’s Bridge and Structural Design Engineer (the Bridge Engineer) for review before fabricating materials.
 2. Review Process. After the preliminary prints have been reviewed and revisions have been made, submit 5 or more complete sets of the final drawings to the Bridge Engineer. The Bridge Engineer will mark each drawing with a conditional approval stamp and return one stamped set to the fabricator. Furnish the Bridge Engineer with as many additional sets of final prints as required.
 The Bridge Engineer’s review and conditional approval of Shop Drawings is a service for the Contractor. The Department assumes no responsibility for the accuracy of the drawings, and the Contractor will not be relieved of any responsibility for conforming to the Specifications and Plans.
 3. Railway Structures. For structures carrying railway traffic and for other structures when specifically designated, furnish the Bridge Engineer a full set of permanent reproducibles of the final Shop Drawings.
4. Welded Construction. On Shop Drawings for welded construction, use the standard welding symbols of the American Welding Society. Explain special conditions in notes or details. Show the sequence and techniques for areas where shrinkage stress and distortion control is necessary.

5. Changes and Substitutions. Do not change a Shop Drawing after it has been conditionally approved unless the Bridge Engineer gives written consent. List and symbolize revisions on each drawing. Obtain written consent from the Bridge Engineer before substituting materials with dimensions and weights other than those shown on the Plans. Make changes associated with an approved substitution at no expense to the Department.

6. Alternate Locations of Splices and Connections. If splices or connections are desired at locations other than those shown on the Plans, submit a proposal and Shop Drawings to the Bridge Engineer to get written approval before proceeding.

7. Steel Identification. Upon request, furnish an affidavit certifying the identification of steel is maintained throughout fabrication. On the Shop Drawings, show the grade of steel to be used and identify each piece. Give pieces made of different types or grades of steel different assembly or erection marks. Maintain the identity of the mill test report number when assembly-marking individual pieces and when giving cutting instructions to the shop.

C. Fabrication Schedule

Ensure that the fabricator submits a proposed fabrication schedule to the State Materials and Research Engineer that includes the following:

- Correct project number, including county
- Bridge number
- Starting date
- Estimated completion date

D. Quality Control Program

Before fabrication begins, submit the fabricator’s written Quality Control program to the Office of Materials and Research for approval. This program and its personnel will be subject to verification when the Department’s Materials and Research Engineer deems necessary.

Even with a State inspection, continue to perform Quality Control (QC) on all nonfracture-critical and fracture-critical members and components.

E. Mill Orders and Shipping Statements

Furnish the number of copies of mill orders and shipping statements covering fabricated materials and related miscellaneous materials the Engineer directs. Show the weights of individual members on the statements.

F. Mill Test Reports

Furnish the Engineer two certified, legible copies of mill test reports that show the results of physical tests and complete ladle analyses for each heat and grade of steel ordered. Refer to the ASTM designation of tests used. Furnish mill test reports at no expense to the Department.

G. Welding Procedures

Before structural steel fabrication begins, submit welding procedures to the Engineer for review and approval.

H. Electrode Testing

Furnish a manufacturer’s certification showing that the material requirements used for manufacturing the tested electrodes and furnished electrodes were the same for each lot of electrodes on the Project.

I. Falsework

If required, prepare and submit falsework plans for the Engineer’s review. Continue to assume the responsibility to produce safe falsework. When erection is completed, remove falsework to the Engineer’s satisfaction.
J. Camber Diagram

Furnish the Engineer a diagram showing the camber at each splice point for each girder. Base the diagram on measurements taken during shop assembly. In the case of partial shop assembly, base the camber diagram on theoretical calculated values.

501.2 Materials

Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Steel</td>
<td>851.2.01</td>
</tr>
<tr>
<td>Cold-Finish Carbon Shafting</td>
<td>854.2.06</td>
</tr>
<tr>
<td>Steel Castings</td>
<td>854.2.07</td>
</tr>
<tr>
<td>Paints</td>
<td>870</td>
</tr>
<tr>
<td>Steel Bolts, Nuts, and Washers</td>
<td>852.2.01</td>
</tr>
<tr>
<td>Anchor Bolts</td>
<td>852.2.02</td>
</tr>
<tr>
<td>High Tensile-Strength Bolts, Nuts, and Washers</td>
<td>852.2.03</td>
</tr>
<tr>
<td>Shear Connectors</td>
<td>512</td>
</tr>
<tr>
<td>Elastomeric Pads</td>
<td>885.2.01</td>
</tr>
<tr>
<td>Plain Cotton Duck</td>
<td>881.2.01</td>
</tr>
<tr>
<td>Rubber-Impregnated Cotton Duck</td>
<td>881.2.02</td>
</tr>
<tr>
<td>Self-Lubricating Bronze Bearing and Expansion Plates Galvanizing and Bushings</td>
<td>857.2.03 ASTM A 153/A 153M</td>
</tr>
</tbody>
</table>

1. Fasteners. Use fasteners in their lubricated, as-delivered condition. Use black bolts oily to the touch. With galvanized assemblies, use nuts with a clean, dry lubricant that contrasts with the color of the zinc coating.

2. Self-Lubricating Bronze Plates. Use cast-bronze plates of the type shown on the Shop Drawings, unless otherwise shown on the Plans.

501.2.01 Delivery, Storage, and Handling

A. Fasteners

Store fasteners to protect them from dirt and moisture. Take from storage only enough fasteners to install and tighten during a work shift. Return unused fasteners to protective storage at the end of the shift.

B. Structural Steel Members

1. Delivery

Load, transport, and unload girders without excessive stress or damage.

The Engineer will observe the delivery of beams or girders and will immediately notify the Contractor of damaged or unsatisfactory material before the material is unloaded or as soon as the damage is discovered.

If members are improperly handled, the Inspector may withhold or remove the final stamp of approval.

Use Figure 1, Figure 2, and the following loading specifications and shipping details for truck, rail, or barge transportation.

 a. Use chains and chain binders to secure beams and girders during shipping only if using a protective shield to prevent gouging flanges and if providing adequate bracing to prevent bending the top flanges.

 b. Keep the center of gravity of beams, girders, and heavy haunch sections as low as possible.

 c. Use access roads to safely deliver beams and girders to the site.
For short beams or girders supported on a flat bed the min. C may be disregarded.

* If C = over 15 ft use additional restraint here.

** If C = over 40 ft use another restraint here.

0.4C may be increased to 15 ft to cut down or restraint length, or where angle is too flat.

Beam of overhang ends shall be restrained against flapping horizontally and vertically.

Figure 1
Table of Dimensions—Feet

<table>
<thead>
<tr>
<th>1</th>
<th>Min. C & T</th>
<th>Remarks</th>
<th>Max. C & T</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>15</td>
<td></td>
<td>22.5</td>
</tr>
<tr>
<td>80</td>
<td>16</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>85</td>
<td>17</td>
<td></td>
<td>25.5</td>
</tr>
<tr>
<td>90</td>
<td>18</td>
<td>Max C for 30 in WF</td>
<td>27</td>
</tr>
<tr>
<td>95</td>
<td>19</td>
<td>Max C for 33 in WF</td>
<td>28.5</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>Max C for 36 in WF</td>
<td>30</td>
</tr>
<tr>
<td>105</td>
<td>21</td>
<td></td>
<td>31.5</td>
</tr>
<tr>
<td>110</td>
<td>22</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>115</td>
<td>23</td>
<td></td>
<td>34.5</td>
</tr>
<tr>
<td>120</td>
<td>24</td>
<td>Preferred Max C for PLG</td>
<td>36</td>
</tr>
<tr>
<td>125</td>
<td>25</td>
<td>Preferred Max C for PLG</td>
<td>37.5</td>
</tr>
<tr>
<td>126</td>
<td>26</td>
<td></td>
<td>37.8</td>
</tr>
<tr>
<td>127</td>
<td>27</td>
<td></td>
<td>38.1</td>
</tr>
<tr>
<td>128</td>
<td>28</td>
<td></td>
<td>38.4</td>
</tr>
<tr>
<td>129</td>
<td>29</td>
<td></td>
<td>38.7</td>
</tr>
<tr>
<td>130</td>
<td>30</td>
<td></td>
<td>39.0</td>
</tr>
<tr>
<td>131</td>
<td>31</td>
<td></td>
<td>39.3</td>
</tr>
<tr>
<td>132</td>
<td>32</td>
<td></td>
<td>39.6</td>
</tr>
<tr>
<td>133</td>
<td>33</td>
<td></td>
<td>39.9</td>
</tr>
<tr>
<td>134</td>
<td>34</td>
<td>Max C for PLG</td>
<td>40.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>93.8</td>
</tr>
</tbody>
</table>

Blocking or bracing and beam spacers to hold beams and girders in place, webs vertical, and flanges horizontal.

Solid, uniform bearing—no tilt of beams and girders.

Figure 2
Table of Dimensions—Meters

<table>
<thead>
<tr>
<th>1</th>
<th>Min. C & T</th>
<th>Remarks</th>
<th>Max. C & T</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.0</td>
<td>4.5 18.2</td>
<td></td>
<td>6.9 16.0</td>
</tr>
<tr>
<td>24.0</td>
<td>4.9 19.5</td>
<td></td>
<td>7.3 17.0</td>
</tr>
<tr>
<td>26.0</td>
<td>5.2 20.7</td>
<td></td>
<td>7.8 18.1</td>
</tr>
<tr>
<td>27.0</td>
<td>5.5 21.9</td>
<td>Max C for 760 mm WF</td>
<td>8.2 19.2</td>
</tr>
<tr>
<td>29.0</td>
<td>5.8 23.2</td>
<td>Max C for 838 mm WF</td>
<td>8.7 20.3</td>
</tr>
<tr>
<td>30.0</td>
<td>6.1 24.3</td>
<td>Max C for 914 mm WF</td>
<td>9.1 21.3</td>
</tr>
<tr>
<td>32.0</td>
<td>6.4 25.6</td>
<td></td>
<td>9.6 22.4</td>
</tr>
<tr>
<td>34.0</td>
<td>6.7 26.8</td>
<td></td>
<td>10.0 23.5</td>
</tr>
<tr>
<td>35.0</td>
<td>7.0 28.0</td>
<td></td>
<td>10.5 24.5</td>
</tr>
<tr>
<td>37.0</td>
<td>7.3 29.3</td>
<td>Preferred Max C for PLG</td>
<td>11.0 25.6</td>
</tr>
<tr>
<td>38.0</td>
<td>7.6 30.0</td>
<td></td>
<td>11.4 26.7</td>
</tr>
<tr>
<td>38.4</td>
<td>7.9 30.0</td>
<td></td>
<td>11.5 26.9</td>
</tr>
<tr>
<td>38.7</td>
<td>8.2 30.0</td>
<td></td>
<td>11.6 27.1</td>
</tr>
<tr>
<td>39.0</td>
<td>8.5 30.0</td>
<td></td>
<td>11.7 27.3</td>
</tr>
<tr>
<td>39.3</td>
<td>8.8 30.0</td>
<td></td>
<td>11.8 27.5</td>
</tr>
<tr>
<td>39.6</td>
<td>9.1 30.0</td>
<td></td>
<td>11.9 27.7</td>
</tr>
<tr>
<td>39.9</td>
<td>9.4 30.0</td>
<td></td>
<td>12.0 28.0</td>
</tr>
<tr>
<td>40.2</td>
<td>9.7 30.0</td>
<td></td>
<td>12.1 28.2</td>
</tr>
<tr>
<td>40.5</td>
<td>10.0 30.0</td>
<td></td>
<td>12.2 28.4</td>
</tr>
<tr>
<td>40.8</td>
<td>10.4 30.0</td>
<td>Max C for PLG</td>
<td>12.3 28.6</td>
</tr>
</tbody>
</table>

- Blocking or bracing and beam spacers to hold beams and girders in place, webs vertical, and flanges horizontal.

Solid, uniform bearing—no tilt of beams and girders.

Figure 2 (metric)
2. Storage
Handle structural steel during storage in the same manner as during fabrication. See Subsection 501.2.01.B.2.a, “General” and Subsection 501.2.01.B.3, “Handling.”

a. General
Place beams and girders with their webs vertical. Shore, brace, or clamp beams and girders to resist lateral forces during storage. Keep steel free from dirt, oil, grease, or other contaminants and protect it from corrosion. Pitch trough sections to provide water drainage.
Do not stack beams and girders on each other.
Place long members on supports close together to prevent damage from deflection.
The Engineer will observe the storage and handling of beams or girders and ensure that they are satisfactory before erection.

b. Supports
The material on which the beams and girder supports are placed shall be firm, well-drained, unyielding, and not allow excessive or uneven settlement when the supports are loaded.
Store beams and girders on platforms, skids, or other supports on the ground above high-water elevation.
Shore supports with firm, well-drained unyielding material. Use material that settles evenly when the supports are loaded.
Support beams and girders adjacent to the bearings and at intervals of no more than 25 ft (7.5 m). Use enough intermediate supports to prevent damage from deflection.

3. Handling
Handle steel members with clamps, plate hooks, or devices to avoid nicks, gouges, or depressions. Do not use chains and chokers to handle steel members unless using a protective shield between the chain or choker and the member.

a. Beam and Girder Pick Up
Use spreader bars to lift beams and girders over 50 ft (15 m) in length.
- One-point pick ups are allowed for beams and girders less than 50 ft (15 m) long.
- Use two-point pick ups so the amount of overhang and distance between hooks does not exceed the distances in the following table:

<table>
<thead>
<tr>
<th>Beam Size</th>
<th>30 in (760 mm) WF</th>
<th>33 in (840 mm) WF</th>
<th>36 in (920 mm) WF</th>
<th>Plate Girders</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-point pick-up distance between hooks linear feet (meters) maximum</td>
<td>74 (22)</td>
<td>80 (24)</td>
<td>85 (26)</td>
<td>100 (30)</td>
</tr>
<tr>
<td>2-point pick-up overhang linear feet (meters) maximum</td>
<td>25 (7)</td>
<td>28 (8)</td>
<td>30 (9)</td>
<td>35 (10)</td>
</tr>
</tbody>
</table>

WF = Wide Flange

If using pick-ups that cause long overhangs, attach lines at beam ends to control movement.

b. Beam and Girder Protection
Keep webs of beams and girders vertical while handling. Never drop, throw, or drag beams and girders.
Do not allow beams or girders to bend about the weak axis, even under their own weight. When shipping beams or girders upside-down, use caution when turning them over for shipment and turning them right-side up at their destination. Use enough blocking and pick-up points to prevent excess stress on the girder.

501.3 Construction Requirements

501.3.01 Personnel

A. Fabricators
Employ structural steel fabricators certified under the AISC Certification Program, Category III—Major Steel Bridges.
501.3.02

B. Welders
Qualify field welders according to ANSI/AASHTO/AWS D 1.5. Employ certified welders who possess a current welding certification card issued by the Department’s Office of Materials and Research.

501.3.02 Equipment

A. Tension Measuring Device
Have a tension measuring device at all job sites where High Tensile-Strength bolts are installed and tightened. Use the tension-measuring device to:
- Confirm the proper snug tight and final installation bolt tension
- Calibrate wrenches properly
- Ensure the bolting crew understands the importance of proper bolt tensioning

At least once a year, have an approved testing agency calibrate the tension-measuring device to confirm its accuracy.

B. Wrenches
If using the calibrated wrench method to tighten HTS bolts, calibrate the wrench at least once each working day for each diameter, length, and grade of bolt to be installed. Recalibrate the wrench when adding or deleting the air hose, changing compressors, or performing similar tasks.

Use the wrench in job-site tightening under the exact conditions that it was calibrated. Recalibrate wrenches if a significant difference is noted in the surface condition or level of lubrication of the bolt threads, nuts, or washers.

C. Ovens
Use electric drying ovens approved by the Engineer to dry electrodes according to ANSI/AASHTO/ AWS D 1.5.

D. Lifting Equipment
Use proper lifting equipment that can carefully handle steel members without bending, twisting, damaging, or excessively stressing parts. Use cranes that have at least a two-part line for lifting.

The Department will terminate shop inspection if lifting equipment is operated or maintained in a hazardous manner.

E. Erection Equipment
Proposed erection equipment is subject to the Engineer’s review. Even with this review, assume responsibility for providing adequate and safe equipment and for carrying out the work according to the Plans and Specifications. Begin erection only after the Engineer’s review.

501.3.03 Preparation

A. Installation Method Testing for Boltsed Construction
Before beginning the bolting operation, the Engineer will verify the Contractor’s installation method. Verification will determine if the method used (calibrated wrench or turn-of-nut) will produce the correct bolt tension in the HTS structural bolts of the completed connection.

If the method is successful, the total clamping force of bolts will be transferred to the connected members and will resist slipping through friction.

Do not use bolts tightened during installation method tests or use other previously used HTS structural bolts in the work.

1. Verification Procedures for Both Methods
 Test both methods of tightening (calibrated wrench or turn-of-nut) with the following procedures:
 a. Select three assemblies (bolt, nut, and washer) from each diameter, length, and grade to be installed.
 b. Install each bolt, nut, and washer into the tension-measuring device.
 c. Install enough spacers or washers so that at least 3 but not more than 5 full threads are between the nut face and the underside of the bolt head.
 d. Use the same type of element (nut or bolt head) as will be used in the work. Place a hardened washer under the turned element.
 e. Snug tighten each assembly using the procedure that will be used in the work.
 f. After snug tightening, place appropriate marks on the end of the bolt stick out and nut, bolt head and tension calibrator, or drive socket and tension calibrator.
2. Calibrated Wrench Method Verification
 a. Impact Wrench
 When using an impact wrench:
 1) Tighten each of the three assemblies beyond snug tight.
 2) Adjust the wrench to cut out at a tension no less than 5 to 10 percent higher than the appropriate tension shown in Table A: Required Fastener Tension.
 Bolts tightened to this cut-out point should consistently develop the required minimum tension. This cut-out point shall be the actual job-site setting.
 b. Manual Torque Wrench
 When using a manual torque wrench:
 1) Tighten each of the three assemblies beyond snug tight.
 2) Note the torque required to induce a bolt tension 5 to 10 percent higher than the appropriate tension shown in Table A: Required Fastener Tension.
 3) Measure torque with the nut in rotation.
 4) Average the three tests to find the minimum torque to use for job-site installation tightening.
 5) If the torque wrench produces erratic results, do not use that wrench.

3. Turn-of-Nut Method Verification
 When using the turn-of-nut method, tighten the three assemblies beyond snug tight to the appropriate rotation shown in Table B: Nut Rotation from Snug Tight. Ensure that at this rotation, the minimum bolt tension is 5 to 10 percent higher than the appropriate tension shown in Table A: Required Fastener Tension.

<table>
<thead>
<tr>
<th>Nominal Bolt Diameter and Thread Pitch</th>
<th>Minimum Tension (1) in kips (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTM A325 (A 325M)Bolts</td>
</tr>
<tr>
<td>1/2</td>
<td>12</td>
</tr>
<tr>
<td>5/8 (M 16 x 2)</td>
<td>19 (91)</td>
</tr>
<tr>
<td>3/4 (M20 x 2.5)</td>
<td>28 (142)</td>
</tr>
<tr>
<td>7/8 (M22 x 2.5)</td>
<td>39 (176)</td>
</tr>
<tr>
<td>1 (M24 x 3)</td>
<td>51 (205)</td>
</tr>
<tr>
<td>1-1/8 (M27 x 3)</td>
<td>56 (267)</td>
</tr>
<tr>
<td>1-1/4 (M30 x 3.5)</td>
<td>71 (326)</td>
</tr>
<tr>
<td>1-3/8</td>
<td>85</td>
</tr>
<tr>
<td>1-1/2 (M36 x 4)</td>
<td>103 (475)</td>
</tr>
</tbody>
</table>

(1) Equal to 70 percent of specified minimum tensile strengths of bolts (as specified in ASTM Specifications for tests of full-size A 325 (A 325M) and A 490 (A 490M) bolts with UNC (metric) threads loaded in axial tension) rounded to the nearest kip (kN).
Table B: Nut Rotation(1) from Snug Tight

<table>
<thead>
<tr>
<th>Bolt Length (measured from underside of head to end of bolt)</th>
<th>Both faces normal to bolt axis</th>
<th>One face normal, one faced sloped not more than 1:20</th>
<th>Both faces sloped not more than 1:20</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x bolt diameter or less</td>
<td>1/3 turn</td>
<td>1/2 turn</td>
<td>2/3 turn</td>
</tr>
<tr>
<td>Greater than 4 but no more than 8 x bolt diameter</td>
<td>1/2 turn</td>
<td>2/3 turn</td>
<td>5/6 turn</td>
</tr>
<tr>
<td>Greater than 8 but no more than 12 x bolt diameter</td>
<td>2/3 turn</td>
<td>5/6 turn</td>
<td>1 turn</td>
</tr>
</tbody>
</table>

(1) Nut rotation is relative to bolt, regardless of the element (nut or bolt) being turned. For bolts installed by 1/2 turn or less, the tolerance of plus 30 degrees, minus 0 degrees applies. For bolts installed by 2/3 turn and more, a tolerance of plus 45 degrees, minus 30 degrees applies.

501.3.04 Fabrication

A. Straightening Material

Ensure that rolled material is straight to the mill tolerances provided in ASTM A 6/A 6M before it is laid off or worked. Use straightening methods that do not injure the metal. Sharp kinks and bends will be cause for rejection the material.

B. Using Stock Material

The fabricator may use stock materials for minor Items whose quantity for the Project is less than the minimum required for mill rolling if the following requirements are met:

1. Mill test reports show that the stock material meets the requirements of the Specifications.
2. The stock material is identifiable by heat number and mill test report so the Inspector can determine if the material meets the required Specification.

Instead of these requirements, the Engineer may take representative stock samples and test them at the Contractor’s expense.

C. Identifying Steel

Provide a system of assembly-marking individual pieces and the issuance of cutting instructions to the shop that will maintaining identity of the mill test report number.

Before cutting or placing individual pieces of steel in stock for later use, mark the pieces with the following:

- Mill test report number
- Heat number
- Color code, if any

Transfer heat numbers and color codes only in the presence of the Inspector.

If steel is subject to fabrication that might erase a painted color code mark before assembly, stamp it with a steel die or attach a tag.

D. General Procedures

1. Marking Steel. Mark finished beams or girders with the following:
 - Erection mark or match mark according to the erection diagram on the shop drawings.
 - Weight, if a member weighs more than 3 tons (3 Mg).
2. Edge Planing. Plane sheared edges of plates more than 5/8 in (16 mm) thick to a depth of 1/4 in (6 mm).
3. Re-Entrant Cuts. Fillet re-entrant cuts, notch free, to a radius of at least 3/4 in (19 mm).
4. Oxygen Cutting. Steel may be oxygen-cut if the following is obtained:
 - Smooth surface free of notches and cracks
 - Accurate profile using a mechanical guide

Ensure that oxygen cutting conforms with AWS D 1.5. Oxygen-cut by hand only where approved.
After cutting, round the corners of oxygen-cut surfaces to a 1/16 in (2 mm) radius by grinding.

5. Cambering. The camber shown on the Plans is that required after completely fabricating the member, including attaching cover plates and shear connectors. Do not use cambering methods that will induce stresses that may impair the service life of the member.
 a. Obtain camber for plate girders by cutting both edges of the web after the shop web splices are complete and have been inspected.
 b. Apply heat no hotter than 1,150 °F (620 °C) to adjust deviations from the camber ordinates (shown on the Shop Drawings) caused by web distortion from either of the following:
 - Oxygen cutting
 - Weld metal shrinkage
 c. Obtain camber for rolled beams with approved heat-cambering methods.

6. Finishing Bearing Surfaces

Ensure that the surface finish of bearings, base plates, and other bearing surfaces in contact with each other or with concrete meets the ANSI surface roughness requirements, defined in ANSI B 46.1 Part 1, as follows:

<table>
<thead>
<tr>
<th>Surface</th>
<th>Finish Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel slabs</td>
<td>ANSI 2,000 (50 µm)</td>
</tr>
<tr>
<td>Heavy plates in contact in shoes to be welded</td>
<td>ANSI 1,000 (25 µm)</td>
</tr>
<tr>
<td>Milled ends of compression members and milled or ground ends of stiffeners and fillers</td>
<td>ANSI 500 (12.5 µm)</td>
</tr>
<tr>
<td>Bridge rollers and rockers</td>
<td>ANSI 250 (6.3 µm)</td>
</tr>
<tr>
<td>Pins and pin holes</td>
<td>ANSI 125 (3.2 µm)</td>
</tr>
<tr>
<td>Sliding bearings</td>
<td>ANSI 125 (125 µm)</td>
</tr>
</tbody>
</table>

Finish surfaces that contact metal or masonry as specified below.

a. Sole and Bearing Plates. Ensure that sole and bearing plates have full contact when assembled. Straighten warped or deformed plates before machining; then do one of the following to the surfaces of plates contacting masonry:
 1) Machine the surfaces to an ANSI 2,000 (50 µm) surface roughness rating value.
 2) Straighten the surfaces so that the maximum clearance under a straightedge placed across the bearing surface in any direction is 1/16 in. (2 mm)

b. Cast Pedestals and Shoes. Machine the surfaces of cast pedestals and shoes that contact metal surfaces.

Perform final machining after the assembly is completely fabricated. If the completed assembly must be heat-treated, perform final machining after the heat treatment.

d. Plates in Contact with Elastomeric Pads. Ensure that the plates are straight and free of loose mill scale. Do not machine-finish the surface in contact with the elastomeric pad.

e. Direction of Cut. Machine the faces of movable surfaces and their opposing contact surfaces so that the finish cut is in the direction of the expected movement, unless using non directional finishing equipment.

f. Abutting Joints. In compression members (and tension members when specified on the Plans), face the abutting joints and bring them to even bearings. When facing joints is not required, ensure an opening of 1/4 in (6 mm) or less.
7. Annealing and Stress Relieving
 After heat treatment, machine-finish, bore, and straighten the structural members required by the Plans to be annealed or normalized. Perform full annealing and normalizing according to ASTM A 919 and the following:
 a. During heating and cooling, keep the furnace temperature uniform so the temperature difference between any two points on a member does not exceed 100 °F (40 °C).
 b. Record each furnace charge to identify the pieces in the charge and show the temperatures and schedule used.
 The method of recording the treatment operation procedures is subject to the Inspector’s approval.
 c. Provide proper instruments, including recording pyrometers, to determine member temperatures in the furnace.
 d. When the Contract requires, stress-relieve welded bridge shoes, pedestals, and other similar weldments according to AWS Specifications.

8. Component Fabrication
 a. Beam and Girders Ends
 Fabricate the ends of beams and girders to be vertical in the final erected position, unless otherwise shown on the Plans.
 b. End Connection Angles
 Build end connection angles to the exact length shown on the Plans, measured between the heels of the connection angles. The allowed tolerance is plus 0 to minus 1/16 in (plus 0 to minus 2 mm).
 Where continuity is required, face end connections. Ensure that the connection angle thickness after facing is no less than 3/8 in (10 mm) or the amount shown on the Plans.
 c. Steel Joints
 At the shop, shape the plates, angles, or other structural shapes to conform to the section of the concrete deck. Ensure that painting and other fabrication requirements conform to the Specifications for these Items.
 d. Bent Plates
 Ensure that unwelded, cold-bent, load-carrying, rolled steel plates meet the following requirements:
 1) The bend lines are at right angles to the rolling direction.
 2) The plate will not crack during bending.
 Minimum bend radii, measured to the concave face of the metal, for all grades of steel used in this specification, are shown in the following table:

Thickness “T” in Inches (Millimeters)	Minimum Bend Radii
Up to ½ (12)	2 T
Over 1/2 to 1 (12 to 25)	2-1/2 T
Over 1 to 1-1/2 (25 to 38)	3 T
Over 1-1/2 to 2-1/2 (38 to 60)	3-1/2 T
Over 2-1/2 to 4 (60 to 100)	4 T

 Low-alloy steel in thicknesses over 1/2 in (12 mm) may require hot bending for small radii. If a shorter radius is essential, bend plates hot at 1,200 °F (650 °C) or less. Ensure that hot-bent plates have bend lines at right angles to the rolling direction.
 3) Round the corners of plates to a radius of 1/16 in (2 mm) before bending.
 e. Stiffeners
 Ensure that bearing stiffeners and stiffeners used as supports for concentrated loads have full bearing on the flanges they transmit load to or the flanges they receive load from. Mill or grind the bearing surfaces of stiffeners.
 On weldable steel in flange compression areas, the Contractor may weld stiffeners as shown on the Plans.
 Ensure that stiffeners not located at points of concentrated loads fit tightly enough to keep water out after painting, unless otherwise shown.
 f. Pins
 Turn pins accurately to the dimensions shown on the Shop Drawings. Ensure that pins are straight, smooth, and flawless. The pins may be forged and annealed or of cold-finished, carbon steel shafting.
Furnish two pilot nuts and two driving nuts for each size of pin, unless otherwise specified.

g. Pin Holes
Bore pin holes in members so they are:
- True to the specified diameter
- Smooth
- Straight
- At right angles to the axis of the members
- Parallel with each other, unless otherwise required

Produce the final surface with a finishing cut. Bore holes in built-up members after completing bolting or welding.

Ensure that pin hole diameters meet the following requirements:

<table>
<thead>
<tr>
<th>Pin Diameter</th>
<th>Pin Hole Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 in (125 mm) or less</td>
<td>Must not exceed pin diameter by more than 1/50 in (0.50 mm)</td>
</tr>
<tr>
<td>Larger than 5 in (125 mm)</td>
<td>Must not exceed pin diameter by more than 1/32 in (0.75 mm)</td>
</tr>
</tbody>
</table>

h. Threads
For structural steel construction, use threads for bolts and pins that conform to the Unified Screw Threads ANSI B1.13 (Metric Screw Threads, ANSI B 1.13M), Class 2A for external threads, and Class 2B for internal threads except pin ends with a diameter of 1 3/8 in (35 mm).

i. Unfinished and Turned Bolts
1) Bolts
 Do not use ribbed bolts. Use unfinished bolts or turned bolts that conform to ASTM F 568M Class 4.6. Use bolts with single self-locking nuts or double nuts unless otherwise shown.
 Use turned bolts with an ANSI surface roughness rating of 125 (3.2 µm).

2) Washers
 Use beveled washers when bearing faces have a slope of more than 1 to 20 with respect to a plane normal to the bolt axis.

3) Heads and Nuts
 Use hexagonal heads and nuts with standard dimensions for bolts of nominal size specified or of the next larger size. Provide a washer under the nut.
 Use threads with a diameter equal to the body or nominal diameter of the bolt specified. For turned bolts, threads shall be entirely outside of the holes.

j. Anchor Bolts
 Use anchor bolts of the size and shape specified on the Plans.

9. Coating Machine-Finished Steel Surfaces
Coat the following with rust-inhibiting grease or with other approved corrosion-preventive compounds:
- Opposing surfaces of sliding bearings
- Mating convex and concave surfaces of curved plates and rocker bearing assemblies
- Sliding surfaces opposite self-lubricating bronze surfaces
- Pins and pinholes

Coat other machined surfaces with one coat of the shop primer specified on the Plans. Include convex faces of rockers and sole plates at fixed bearings of spans that have line bearings on steel plates.

10. Shop Painting
Perform shop painting according to Section 535, especially Subsection 535.3.05.C, “Paint New Steel Structures,” step 5.
E. Bolt Holes

Produce bolt holes as follows:

1. Full-Size Punched Holes
 The Contractor may use full-size punched holes if these conditions exist:
 - A member is composed of 5 or less separate thicknesses of metal, and
 - The metal thickness of any one part is 3/4 in (19 mm) or less for structural steel, or 5/8 in (16 mm) or less for high-strength steel.

 Poor hole matching will be cause for rejection. Punch holes as follows:
 a. Punch holes 1/16 in (2 mm) larger than the nominal diameter of the bolts.
 b. Do not punch full-sized holes on field connections of main members.
 c. Ensure that the die diameter for punched or subpunched holes does not exceed the punch diameter by more than 1/16 in (2 mm).
 d. Cut holes clean to avoid torn, ragged edges.
 e. Enlarge holes by reaming.

2. Subpunched and Subdrilled Holes
 Subdrill holes 3/16 in (5 mm) smaller than the nominal diameter of the bolts.
 After assembly, ream the holes if any one of the conditions exists:
 - A member is composed of more than 5 separate thicknesses of metal.
 - The metal thickness of any one main part is greater than 3/4 in (20 mm) for structural steel or 5/8 in (16 mm) for high-strength steel.
 - When required according to Subsection 501.3.05.E.1, “Normal Assembly,” step b.

 Instead of subpunching and subdrilling, the Contractor may drill holes from the solid after assembly. However, whether drilling from the solid or subdrilling and subpunching, ensure the following:
 a. Holes are no more than 1/16 in (2 mm) larger than the nominal diameter of the bolts.
 b. Holes for turned bolts are subpunched or subdrilled.
 c. Holes are carefully reamed after assembly to provide a light-driving fit with the bolt.

3. Accuracy of Punched, Subpunched, and Subdrilled Holes
 Accurately full-size punch, subpunch, or subdrill holes so that after assembly but before reaming, holes meet the following requirements:
 - A cylindrical pin 1/8 in (3 mm) smaller than the nominal diameter of the punched hole can enter perpendicular to the face of the member in at least 75 percent of the adjacent holes in the same plane without drifting.
 - A pin 3/16 in (5 mm) smaller than the nominal diameter of the hole can pass through the hole.

 If either of these requirements is not met, the faulty pieces will be rejected.

4. Reamed and Drilled Holes
 Ensure that reamed and full-sized drilled holes are cylindrical, perpendicular to the member, and 1/16 in (2 mm) larger than the nominal diameter of the bolts. Ream and drill holes as follows:
 a. Direct reamers using mechanical means when practical.
 b. Ream and drill with twist drills.
 c. Remove burrs on outside surfaces. Disassemble parts, if required, to remove burrs caused by drilling or reaming.
 d. For connecting parts that require reamed or drilled holes, do the following:
 1) Assemble the connecting parts.
 2) Hold them securely while reaming or drilling.
 3) Match-mark them before disassembling.
5. Accuracy of Reamed and Drilled Holes

After drilling and reaming holes, ensure that at least 85 percent of the holes in any group have no offset greater than 1/32 in (0.75 mm) between adjacent thicknesses of metal. Make sure the remaining holes are not elongated or show an offset greater than 1/16 in (2 mm) between the adjacent thicknesses of metal.

6. Fitting Up

Before reaming, drilling, or bolting, ensure that the pieces forming built-up members are:

- Straight
- Close-fitting
- Clean
- True to the required dimensions
- Free from twists, bends, open joints, burrs, and other defects resulting from faulty fabrication or workmanship
- Well-pinned
- Firmly drawn together

Before shop bolting material with full-size punched holes:

a. Ensure that holes are no more than 1/16 in (2 mm) larger than the nominal diameter of the bolt. Holes may be spear-reamed if necessary to clear and clean them for entering bolts.

b. Carefully adjust end connection angles and similar parts to the correct position and firmly hold them in place until bolted.

c. Fit up connections securely before placing bolts.

d. Ream or drill unfair holes (holes that prevent the bolt from entering).

F. High Tensile-Strength Bolt Connections

This section covers the shop and field connections of structural joints using High Tensile-Strength bolts tightened to a specified tension. Use HTS structural bolts that meet the requirements of Subsection 852.2.03, “High Tensile-Strength Bolts.” Furnish the bolts, nuts, and washers according to Subsection 852.2.03.

To seat parts solidly, keep joint surfaces (including those adjacent to the bolt heads, nut, or washers) free of scale (except tight mill scale), dirt, burrs, metal spatters, and other defects. Ensure that joint contact surfaces are free of oil, grease, paint, lacquer, galvanizing, rust, and other matter. Refer to the requirements of Subsection 535.3.05.C, “Paint New Steel Structures” step 5.

Install fasteners with a hardened washer under the nut or bolt head, whichever is the element turned in tightening.

- When the slope of the bolted-part surfaces contacting the bolt head and nut do not exceed 1:20 (with respect to a plane normal to the bolt axis), use a flat washer.
- When the slope of an outer face of the bolted parts exceeds 1:20, use a smooth, beveled washer.
- If necessary, clip washers on one side to a point no closer than 85 percent of the bolt diameter from the center of the washer.

When a joint assembly is complete, ensure that each bolt has a tension 5 to 10 percent above the required minimum value shown in Table A: Required Fastener Tension.

G. High Tensile-Strength Bolt Tightening Methods

Tighten HTS bolts with either the Calibrated Wrench Method or the Turn-of-Nut Method. For both methods, conduct the final rotation of the nut or bolt (whichever is the turned element) from a snug-tight condition according to Table B: Nut Rotation from Snug Tight.

Snug tight is the tightness achieved when the plies of the joint are in firm contact. Obtain this with a few impacts of an impact wrench or with full effort using an ordinary spud wrench. Ensure that the snug tightening procedure produces 10 to 30 percent of the required fastener tension shown in Table A: Required Fastener Tension.
1. Calibrated Wrench Method
 Install bolts in the connection holes with a hardened washer under the turned element and bring the bolts up to snug tight (described above) as follows:
 a. Snug tighten systematically from the most rigid part of the connection to the free edges as follows:
 1) Start the tightening pattern at the center of the pattern near the end of each member being spliced.
 2) Work toward the edges of the splice plate.
 b. After the initial snug tightening, systematically tighten the bolts again as necessary using a similar tightening pattern until all bolts are simultaneously snug tight and the connection is fully compacted.
 c. Following snug tightening, tighten the bolts in the connection using a calibrated wrench (either air impact or manual torque). Systematically tighten from the most rigid part of the joint to its free edges.
 d. After the first pass, systematically tighten the bolts again to ensure that bolts that may have relaxed from tightening adjacent bolts are tightened to the prescribed amount.
 e. Operate impact wrenches until the wrench cuts out at the setting established by calibration.
 If using a manual torque wrench, measure the target torque with the turned element in motion.
 f. During installation in the assembled steel work, verify that the wrench adjustment selected by the calibration does not rotate the nut or bolt head from snug tight more or less than that permitted in Table B: Nut Rotation from Snug Tight.
2. Turn-of-Nut Method
 When bolts are too short to fit in the tension calibrating device, use the Turn-of-Nut Method in the actual work.
 Install bolt connection holes with a hardened washer under the turned element and bring the bolts up to snug tight (described above) as follows:
 a. Snug tighten the bolts using steps a and b of the Calibrated Wrench Method.
 b. Following snug tightening, tighten the bolts in the connection by the applicable amount of rotation specified in Table B: Nut Rotation from Snug Tight.
 c. During the tightening operation, do not rotate the part not turned by the wrench.
 d. Tighten systematically from the most rigid part of the joint to its free edges as follows
 1) Start the tightening pattern at the center of the pattern near the end of each member being spliced.
 2) Work toward the edges of the splice plate.

H. Welded Construction

Ensure that welded construction conforms to the requirements below. Electroslag or electragas welding is prohibited.

1. Insufficient Welds. Repair, remove, or replace welds that do not meet the requirements of the Specifications using methods permitted by 3.7 of ANSI/AASHTO/AWS D 1.5 Specifications. If the weld is unacceptable, the Engineer will reject the entire piece.
 After welding repairs are made, the Engineer will have the repaired areas retested to determine if the repairs meet Specification requirements.
2. Unauthorized Welds. Obtain the Engineer’s approval before making temporary or permanent welds not shown on the Plans or permitted by the Specifications.

I. Alterations to AASHTO Paragraphs

Ensure that welded construction conforms to the American Welding Society (AWS) “Bridge Welding Code” ANSI/AASHTO/AWS D 1.5 (including revisions) except as modified by these Specifications and AASHTO. Exceptions to the ANSI/AASHTO/AWS specifications are noted below.

1. Paragraph 3.5.2. Instead of Paragraph 3.5.2, apply the following requirements:
 a. Before cutting ends to length, shop assemble ends of members to be field connected by welding in the laydown position (placed to grade from bearing to bearing).
 b. To align field splices vertically, match-cut adjoining ends while in the laydown position and markmatch the ends at the center point of the web section.
 c. Check rolled shapes with ends to be field welded before beginning fabrication in order to take into consideration allowed mill tolerances on web-center-line-to-flange measurements. Pair shapes to provide the best possible alignment.
2. Paragraph 3.10.1. Instead of Paragraph 3.10.1, apply the following requirements:
 a. Remove slag from welds immediately after completing each weld. Do not further clean or paint welds to be
 encased in concrete.
 b. For welds connecting swaybracing members to steel piling that are to be painted according to
 Subsection 535.3.05.E, “Paint Steel H-Piling, Metal Shell Piling, and Steel Swaybracing” and Subsection
 535.3.05.F, “Apply Special Protective Coatings to Steel Piling, Steel Swaybracing, and Concrete Piling,”
 remove the slag and do not clean any further.
 c. Clean and paint other welds as specified below.
 d. After removing slag and after completing visual, ultrasonic, or magnetic particle inspection, either blast-clean or
 scrub welds with water and a stiff brush. Ensure that weld areas are clean and free of spatter, rust, loose scale,
 oil, and dirt.
 e. Prime welds on the same day they are cleaned, using the prime coat specified on the Plans or in the Special
 Provisions. When using water to clean, ensure that the surface is dry before painting. Clean and prime welds as
 soon as practical after the weld is accepted and before the weld area rusts.
3. Paragraph 4.30.1. Instead of Paragraph 4.30.1, apply the following requirements:

 After welding studs to beams, visually inspect the studs and give a random number of them a light blow with a
 hammer. Strike the following with a hammer and bend them 15 degrees from the correct installation axis:
 - Studs that do not show a full 360-degree weld fillet.
 - Studs that do not ring when given a light blow with a hammer.
 - Studs that have been repaired by welding.

 In case of a defective or repaired weld, bend the stud 15 degrees in the direction that places the defective portion of
 the weld in the greatest tension.

 Replace studs that crack (either in the weld, base metal, or the shank) during inspection or subsequent straightening.
 See paragraph 4.30.4.

 On studs that must be replaced, the Contractor may manually weld the stud with the following fillet welds:

<table>
<thead>
<tr>
<th>Stud Size</th>
<th>Fillet Weld</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 in (19 mm)</td>
<td>Full 360 degrees–1/4 in (6 mm)</td>
</tr>
<tr>
<td>7/8 in (22 mm)</td>
<td>Full 360 degrees–5/16 in (8 mm)</td>
</tr>
<tr>
<td>1 in (25 mm)</td>
<td>Full 360 degrees–5/16 in (8 mm)</td>
</tr>
</tbody>
</table>

501.3.05 Construction

A. Straightening Material

 The Engineer may permit straightening of plates, angles, other shapes, and built-up members if the straightening is minor
 and can be accomplished in the field. Use only methods that do not injure the metal.

 1. Heat Straightening. When the Engineer allows it, heat-straighten metal as follows:
 a. Ensure that parts to be heat-straightened are free of stress and external forces. The exception is stresses from the
 mechanical means used to apply the heat.
 b. Carefully apply a limited amount of localized heat under supervision:
 1) Heat the area to no more than 1150 °F (620 °C) as measured by temperature-indicating crayons, liquids, or
 bimetal thermometers.
 2) Cool the metal slowly after heating.
 After the metal cools naturally to 600 °F (315 °C), the Contractor may use air-mist spray cooling.
 c. After straightening a bend or knuckle, have the Engineer carefully inspect the metal surface for evidence of
 fracture and for general acceptability.

B. Erection

 Proposed erection methods are subject to the Engineer’s review. Even with this review, assume responsibility for
 providing adequate and safe methods and for carrying out the work according to the Plans and Specifications. Begin
 erection only after the Engineer’s review.
1. Assemble Parts in the Field
 Before assembly, clean surfaces that will permanently contact each other.
 Assemble parts accurately, following the match marks, according to the Plans and the erection diagram shown in the Shop Drawings.
 Do not hammer if it will injure or distort the members.
 Ensure that fitting-up and drifting done during field assembly and connection meet the requirements of Subsection 501.3.04.E.6, “Fitting Up.”

2. Erect Beam and Girder
 Before making field connections (bolting or welding) on continuous beams or girders, adjust splice joints to the correct elevations and slopes and properly align the beams.
 The Contractor may make beam and girder splices on the ground if using the proper blocking to give adjoining sections the correct relative slopes.

3. Place Anchor Bolts and Adjust Nuts
 Unless otherwise shown on the Plans, provide formed holes for anchor bolts. Set the bolts using an approved nonshrinking mortar. Place anchor bolts as follows:
 a. After erecting structural steel, drop the bolt into the dry hole to ensure that it fits properly.
 b. Remove the bolt and fill the hole approximately two-thirds full with an approved nonshrinking mortar the consistency of thick paint.
 c. With even pressure or light hammer blows, force the bolt down until:
 1) Mortar rises to the top of the hole.
 2) The anchor bolt nut and washer rest firmly against the metal flange, plate, shoe, or pedestal.
 3) The bolt has the correct projection above the top of the concrete bearing area.
 d. Remove excess mortar flushed from the hole down to the concrete bearing area.
 e. Clean holes or slots and metal surfaces in order to field paint surfaces properly and to allow moving parts to expand and contract without restraint.
 f. Tighten nuts on anchor bolts that pass through beam and girder flanges or through sole plates attached to flanges as follows:
 1) At both fixed and expansion ends, tighten nuts and bolts to bear on the washer and then back off one full turn.
 2) Draw nuts on other anchor bolts down to a tight fit.
 3) Do not burr anchor bolt threads.
 g. Adjust the horizontal locations of the anchor bolts relative to the midpoint of slotted holes in bottom beam flanges according to the ambient temperature at bolt placement. This allows the beam and its attached bearing components to expand or contract in the future.
 h. Do not grout anchor bolts within a complete unit until beam splicing within the unit is complete.

4. Erect Steel Joints
 Erect steel joints so that the surface in the finish grade plane (laterally and longitudinally) is true and free of warping.
 Keep joints from moving out of their correct position during concrete placement.
 Cut loose temporary connections as soon as possible to avoid restraining expansion and contraction.
 Note that openings shown on the Plans are based on an erection temperature of 60 °F (15 °C). Make corrections in the opening size for the actual erection temperature, and maintain the required opening.

5. Connect Pins
 Furnish pilot and driving nuts at no additional cost to the Department. Drive pins so that members take full bearing.
 Provide pin nuts and run them up tight. Burr the threads at the face of the nut.

6. Misfits
 Correct misfits by reaming, cutting, and chipping during erection.
 Immediately report to the Engineer errors that occur in shop fabrication or deformations from handling and transportation that prevent assembling and fitting up parts properly. The Engineer must approve the correction method.
Assume responsibility for misfits, errors in fabrication, and damage. Make corrections or replace parts at no additional cost to the Department.

C. Finishing Bearing Areas

1. Steel on Concrete

Unless otherwise required, level and finish bearing areas with a Type IV—Floated Surface Finish according to Subsection 500.3.05.AB.5, “Type IV—Floated Surface Finish.”

a. Finish so that steel joint members, shoes, and bearing plates have full and uniform bearing.

b. Correct improperly finished areas by approved means.

c. Ensure that shoes and plates are on the correct alignment and elevation.

d. Unless otherwise provided, place shoes and plates on layers of canvas (cotton duck) and red primer that conforms with Subsection 870.2.01.A.1, “No. 1A, Red Primer” as follows:
 1) Coat the bearing area surface with red primer.
 2) Place three layers of at least 8 oz (227 g) duck and coat each layer’s top surface with red primer.
 3) Position shoes or plates on the top layer of duck while red primer is still plastic.
 4) Instead of red primer—saturated duck, the Contractor may substitute thin pads of an approved type and thickness.

2. Steel on Steel

Prepare bearing areas as follows:

a. Ensure that sole and bearing plates, rockers, and shoes that are designed to bear on one another fit with full bearing.

b. Keep contact areas free of dirt, grit, and other foreign matter.

c. Prepare machined surfaces that have been shop-coated according to Subsection 501.3.04.D.9, “Coating Machine-Finished Steel Surfaces” and that will be exposed after erection as follows:
 1) Remove the shop coating.
 2) Replace the coating with the same paint system used on structural steel components.

3. Steel on Self-Lubricating Bronze Plates

Prepare machined surfaces that have been shop-coated according to Subsection 501.3.04.D.9, “Coating Machine-Finished Steel Surfaces” and that will be in contact with self-lubricating bronze plates or bushings as follows:

a. Remove the shop coating.

b. Coat the surface with stick lubricant or liquid furnished by the manufacturer of the self-lubricating bronze material.

4. Steel on Elastomeric Pads

Place elastomeric pads on concrete bearing areas that have the Type IV—Floated Surface Finish specified in Subsection 500.3.05.AB.5, “Type IV—Floated Surface Finish,” unless otherwise required.

Ensure that plates that will contact elastomeric pads meet the “no paint” requirements of Subsection 535.3.05.C.5.e, “Plates That Touch Elastomeric Pads.”

D. Field Painting

Field paint according to Section 535 using the paint system required by the Plans or Special Provisions. See also Subsections 501.3.05.C.2, “Steel on Steel,” and 501.3.05.C.4, “Steel on Elastomeric Pads.”

E. Assembly

Allow only enough drifting during assembly or field connections to bring the parts into position. Ensure that drifting does not enlarge or distort holes.

Follow these requirements when shop assembling components.

1. Normal Assembly

Do normal shop assembly as follows:

a. Unless otherwise specified, and before reaming, assemble each individual, full-length continuous beam, tower face, bent, rigid frame, or plate girder in the shop.
501.3.06 Quality Acceptance

A. Testing and Inspection

1. Heat Number Testing
 The Department will sample and test each heat number that structural steel is furnished from to fabricate main members.
 To facilitate this testing, ship one piece from each heat of main member structural steel to the fabrication site.
 Provide pieces long enough to take a properly oriented, representative, 4 x 12 in (100 x 300 mm) sample. This may require that the extra length pieces be 4 or 12 in (100 or 300 mm) longer, depending on testing orientation requirements.

2. Fastener Assembly Testing
 Upon receiving HTS fastener assemblies (bolts, nuts, and washers), notify the Inspection Services Branch of the Office of Materials and Research. The branch will verify that the Contractor has the documentation required by Subsection 852.2.03, “High Tensile-Strength Bolts” and sample the assemblies as necessary.

3. Bolted Construction Inspection
 The Inspector will check the following before or during the bolting operation. Provide the Inspector easy access to the areas of the member to be inspected.
The Inspector will:

a. Verify that bolt tension calibrators have been calibrated within the last year. Ensure that the manual torque wrenches have been calibrated at least daily for each diameter, length, and grade as shown in this Specification.

b. Ensure that bolts are routinely installed to the proper tensions. After inspection, no further evidence of proper bolt tension is necessary.

 If installation tension verification is necessary subsequent to installation and tightening of bolts, notify the Inspection Services of the Office of Materials and Research.

c. Monitor the surface condition and storage of bolts, nuts, and washers. See Subsection 501.2.01.A, “Fasteners,” for storage requirements.

d. Ensure that each bolting crew member understands the procedure for snug-tightening the joint and can demonstrate this knowledge by tightening a fastener in a bolt-tension calibrator.

e. Witness the installation method verification procedure and ensure that the same conditions exist during the job-site tightening.

f. Witness fastener installation to ensure proper tightening. This monitoring will verify that plies of connected material are drawn together and that the procedure for snug tightening is followed.

g. Witness the final tightening procedure and mark at least two bolts in each connection to verify that further tightening (from the snug tight position) produces the rotation specified in Table B: Nut Rotation from Snug Tight.

4. Material Application and Traceability Verification

In addition to the requirements specified in Subsection 501.3.04.C, “Identifying Steel,” the fabricator shall demonstrate by written procedures and by actual practice a material application and traceability method for the main stress-carrying elements of a shipping piece. The method must be visible at least through the fit-up operation.

The traceability method shall verify proper material application as it relates to the following:

- Material specification designation
- Heat number
- Material test reports for special requirements

5. Mill and Shop Inspection

Give two weeks’ notice to the Department’s State Materials and Research Engineer (the Materials Engineer) before beginning mill or shop work so that inspection arrangements can be made. Inspection at the mill or shop is intended to facilitate work and avoid errors and does not relieve the Contractor of the responsibility for imperfect material or work quality.

Do not roll or fabricate material until:

- You inform the Materials Engineer where the orders have been placed.
- The inspection is arranged or waived.

Furnish the facilities necessary for the inspection of materials and work quality in the mill and shop. Allow Inspectors free access to the necessary mill and shop locations, and cooperate with the Inspector during inspection. Shop inspection is required for steel and other metal materials being fabricated.

Inspectors will do the following:

a. Determine if steel members, member components, or other fabricated steel components meet the Plans and Specifications.

b. Identify the steel by color code and correlate its heat numbers obtained from certified mill test reports

NOTE: Do not cut steel or apply prime paint until the Inspector completes this step.

c. Check fabrication, especially the grade of steel, dimensions, welding, and bolting

d. Perform necessary non-destructive testing to determine conformance with the Specifications and Plans.

e. Reject materials or work that does not meet the Specifications.

NOTE: Even if the Inspector accepts materials or members, they can be rejected later if found defective. Promptly replace or repair rejected material or members at no additional cost to the Department.
B. Quality of Work and Finish

Provide quality work and finish on shop work. Ensure that shearing, flame cutting, and chipping are neat and accurate. Neatly finish all parts of the work.

C. Welded Construction

1. Inspection

An Inspector will be assigned to the fabrication shop for as much time as the State Materials and Research Engineer deems necessary. The State’s Inspector or authorized representative will inspect fabrication phases that include, but are not limited to, the following:

- Certification and transfer of heat numbers and grade steel
- Dimensions and assembly
- Inspection and testing of shop welds
- Non-destructive testing
- Painting
- Random sampling
- Stamp of shop inspection

2. Quality Control

Assume the following quality control responsibilities for non-fracture critical and fracture critical members and their components:

a. Perform 100-percent nondestructive radiographic or ultrasonic testing of full penetration welds before offering the welds to the State for quality assurance inspection.

b. Perform magnetic particle testing of fillet welds according to ANSI/AASHTO/AWS D 1.5.

3. Qualification

Qualify shop weld procedures and welders according to ANSI/AASHTO/AWS D 1.5. The Engineer may accept tests conducted by other states as evidence of qualification. In the absence of approved shop weld procedures, welding operator and welder qualifications, qualify with the State Materials and Research Engineer as follows:

a. In the presence of the Engineer’s representative, prepare test plates according to ANSI/AASHTO/AWS D 1.5.

b. Requalify according to ANSI/AASHTO/AWS D 1.5 or whenever the Engineer requires. A new welding procedure qualification is not needed at the start of each new Project.

4. Testing

Furnish labor and equipment to do the following:

- Position welds for magnetic particle testing
- Help transport ultrasonic equipment
- Provide the Inspector easy access to testing areas

The Inspector’s access to work in the shop and field is top priority.

The Department of Transportation, in its routine quality assurance inspection, will ultrasonic or magnetic-particle test approximately 25 percent of the welds.

If testing indicates faulty work, the Inspector will immediately notify the Contractor of the necessary corrective work. Ensure that welders are available to repair faulty work as soon as practical.

a. Non-destructive Testing. If weld cracking occurs, non-destructive testing for Final Acceptance of fillet and groove welds may be delayed to:

- Within 24 hours after welding has been completed for material 2 in (50 mm) or less
- Within 48 hours after welding has been completed for material over 2 in (50 mm).

The fabricator may use, at its expense, nondestructive testing methods other than those specified to examine weld passes or completed welds. Refer to ANSI/AASHTO/AWS D 1.5.

b. Ultrasonic Testing. Unless otherwise specified on the Plans or in Special Provisions, test butt welds in main members by the ultrasonic method.

In addition to the testing requirements of the Plans, Specification, and Special Provisions, the Engineer may require ultrasonic testing if the quality of the work warrants it.
5. Walkways for Field Testing
 When field testing, provide a continuous walkway between the center-most line of stringers from one of the approach fills to the farthest row of splices as follows:
 a. Provide crosswalks connecting with the center line walkway at each butt-welded splice or bolted connection on each row of stringers.
 b. Rest working platforms on the top side of the bottom flange with supporting braces fitting flush against the web.
 c. Provide at least 18 in (450 mm) of clearance on each side of the welded splice or bolted connection. Ensure that the top of the working platform is no more than 3 in (75 mm) above the top side of the bottom flange.
 d. Construct walkways and working platforms of sound materials. If constructing with wood, use wood free of excessive knots or knots that could cause an unsafe condition.
 e. Construct walkways at least 20 in (500 mm) wide and long enough to permit each end to rest on a fixed part or member of the bridge.
 f. Ensure that walkways have a vertical support at least every 10 ft (3 m).
 g. Construct working platforms at least 36 in (900 mm) wide and long enough to permit each end to rest on a fixed part or member of the bridge.
 h. When a deck already exists from the end bent out to the splices, do not construct a separate walkway unless the deck reinforcement steel has been put in place.
 i. Do not allow deck forms to be placed within 18 in (450 mm) of splices until the welds or bolted connections have been inspected and accepted.

6. Tolerances
 For built-up members, the requirements of paragraph 3.5.1.7 of ANSI/AASHTO/AWS D 1.5, as modified, apply except at ends to be field connected by welding. The combined warpage and tilt tolerances shall be one-half that specified.
 For rolled shapes, apply mill practice tolerances (ASTM A 6/A 6M) except at ends to be field connected by welding. The combined warpage and tilt tolerances shall be one-half that specified.
 Use the above tolerances unless there are deviations that are additive when measured at the toe. In this case, ensure that the maximum offset between adjoining flanges does not exceed 1/4 in (6 mm).

501.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

501.4 Measurement

Structural steel will be measured either per pound (kilogram) or per Lump Sum.

- Per pound (kilogram) basis. The quantity of structural steel to be measured for payment will be the net weight of metal in the completed and accepted structure.
 A unit weight of 490 lbs/ft³ (7850 kg/m³) will be used to calculate the net weight of steel. The weights of rolled shapes or plates will be computed based on their nominal weight per foot (meter) as listed in standard handbooks such as the AISC Manual of Steel Construction.
- Lump sum basis. When the Plans specify a Lump Sum basis, this work will be measured as an accepted Lump Sum quantity, complete in place. Tabulated quantities are shown on the Plans as a service, but they do not relieve the Contractor of conforming to Plan details. If the Plan details and tabulated quantities differ, the Plan details will govern. The Contractor shall determine the actual quantities required before submitting a bid.

501.4.01 Limits

A. Qualification
 Assume the cost of qualification tests and test sample preparation required under these Specifications. This cost is considered incidental to The Work.

B. Testing
 Ultrasonic or magnetic-particle testing by the Department of Transportation under its quality assurance inspection rate of approximately 25 percent of welds will be performed at no cost to the Contractor.
The Contractor shall assume the cost of additional ultrasonic or magnetic-particle testing above the 25 percent rate to determine the extent of weld defects and to check corrected work. The rate for this extra testing will be $75 per hour for the Inspector, equipment, travel, and subsistence.

If the Contractor is equipped with satisfactory ultrasonic or magnetic-particle inspection equipment, the Contractor may test the Work corrected in the shop at no additional expense to the Department, but the Engineer will interpret the ultrasonic and magnetic-particle inspection.

501.5 Payment
This work will be paid for at the Contract Price per pound (kilogram) of structural steel or per Lump Sum, each complete in place. The Contract Price for structural steel includes the costs of labor and equipment and the direct or incidental costs of furnishing easy access for inspection and testing.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 501</th>
<th>Structural steel, Bridge No.</th>
<th>Per lump sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 501</td>
<td>Structural steel</td>
<td>Per lb (kg)</td>
</tr>
<tr>
<td>Item No. 501</td>
<td>Structural steel-swaybracing</td>
<td>Per lb (kg)</td>
</tr>
</tbody>
</table>

501.5.01 Adjustments
A. Payment Conditions

The cost of steel joints and metal bearing assemblies used in structures with no structural steel Pay Item shall be included in the Contract Price for superstructure concrete, unless otherwise shown on the Plans.

When authorized changes are made, the Lump Sum payment will be adjusted on a negotiated basis.

On projects with multiple bridges, payments will be applied on an individual bridge basis.

Upon satisfactory completion of the erecting, bolting, and welding of structural steel for the bridge, 95 percent of the Contract Price, either per Lump Sum Basis or per pound (kilogram) basis, will be included for payment on the next statement.

Steel spans are considered satisfactorily erected when they are placed in their final positions on the substructure, properly spaced, and anchored down. Bolting is considered satisfactorily complete when defective welds are repaired and found satisfactory by additional inspection.

Upon satisfactory completion of field painting, the remaining 5 percent of the Contract Price will be included for payment on the next statement.

Material allowance payments of structural steel will be determined and paid for in accordance with the requirements of Section 109.

Section 502—Timber Structures

502.1 General Description
This work consists of constructing timber bridges and other timber structures complete in place.

502.1.01 Definitions
General Provisions 101 through 150.

502.1.02 Related References
A. Standard Specifications
 Section 501—Steel Structures
 Section 520—Piling
 Section 645—Repair of Galvanized Coatings
 Section 852—Miscellaneous Steel Materials
B. Referenced Documents
 AWPA Standard M4, “Standard for the Care of Preservative Treated Wood Products”

502.1.03 Submittals
 General Provisions 101 through 150.

502.2 Materials
 All materials shall meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material*</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumber and Timber</td>
<td>860</td>
</tr>
<tr>
<td>Piling and Round Timber</td>
<td>861</td>
</tr>
<tr>
<td>Preservative Treatment of Timber Products</td>
<td>863</td>
</tr>
<tr>
<td>Miscellaneous Metals</td>
<td>858</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>851</td>
</tr>
<tr>
<td>Plain Cotton Duck</td>
<td>881</td>
</tr>
<tr>
<td>Miscellaneous Steel Materials</td>
<td>852</td>
</tr>
<tr>
<td>Paint</td>
<td>870</td>
</tr>
</tbody>
</table>

*Insofar as practicable, all cutting, framing, and boring of treated timber shall be done before treatment.

A. Miscellaneous Hardware
 Galvanize the following items according to Subsection 852.2.04.B.3, “Galvanizing”:
 - Bolts
 - Nuts
 - Washers
 All hardware including (but not limited to) special couplings, dowels, and spikes
 Repair damaged galvanized coatings according to Section 645.
 Nails may be black or galvanized.

B. Structural Purposes and Grades
 Lumber and timber meeting the requirements given in Table 1 of Section 860, “Lumber and Timber”, shall be used for the structural purposes shown therein.

502.2.01 Delivery, Storage, and Handling
A. Handling Timber
 Handle timber carefully without dropping it, breaking the outer fibers, bruising it, or piercing it with tools.
 Handle timber with non-metallic slings.

B. Storing Materials
 Place all stored material in well-drained locations and keep these locations free from weeds and rubbish.
 Comply with the following material-specific storage guidelines:
 1. Untreated Timber and Piling
 Store untreated materials as follows:
 a. Open stack the materials at least 12 in (300 mm) above the ground.
 b. Pile the materials so water can run off them to prevent warping.
 c. Protect the materials with durable waterproof covering approved by the Engineer.
 2. Treated Timber and Piling
 Close stack treated materials at least 12 in (300 mm) above the ground and pile them to prevent warping.
3. Timber After Fabrication
 Store this timber so the members do not change dimensions before they are assembled.
4. Hardware and Miscellaneous Metal
 Place metal in covered storage and protect it from rust and other damage.

502.3 Construction Requirements
General Provisions 101 through 150.

502.3.01 Personnel
General Provisions 101 through 150.

502.3.02 Equipment
General Provisions 101 through 150.

502.3.03 Preparation
General Provisions 101 through 150.

502.3.04 Fabrication
General Provisions 101 through 150.

502.3.05 Construction

A. Making Field Repairs and Applying Treatments and Coatings
 Make field repairs and apply treatments and coatings as follows:
 1. Repair and Apply Treatments to Treated Timber
 Carefully trim cuts and abrasions in creosoted timber or piles and treat them with either of the following:
 - Two hot applications of 60 percent creosote oil mixed with 40 percent roofing pitch
 - Two thorough brush coats of hot creosote oil followed by a covering of hot roofing pitch
 For field treatment of other preservatives, see AWPA Standard M4 entitled, “Standard for the Care of Preservative Treated Wood Products.”
 a. Bolt Holes
 Treat bolt holes with creosote oil using an approved, manufacturer-recommended, pressure bolt hole treater. After the treatment, plug unfilled holes with creosoted plugs.
 b. Temporary Holes
 When the approved use of temporary forms or braces results in nail or spike holes in treated timbers or piles, fill these holes by driving galvanized nails or spikes flush with the surface or by plugging as specified in Subsection 502.3.05.A.1.a, “Bolt Holes.”
 c. Countersunk Holes
 Treat these holes with hot creosote oil before placing the bolts. After placing the bolts, fill the holes with hot roofing pitch.
 2. Apply Treatment to Pile Heads
 See Subsection 520.3.05.J, “Repair and Treat Timber Piling,” step 5.

B. Framing
 Cut and frame lumber and timber to a close fit so the joints will have an even bearing over the entire contact surface. The Department does not permit shimming or open joints.
 Match-mark timbers requiring an exact fit.
 1. Meet Workmanship Requirements
 Ensure that workmanship meets the following standards:
 a. Nails and Spikes
 Drive nails and spikes hard enough to set their heads flush with wooden surfaces. Replace bent nails or spikes. The Department considers deep hammer marks on wooden surfaces poor workmanship. The Department may reject the work with these characteristics.
b. Steel Plates and Structural Shapes
 Workmanship on steel plates and structural shapes shall meet the requirements of Section 501.

2. Drill Holes for Bolts, Dowels, Rods, and Lag Screws
 Drill holes with the following diameters to receive these hardware items

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Hole Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round drift bolts and dowels</td>
<td>1/16 in (2 mm) smaller than the diameter of the hardware</td>
</tr>
<tr>
<td>Square drift bolts and dowels</td>
<td>Same as the smallest dimension of the hardware</td>
</tr>
<tr>
<td>Machine bolts</td>
<td>Same as the diameter of the hardware</td>
</tr>
<tr>
<td>Rods</td>
<td>1/16 in (2 mm) larger than the diameter of the hardware</td>
</tr>
<tr>
<td>Lag Screws</td>
<td>No larger than the body of the screw at the base of the thread</td>
</tr>
</tbody>
</table>

 Countersink holes wherever smooth faces are required.

3. Use Bolts and Washers
 Use washers of the size and type specified on the Plans under bolt heads and nuts to prevent them from contacting the wood.
 After completely adjusting the nuts, do the following:
 a. Cut the excess length off of bolts projecting more than 1 in (25 mm) beyond the nuts.
 b. Burr the bolt threads.
 c. Coat the bolt ends with galvanizing repair compound according to Section 645.

C. Constructing Timber Substructures
 Construct the timber substructure as follows:
 1. Drive the Pile Bents. See Subsection 520.3.05.E, “Drive Piling.”
 2. Place the Caps. Place timber caps so the bearing on their supports is evenly secured and their ends are evenly aligned. Drift bolt the caps to piles and posts.

D. Constructing Timber Superstructures
 Construct the timber superstructure as follows:
 1. Install Stringers. Install stringers using these guidelines:
 □ Where stringers bear over the width of floor beams and caps, size the stringers to a uniform grade.
 □ Ensure that lapped ends of treated stringers contact each other.
 □ Neatly and accurately frame cross-bridging between stringers.
 □ Securely toenail the cross bridging by driving at least two nails in each end.
 2. Lay Single Plank Floors. Lay these floors using these guidelines:
 □ Lay planks with the adjacent planks drawn together tightly.
 □ Lay the plank so the thickness of adjacent planks varies by no more than 1/16 in (2 mm).
 □ Spike each plank to each joist or nailing strip using at least two spikes.
 □ The spike length shall be at least 3 in (75 mm) greater than the thickness of the planks.
 □ Carefully grade the plank thickness.
 3. Lay Laminated or Strip Floors. Lay these floors using these guidelines:
 □ Dress strips to a uniform thickness of no more than 3 in (75 mm) and to a uniform width when specified on the Plans.
 □ Place strips on the edge and at right angles to the roadway center line.
 □ Spike each strip to the adjacent strip at 2 ft (600 mm) intervals by staggering succeeding spike locations 8 in (200 mm) from preceding locations.
 □ Ensure that the spike length is sufficient to pass through two strips and at least halfway into the third.
 □ Toenail strips to the stringers with 20 d (4 mm) nails.

455
Instead of toenailing, the Contractor may drive spikes vertically through the strip if they penetrate the stringer at least 3 in (75 mm).

4. Frame and Erect Hub Guards and Railings. Accurately frame and erect hub guards, scupper blocks, joist blocks, and railings to true line and grade. Use these guidelines when erecting hub guards and railings:
 - Dress hub guards, scupper blocks, railings, and rail posts on all four sides.
 - Securely spike the scupper blocks in place.
 - Bolt the hub guards through the scupper blocks, floor planks, and, if required, through the outside joists or nailing pieces.
 - Lay hub guards in sections at least 12 ft (3.7 m) long.

502.3.06 Quality Acceptance
General Provisions 101 through 150.

502.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

502.4 Measurement
A. Structural Metal
 Plates and structural shapes required on the Plans will be measured for payment as specified on the Plans only when set up as a Specified Pay Item. Measurement will then be made as provided in Subsection 501.4, “Measurement,” and the cost shall not be included in the Contract prices for lumber and timber.

 Otherwise, no separate measurement for payment will be made, and the cost shall be included in the Contract prices for lumber and timber.

B. Lumber and Timber
 Lumber and timber will be measured per thousand feet(cubic meter) board measure (MBM). Quantities in the structure will be computed based upon nominal sizes and the actual length in place.

502.4.01 Limits
A. Timber Piling
 Timber piling shall be furnished, driven, and measured as a Pay Item under Section 520 unless otherwise specified.

B. Splices
 No additional measurement will be made for splices except for overlaps shown on the Plans.

C. Hardware
 No separate measurement for payment will be made for items such as the following:
 - U-bolts
 - V-bolts
 - Oval head bolts
 - Special couplings
 - Bolts
 - Nuts
 - Washers
 - Dowels
 - Nails
 - Spikes
 - Other hardware.

 The cost of these items shall be included in the Contract Unit Price bid for timber.
502.5 Payment

A. Structural Metal

The quantity of structural metal (determined as described below in Subsection 502.4.A “Structural Metal”, will be paid at the Contract Price according to Subsection 501.5, “Payment” for Steel Structures.

B. Lumber and Timber

Lumber and timber will be paid for at the Contract Unit Price bid per thousand feet board measure (MBM) (cubic meter), complete in place and accepted. The payment will be full compensation for material, labor, and equipment necessary to complete the Work as shown on the Plans and as described in this Specification. Payment includes incidentals and all costs, both direct and indirect.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 502</th>
<th>Bridge timber (untreated)</th>
<th>Per MBM (cubic meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 502</td>
<td>Bridge timber (treated)</td>
<td>Per MBM (cubic meter)</td>
</tr>
</tbody>
</table>

502.5.01 Adjustments

General Provisions 101 through 150.

Section 504—Twenty-Four Hour Accelerated Strength Concrete

504.1 General Description

This work consists of manufacturing and placing accelerated strength concrete designed to produce a compressive strength of 2,500 psi (17 MPa) within 24 hours.

Except as modified in this Specification, the provisions of Section 500 shall apply to concrete produced and placed under this Specification.

504.1.01 Definitions

General Provisions 101 through 150.

504.1.02 Related References

A. Standard Specifications

Section 109—Measurement and Payment

Section 500—Concrete Structures

B. Referenced Documents

AASHTO M 194, Type E, Table I

504.1.03 Submittals

A. Approve Chemical Admixture for Concrete

Ensure that the manufacturer submits an affidavit that the chemical admixture for concrete meets the requirements of AASHTO M 194, Type E, Table I.

B. Establish Concrete Mix Proportions

Choose one of the following two procedures for establishing concrete mix proportions for concrete placed under this Specification.

Notify the Engineer of the chosen procedure at least 45 days before placing the concrete.

1. Concrete Mix Proportions Established by the Contractor

The Contractor may propose specific concrete mix design proportions for concrete placed under this Specification.

In this case, the Contractor shall meet these requirements:

a. Ensure that all materials are from approved sources or from materials stored or stockpiled at the site.
b. Have all materials tested before they are used.
c. Have the laboratory verify that the proposed proportions will produce concrete that develops 2,500 psi (17 MPa) within 24 hours.

Proposed mixes may be approved without laboratory design study when they include commonly used material combinations.

2. Concrete Mix Proportions Established by the Department

The Contractor may choose to have the Department establish the concrete mix proportions. However, the Department’s approval of the design mix does not relieve the Contractor of the responsibility to produce concrete with the specified compressive strength of 2,500 psi (17 MPa).

The Department will establish the proportions as follows:

a. The Contractor shall notify the Office of Materials and Research of the proposed sources of all materials.
b. The Department will establish the job mix proportions from materials representative of the materials proposed for use, provided all materials conform to their respective Specifications.
c. The Office of Materials and Research will determine the following based upon materials intended for use:
 - Minimum cement content
 - Required water content
 - Quantities of aggregate
 - Addition rates of admixtures
d. The Department will make the proportions available as public information within one month after the Contractor proposes the material sources.
e. The Department will not allow materials to be substituted after releasing an approved design unless the Office of Materials and Research approves of the substitution.

The Department will base job mix design proportions upon the following table:

<table>
<thead>
<tr>
<th>Minimum Cement Content (kg/ m³)</th>
<th>Maximum Water Cement Ratio lbs/ lbs (kg/kg)</th>
<th>Minimum Compressive Strength at 24 Hours psi (MPa)</th>
<th>Air Content (%)</th>
<th>Slump Range inch (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.52 (446)</td>
<td>0.45</td>
<td>2500 (17)</td>
<td>3 to 6</td>
<td>2 to 5 (50 to 125)</td>
</tr>
</tbody>
</table>

The Department will accept initial design admixture meeting the requirements of materials established in this Specification. However, the Department will not approve any combination of admixture and cement that produces undesirable characteristics of set time or strength development.

504.2 Materials

All materials shall meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement (Type I or Type III)</td>
<td>830.2.01</td>
</tr>
<tr>
<td>Air-Entraining Admixtures</td>
<td>831.2.01</td>
</tr>
<tr>
<td>Coarse Aggregate, Class A or B, Gravel or Stone</td>
<td>800.2.01</td>
</tr>
<tr>
<td>Fine Aggregate, Size No. 10</td>
<td>801.2.02</td>
</tr>
<tr>
<td>Chemical Admixtures</td>
<td>831.2.02</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>884.2.01</td>
</tr>
<tr>
<td>Water</td>
<td>880.2.01</td>
</tr>
</tbody>
</table>
The concrete acceleration admixtures may be either of the following:

- Calcium chloride
- A chemical admixture

The Engineer must authorize chemical admixtures before they are used for concrete. Admixtures will be approved only if an acceptable concrete design is established in the laboratory with materials representative of those proposed for use.

Do not use accelerators containing chlorides in prestressed concrete; or, in bridges or box culverts when the concrete containing the additive will contact the reinforcement steel.

504.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

504.3 Construction Requirements
General Provisions 101 through 150.

504.3.01 Personnel
A. Quantity of Personnel

Provide enough labor to place, consolidate, and screed each batch of concrete within one hour after introducing the cement and first mixing water into the mix.

Do not place concrete when there are not enough personnel to meet this requirement.

504.3.02 Equipment
A. Quantity of Equipment

Provide enough equipment to place, consolidate, and screed each batch of concrete within one hour after introducing the cement and first mixing water into the mix.

Do not place concrete when there is not enough equipment to meet this requirement.

B. Portable Mixers

The Engineer may approve portable mixers when placement quantities at a given location are less than one cubic yard (meter).

504.3.03 Preparation
General Provisions 101 through 150.

504.3.04 Fabrication
General Provisions 101 through 150.

504.3.05 Construction
A. Batch and Mix Materials

1. Transit-Mixed Concrete

When transit-mixed concrete is used for concrete containing an acceleration admixture, do the following:

a. At the plant, mix the concrete ingredients, excluding the acceleration admixtures and 3 gal (15 L) of withheld water per cubic yard (meter) of concrete, at mixing speed for 35 revolutions of the drum.

b. Mix the concrete enroute to the job site at an agitating speed of no more than three revolutions per minute.

c. At the job site, add the acceleration admixture and withheld mixing water to the concrete according to these requirements:

1) The Engineer will approve the method of adding the acceleration admixture and withheld mixing water.

2) The Contractor shall measure the admixture into the concrete with an accuracy of plus or minus three percent.

3) The Contractor shall not add accelerating admixture to concrete that has attained the age of 45 minutes as measured from the beginning of the initial mixing at the plant.

d. Mix the concrete for 40 additional revolutions at mixing speed.
2. Central-Mixed Concrete
 When central-mixed concrete is used for concrete containing an acceleration admixture, do the following:
 a. Shrink-mix all concrete ingredients, excluding acceleration admixture and 2 gal (10 L) of withheld water per cubic yard (cubic meter), in the central mixer.
 b. Mix the above ingredients enroute to the job site at agitating speed.
 All other provisions of Subsection 504.3.05.A.1, “Transit-Mixed Concrete,” shall apply for adding the acceleration admixture and mixing the concrete at the job site.

B. Cure Concrete

Cure the concrete according to Subsection 500.3.05.Z, “Cure Concrete,” except that the Engineer may waive the concrete curing period when test results indicate the compressive strength exceeds 2500 psi (17 MPa).

All provisions of Subsection 500.3.05.X, “Pour Concrete in Cold Weather,” shall apply except that the protection requirements in step 2 of Subsection 500.3.05.X may be suspended when test results indicate the compressive strength exceeds 2500 psi (17 MPa).

504.3.06 Quality Acceptance
A. Compressive Strength Testing

Compressive strength testing are conducted as follows:

1. Georgia DOT personnel will cast four test cylinders for each day of concrete placement.
2. Georgia DOT personnel will store the cylinders on or adjacent to the pour in a moist condition.
3. Minimum compressive strength shall be according to either of the following for an average of two specimens

<table>
<thead>
<tr>
<th>Strength development at 24 hours</th>
<th>2,500 psi (17 MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength development at 3 days</td>
<td>3,500 psi (24 MPa)</td>
</tr>
</tbody>
</table>

504.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

504.4 Measurement

Twenty-four-hour accelerated strength concrete will be measured for payment by the square yard (meter) or cubic yard (meter) as indicated on the Plans and in the Proposal.

☐ Square yard (meter) measurements shall be as defined in Section 109.
☐ For structure concrete, cubic yard (meter) measurements will be the algebraic summation of the Plan quantity and any authorized quantity changes.

504.4.01 Limits
General Provisions 101 through 150.

504.5 Payment

Twenty-four-hour accelerated strength concrete will be paid for at the Contract Unit Price bid either by the cubic yard (meter) or square yard (meter) as shown on the Plans or in the Proposal.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 504</th>
<th>Twenty-Four-Hour Accelerated Strength Concrete</th>
<th>Per cubic yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 504</td>
<td>Twenty-Four-Hour Accelerated Strength Concrete</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

504.5.01 Adjustments
General Provisions 101 through 150.
Section 505—Corrugated Steel Bridge Plank

505.1 General Description
This work consists of installing bridge flooring of corrugated steel complete in place and according to the Plans and Specifications.

505.1.01 Definitions
General Provisions 101 through 150.

505.1.02 Related References
A. Standard Specifications Section
 501—Steel Structures Section
 535—Painting Structures
 Section 852—Miscellaneous Steel Materials
 Section 870—Paint

B. Referenced Documents
 General Provisions 101 through 150.

505.1.03 Submittals
General Provisions 101 through 150.

505.2 Materials
All materials shall meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrugated Steel Plank for Bridges</td>
<td>852.2.04</td>
</tr>
<tr>
<td>Paint</td>
<td>870</td>
</tr>
</tbody>
</table>

505.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

505.3 Construction Requirements
505.3.01 Personnel
General Provisions 101 through 150.

505.3.02 Equipment
General Provisions 101 through 150.

505.3.03 Preparation
General Provisions 101 through 150.

505.3.04 Fabrication
A. In-Shop Fabrication Requirements
 Fabricate plank from steel plate of the thickness shown on the plans. Form the plank to a minimum size of at least 13 in (330 mm) wide by 2 in (50 mm) deep with at least two complete corrugations. The section modulus per inch (millimeter) shall be equal to or greater than that shown on the Plans.
 1. Holes for Welded Attachment to Beams
 Shop-punch holes for welded attachment to beams and space the holes as shown on the Plans.
 2. Painting
 Shop painting shall be of the paint type and the number of coats shown on the Plans.
505.3.05 Construction
A. Installing Plank
 Install the corrugated steel bridge plank as follows:
 1. Place the plank as shown on the Plans.
 2. Ensure that the bottom corrugations have full bearing on supporting members.
 3. Hold the bottom corrugations in full contact with the supporting members until they are securely connected according to the details shown on the Plans.
B. Welding
 All welds shall be of the type and size, and be placed at the location shown on the Plans. All welding shall meet the requirements of Subsection 501.3.06.C, “Welded Construction.”
C. Field Painting
 Apply the type of paint and the number of coats shown on the Plans according to Section 535.

505.3.06 Quality Acceptance
General Provisions 101 through 150.

505.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

505.4 Measurement
This work will be measured for payment in square feet (meters), including laps of accepted planks.

505.4.01 Limits
General Provisions 101 through 150.

505.5 Payment
This work will be paid for at the Contract Price per square foot (meter) for corrugated steel bridge plank complete in place.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 505</th>
<th>Corrugated Steel Bridge Plank</th>
<th>Per square foot (meter)</th>
</tr>
</thead>
</table>

505.5.01 Adjustments
General Provisions 101 through 150.

Section 506—Expanded Mortar

506.1 General Description
This work consists of making and placing expanded mortar composed of a special Portland cement concrete and an aluminum powder additive.

506.1.01 Definitions
General Provisions 101 through 150.

506.1.02 Related References
A. Standard Specifications Section
 800—Coarse Aggregate Section
 801—Fine Aggregate Section
 830—Portland Cement Section
 835—Aluminum Powder Section
 880—Water
B. Referenced Documents
 General Provisions 101 through 150.

506.1.03 Submittals
 General Provisions 101 through 150.

506.2 Materials
 All materials shall meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement, Type I</td>
<td>830.2.01</td>
</tr>
<tr>
<td>Coarse Aggregate, Class A or B Stone, Size No. 89</td>
<td>800.2.01</td>
</tr>
<tr>
<td>Fine Aggregate, Size No. 10</td>
<td>801.2.02</td>
</tr>
<tr>
<td>Water</td>
<td>880.2.01</td>
</tr>
<tr>
<td>Aluminum Powder</td>
<td>835.2.01</td>
</tr>
</tbody>
</table>

506.2.01 Delivery, Storage, and Handling
 General Provisions 101 through 150.

506.3 Construction Requirements

506.3.01 Personnel
 General Provisions 101 through 150.

506.3.02 Equipment
 General Provisions 101 through 150.

506.3.03 Preparation
 A. Using Expanded Mortar for Shear Keys
 When using expanded mortar for shear keys on precast bridge decks, thoroughly clean and saturate the recesses in the precast decks with clean water before placing the mortar.

506.3.04 Fabrication
 General Provisions 101 through 150.

506.3.05 Construction
 Mix and use expanded mortar according to the following:
 A. Proportion Expanded Mortar
 Ensure that the expanded mortar consists of a fresh mixture of the composition given in the following table:

 | Proportions for Expanded Mortar |
 |---------------------------------|
 | Pounds (kilograms) of Portland Cement | Lbs(kgs) of Saturated Aggregate | Surface Dry per Bag of Cement | Maximum Water per Bag of Cement | Quantity of Aluminum Powder |
 | Fine | Coarse | | | |
 | 94 (42.6) | 140 (63.5) | 140 (63.5) | 6 gal (22.7 L) | 1 level tsp. (5 mL) |

 B. Mix Expanded Mortar
 Mix the materials as follows:
 1. Mix the materials dry, either in a clean mixer or in a clean, tight box until a uniform mixture is produced.
 2. Add enough water to produce the desired consistency, but do not add more water than specified in the “Proportions for Expanded Mortar” table in Subsection 506.3.05.A.
506.3.06

C. Use Expanded Mortar

Begin using the expanded mortar according to the temperature requirements in the following table:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Required Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 90 °F (> 32 °C)</td>
<td>Use mortar within 15 minutes after mixing.</td>
</tr>
<tr>
<td>70 °F to 90 °F (21 °C to 32 °C)</td>
<td>Use mortar within 30 minutes after mixing.</td>
</tr>
<tr>
<td>40 °F to 70 °F (4 °C to 21 °C)</td>
<td>Use mortar within 30 minutes after mixing.*</td>
</tr>
</tbody>
</table>

*Mortar may require additional aluminum powder to secure the required expansion. Additional amounts shall range from 0% at 70 °F (21 °C) to 100% at 40 °F (4 °C) in a straight-line proportion.

D. Place Expanded Mortar

Place the expanded mortar as follows:

1. Expanded Mortar for Shear Keys
 a. Completely fill the shear key with mortar.
 b. Rod the mortar into a dense, homogenous mass.
 c. Float the mortar off flush with the surface of the precast decks.
 d. Moisten the mortar continuously for a minimum of three days.

2. Placement Restrictions
 Do not place the mortar until after the entire bridge has been erected and all units are in final alignment.
 Do not allow traffic on the bridge decks until 5 days after the expanded mortar is placed.

506.3.06 Quality Acceptance
General Provisions 101 through 150.

506.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

506.4 Measurement
Expanded mortar is not measured for separate payment.

506.4.01 Limits
General Provisions 101 through 150.

506.5 Payment
Expanded mortar will be paid for at the Contract Price for concrete of the same Class as the concrete the mortar comes in contact with, and the Contractor shall include the cost of expanded mortar in the Contract Price for such concrete.

506.5.01 Adjustments
General Provisions 101 through 150.

Section 507—Prestressed Concrete Bridge Members

507.1 General Description
This work consists of furnishing prestressed concrete bridge members, complete in place, except as noted for piling in this Specification. The work includes all items and work necessary to complete the erection according to the Plans and Specifications. All prestressed concrete bridge member nominal lengths shown on the plans are horizontal dimensions. The contractor will be responsible for adjusting the lengths, as necessary, to account for the final erected position of the member. Fabricate the ends of all members to be vertical in the final erected position. Bearing assemblies need to be sloped to accommodate the erected position of the member.
507.1.01 Definitions

PSC: Prestressed concrete. Prestressed concrete may be designated “PSC” in Specifications and on Plans and other documents.

507.1.02 Related References

A. Standard Specifications

- Section 109—Measurement and Payment
- Section 500—Concrete Structures
- Section 501—Steel Structures
- Section 506—Expanded Mortar
- Section 520—Piling
- Section 865—Manufacture of Prestressed Concrete Bridge Members

B. Referenced Documents

General Provisions 101 through 150.

507.1.03 Submittals

A. Erection Drawings

Furnish erection drawings to the Department only when the units are not interchangeable with respect to the following:

- Transverse placement within a span
- Longitudinal reversal within a span

The drawings shall cover superstructure unit placement, including bearing components.

B. Shop Drawings

Submit shop drawings to the Department on standard Plan size 22 in x 36 in (550 mm x 900 mm) sheets showing complete beam details of the following:

- Nonprestressed reinforcement
- The method of retaining depressed strands in place
- Calculations for determining the strand elongation required to produce the specified pretensioning force
- Detensioning schedule
- Increased length of beam due to vertical alignment

507.2 Materials

All materials and manufacturing methods shall meet the requirements of Section 865. Reference is also made to the following:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain Steel Bars—Threaded Ends</td>
<td>853.2.05</td>
</tr>
<tr>
<td>Anchor Bolts</td>
<td>852.2.02</td>
</tr>
<tr>
<td>Bronze Bushings, Bearings, and Expansion Plates</td>
<td>857</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>851.2.01</td>
</tr>
<tr>
<td>Elastomeric Pads</td>
<td>885.2.01</td>
</tr>
<tr>
<td>Plain Cotton Duck</td>
<td>881.2.01</td>
</tr>
<tr>
<td>Rubber Impregnated Cotton Duck</td>
<td>881.2.02</td>
</tr>
<tr>
<td>Paint</td>
<td>870</td>
</tr>
</tbody>
</table>

Substitute materials according to Subsection 865.2.01.B.3, “Substitution of Reinforcement” and Subsection 865.2.01.B.4, “Substitution of Strands.”
507.2.01 Delivery, Storage, and Handling

A. General Delivery, Storage, and Handling

See Subsection 865.2.01, “Prestressed Concrete Bridge Members.” Replace members damaged in handling or storage (at no additional expense to the Department) unless the Engineer determines that the member is usable.

B. Handling PSC Beams

In handling PSC beams, the Contractor shall ensure that beams maintain an upright position at all times and shall pick up beams at their pickup and support points (see Subsection 865.2.01.B.14.e, “Beams”). Disregarding this requirement could cause a bridge member to collapse.

507.3 Construction Requirements

507.3.01 Personnel
General Provisions 101 through 150.

507.3.02 Equipment
General Provisions 101 through 150.

507.3.03 Preparation
General Provisions 101 through 150.

507.3.04 Fabrication
See Subsection 865.2.01.B, “Fabrication.”

507.3.05 Construction

A. Prepare Bearing Areas

Requirements for preparing steel bearing areas for PSC bridge members will be the same as those specified in Section 501 for Steel Structures, listed below. Other requirements are also noted below:

1. Steel on Concrete
 See Subsection 501.3.05.C.1, “Steel on Concrete.”

2. Steel on Steel
 See Subsection 501.3.05.C.2, “Steel on Steel.”

3. Steel on Self-Lubricating Bronze Plates
 See Subsection 501.3.05.C.3, Steel on Self-lubricating Bronze Plates.”

4. Steel on Elastomeric Pads
 See Subsection 501.3.05.C.4, Steel on Elastomeric Pads.”

5. Concrete on Concrete
 For concrete caps that PSC deck units will bear directly on, prepare bearing areas as follows:
 a. Finish the concrete caps with the Type IV—Floated Surface Finish specified in Subsection 500.3.05.AB.5, “Type IV—Floated Surface Finish.”
 b. Cover the caps with asphalt-saturated felt as noted on the Plans.
 The Contractor may use felt of a lighter weight than that required on the Plans by increasing the number of layers proportionally.

6. Concrete on Timber Piling
 For treated timber piles that will support PSC caps, prepare bearing areas as follows:
 a. Cut off the pile heads.
 b. Have the piles field treated as specified in Subsection 520.3.05.J, “Repair and Treat Timber Piling.”
 c. Protect the piles according to the applicable Specifications.

B. Erecting PSC Bridge Members

Erect bridge members according to the handling requirements in Subsection 507.2.01, “Delivery, Storage, and Handling,” and as follows. Refer questions concerning structural requirements to the Engineer.
1. Beams
 Erect beams as follows:
 a. Erect beams in conformity with true longitudinal alignment and transverse placement as shown on the Plans or as directed by the Engineer.
 b. Ensure that the locations of fixed and expansion ends are as shown on the Plans or as directed by the Engineer.
 c. Do not weld in place structural steel bearing devices that will rest directly upon elastomeric pads while the devices are bearing against the pads.
2. Caps
 Erect PSC caps as follows:
 a. Align and grade the caps according to the Plans.
 b. Drift the caps to the timber pile heads according to the Plans.
 c. Proportion and mix expanding mortar according to Section 506.
 An approved mortar may be substituted for the expanded mortar as long as it is nonshrinking and commercially produced.
 d. Fill the drift pin holes with the expanding mortar according to Section 506.
3. Deck Units
 Erect PSC deck units (such as flat slabs and double tees) that will bear directly on caps so that all sections have a smooth, uniform bearing on the caps.
 a. Aligning Deck Units. Base the final deck unit alignments on the alignment of the traffic faces of the exterior section curbs.
 b. Shimming. If shimming is necessary to achieve proper riding surface, grade, or proper bearing uniformity, use steel shims and cut them to the following dimensions:
 □ The same shape as the area to be shimmmed
 □ The thickness required to produce the required elevation and load distribution
 c. Restrictions. If the Engineer approves deck erection procedures that involve placing heavy lifting equipment on the decks, do not place the equipment until the cap drift pin mortar reaches 3000 psi (20 MPa).
4. Shear Keys
 Pour expanding mortar into shear keys between deck units as follows. The mortar shall meet the requirements of Section 506.
 a. Erect the entire bridge.
 b. Ensure that all units are in final alignment.
 c. Pour the mortar in the shear keys.
 d. Continuously moist cure the keys for at least three days.
 e. Keep traffic off the structure for at least 5 days.
5. Anchor Bolts and Nut Adjustment
 Place anchor bolts and adjust nuts according to Subsection 501.3.05.B.3, “Place Anchor Bolts and Adjust Nuts.”
6. Deck Grading
 Make sure PSC bridge members are 45 days old before grading the bridge deck for screeding.
C. Tighten Diaphragm Bars
 Tighten diaphragm bars as follows:
 1. Bring the diaphragm bar nuts to a snug fit against the beams.
 2. Pour the diaphragm.
 3. Allow the diaphragm concrete to age at least 5 days and reach at least 1,500 psi (10 MPa).
 4. Tighten the nuts fully.
 5. Cut off the excess bar length.
 6. Place an approved grout in the recessed area provided for the bar’s nut and washer.
507.3.06

D. Concrete Finish

Use the Type III—Special Surface Coating Finish on PSC bridge members according to Subsection 500.3.05.AB and as follows:

- Beams -- Outside faces of certain exterior beams as indicated on the table of “Bridge Areas Bridge Areas Requiring a Type III Finish”, in Subsection 500.3.05.AB.
- Deck Units -- Traffic and top faces of curbs on exterior units and the outside faces of certain exterior beams as specified in the table of “Bridge Areas Requiring a Type III Finish”, in Subsection 500.3.05.AB.

507.3.06 Quality Acceptance

General Provisions 101 through 150.

507.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

507.4 Measurement

A. Prestressed Concrete Piling

Prestressed concrete piling shall be furnished, driven, and measured as a Pay Item under Section 520.

B. Beams

Accepted PSC beams will be measured in linear feet (meters) of each different type designation of beam.

Linear measurements will be the nominal lengths shown on the Plans.

Beam type designations will be shown on the Plans and will be related to any of the following:

- Cross sectional area and prestress tendons
- AASHTO type
- Special design

C. Deck Units

Accepted PSC deck units (such as flat slabs and double tees) will be measured for payment per span of each different nominal span length.

D. Caps

Accepted PSC caps will be measured for payment per each cap.

E. Prestressed Concrete Box Beams

PSC box beams will be measured for payment by the linear foot (meter) of beam of each vertical depth and by the number of strands in the beam.

507.4.01 Limits

No separate measurement will be made for any of the following:

- Painting, rubbing, anchor, and bearing components, as well as diaphragm bar assemblies on accepted PSC beams
- Individual deck units on which curb sections are located
- Material used in anchor components, shear key pours, and construction expansion joints
- Drifting components, anchor components, and asphalt-saturated felt for PSC caps
- Grouting between PSC box beams
- Furnishing and installation of diaphragm bar assemblies and anchor and bearing components

507.5 Payment

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 507</th>
<th>PSC Beam (Type)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 507</td>
<td>Box Beam (Depth/Strands)</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>
A. Beams

The quantity of beams, determined as provided in Subsection 507.4, “Measurement”, will be paid for at the Contract Price per linear foot (meter) of each different type designation, complete in place.

B. PSC Box Beams

The quantity of PSC box beams will be paid for at the Contract Unit Price bid per linear foot (meter). Payment shall be full compensation for furnishing and erecting the beam.

C. Deck Units

The quantity of deck units will be paid for at the Contract Price per span of each different nominal span length, complete in place.

D. Caps

The quantity of caps will be paid for at the Contract Price per each, complete in place.

E. Partial Payments

Material allowance payments for bridge beams will be determined and paid for according to the requirements of Subsection 109.07, “Partial Payments.”

507.5.01 Adjustments

Upon completion of the erection in its final manner and position, 95 percent of the Contract Price will be paid on the next statement.

If there is no field rubbing or painting required, the 95 percent may be increased to 100 percent of the Contract Price. If this work is required, the remaining 5 percent will be included on the next statement after the Contractor satisfactorily completes the work.

Section 508—Asphalt Plank Bridge Floor

508.1 General Description

This work consists of laying asphalt plank slabs as a wearing surface on a prepared bridge deck.

508.1.01 Definitions

General Provisions 101 through 150.

508.1.02 Related References

A. Standard Specifications

 Section 530—Waterproofing Fabrics

B. Referenced Documents

 General Provisions 101 through 150.

508.1.03 Submittals

General Provisions 101 through 150.
508.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premolded Asphalt Plank</td>
<td>825.2.01</td>
</tr>
<tr>
<td>Cutback Asphalt</td>
<td>821.2.01</td>
</tr>
<tr>
<td>Asphalt Cement</td>
<td>820.2.01</td>
</tr>
</tbody>
</table>

508.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

508.3 Construction Requirements

508.3.01 Personnel
General Provisions 101 through 150.

508.3.02 Equipment
General Provisions 101 through 150.

508.3.03 Preparation
General Provisions 101 through 150.

508.3.04 Fabrication
General Provisions 101 through 150.

508.3.05 Construction
Construct the wearing surface of asphalt plank on a concrete base, timber base, or waterproofed base as follows:

A. Concrete Base

When laying the plank on a concrete base, construct the plank floor as follows:

1. Ensure that the concrete is dry and free from dust and rubbish.
2. Remove surplus talc and other powder from the base.
3. Apply approximately 1 gal (1 L) of cold cutback asphalt to each 100 ft² (9 m²) of surface.
4. Brush the cutback asphalt coat out well and allow it to dry.
5. Mop the surface with approximately 50 lbs (22 kg) of hot-applied asphalt cement for each 100 ft² (9 m²) of surface. Imbed the plank in the cement as follows:
 a. Mop and lay the plank simultaneously before the cement cools.
 b. Lay the plank straight and smooth with staggered joints. Ensure that the plank is free of irregularities.
 c. Crowd each plank snugly against adjacent planks so that seams and spaces between planks are completely filled with asphalt cement.

B. Timber Base

When laying the plank on a timber base, construct the plank floor as follows:

1. Securely spike the wooden floor upon which plank will be laid.
2. Ensure that the surfaces of adjacent planks do not vary by more than 1/8 in (3 mm).
3. Remove nails, dirt, rubbish, etc. before laying the asphalt plank.
4. Lay the plank the same as for a concrete base (see Subsection 508.3.05.A, “Concrete Base”).

C. Waterproofed Base

When laying the plank on a waterproofed base (see Section 530), lay the plank with the final mop of hot asphalt or tar described in Subsection 508.3.05.A.5.

1. Mop the surface and lay the plank simultaneously before the asphalt or tar cools.
2. Lay the plank as specified in Subsection 508.3.05.A.5 steps b and c.
508.3.06 Quality Acceptance
General Provisions 101 through 150.

508.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

508.4 Measurement
The Work is measured for payment in square yards (meters) of accepted plank:
- The length calculated is measured along the surface.
- The width calculated is the width of surface laid.

508.4.01 Limits
General Provisions 101 through 150.

508.5 Payment
This work will be paid for at the Contract Price per square yard (meter) for asphalt plank bridge floor complete in place. Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 508</th>
<th>Asphalt plank bridge floor ______ in (mm) thickness</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
</table>

508.5.01 Adjustments
General Provisions 101 through 150.

Section 509—Prestressing Concrete by Post Tensioning

509.1 General Description
This work consists of prestressing concrete by post-tensioning cast-in-place concrete. The work includes furnishing, placing, and tensioning prestressing steel according to the Plan details and these Specifications.

509.1.01 Definitions
Working Force and Working Stress: The force and stress remaining in the prestressing steel after the following losses:
- Creep and shrinkage of concrete
- Elastic compression of concrete
- Creep of steel
- Loss in post-tensioned prestressing steel from the sequence of stressing
- Friction and anchor set (see Subsection 509.3.05.J, “Post-Tension the Tendons,” steps 18 to 19)
- Other losses peculiar to the method, technique, or system of prestressing (see Subsection 509.3.05.J, “Post-Tension the Tendons,” step 21)

509.1.02 Related References
A. Standard Specifications Section
 501—Steel Structures Section
 535—Painting Structures

B. Referenced Documents
 AASHTO Specifications for Highway Bridge, Article 9.16.1
 AASHTO Specifications for Highway Bridge, Article 9.16.2
 ASTM C 109
 ASTM A 416
ASTM A 722
ASTM C 939

509.1.03 Submittals

A. Coupler Use and Location
 The use and location of couplers in bars entering into the prestressing work is subject to the Engineer’s approval.

B. Alternate Stressing or Anchorage Block Drawings and Calculations
 When using stressing or anchorage blocks not shown on the Plans, submit shop drawings and calculations for the blocks to Bridge and Structural Design when submitting the prestressing system calculations and shop drawings.

C. Design Calculations
 Submit design calculations for the proposed post-tensioning system to Bridge and Structural Design for Department review and approval. Design calculations may be on letter size sheets.
 Submit calculations for the size and spacing of the reinforcing around the ducts, as shown in Figure 1 (metric), to Bridge and Structural Design. Include the following in the calculations:
 - Required jacking force and elongation of tendons during tensioning
 Using the initial jacking force, design the reinforcing to prevent ducts from pulling out because of the effects of web curvature and slope.
 - Stresses in anchorages and distribution plates
 Ensure that the calculations account for reinforcing to prevent the peeling of anchorages from the top and bottom slab. See Figure 2 (metric) for minimum reinforcing requirements for tying ducts to the deck reinforcing.
 - Stress-strain curves typical of the prestressing steel to be furnished
 - Seating losses
 - Temporary overstresses
 - Reinforcing in the concrete to resist tensioning loads

Determine bearing offsets and expansion joint gaps and adjust for construction sequence, prestress shortening, and temperature.
Stirrups*

Duct 1-1/2 times max. size
 • aggregate or 1 in,
 • (25 mm) whichever is greater

Web reinf. not shown.

* A stirrup group is one pair of overlapping "U" shaped bars.
 • Stirrups shall enclose vertical web reinforcement.
 • No more than 3 ducts shall be enclosed by a stirrup group.
 • Min. bar size: No. 4 (No. 13 M) bar.
 • Max. longitudinal bar spacing: 24 in. (600 mm)

Figure 1 (metric)
Bend No. 4 (No. 13 M) bars at 12 in. (300 mm) spacing around duct and tie to longitudinal bar.

\[L = \text{Length of anchor blister} \]

Transverse slab rein.

\[\text{No. 4 (No. 13 M) bar,} \quad L + 6 \text{ ft. (1.8 m)} \]

\[\text{All necessary reinforcing may not be shown.} \]

\[\text{Bend No. 4 (No. 13 M) bars as closely as possible to radius of duct. Tie duct to bars.} \]

Tendon

\[\text{NOTE:} \quad \text{No. 4 (No. 13 M) longitudinal bars and No. 4 (No. 13 M) bars around duct are not included in reinforcing bar schedule. Include cost of bars in cost of the reinforcing steel.} \]

\[\text{Top slab blister similar. See plans for additional details.} \]

Figure 2 (metric)
D. Certificates of Compliance
The Department will accept certificates of compliance for cements to be used. The Department reserves the right, however, to sample and test the cement before its use and at any time during the progress of the work.

E. Certified Mill Test Reports
Submit certified mill test reports for high tensile prestressing steel to the Project Engineer.

F. Shop Drawings
Submit Shop Drawings for review and approval according to Subsection 501.1.03.B, “Shop Drawings.” Place a title block in the lower right-hand corner of the drawings that includes the following:

- Project number
- Sheet numbering for the Shop Drawings
- Structure name
- Contractor and fabricator names

Submit Shop Drawings on 23 in by 36 in (575 mm by 900 mm) sheets with a 1-1/2 in (38 mm) left margin and a 1/2 in (13 mm) top, bottom, and right margins.

The Shop Drawings shall include the following:

1. Fully dimensional views showing all projections, recesses, notches, openings, blockouts, and pertinent design details
2. Details of mild steel reinforcing showing size, spacing, and location, including special reinforcing required as determined by the design calculations but not shown on the Plans
3. Details of ducts for post-tensioning tendons showing size, type, and horizontal and vertical profiles
4. Details of duct supports, grout tubes, and vents showing size, type, and location
5. Details of the relative positions of reinforcing steel, ducts, and anchorages
6. Details of the anchorage systems for the proposed post-tensioning system
7. A table giving jacking sequence, jacking forces, and initial elongation of the tendons at each erection stage for post-tensioning
8. Details and a complete description of the post-tensioning system to be used for permanent tendons
9. Details of the prestressing, including:
 - Method, sequence, and procedure for prestressing and securing tendons
 - Procedure for releasing tendons
 - Equipment supplier and type
 - Tendon size and properties
 - Anchorages plates and assemblies
10. Information on grouting, including:
 - Grout mix design
 - Method of mixing and placing the grout
 - Type and capacity of grouting equipment
11. Working drawings and bar schedules for each prestressing system
12. Details of reinforcing or coil ties under anchorage plates
13. Details for usage of high-strength steel bar (furnished by the bar manufacturer)
14. Friction factors used in the prestressing system of deformed bars

G. Ram Calibration Charts
Before using rams in the work, furnish the Engineer with a certified chart from the calibration for each ram.

H. Designs and Details of Distribution Reinforcing Steel
The Department plans for anchorages show only a minimum amount of distribution reinforcing steel.
509.2

Design and detail the reinforcement needed to prevent bursting, peeling, and splitting. Submit the designs and details to the Engineer for review and approval.

I. Gauge Readings and Elongations

Keep a record of gauge pressures or readings and elongations at the end of each jacking operation and submit it to the Engineer for review and approval.

509.2.2 Materials

Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Wire Strand</td>
<td>853</td>
</tr>
<tr>
<td>Structural Steel for Anchorage Devices, Distribution Plates, and Incidental Parts Required to Be of Steel</td>
<td>501</td>
</tr>
<tr>
<td>Grout</td>
<td>509.3.02.C</td>
</tr>
<tr>
<td>Cement</td>
<td>830</td>
</tr>
<tr>
<td>Admixtures</td>
<td>831</td>
</tr>
<tr>
<td>Water</td>
<td>880</td>
</tr>
</tbody>
</table>

Do not use strands from more than one source within the same tensioning operation.

Strands that differ in size from ASTM A 416 are to be submitted for prior approval.

High strength steel bars shall meet ASTM A 722 Type II, and S1 through S3 supplemental requirements and have manufacturers details for their use.

Ensure all bars within any member are of same grade.

Bar couplers and locations are to be approved prior to use and shall have tensile strength not less than manufacturers minimum for strength of bar.

Allow the Department 60 calendar days before installing prestressing steel to test the steel and approve the materials furnished.

Use the anchor devices and distribution plates recommended by the manufacturer of the prestressing system.

Have the Engineer approve grout for filling recesses or encasing anchoring devices. Use a type recommended by the manufacturer for highly stressed steel.

509.2.01 Delivery, Storage, and Handling

A. Protect Prestressing Steel

Protect prestressing steel against physical damage, rust, and corrosion.

Reject all damaged, rusted, or corroded prestressing steel. See Subsection 509.3.06, “Quality Acceptance.”

B. Package Prestressing Steel

Package prestressing wire or strand in containers or shipping forms to protect steel from physical damage and corrosion during shipping and storage. Comply with these packaging requirements:

1. Place a corrosion inhibitor to protect against rust and corrosion as follows:
 a. Place the inhibitor in the package or form.
 b. Incorporate the inhibitor in a carrier-type packaging material.
 c. Apply the inhibitor directly to the steel.

 Ensure that the corrosion inhibitor does not damage the steel, grout, or bond strength of the steel to the grout.

2. Immediately replace or restore to original condition damaged packaging or forms.

3. Clearly mark the shipping package or form with the following:
 - A statement that the package contains high-strength prestressing steel
 - Handling instructions
C. Ducts

1. Place all prestressing steel tendons in openings or ducts.
2. Unless otherwise approved by the Engineer, use only rigid, galvanized, ferrous metal that is mortar tight for all longitudinal prestressing steel ducts.
3. Fabricate the ducts with an inside area that is at least double the effective area of the prestressing steel in the duct.
 a. Fabricate ducts that encase single high-strength prestressing steel bars with an inside diameter at least 3/8 in. (10 mm) larger than the diameter of the bar to be used.
 b. Use a minimum wall thickness of 0.030 in (0.75 mm).
4. Rigid ducts may be fabricated with either welded or interlocked seams. There is no need to galvanize the welded seam or the transition couplings that connect the ducts to anchoring devices.
5. Weld transition couplings to the anchor plate.
6. Pre-bend all ducts that must be curved to match the roadway alignment and/or tendon profile. Shape the ducts without crimping or flattening them.

509.3 Construction Requirements

509.3.01 Personnel

A. Representative of the Post-Tensioning System Supplier

If the Engineer requires, provide a representative of the post-tensioning system supplier at no additional cost to the Department.

Provide a representative who:

☐ Is skilled in using post-tensioning systems
☐ Supervises or provides surveillance of the work
☐ Provides information about the post-tensioning system to the Engineer as needed

509.3.02 Equipment

A. Prestressing Equipment

Provide the following equipment for construction and prestressing:

1. Tensioning Jacks

 Use tensioning jacks equipped with the following:

 ☐ Long enough stroke to perform stressing in a minimum number of strokes

 Provide a positive means of marking each elongation increment where two or more strokes are required

 ☐ Ports or windows to examine and measure tendon movement

 ☐ Slow stress release capability to allow the jack to relax from overstress to the proper seating force

2. Tensioning Equipment

 Use tension prestressing tendons equipped with the following:

 ☐ Equipment that allows direct elongation measurement

 ☐ Hydraulic ram that determines the tensioning force applied

 Measure the tensioning force applied by the ram using either of the following gauges:

 a. Gauge that measures either the internal hydraulic pressure in the ram or the force exerted by the ram

 b. Spring-type dynamometer used with the tensioning force applied directly

 Convert the readings from either of these gauges to actual tensioning forces using calibrated values from a calibration chart.

 Use gauges with a diameter of at least 6 in (150 mm) that allow accurate readings of load increments of one percent of the total capacity of the ram used, not to exceed two percent of the tensioning force used.
3. Load Cell
 Ensure that the range of the load cell does not use the lower 10 percent of the manufacturer’s rated capacity to determine the jacking stress.

B. Sampling and Inspecting Prestressing Steel

The Department will identify, sample, test, and approve all prestressing steel as follows:

1. Identification
 a. Assign a lot number to all strand and all bars of each size from each mill heat shipped to the jobsite.
 b. Tag the lots so that each such lot can be positively identified at the job site.
 c. Assign and tag each lot of anchorage assemblies and bar couplers.
 d. The Engineer or Department inspector will reject all unidentified prestressing steel, couplers, or anchorage assemblies received at the site, and any items without positive identification.

2. Sampling
 a. Give to the Engineer samples from each size and each heat of prestressing bars and prestressing steel strand, and from each lot of anchorage assemblies and bar couplers.
 b. Submit with each sample of prestressing strand or bar the manufacturer’s certification stating the minimum guaranteed ultimate tensile strength of the sample furnished.
 c. Submit enough samples to make up two assembled test units from each heat, complete with end fittings and anchoring devices. Test units shall be at least 8 ft. (2.4 m) long.
 d. If the Engineer’s tests indicate the necessity of retests, submit twice the number of previous specimens without cost to the Department. Identify the samples by heat number.
 e. Submit samples to the Engineer in ample time to allow for testing, tabulating results, and, in case of unsatisfactory findings, to call for and test substitute samples.
 f. The Department will not pay the Contractor additional compensation because of the delay while waiting for approval of the material furnished for testing.

3. Tendon Modulus of Elasticity
 a. Submit to the Engineer for approval the apparatus and test methods you propose to use to determine the modulus of elasticity.
 b. Run bench tests on two samples of each size and type of longitudinal strand and/or wire tendon prior to stressing the initial tendon.
 c. Stress the tendon at an anchor assembly with the dead end consisting of a load cell.
 d. Apply 80 percent of the ultimate tension to the test specimen in 10 increments and record the gage pressure, elongation and load cell force for each increment.
 e. Detension the test specimens back to 0 in 10 increments, and record the gage pressure, elongation, and load cell force for each increment.
 f. Submit the test data to the Engineer.
 g. Re-evaluate and correct, as necessary, the theoretical elongations shown on the post-tensioning working drawings based on the results of the tests.
 h. Submit any revisions to the theoretical elongations to the Engineer.
 i. After the initial testing, the Engineer may require five more tests. Space these tests evenly throughout the duration of the contract.

4. In-Place Friction Test
 a. Submit to the Engineer for approval the apparatus and test methods you propose to use to measure the in-place friction.
 b. After receiving approval for the apparatus and method, test the first draped continuity strand and/or wire tendon in place of each size and type.
 c. Apply 80 percent of the ultimate tension to the test specimen in 10 increments and record gage pressure elongation and load cell force for each increment.
 d. Detension the tendon back to 0 in 10 increments, and record the gage pressure, elongation, and load cell force for each increment.

NOTE: You only need to run one friction test for each type and size of a tendon for the Project.
e. Submit the results of the tests (loss due to friction and modulus of elasticity) to the Engineer.

C. Grouting Equipment

Use grouting equipment capable of the following:

- Continuously grouting the largest tendon on the Project in 20 minutes or less
- Pumping the mixed grout according to the requirements of this Specification

Provide the following grouting equipment:

- Mixer capable of continuous mechanical mixing and of producing a grout that is free of lumps and undispersed cement
- Accessory equipment that provides accurate solid and liquid measures to batch materials
- Positive displacement pump able to produce an outlet pressure of at least 150 psi (1 MPa) gauge
- Pump seals that do the following:
 — Keep oil, air, or other foreign substance out of the grout
 — Prevent loss of grout or water
- Pressure gauge with a maximum full scale reading of 300 psi (2 MPa) installed at some point in the grout line between the pump outlet and the duct inlet to establish grout pressure at the pump
- Standby flushing equipment capable of pumping at 300 psi (2 MPa) gauge and flushing out partially-grouted ducts
- A different power source for the flushing equipment than the grouting equipment
- Screen with 0.125 in (3 mm) maximum clear openings to screen the grout before it is introduced into the grout pump
- Hopper placed directly over the pump inlet
 Attach the hopper to the pump inlet using a gravity feed.
 Keep the hopper at least partially full of grout during the pumping operation to prevent air from being drawn into the post-tensioning duct.

D. Rams

Twenty days before using rams and their gauges or reading devices in the work, have them calibrated by an approved laboratory.

Recalibrate the equipment every three months during the work or when the Engineer observes erratic results. For each calibration, furnish a calibration chart, certified by the laboratory, to the Engineer.

The Engineer may extend the 3-month interval if there are no performance changes. However, recalibrate at least every 6 months.

509.3.03 Preparation

A. Test Tendon Modulus of Elasticity

To determine the tendon elongations while stressing, bench test two samples of each size and type of longitudinal strand and/or wire tendon using the following procedure:

1. Propose apparatus and methods used to perform these tests for approval by the Engineer.
2. Stress the tendon at an anchor assembly with the dead end consisting of a load cell.
3. Tension the specimen to 80% of ultimate in 10 increments.
4. Detension the specimen from 80% of ultimate to 0% in 10 increments.
5. Record the gage pressure, elongation, and load cell force for each increment. Provide this data for the Engineer.
6. Reevaluate the theoretical elongation shown on the post-tensioning working drawings using the results of the tests. Correct the results as necessary.
7. Submit revisions to the Engineer for approval.
8. Perform five more tests after the initial testing (if required by the Engineer). Space these tests evenly throughout the duration of the contract.
B. Test Friction
To accurately determine the friction loss in a strand and/or wire tendon, test, in place, the first draped continuity tendon of each size and type using the same procedure described for the modulus of elasticity test. Only one friction test for each type and size of a tendon is required for the project. Submit the results of the tests to the Engineer.

C. Test Anchorages
Before construction, test prestressing anchorage blocks of the type indicated in Figure 2 (metric) using the proposed jacking system as follows:

1. Construct and test anchorage test blocks for the following:
 - Each different radius of bend of the duct into the anchorage
 - Each different number of strands per duct arrangement
2. If anchorages (reinforcing, anchorage geometry, anchor plate, and duct bend radius) are the same within a Project or bridge, test only the anchorage with the largest jacking force.
3. Assemble a test block with these features:
 - Same concrete dimensions of the structure cross section at the points of anchorage in the proposed system
 - Tendon geometries, anchor plates, and anchorage reinforcing steel proposed for use in the structure
4. Place the tendons.
5. Stress the tendons to the full force required by the design using the proposed jacking system and stressing procedures.

Anchorages are acceptable to the Department if no concrete cracks wider than 1/100 in (0.25 mm) develop within 3 days under full force.

509.3.04 Fabrication
General Provisions 101 through 150.

509.3.05 Construction
A. Contractor Options
The Contractor may choose from these options when constructing the structure according to the Department plans:

1. Alternative Prestressing Systems
 The Contractor may use post-tensioning systems other than those shown on the Plans. The alternative system may use wires, bars, or strands anchored with friction grips or bearings.
 Unless the Plans allow, do not use prestressing systems that incorporate dead-end anchorages.
 Choose alternative systems that can be stressed from either end unless the construction staging does not allow room to stress tendons from both ends. In this case, use anchorage systems with compression plates or fittings to seat anchor wedges.

2. Alternative Stressing or Anchorage Blocks
 Stressing or anchorage blocks for the structure may deviate from those shown on the Plans.
 Alternate stressing or anchorage blocks must be located inside the box. Place the blocks in any of the following locations:
 - At the juncture of the bottom of the top slab
 - At the juncture of the top of the bottom slab and the web walls
 - Within fillet areas in reinforced stressing blocks
 - In partial depth diaphragms
 Permanent or temporary stressing blockouts are allowed in the top of the top slab when post-tensioning ducts do not have a moisture-retaining low point.

B. Install the Ducts
Install ducts for prestressing steel as follows:

1. Support ducts at intervals of no more than 2 ft (600 mm).
 The horizontal tolerance for longitudinal ducts in the top or bottom slab is plus or minus 1 in (25 mm). The vertical tolerance for longitudinal ducts is plus or minus 1/4 in (6 mm).
2. Join rigid duct sections using positive metallic connections. Connect the sections carefully to prevent misaligning the ducts at the joints.
3. Use waterproof tape at the connections.
4. Make duct splices so that the nose of the tendon being pushed into the duct goes from a male end into a female end. This prevents tendons from catching on a duct end.
5. Stagger splices in ducts to prevent splices in the same location in a row of ducts. Stagger the splices to give a 3 ft (900 mm) longitudinal spacing from row to row.
6. Carefully cut and deburr the ends of ducts.
7. Use ducts or anchorage assemblies with pipes or other connections as grout ports for injecting grout after the prestressing. Ports are required at each tendon anchorage.
8. Place continuous-draped longitudinal ducts in the web in one vertical row at the center of the web.
9. Tie the ducts securely to the saddles, which shall hold the duct in position during concrete placement and hardening.
10. Ensure that the clear distance between the ducts is 1-1/2 times the maximum size aggregate in the concrete mix or 1 in (25 mm) whichever is greater.
11. Do not bundle ducts.
12. See Figure 3 (metric) below for an illustration of how to tie duct support saddles.
13. If needed, place ducts in the top or bottom slab in one of these ways:
 - Horizontally at the variable spacings
 - In closely and uniformly spaced groups
 - The minimum horizontal clear spacing between ducts must be 3 in (75 mm).
14. Install at least one more continuity duct than needed in each web throughout the length of the structure. This duct will be used during blockage and excessive prestress losses during construction.
15. Position the ends of the additional ducts to use anchorage blocks if necessary.
16. Vent continuity ducts over each intermediate support.
 - Provide vents with a diameter of at least 1/2 in (13 mm) and made of either steel or polyethylene.
17. Provide vents at the low point of every duct to drain off water in the duct.
18. Connect vents to ducts using approved metallic structural fasteners.
19. Ensure that the vents are:
 - Mortar tight
 - Taped as necessary
 - Sealable
 - Capable of allowing grout to be injected through them
20. Immediately before installing the prestressing steel, demonstrate to the Engineer that ducts are unobstructed and free of water and debris.
21. After installing ducts in the forms, keep the duct ends sealed to keep out water and debris.
22. After post-tensioning the steel, fill ducts with or without strands full of grout.
23. After the grout has set, remove the ends of the vents flush with the concrete surface.
Web longitudinal reinf. *Clearance may be larger. See bridge plans.

1 in. (25 mm) clearance.

3 in. (75 mm) min. clearance
1-1/2 times max. size aggregate or 1 in. (25 mm), whichever is greater.

Partial Web View

Inside face of web

typ. at each duct.

Outside face of web

Web thickness—2-1/2 in. (63 mm)

Varies

#3 (#10 M) bar

Tie duct support saddles to web vertical bars. Space saddles at 24 in. (600 mm) maximum so that vibrators can pass through to consolidate the concrete. Ensure ducts are securely tied to saddles to prevent displacement of ducts during concrete placement.

Figure 3: Partial Web View
C. Install Reinforcing Steel

Fabricate reinforcing steel and place it according to the Plans and Shop Drawings.

Do not cut and remove reinforcing steel to align stressing ducts properly. Replace bars that cannot be fabricated to clear the ducts with bars with an adequate lap length.

Where bars are extended by the use of couplers, the assembled units shall have a tensile strength of not less than the manufacturer’s minimum guaranteed ultimate tensile strength of the bar.

Submit revised drawings indicating the proposed bar to the Engineer for review and approval.

D. Install Anchorages

Secure post-tensioned prestressing steel at the ends using permanent anchoring devices recommended by the prestressing steel manufacturer and meeting the requirements herein.

Use anchoring devices that hold the prestressing steel at a load producing a stress of at least 95 percent of the guaranteed minimum tensile strength of the prestressing steel.

E. Install Distribution Devices

Distribute the load from the anchoring device to the concrete using devices that conform to the following:

- The final unit compressive stress on the concrete directly underneath the plate or assembly does not exceed 3,000 psi (20 MPa) or 0.9 (f’c’i), whichever is less.
- Bending stresses in the plates or assemblies induced by the pull of the prestressing steel do not exceed the yield point of the material or distort the anchorage plate as determined by the Engineer when 100 percent of the load is applied.

The Contractor may omit steel distribution plates or assemblies when furnishing large anchoring devices used with a steel grill embedded in concrete to distribute the compressive stresses to the concrete.

Install distribution devices as follows:

1. Place steel distribution plates, if used, inside the end surface of the member.
2. Recess anchoring devices so that the ends of the prestressing steel and all of the anchoring devices are embedded in concrete.
3. After post-tensioning and grouting the duct, clean foreign and loose material off the surfaces of the concrete.
 Do not clean the concrete until the duct grouting operations are complete.
4. Fill anchoring device recesses with an approved, non-shrink grout.
5. Cover the anchoring devices and ends of the prestressing steel with at least 2 in (50 mm) of grout, unless the Plans specify more.

F. Have the Engineer Inspect

Have the Engineer inspect and approve the placement of reinforcement, ducts, and anchorages before pouring concrete into the forms.

G. Pour the Concrete

Pour concrete according to Section 500.

H. Install the Tendons

Install tendons in the ducts after pouring the top deck or when the Engineer approves.

Before installing the tendons, demonstrate to the Engineer that the ducts are unobstructed and free of water.

Install the tendon in the duct as approved by the Engineer.

I. Follow Weld Restrictions

The Engineer will not allow welds or welding equipment grounds on the forms or near the prestressing steel after the steel has been installed.
J. Post-Tension the Tendons

Post-tension the tendons as follows:

1. Before post-tensioning tendons, ensure that the deck slab thickness and deck reinforcement cover comply with the Plan requirements.
2. Unless otherwise noted on the Plans or approved by the Engineer, wait to prestress cast-in-place concrete until the compressive strength of all the concrete placed reaches the required 28-day strength and the concrete is at least 14 days old.

 If the Engineer approves, the Contractor may apply a portion of the prestressing force to a member with a concrete strength less than the value shown on the Plans.

 Even with this partial prestressing, the Contractor must successfully construct the members.
3. Conduct the tensioning process so that the applied tension and the elongation can be measured.
4. Tension the prestressing steel using hydraulic jacks.
5. Tension the prestressing tendons in continuous post-tensioned members by jacking at each end of the tendon.

 Jacking of both ends does not need to be done simultaneously.
6. When approved by the Engineer and if shown on the Plans, tension bent cap tendons by jacking from one end only.
7. Tension the prestressing tendons in simple span post-tensioned members by jacking from one end only.
8. When tensioning from one end of the tendon only, tension half of the prestressing steel in each member from one end and the other half from the opposite end of the span unless otherwise shown on the Plans.
9. Unless allowed on the Plans, do not use prestressing systems that incorporate dead-end anchorages.
10. Where construction staging does not allow room to stress tendons from both sides, use anchorage systems with compression plates or fittings to seat anchor wedges.
11. Ensure that the prestressing steel force does not drop below the value shown on the Plans.
12. Ensure that the tendon force measured by gauge pressure is within 5 percent of the force calculated by elongation movement.
13. If the measured elongation at the jacking stress varies more than 5 percent from the theoretical elongation, or if the unbalanced force about the section center line exceeds 3 percent:

 a. Check the entire operation and determine the error.

 b. Correct the error to the Engineer’s satisfaction before proceeding with the work.
14. Do not allow the total force at each section to drop below the total prestressing force specified. However, the prestressing force may vary plus or minus 5 percent per tendon.
15. Unless otherwise specified on the Plans, ensure that the average working stress in the prestressing steel does not exceed 80 percent of the yield point stress of the prestressing steel.
16. To determine the amount of steel required, ensure that the maximum temporary tensile (jacking) stress in prestressing steel does not exceed 80 percent of its specified minimum ultimate tensile strength unless the Plans indicate a lower jacking stress.
17. Anchor the prestressing steel at stresses (initial stress) that will retain working forces at or higher than the minimum values shown on the Plans or approved by the Engineer.

 Do not allow the initial stress to exceed 70 percent of the specified minimum ultimate tensile strength of the prestressing steel.
18. Check that the loss of elongation from anchor set agrees with the anticipated value used in the stress calculations.

 a. Adjust measured Elongation to account for the actual measured anchor set.

 b. Maintain 5 percent agreement between the elongation and the stressing force.
19. To compute the prestress losses from friction, use the formula in the AASHTO Specifications for Highway Bridge, Article 9.16.1. The total friction losses at any section will be the sum of the effects for each tendon, depending on its anchorage location for each tendon.
20. To compute other prestress losses, use the AASHTO Specifications for Highway Bridge, Article 9.16.2.
21. After stressing and anchoring tendons and after the Engineer approves, trim projecting tendons by sawing as shown in the approved working drawings.
K. Mix the Grout

Grout for Prestressing Concrete Bridge Members: Grout for use with prestressing concrete bridge members includes a mixture of Portland cement, water, and an approved expansive admixture, as follows:

- Water—Use potable water or other water that meets the requirements of Subsection 880.2.01.
- Portland cement—Use Portland cement that meets the requirements of Subsection 830.2.01. Standard usage is Type II Portland cement, but the Engineer may allow Type I or III. The Engineer may require Type III for cold weather grouting.

Submit to the Department certificates of compliance for the cements used. However, the Department reserves the right to sample and test the cement before its use and at any time during the work.

- Admixture—Use admixtures that meet the requirements of Subsection 831.2.02.A.

NOTE: Do not use sand in grout used for prestressing concrete bridge members.

1. Before grouting, select the material proportions based on the following:
 - Tests made on the grout
 - Documented experience with similar materials, equipment, and field conditions (weather, temperature, etc.).
2. Select admixtures used in Grout for Prestressing Concrete Members. If used and approved by the Engineer, use admixtures that demonstrates low water content, good flowability, and minimum bleed.

You may use the following:

- Either liquid or solid admixtures
- Enough fine, aluminum powder to obtain 5 to 10 percent unrestrained expansion of the grout

Do not use the following:

- Thixotropic additives without prior approval from the Engineer
- Admixtures that have ingredients corrosive to steel or chemicals in quantities that may have a harmful effect on cement
- Admixtures with chloride ions in excess of 0.50 percent by weight of the admixture (assuming 1 lb (0.45 kg) of admixture per 94 lbs (42.6 kg) each of cement), fluorides, sulphites, and nitrates
 a. At least 30 days before using the admixture, submit to the Engineer at least 2 1/2 lbs (1 kg) of a proposed dry-type admixture, or 1 quart (1 L) of a proposed liquid-type admixture.
 b. Send with the sample a description of the content, recommended proportions to be used, and the manner and sequence of adding to the mix.
3. Ensure that the water content is the minimum necessary for proper placement and does not exceed a water-cement ratio of 0.45 (approximately 5 gal (19 L) of water per bag of cement).
4. Add the grout components to the mixer in the order listed or as required by the admixture manufacturer and mix the dry materials in a mixer or clean, tight box until the mixture is a uniform consistency:
 - Water
 - Portland cement
 - Admixture
5. Mix the grout long enough to thoroughly blend it without excessively increasing the temperature or losing admixture expansion properties.
6. Agitate the grout continuously until it is pumped.
7. Do not add water to increase grout flowability that has decreased because grout use is delayed.

The Engineer may determine grout pumppability according to the ASTM C 939. When using this method, efflux time for the grout sample immediately after mixing must be at least 11 seconds.

L. Prepare Ducts for Grouting

Prepare the ducts for grouting by flushing the metal ducts as determined by the Engineer.

1. Use water to flush ducts that contains at least 0.1 lb/gal (10 g/L) of slaked lime (calcium hydroxide) or quicklime (calcium oxide).
2. Use oil-free compressed air to blow out ducts.
M. Grout the Duct

Bond prestressing steel to the concrete by filling the space between the duct and the tendon with grout.

Grout the duct as follows:

1. Open the grout and vent openings.
2. Ensure that the pumping pressure at the tendon inlet does not exceed 250 psi (2 MPa) gauge.
3. Allow grout to flow from the first vent after the inlet pipe to remove residual flushing water or entrapped air.
4. Once water or air is removed, cap or otherwise close the vent. Close the remaining vents in sequence in the same manner.
5. If the grouting pressure exceeds 250 psi (2 MPa) gauge, inject grout at a vent that has been or is ready to be capped.
 a. Maintain a one-way grout flow while injecting.
 b. Fit the vent used for injection with a positive shutoff.
 c. If a one-way flow of grout cannot be maintained, immediately flush the grout out of the duct with water.
6. Pump grout through the duct and waste it continuously at the outlet pipe until the following happens:
 □ No visible slugs of water or air are ejected.
 □ The efflux time of the ejected grout is at least 11 seconds.
7. To ensure that the duct remains filled with grout:
 a. Close the outlet.
 b. Hold pumping pressure for an additional 15 seconds and then close the inlet.
 c. Do not remove or open plugs, caps, or valves used to close off the outlet or inlet until the grout has set.

N. Place Rust Inhibitor

If prestressing and grouting are not completed within 10 consecutive days after installing steel strands in the ducts (or within 30 days in the case of bars), use rust inhibitor in the ducts.

Prestressing steel installed but not grouted within the specified number of consecutive days is subject to the limits in Subsection 509.3.06.C, “Rust Limits.” If the Engineer directs, remove rejected tendons at no cost to the Department.

Do not reuse prestressing steel that has been detensioned. Replace detensioned prestressing steel.

O. Paint Steel Parts

Paint steel parts exposed in the completed structure as follows:

1. Field clean the parts according to Subsection 535.3.03.A, “Clean New Steel Structures.”
2. Field paint the parts according to System IV of Section 535.
3. Paint the ends of strands according to System IV of Section 535.

509.3.06 Quality Acceptance

A. For Prestressing Concrete Bridge Members

Use grout that has a minimum compressive strength of 3,000 psi (20 MPa) at 28 days, as determined by ASTM C 109.

B. Tendon Standards

Individual wires in a 7-wire strand or wires in a parallel wire tendon may fail if the total area of wire failure is not more than 2 percent of the total cross-sectional area of tendons in any member.

Failure of an entire strand will be subject to structural review.

C. Rust Limits

Prestressing steel will be rejected when:

□ The opened package (pak) of prestressing steel has an even coating of rust or rust film over the entire pak.
□ One or more wires in a strand are rusted throughout their length.
□ A length of strand or bar contains clinging rust, pits, or other faults.

Prestressing steel will be accepted when:

□ Rust film can be removed by light rubbing, leaving light streaks or spots but no pitting.
Rust forms during the 10 consecutive days (or 30 consecutive days for bars) between the installation of steel in the ducts and the prestressing and grouting.

509.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

509.4 Measurement
Prestressing cast-in-place concrete is measured as an accepted lump quantity, complete in place.

The Contract Lump Sum price paid for prestressing cast-in-place concrete will be full compensation for the following:

- Furnishing labor, materials, tools, equipment, and incidentals
- Doing Work to furnish, place, and tension the prestressing steel in cast-in-place concrete structures complete in place and as specified on the Plans and in these Specifications

509.4.01 Limits

A. Tests
Tests performed by the Contractor will not be paid for separately but will be considered incidental to the project.

No additional payment will be made for testing prestressing anchorage blocks. Costs associated with performing the test, including materials, equipment, and labor, will be included in the bid price for prestressing.

B. Additional Compensation

No additional compensation will be made for the following:

- Furnishing and placing additional deformed bar reinforcing steel, ducts, anchoring devices, saddles, distribution plates or assemblies, and incidental parts
- Furnishing samples for testing
- Performing testing
- Grouting recesses
- Pressure grouting ducts

Full compensation will be included in the Contract Lump Sum price paid for prestressing cast-in-place concrete.

509.5 Payment
Payment will be made under

| Item No. 509 | Prestressing cast-in-place concrete, Bridge No. ____ | Per lump sum |

509.5.01 Adjustments
General Provisions 101 through 150.

Section 510—Protective Platforms

510.1 General Description
This work consists of furnishing materials, erecting, maintaining, removing, and disposing of protective platforms that provide additional safety for underpassing traffic during construction of grade separation structures.

510.1.01 Definitions
General Provisions 101 through 150.

510.1.02 Related References
General Provisions 101 through 150.

510.1.03 Submittals
A. Location of Vertical Clearance Signs

The Engineer will approve the exact location of vertical clearance signs.
510.2 Materials
General Provisions 101 through 150.

510.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

510.3 Construction Requirements

510.3.01 Personnel
General Provisions 101 through 150.

510.3.02 Equipment
General Provisions 101 through 150.

510.3.03 Preparation
General Provisions 101 through 150.

510.3.04 Fabrication
General Provisions 101 through 150.

510.3.05 Construction
Construct and maintain the protective platform so that no object or liquid will fall from the bridge superstructure or the platform to the roadway below. This protection is the Contractor’s liability and responsibility.

Place protective platforms under spans that pass over pedestrian or vehicular traffic lanes. Place the platforms immediately after setting the beams and before working on the span.

Place the platforms immediately after the beams are set and before performing other work on the span.

A. Meet Platform Specifications

Construct protective platforms to meet the following specifications:

1. Platforms shall extend at least 3 ft (1 m) beyond each side of the outside limits of the structure.
2. Platforms shall completely cover the length of the spans over the traveled ways.
3. Platforms shall maintain the minimum vertical clearance shown on the Plans over the traffic lanes.

B. Construct and Remove Protective Platforms

Construct and remove the platforms as follows:

1. Post W 12-2 signs stating “Low Clearance, (the dimension shown on the Plans)” in the following locations so traffic approaching the bridge site from both directions can see them.
 - Approximately 500 and 1,000 ft (150 and 300 m) from each side of the bridge
 - On the exterior sides of the bridge superstructure
2. Construct the protective platforms to meet the specifications listed in Subsection 510.3.05.A, “Meet Platform Specifications” and follow these requirements:
 a. Keep protective platforms in place until all superstructure work, including painting, final rubbing, and clean-up, is complete.
 b. If the platforms fail to provide the required protection, stop operations on the spans affected and take remedial action. Do not begin operations again until the platforms are repaired.
3. Remove the protective platforms and the W 12-2 signs.
 The platforms remain the Contractor’s property.

C. Consider Other Protective Platforms

The following may be considered satisfactory protective platforms under the following conditions:

1. Stay-in-Place Metal Deck Forms. Stay-in-place metal deck forms are satisfactory protective platforms between girders.
 Below the deck-form elevation, however, protective platforms are required for edge beam, diaphragm, or other construction.
2. Precast, Prestressed Concrete Deck Panels. Precast, prestressed concrete deck panels are satisfactory protective platforms under the same conditions as stay-in-place metal deck forms.
3. Overhang Brackets. Overhang brackets are satisfactory protective platforms under the following conditions:
 a. The brackets are floored at least 12 in (300 mm) beyond the outside edge of a slab with a handrail.
 b. The brackets have a 8 in (200 mm) curb board.
 c. The Contractor uses temporary mobile or hanging protective platforms when erecting and removing the overhang from the work.

510.3.06 Quality Acceptance
A. Enforcing Compliance
 If the Contractor fails to comply with the requirements in this Specification, the Engineer will shut down the Contractor’s operations. The Engineer may also withhold any monies until these requirements are met.

510.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

510.4 Measurement
This work is not measured separately for payment.
510.4.01 Limits
General Provisions 101 through 150.

510.5 Payment
The cost of protective platforms will be included in the overall bid submitted. This price includes furnishing materials and erecting, maintaining, removing, and disposing of the platforms.

510.5.01 Adjustments
General Provisions 101 through 150.

Section 511—Reinforcement Steel

511.1 General Description
This work consists of furnishing and placing bar reinforcement steel and superstructure reinforcement steel.

511.1.01 Definitions
General Provisions 101 through 150.

511.1.02 Related References
A. Standard Specifications
 Section 853—Reinforcement and Tensioning Steel
B. Referenced Documents
 QPL 12
 QPL 19
 ASTM A 615/A 615M
 ASTM A 153/A 153 M
 ASTM D 570
 ASTM D 1248
 Manual of Standard Practice prepared by the Concrete Reinforcing Steel Institute and the Western Concrete Reinforcing Steel Institute
511.1.03 Submittals

A. Mill Orders and Shipping Statements

Furnish three copies of mill orders and shipping statements for fabricated reinforcement steel bars, both black and epoxy, to the Office of Materials and Research. The purchase orders shall include the following:

- Complete State Project number, including the name(s) of the county(ies)
- Company name and order number of the Contractor
- Name and address of the fabricator
- Bar sizes and total weight

B. Bar Lists and Calculated Weights

Furnish the Engineer with copies of the fabricator’s bar lists and calculated weights. The Engineer will compare these copies to the Plan quantity.

511.2 Materials

A. Bar Supports Requirements

Bar reinforcement shall meet the requirements of the following Specification, unless specified otherwise on the Plans or in the Special Provisions. For a list of bar support sources, see QPL 19.

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Bars for Concrete Reinforcement</td>
<td>853.2.01</td>
</tr>
</tbody>
</table>

1. Wire Supports

Make wire bar supports from one of the following materials:

a. Galvanized Wire: Use cold-drawn wire that is hot-dipped and zinc-coated to meet the requirements of ASTM A 153/A 153 M, Table 1, Class D, Weights of Zinc Coatings.

b. Stainless Wire

1) For nominal heights of 3-1/2 in (90 mm) and under, the legs may be fabricated from cold-drawn, weldable, stainless steel wire containing at least 16 percent chromium. Ensure that the wire provides a minimum tensile strength of 85,000 psi (585 MPa) for bolsters and of 100,000 psi (690 MPa) for high chairs.

2) For nominal heights exceeding 3-1/2 in (90 mm), the legs may be fabricated from cold-drawn, carbon steel wire (non-stainless steel) with stainless steel extensions attached to the bottom of each leg.

c. Bright Basic Wire: You may use bright basic wire (no corrosion protection) for any support placed at least 3/4 in (20 mm) clear from a formed surface. Use the same wire sizes as that specified for galvanized wire in Subsection 511.2.A.1.a, “Galvanized Wire” above.

d. Plastic Protected: For bar supports that come in contact with a removable form, use cold-drawn, carbon steel wire. Protect the wire with plastic and use only in these types of bar support configurations: SB, BB, JC, HC, BC, and CHC (see)

1) If using Plastisol for dipping, ensure that it meets the following criteria:

- Tensile strength: 1,500 to 2,000 psi (10 to 13.5 MPa)
- Shore A hardness: 80 to 100 durometers

2) If molding plastic legs of polyethylene to the top wire, use polyethylene that meets ASTM D 1248.

e. Epoxy Powder Coated Wire: Use epoxy powder that has satisfactory flexibility, adhesion, and does not conduct electrical current.

f. Plastic Supports: Plastic bar supports may be fabricated from virgin or recycled plastic. Supports shall be molded into a configuration that does not restrict concrete flow and consolidation around and under the supports. The supports shall be able to withstand a load of 300 lbs. (660 kg) without exhibiting any breakage or visible deformation. When tested according to ASTM D 570, the water absorption shall not exceed 0.1%.

g. Mortar Blocks: Precast mortar blocks used as spacers and supports shall be made of cement and concrete sand with a 1:2 cement-sand ration and shall have wires cast into them for fastening to the steel. Support faces shall be approximately parallel and smooth. The blocks shall be moist cured for a minimum of three (3) days.
2. **Tie Wire**
 Use at least No. 16 gauge, black, soft iron wire to tie bar reinforcement steel.

B. Fabrication

Comply with the following requirements:

1. **Bar Supports.** Fabricate all wire bar supports as per the illustrations given in Table 1.
 a. **Stainless Wire**
 For nominal heights exceeding 3.5 in (90 mm), attach stainless steel extensions to the bottom of each leg. Design the leg extensions so that no portion of the carbon steel wire will be unprotected closer than 3/4 in (20 mm) from the form surface.
 b. **Plastic Protected**
 Apply plastic protection by dipping the bar support in plastic or by molding legs to the top wire.
 1) Apply a plastic coat at least 3/32 in (2.4 mm) thick at points of contact with the form.
 2) Extend the plastic upward on the wire to a point at least 1/2 in (13 mm) above the form.
 3) Turn up all legs on wire bar supports at least 1/8 in (3 mm).
 c. **Epoxy Powder Coated Wire**
 Apply an epoxy powder coat at least 0.006 in (0.15 mm) thick.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bar Support Illustration</th>
<th>Type of Support</th>
<th>Nominal Height</th>
<th>Minimum Wire Sizes (Type of Steel)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carbon Top</td>
<td>Carbon Legs</td>
</tr>
<tr>
<td>SB</td>
<td>*</td>
<td>Slab Bolster</td>
<td>All</td>
<td>No. 4 Corrugated</td>
<td>No. 6</td>
</tr>
<tr>
<td>SBU</td>
<td>*</td>
<td>Slab Bolster Upper</td>
<td>All</td>
<td>No. 4 Corrugated</td>
<td>No. 6</td>
</tr>
<tr>
<td>BB</td>
<td>*</td>
<td>Beam Bolster</td>
<td>Up to 1 ½ (40 mm) incl.</td>
<td>No. 7</td>
<td>No. 7</td>
</tr>
<tr>
<td>BBU</td>
<td>*</td>
<td>Beam Bolster Upper</td>
<td>Up to 2 in (50 mm) incl.</td>
<td>No. 7</td>
<td>No. 7</td>
</tr>
<tr>
<td>BC</td>
<td>*</td>
<td>Individual Bar Chair</td>
<td>All</td>
<td>No. 7</td>
<td>No. 9</td>
</tr>
<tr>
<td>JC</td>
<td>*</td>
<td>Joist Chair</td>
<td>All</td>
<td>Ň</td>
<td>No. 6</td>
</tr>
<tr>
<td>HC</td>
<td>*</td>
<td>Individual High Chair</td>
<td>Up to 3 ½ in (90 mm) incl.</td>
<td>Ň</td>
<td>No. 4</td>
</tr>
<tr>
<td>HCM</td>
<td>*</td>
<td>High Chair for Metal Deck</td>
<td>2 – 5 in (50 - 125 mm) incl.</td>
<td>Ň</td>
<td>No. 4</td>
</tr>
<tr>
<td>CHC</td>
<td>*</td>
<td>Continuous High Chair</td>
<td>2 – 3 ½ (50 - 90 mm) incl.</td>
<td>No. 2</td>
<td>No. 4</td>
</tr>
<tr>
<td>CHCU</td>
<td>*</td>
<td>Continuous High Chair Upper</td>
<td>2 – 5 in (50 - 125 mm) incl.</td>
<td>No. 2</td>
<td>No. 4</td>
</tr>
<tr>
<td>CHCM</td>
<td>**</td>
<td>Continuous High Chair for Metal Deck</td>
<td>Up to 2 in (50 mm) incl.</td>
<td>No. 4</td>
<td>No. 2</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>-------------------------------------</td>
<td>-------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>UJC</td>
<td>**</td>
<td>Upper Joist Chair</td>
<td>-1 to + 3 1/2 in (-25 to +90 mm) incl. (measured from form to top of middle portion of saddle bar) in 1/4 in (6 mm) increments</td>
<td>No. 13 Bar or 1/2 in (13 mm)</td>
<td>No. 2</td>
</tr>
<tr>
<td>CS</td>
<td>**</td>
<td>Continuous Support</td>
<td>1 1/2 - 5 in (40 - 125 mm) incl.</td>
<td>No. 8</td>
<td>No. 6</td>
</tr>
</tbody>
</table>

If the top wire on continuous supports are not designated as corrugated, the Manufacturer may use either straight or corrugated wire.

* Refer to the Manual of Standard Practice prepared by the Concrete Reinforcing Steel Institute and the Western Concrete Reinforcing Steel Institute for bar support illustrations.

** To provide adequate stability against overturning, make the leg spread measured between points of support on the minor axis of the support at least 70 percent of the nominal height.

*** To provide adequate stability against overturning, make the leg spread measured between points of support on the minor axis of the support at least 55 percent of the nominal height.

**** To provide adequate stability against overturning and to provide adequate load capacity, make the leg spread measured between points of support on the minor axis of the support be between the minimum and maximum percentages of the nominal height, as shown:

<table>
<thead>
<tr>
<th>Nominal Height, in. (mm)</th>
<th>Distance Between Supports, % of Nominal Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 4 in (100)</td>
<td>Minimum</td>
</tr>
<tr>
<td>4 in (100)</td>
<td>70</td>
</tr>
<tr>
<td>6 in (150)</td>
<td>70</td>
</tr>
<tr>
<td>8 in (200)</td>
<td>65</td>
</tr>
<tr>
<td>10 in (250)</td>
<td>60</td>
</tr>
<tr>
<td>12 in (300)</td>
<td>55</td>
</tr>
<tr>
<td>Over 12 in (300)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
</tr>
<tr>
<td></td>
<td>No limit</td>
</tr>
<tr>
<td></td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>
2. Reinforcement Steel. Fabricate reinforcement steel bars in the planes they were designed for and to the tolerances specified in the Fabrication Tolerances illustration (Figure 1).

Bar dimensions shown on the Plans are out-to-out unless otherwise noted on the Plans. The maximum allowable deviations out of the design plane are as follows:

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>Allowable Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 7 (22 m) bars and under</td>
<td>1/2 in (13 mm)</td>
</tr>
<tr>
<td>No. 8 (25 m) bars and over</td>
<td>1 in (25 mm)</td>
</tr>
</tbody>
</table>

Bend the reinforcement steel to the shapes and dimensions specified on the Plans. Do not rebend and use bars that have been rejected.

Hooks and bends shall comply with the Manual of Standard Practice, prepared by the Concrete Reinforcing Steel Institute and the Western Concrete Reinforcing Steel Institute, unless otherwise shown on the Plans.

C. Acceptance

1. Plastic Protected Bar Supports

 If using Plastisol, test the tensile strength of 1,500 to 2,000 psi (10 to 13.5 MPa) and the Shore A hardness of 80 to 100 durometers.

 a. Test the insolubility of the Plastisol by immersing it in methyl-ethyl-ketone (MEK commercial grade 100 percent solution) for one hour.

 b. Use the “Performance Test Procedure for Plastic Protected Bar Supports” in the CRSI Manual of Standard Practices. Ensure that the plastic does not deform permanently when heated to 170 °F (77 °C).
c. Reject any material that shows metal exposed at points of contact after being heated.
d. Reject any material that shatters or severely cracks under an impact loading subjected at 5 °F (−15 °C). Reject any plastic on the fabricated unit that chips, cracks, or peels under ordinary job conditions.

D. Materials Warranty

511.2.01 Delivery, Storage, and Handling

After reinforcement steel is fabricated by one of the steel fabricators listed on QPL 12, handle and store it as follows:

- Load, transport, unload, and handle reinforcement steel in a way that prevents damage.
- Block unloaded reinforcement steel off the ground and store it in piles separated by size and type.
- Protect reinforcement steel from the weather if prolonged exposure is expected and the Engineer requires the protection.

511.3 Construction Requirements

511.3.01 Personnel

511.3.02 Equipment

511.3.03 Preparation

Before placing reinforcement, clean off loose mill scale, rust scale, and coatings that will destroy or materially reduce the bond.

511.3.04 Fabrication

511.3.05 Construction

Bar schedules are shown on the Plans as a service. The Contractor is responsible for conforming to the Plan details. If there is a discrepancy between Plan details and bar schedules, the Plan details take precedence.

Space reinforcement steel within permissible tolerances. Tie and support the reinforcement steel so it cannot move during concrete placement.

Twist bar ties at least two full turns. The Engineer may require double bar ties if single bar ties do not keep the bar reinforcing steel secure under construction traffic.

Tie epoxy-coated reinforcement steel with the epoxy-coated or plastic-coated tie wire specified in Section 853.

Use the following placing requirements:

A. Footing Reinforcement Steel

1. Footing Ties. Tie mat steel at each intersection on the outer edges and at alternate intersections within the mat.
2. Footing Steel Support. Support mat steel using precast blocks with the maximum dimensions of 4 in x 4 in (100 mm x 100 mm) Plan clearance. Fasten the precast blocks with cast-in wires.
 Steel may be supported by other satisfactory means approved by the Engineer. Do not use rocks or random pieces of broken concrete to support steel.
3. Footing Steel Tolerances. Place mat steel within 1/2 in (15 mm) vertically from the bottom clearance and 1 in (25 mm) from the side clearance. Do not deviate more than 1 in (25 mm) from the location indicated on the Plans as seen in the Plan view.

B. Column and Wall Dowel Bars

1. Dowel Bar Position. Position dowel bars so the column bars or vertical wall bars can be spliced and tied in the location the Plan specifies.
2. Dowel Bar Support. Before pouring concrete in any footing, do the following:
 a. Place dowel bars.
 b. Construct a rigid template across the top of the footing to support the dowel bars.
c. Attach dowel bars to the template so they cannot move during concrete placement.
d. Do not push dowel bars into wet concrete after placing the concrete.

3. Dowel Bar Tolerances. Place dowel bars within 1/2 in (15 mm) of Plan location. Do not deviate more than 1/4 in (6 mm) on the side clearance.

C. Column Reinforcement Steel

1. Column Steel Support. Space steel off side forms using precast blocks with maximum dimensions of 2 in x 2 in x Plan clearance (50 mm x 50 mm). Fasten the blocks with cast-in wires.

2. Vertical Bar Tolerances. Place vertical bars within 1/2 in (15 mm) of the location indicated on the Plan. Do not deviate more than 1/4 in (5 mm) on the side form clearance.

3. Hoop Tolerances. Place hoops within 1 in (25 mm) of specified locations. Do not deviate more than 1/4 in (6 mm) on the side form clearance.

4. Hoop Ties. Tie hoops as follows:
 a. Tie hoops at intersections with dowel bars and corner vertical bars.
 b. Tie other vertical bars to at least every third hoop on a staggered basis, both vertically and horizontally.

D. Wall Reinforcement Steel

1. Wall Steel Support. Space steel and mat supports as follows:
 a. Space steel off side forms using precast blocks with maximum dimensions of 2 in x 2 in x Plan clearance (50 mm x 50 mm). Fasten the blocks with cast-in wires.
 b. Space mat steel using satisfactory spacing devices approved by the Engineer between wall mats. Ensure that the spacing devices provide enough space between steel mats according to the Plans.

2. Wall Bar Tolerances. Space wall bars within 1 in (25 mm) for any bar. Do not allow the tolerance to accumulate causing an omission of bars. Do not deviate more than 1/4 in (6 mm) on the side form clearance.

Shift bars more than the tolerance only when necessary to clear a fixture. Do not reduce the number of bars specified for the pour. Place any remaining bars on either side of the fixture to the spacing specified on the Plans and to the tolerance specified in the previous paragraph.

3. Wall Ties. Tie wall steel as follows:
 a. Tie steel at each intersection on the outer edges and at every third intersection within the mat.
 b. For large walls, tie steel at alternate intersections or at each intersection, if necessary.
 c. Check for bar displacement after the initial tying and correct it before pouring concrete.

E. Beam and Cap Reinforcement Steel

1. Beam and Cap Steel Support. Support beam and cap steel as follows:
 a. Space upper main longitudinal steel (located below the top bars) vertically using precast blocks with maximum dimensions of 2 in x 2 in x Plan clearance (50 mm x 50 mm). Fasten the blocks with cast-in wires.
 b. Maintain side form clearance using precast blocks with maximum dimensions of 2 in x 2 in x Plan clearance (50 mm x 50 mm). Fasten the blocks with cast-in wires.
 c. Maintain bottom clearances using approved beam bolsters (see symbol “BB” on the Table of Bar Support Designation Requirements (Table 1).
 d. Support additional layers of main longitudinal bottom steel in beams and caps that are not bundled from the lower layers with upper beam bolsters placed directly over lower supports. Refer to symbol “SBU” on the Table of Bar Support Designation Requirements (Table 1).
 e. Space beam bolsters no more than 2 ft (600 mm) from the end of a beam or cap. Additional bolsters will be required at a maximum spacing of 4 ft (1.2 m).

2. Beam and Cap Steel Tolerances. Place the bottom and top clearance of a layer of main longitudinal steel within 1/4 in (6 mm) of the Plan vertical dimension for that layer. Do not deviate more than 1/2 in (15 mm) on side form clearance.

Place each stirrup within 1 in (25 mm) of its specified location.

If transverse spacing is not specified on the Plans, ensure that the main steel in beams and in tops and bottom of caps has at least 2 in (50 mm) horizontal clearance between bars.

3. Beam and Cap Steel Ties. Tie beam and cap steel as follows:
 a. Tie intersecting bars.
b. Ensure that ties on bundled bars are spaced no more than 6 ft (1.8 m) apart.
c. Ensure that bundled bars have at least three ties per bundle.

F. Box Culvert Slabs

1. Box Culvert Slab Support. Support box culvert slabs as follows:
 a. Support walls. Place steel supports according to the requirements for walls in Subsection 511.3.05.D, “Wall Reinforcement Steel.”
 b. Support bottom slabs. Place supports for single mat steel or for bottom mat steel according to the requirements for footings in Subsection 511.3.05.A, “Footing Reinforcement Steel.”

 If more than one mat of steel is required by the Plans, support the top mat from the bottom mat using upper beam bolsters (SBU) or other satisfactory means approved by the Engineer.
 c. Support top slabs. Support the top mat steel of top slabs using either of the following:
 □ Continuous high chairs placed near each end of the top bends of truss bars. Refer to symbol “CHC” on the Table of Bar Support Designation Requirements (Table 1).
 □ Individual high chairs at a maximum longitudinal spacing of 4 ft (1.2 m). Refer to symbol “HC” on the Table of Bar Support Designation Requirements (Table 1).

 Support the bottom mat steel of top slabs as follows:
 1) Use slab bolsters spaced approximately 12 in (300 mm) from the inside faces of walls. Refer to symbol “SB” on the Table of Bar Support Designation Requirements (Table 1)
 2) Additional bolsters will be required along the length of the slab at a maximum spacing of approximately 4 ft (1.2 m) to maintain the bottom clearance.
 3) The Contractor may support bottom mats using precast blocks spaced approximately 4 ft (1.2 m) (maximum) in any direction.

 Blocks shall have maximum dimensions of 2 in x 2 in x Plan clearance (50 mm x 50 mm). Fasten the blocks with cast-in wires.

 If the Engineer determines that precast blocks do not provide proper support and maintain bottom clearances, use slab bolsters. Refer to symbol “SB” on the Table of Bar Support Designation Requirements (Table 1).

2. Box Culvert Slab Tolerances. Place bar reinforcing steel in the walls according to the tolerance requirements in Subsection 511.3.05.D.2, “Wall Bar Tolerances.”

 Place top and bottom slab reinforcing bar mats according to the tolerances specified in Subsection 511.3.05.G.6, “Bridge Deck Slab Tolerances.”

3. Box Culvert Slab Ties. For top and bottom slabs, tie the reinforcing steel in each layer at the following locations:
 □ Each intersection on the outer edges
 □ Every third intersection within the mat

G. Bridge Deck Slabs

1. Bridge Deck Slab Bottom Mat Support—Slab Bolsters. Support bridge deck slab bottom mat reinforcing with slab bolsters as follows:
 a. Use lines of longitudinal slab bolsters. Refer to symbol “SB” on the Table of Bar Support Designation Requirements (Table 1).
 b. Ensure that slab bolsters that contact the forms are corrosion resistant.
 c. Place slab bolsters along both sides of each beam approximately 6 in (150 mm) to 12 in (300 mm) from the beam edges.
 d. If the spacing between the lines of bolsters exceeds 4 ft (1.2 m), place an additional row or rows of bolsters parallel to and in between the lines of bolsters so the maximum spacing between the lines of bolsters does not exceed 4 ft (1.2 m).
 e. If the reinforcement extends 12 in (300 mm) or more past bolsters on curb or median overhangs, place an additional row of bolsters approximately 4 in (100 mm) from the end of the reinforcement.
 f. On skewed bridges where main (transverse) deck steel is not placed parallel to skew, support discontinuous ends of cutoff transverse bars using slab bolsters. Refer to symbol “SB” on the Table of Bar Support Designation Requirements (Table 1). Place bolsters parallel to skew and as close to the cut ends of bars as possible.
2. Bridge Deck Slab Bottom Mat Support—Precast Blocks. The Contractor may support bottom mat reinforcing in the panels between beams using precast blocks instead of slab bolsters as follows:
 a. Use precast blocks with maximum dimensions of 2 in x 2 in x Plan clearance (50 mm x 50 mm).
 b. Fasten the blocks with cast-in wires.
 c. Space the blocks a maximum of 3 ft (1 m) longitudinally.
 d. Space the blocks transversely according to the requirements for slab bolsters described in Subsection 511.3.05.G.1, “Bridge Deck Slab Bottom Mat Support—Slab Bolsters,” steps c, d, and e.
 e. If precast blocks do not adequately support the reinforcing steel, use slab bolsters. Refer to symbol “SB” on the Table of Bar Support Designation Requirements (Table 1).

3. Bridge Deck Slab Top Mat Support Using Continuous High Chairs
 Support top mat reinforcing steel with continuous high chairs as follows, except as noted in Alternate 1 and Alternate 2. Refer to symbol “CHC” on the Table of Bar Support Designation Requirements (Table 1).
 a. Use a line of longitudinal continuous high chairs. Refer to symbol “CHC” on the Table of Bar Support Designation Requirements (Table 1).
 b. Place the continuous high chairs 6 in (150 mm) from the edge along both sides of each beam. c.
 Place another line of continuous high chairs 6 in (150 mm) from each outside edge of the slab.
 d. If the spacing between the lines of continuous high chairs exceeds 4 ft (1.2 m), place an additional row or rows of continuous high chairs so the maximum spacing between the lines of continuous high chairs does not exceed 4 ft (1.2 m). Refer to symbol “CHC” on the Table of Bar Support Designation Requirements (Table 1).

4. Bridge Deck Slab Top Mat Support Using Alternate 1. When truss bars are used for main slab transverse reinforcing, support top mat steel using individual high chairs as follows:
 a. Place individual high chairs in a line 6 in (150 mm) from the edges along both sides of each beam. Refer to symbol “HC” on the Table of Bar Support Designation Requirements (Table 1).
 b. Place another line 6 in (150 mm) from each outside edge of the slab.
 Maximum spacing for individual high chairs is 3 ft (1 m) longitudinally and 4 ft (1.2 m) transversely.

5. Bridge Deck Slab Top Mat Support Using Alternate 2. When truss bars are not used for main slab transverse reinforcing, support top mat steel using continuous high chairs upper as follows:
 a. Place lines of longitudinal continuous high chairs upper, directly over the lines of longitudinal slab bolsters that support the bottom mat steel. Refer to symbols “CHCU” and “SB” on the Table of Bar Support Designation Requirements (Table 1).
 b. On skewed bridges where main (transverse) deck steel is not placed parallel to skew, support discontinuous ends of cutoff transverse bars using continuous high chairs (CHC) placed parallel to skew as close to the cut ends of bars as possible.
 c. On bridges skewed less than 75 degrees, place an additional No. 5 (16M) bar parallel to the skew for the full deck width and as close as possible to the deck joint. Securely tie this bar to the following to maintain correct bar mat location:
 - The underside of the top mat of reinforcing steel
 - The forms
 - The supports (beams)
 - Both forms and supports (beams)
 d. When using prestressed concrete deck panels, securely tie the top mat of bar reinforcing steel to each shear bar and pick-up loop in the panels. This keeps the top bar reinforcing mat in the correct vertical position.

6. Bridge Deck Slab Tolerances. Bridge deck slab tolerances are as follows:
 a. Top and Bottom Mat. Top and bottom clearances for reinforcement steel mats shall be within 1/4 in (6 mm) of the dimension shown on the Plans.
 Do not deviate horizontal spacing or end and edge clearances of the mats more than 1/2 in (15 mm) from the spacing shown on the Plans.
 b. Curb and Sidewalk Bar. Place curb and sidewalk bars within 1/2 in (15 mm) in all directions of the Plan dimension.
c. Truss Bar. If using truss bars in the bridge deck, raise the bar to meet the top clearance specified on the Plans. Do not deviate from the bottom clearance specified on the Plans.

7. Bridge Deck Slab Bottom Mat Ties. Tie reinforcing steel as follows:
 a. Tie the steel at each intersection of the outer edges and every third intersection within the mat unless the steel is coated with epoxy.
 b. Tie epoxy-coated reinforcing steel at every other intersection within the mat.

8. Bridge Deck Slab Top Mat Ties. Tie reinforcing steel as follows:
 a. Tie the steel at each intersection on the outer edges and every other intersection within the mat unless the steel is coated with epoxy.
 b. Tie epoxy-coated reinforcing steel at every intersection.

H. Reinforcement Steel Splices

Furnish reinforcement steel in the full lengths shown on Plans. Splice as shown on the Plans. Do not make other splices unless approved by the Engineer.

Place bars in continuous contact on lapped splices. Wire the bars together to maintain a clearance not less than the minimum clear distance to other bars and to the surface of the concrete.

Splice length shall be at least 12 in (300 mm) on No. 4 (13M) longitudinal bars for cast-in-place box culverts, unless indicated otherwise on the Plans.

I. Reinforcement Steel Welds

Weld reinforcement steel only where shown on Plans.

J. Minimum Steel Spacing Requirements

The minimum spacing limitations are as follows unless shown otherwise on the Plans.

<table>
<thead>
<tr>
<th>Clear Distance Between Parallel Bars</th>
<th>Cast-in-Place Concrete</th>
<th>Precast Concrete</th>
<th>Manufactured Under Plant Control Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 bar diameters</td>
<td>1 bar diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 times the maximum size of the coarse aggregate</td>
<td>1-1/3 times the maximum size of the coarse aggregate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/2 in (40 mm)</td>
<td>1 in (25 mm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

511.3.06 Quality Acceptance

Place reinforcement steel and have it inspected and approved by the Engineer before placing concrete.

If this requirement is violated, the Engineer may reject the concrete and require the Contractor to remove it.

511.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

511.4 Measurement

This work is measured for payment as an accepted lump quantity or in pounds (kilograms) of accepted bar reinforcement steel, whichever is shown on the Plans. The Department reserves the right to revise bar reinforcement steel quantities to correct errors and reflect changes on the Plans.

- **Payment Per Lump Sum**
 The quantity of bar reinforcing steel measured for payment per Lump Sum basis shall conform to the Plan details and will include reinforcement in concrete handrailings, concrete parapets, and barriers.

- **Payment Per Pound (Kilogram)**
 The quantity of bar reinforcing steel measured for payment per pound (kilogram) in bridges and concrete box culverts will be the algebraic sum of the base pay quantity and authorized quantity changes.
Reinforcement bar weight calculations will be made using the theoretical unit weight in pounds (kilograms) per foot (meter) for deformed bars as shown in the table of Deformed Bar Designation Numbers, Units Weights, and Nominal Dimensions (Table 2). This table is taken from ASTM A 615.

Lengths of bent bars will be the sum of the component sections of the bars as shown on the Plans.

Table 2—Deformed Bar Designation Numbers, Unit Weights, and Nominal Dimensions

<table>
<thead>
<tr>
<th>Bar Designation No.*</th>
<th>Unit Weight lb/ ft (kg/m)</th>
<th>Diameter in (mm)</th>
<th>Cross-sectional Area, in² (mm²)</th>
<th>Perimeter in (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (10M)</td>
<td>0.376 (0.560)</td>
<td>0.375 (9.5)</td>
<td>0.11 (71)</td>
<td>1.178 (29.9)</td>
</tr>
<tr>
<td>4 (13M)</td>
<td>0.688 (0.994)</td>
<td>0.500 (12.7)</td>
<td>0.20 (129)</td>
<td>1.571 (39.9)</td>
</tr>
<tr>
<td>5 (16M)</td>
<td>1.043 (1.552)</td>
<td>0.625 (15.9)</td>
<td>0.31 (199)</td>
<td>1.963 (49.9)</td>
</tr>
<tr>
<td>6 (19M)</td>
<td>1.502 (2.235)</td>
<td>0.750 (19.1)</td>
<td>0.44 (284)</td>
<td>2.356 (59.8)</td>
</tr>
<tr>
<td>7 (22M)</td>
<td>2.044 (3.042)</td>
<td>0.875 (22.2)</td>
<td>0.60 (387)</td>
<td>2.749 (69.8)</td>
</tr>
<tr>
<td>8 (25M)</td>
<td>2.670 (3.973)</td>
<td>1.000 (25.4)</td>
<td>0.79 (510)</td>
<td>3.142 (79.8)</td>
</tr>
<tr>
<td>9 (29M)</td>
<td>3.400 (5.060)</td>
<td>1.128 (28.7)</td>
<td>1.00 (645)</td>
<td>3.544 (90.0)</td>
</tr>
<tr>
<td>10 (32M)</td>
<td>4.303 (6.404)</td>
<td>1.270 (32.3)</td>
<td>1.27 (819)</td>
<td>3.990 (101.4)</td>
</tr>
<tr>
<td>11 (36M)</td>
<td>5.313 (7.907)</td>
<td>1.410 (35.8)</td>
<td>1.56 (1006)</td>
<td>4.43 (112.5)</td>
</tr>
<tr>
<td>14 (43M)</td>
<td>7.650 (11.38)</td>
<td>1.693 (43.0)</td>
<td>2.25 (1452)</td>
<td>5.32 (135.1)</td>
</tr>
<tr>
<td>18 (57M)</td>
<td>13.600 (20.24)</td>
<td>2.257 (57.3)</td>
<td>4.00 (2581)</td>
<td>7.09 (180.1)</td>
</tr>
</tbody>
</table>

*B) Numbers are based on the number of eighths-of-an-inch included in the nominal diameter of the bars. Metric equivalents are rounded to the nearest whole millimeter.

511.4.01 Limits

A. Construction of Minor Items

No separate measurement or payment will be made for the cost of bar reinforcement steel used in constructing minor items.

B. Prestressed Concrete Bridge Members

Bar reinforcement steel in prestressed concrete bridge members will be considered a component part of the members. The cost shall be included in the Contract Price for prestressed concrete bridge members.

C. Handrail End Posts

Reinforcement steel in handrail end posts that are a part of the superstructure or substructure will be considered part of the superstructure or substructure quantities.

D. Lap Splices

Extra reinforcement steel in lap splices permitted for convenience at splices not shown on the Plans will not be measured for payment.

511.5 Payment

This work will be paid for at the Contract Price per Lump Sum or per pound (kilogram) of bar reinforcement steel, each complete in place.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 511</th>
<th>Superstructure Reinforcement Steel—Bridge No._____</th>
<th>Per lump sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 511</td>
<td>Bar Reinforcement Steel</td>
<td>Per pound (kilogram)</td>
</tr>
</tbody>
</table>
511.5.01 Adjustments

A. Plan Quantities

Assume the burden of proof for errors of commission or omission in the Plan quantities.

The Department will not consider requests for additional monies because of Plan errors unless they are submitted with the bar lists and weights described in Subsection 511.1.03.B, “Bar Lists and Calculated Weights.” Projects involving multiple bridges or non-skewed concrete box culverts will be considered on an individual basis.

Quantities for bridges and concrete box culverts shown on the Contract Plans (including Standard Plans) will be considered the Base Pay Quantity. Calculated additions or deductions will be applied to the Base Pay Quantity when quantity changes authorized by the Engineer are made. Changes include, but are not limited to, the following:

- Raising or lowering foundations
- Lengthening or shortening concrete box culverts
- Correcting Plan quantity errors or placement details

B. Lump Sum Payment

When authorized quantity changes in the bar reinforcement Plan Quantity are made, Lump Sum payments will be adjusted on a pro-rata basis as follows:

1. If the calculated bar reinforcement weights furnished by the Contractor differ from the Plan Quantity by more than two percent, the Bridge Office will recalculate the plan quantity.

If the recalculated Plan Quantity differs by more than two percent from the original Plan Quantity, the Plan quantity will be revised by the Bridge Office to equal the recalculated quantity or the Contractor’s quantity, whichever is lower. The Lump Sum payment will be adjusted on a pro-rata basis.

When the Contractor exercises an optional feature of the Plans that results in the only increase or decrease to the Base Pay Quantity, there will be no increase or decrease in payment. However, if the two percent variation is being considered, the effects of the optional feature will favor the Department.

C. Prestressed Concrete Deck Panels

Payment for prestressed concrete deck panels will be 35 percent of the lump sum superstructure reinforcement steel price. Payment will be made after panels are placed.

Payment for post-tensioned box girder bridges will be 35 percent of the lump sum superstructure reinforcement steel price only for the reinforcement steel in the top slab of the box.

Section 512—Shear Connectors

512.1 General Description

This work consists of furnishing and welding shear connectors as shown on the Plans. This work is a Pay Item only when specified in the Contract.

512.1.01 Definitions

General Provisions 101 through 150.

512.1.02 Related References

A. Standard Specifications

Section 501—Steel Structures

B. Referenced Documents

ASTM A 709, Grade 36 (ASTM A 709M, Grade 250)

512.1.03 Submittals

General Provisions 101 through 150.
512.2 Materials
Materials shall meet the following requirements:

☐ Unless otherwise specified, channel type shear connectors shall be manufactured from structural steel meeting ASTM A 709, Grade 36 (ASTM A 709M, Grade 250).
☐ Use the stud type shear connectors of the size or diameter and length specified on the Plans. Do not paint or galvanize studs.
 Ensure that stud type shear connectors and the welding comply with Subsections 501.3.04.H, and 501.3.06.C, “Welded Construction.”

For a list of sources, see QPL 6.

512.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

512.3 Construction Requirements

512.3.01 Personnel
General Provisions 101 through 150.

512.3.02 Equipment
Ensure that equipment for welding, chipping, and oxygen cutting is designed, manufactured, and maintained so that qualified welders and welding operators can meet the Specification requirements.

512.3.03 Preparation
General Provisions 101 through 150.

512.3.04 Fabrication
General Provisions 101 through 150.

512.3.05 Construction

A. Fabricate Shear Connectors
 Fabricate shear connectors according to the Specifications and the Plan details.
 1. Channel Type Shear Connectors
 Length tolerances for cutting the channel type are plus 1/2 in (13 mm) and minus 1/4 in (6 mm).
 2. Stud Type Shear Connectors
 The stud length specified shall be the length after welding.

B. Construct Shear Connectors
 Shear connectors may be welded to the girder flanges’ beam either in the shop or at the site.
 In either case, ensure that shear connector welding and construction complies with Subsections 501.3.04.H, and 501.3.06.C, “Welded Construction,” the Plan details, and the following:
 1. Before welding, prepare shear connectors and base metal as follows:
 a. Clean the shear connectors and the base metal of rust, scale, oil, paint, and other harmful substances that would affect the welding operation and the bonding to concrete.
 If the connectors are excessively pitted or cannot be cleaned, they will be rejected.
 b. Wire-brush, peen, prick-punch, or grind the base metal where the shear connectors will be welded. Perform this step only when necessary to obtain satisfactory welds.
 2. Do not weld shear connectors when the temperature of the base metal is below 0 °F (-18 °C) or when the surface is wet or exposed to rain or snow.
 3. Install shear connectors as follows:
 a. Channel Type Shear Connectors
 Location tolerances for individual connectors are plus or minus 1/4 in (5 mm) from the Plan location. Place connectors at right angles to the beam flanges.
b. Stud Type Shear Connectors
 Install stud type shear connectors according to Subsections 501.3.04.I.2, “Paragraph 3.10.1” and 501.3.04.I.3, “Paragraph 4.30.1.”

C. Repair Defective Welds
 Repair defective welds, shear connectors, and base metals as follows:
 1. Channel Type Shear Connectors
 Repair channel type shear connectors as follows:
 a. Repair undersized but otherwise sound welds by bringing the weld up to size with additional welding.
 b. Repair undercut caused by the welding process by filling with additional weld metal.
 c. Repair unsound welds as follows:
 1) Remove the weld by chipping.
 2) If removing unsound welds damages the base metal, repair the base metal by welding and grinding before rewelding the shear connector.
 3) Replace the weld with sound welds.
 2. Stud Type Shear Connectors
 Repair stud type shear connectors according to Subsections 501.3.04.I.2, “Paragraph 3.10.1” and 501.3.04.I.3, “Paragraph 4.30.1.”

512.3.06 Quality Acceptance

A. Inspect Welds
 The Engineer will inspect and must approve shear connector welds before the Contractor encases them in concrete. The Engineer will inspect them as follows:
 1. Channel Type Shear Connectors
 The Engineer will visually inspect the welds to determine the following:
 - Welds are sound.
 - Welds are the size shown on the Plans.
 - Welds are the proper profile.
 If the Engineer finds defective welds, they shall be repaired at the Contractor’s expense as specified in Subsection 512.3.05.C, “Repair Defective Welds.”
 2. Stud Type Shear Connectors
 The Engineer will inspect stud type shear connectors according to Subsections 501.3.04.I.2, “Paragraph 3.10.1” and 501.3.04.I.3, “Paragraph 4.30.1.”

512.3.07 Contractor Warranty and Maintenance
 General Provisions 101 through 150.

512.4 Measurement
 When a Pay Item for shear connectors is specified in the Contract, the quantity measured for payment will be the pounds (kilograms) of installed shear connectors accepted.
 Pay quantities will be computed as follows:
 1. Channel Type Shear Connectors. The weight will be computed for the length and nominal weight per foot (meter) shown on the Plans.
 2. Stud Type Shear Connectors. The weight will be computed from the nominal dimensions of a stud as shown on the Plans.

512.4.01 Limits

A. Weights
 The weights of weld metal flux, arc shield, etc., will not be included in the pay quantity, but their costs shall be included in the Contract Price for this Item.
512.5

B. Separate Measurement

Generally, there will be no Pay Item specified for shear connectors in the Contract. Therefore, there will be no separate measurement, and the cost of furnishing and installing the connectors shall be included in the Contract Price for structural steel.

512.5 Payment

When a Pay Item is specified for shear connectors in the Contract, the work will be paid for at the Contract Price per pound (kilogram) for shear connectors of the specified type, complete in place.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 512</th>
<th>Channel Shear Connectors</th>
<th>Per pound (kilogram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 512</td>
<td>Stud Shear Connectors</td>
<td>Per pound (kilogram)</td>
</tr>
</tbody>
</table>

512.5.01 Adjustments
General Provisions 101 through 150.

Section 513—Precast Reinforced Concrete Box Culverts

Barrel Sections and End Sections

513.1 General Description

This work consists of constructing, transporting, joining, and finishing precast box culvert installations (normally as alternates to cast-in-place box culverts) according to Plan details and these Specifications.

Use precast boxes only in these situations:

- Under allowable fill heights designated on the Plan details
- As approved

Design numbers for precast barrel sections refer to Plan designations.

Precast ends refer to precast wingwalls, parapets, apron sections, toewalls, and baffles for outlets.

513.1.01 Definitions
General Provisions 101 through 150.

513.1.02 Related References

A. Standard Specifications

Section 207—Excavation and Backfill for Minor Structures
Section 500—Concrete Structures
Section 506—Expanded Mortar
Section 834—Masonry Materials
Section 843—Concrete Pipe
Section 848—Pipe Appurtenances
Section 852—Miscellaneous Steel Materials

B. Referenced Documents

ASTM C 789
AASHTO M 259
AASHTO M 36
AASHTO M 252
513.1.03 Submittals
General Provisions 101 through 150.

513.2 Materials
Materials shall meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete (for Precast Boxes)</td>
<td>843.2.01</td>
</tr>
<tr>
<td>All Other Concrete</td>
<td>500</td>
</tr>
<tr>
<td>Reinforcing Steel</td>
<td>853</td>
</tr>
<tr>
<td>Steel Bolts, Nuts, and Washers</td>
<td>852.2.01</td>
</tr>
<tr>
<td>Anchor Bolts</td>
<td>852.2.02</td>
</tr>
<tr>
<td>Bituminous Plastic Cement</td>
<td>848.2.05</td>
</tr>
<tr>
<td>Preformed Plastic Gaskets</td>
<td>848.2.06</td>
</tr>
<tr>
<td>Grout or Mortar</td>
<td>834.2.03</td>
</tr>
<tr>
<td>Expanded Mortar</td>
<td>506</td>
</tr>
<tr>
<td>Corrugated Steel Pipe (Sleeves)</td>
<td>AASHTO M 36</td>
</tr>
<tr>
<td>Corrugated Plastic Pipe (Sleeves)</td>
<td>AASHTO M 252</td>
</tr>
<tr>
<td>Backfill</td>
<td>207</td>
</tr>
</tbody>
</table>

513.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

513.2.02 Precast Reinforced Concrete Box Culvert Barrel and End
A. Requirements
 Refer to the Standard Specifications or Plan details for the reinforcement steel requirements, concrete strength, maximum fill heights, and minimum cover. Use the design number for the specified size and fill height.

1. Components
 a. Use precast end components that are according to Plan details, notes, and Section 500.
 b. Ensure that the precast wingwalls and aprons are built so that the corrugations of the pipe sleeve insets lock into the concrete and still has the reinforcement steel maintained all around the pipe sleeve insets.
 c. Use modified connector boxes of the type required for connections to precast ends or cast-in-place ends.
 d. Have the manufacturer of the precast ends galvanize and provide all steel bolts, nuts, steel plates, and anchor bolts.
 e. Use pipe sleeves rigid enough to withstand concrete placement, anchoring, and construction loads without damage or excessive deformation.

2. Alternates
 The Contractor may, at no additional payment, use precast box sections with a greater span or height than specified on the Plans under the following conditions:
 - Minimum cover required for the design number is retained.
 - No detrimental effects result from using the larger size.

 The Contractor also may substitute a combination for multiple line culverts if the clear height and total clear spans are at least equal to that specified on the Plans.

 Submit any alternate designs, alternate materials, or alternate methods of manufacturing to the Department for approval. Include all the necessary details and/or Specifications in the submission.
3. Certification
Submit to the Engineer a certificate from the manufacturer of the precast boxes and precast ends stating that all of the precast box sections and all of the precast end components manufactured in this plant for the use of the Department contain at least the minimum requirements of reinforcement steel specified herein.
a. Ensure that the certificate is sworn to by a person having legal authority to bind the company.
b. Submit the manufacturer’s certificate with a guarantee providing the following:
 1) All precast box and/or all precast end components will be replaced without cost to the purchaser, if the reinforcement steel does not meet these Specifications.
 2) Language so that the guarantee remains in effect as long as the manufacturer continues to furnish precast box culvert barrel sections and precast end sections for use by the Department.
The manufacturer’s certificate will not limit the right of the Department to make inspections and checks of the materials in manufactured precast sections prior to and during the construction of the culvert line.

B. Fabrication
Except as otherwise specified on the Plans or in the Specifications, manufacture precast box culvert barrel sections according to AASHTO M 259 or ASTM C 789 and applicable parts of GDT 16.
1. Lifting. Cast no more than four handling devices or lifting holes in the top of each box, in each precast wing section, and in each precast apron section.
a. Make holes no more than 2 in. (50 mm) in diameter nor more than 2 in (50 mm) square.
b. Do not cast lifting holes in the sides or bottom of the boxes.
c. Do not lift apron sections or wingwall sections by or through the pipe sleeve insets.
2. Finishing and Marking. Put a Type I, ordinary formed surface finish on the precast boxes and precast end components as in Subsection 500.3.05.AB.
a. Ensure that the precast boxes and precast end components (except baffles) have the following markings made either by indenting into the concrete or with waterproof paint.
 1) Name or trademark of the manufacturer
 2) Date of manufacture
 3) Box sections (span, rise, maximum fill height, minimum cover, and concrete design strength)
 4) Ensure that the top of each precast box is clearly indented by marking into either the inner or outer surface of the concrete during manufacture.
 5) Ensure that the word “TOP” is painted on the inside top surface of each box in waterproof paint. Ensure that this marking comes from the manufacturer at the plant.
 6) When so indicated on the Plans, number and match-mark the sections.
 7) Ensure each section bears the Department Inspector’s approval stamp.
3. Precast Parapets. You may allow the manufacturer to bolt precast parapets to connector box Type P at the manufacturer’s plant or at the construction site.
 Have the manufacturer check all precast components for fit and connections before transporting the components to the project.

C. Testing and Inspection
1. Use applicable parts of GDT 16.
2. Determine concrete compressive strength from cylinder or core tests as required by the laboratory.

D. Materials Warranty
 General Provisions 101 through 150.

513.3 Construction Requirements
513.3.01 Personnel
 General Provisions 101 through 150.
513.3.02 Equipment
 General Provisions 101 through 150.
513.3.03 Preparation
A. Excavation, Bedding, and Backfill
 Excavate, place bedding, and backfill according to Section 207 and the Plan details.
 Place bedding as follows:
 1. Place bedding between graded forms set at least 18 in (450 mm) outside each outside wall of the boxes or from the edge of the precast apron sections.
 2. Shape the bedding material to fit the bottom of the precast sections.
 3. Screed off the graded forms.
 4. Grade the bedding surface essentially perfect. The maximum tolerance is plus or minus 1/8 in (3 mm).
 5. Ensure that the bedding is level in the plane perpendicular to the culvert center line.
 6. Check the grade of the bedding surface on both sides before installing precast sections.
 7. After placing the precast sections on the graded bedding, remove and reuse the forms, if needed.

513.3.04 Fabrication
General Provisions 101 through 150.

513.3.05 Construction
Install the structures as required by the Specifications and the Plan details, or as directed by the Engineer. Provide necessary temporary drainage.

A. Install Barrels
 Install barrels according to the manufacturer’s recommendations.
 1. Multiple Barrel Box Culverts. Install these box culverts as follows:
 a. Lay precast box culvert sections in the prepared trench with socket ends pointing upstream.
 b. Joint the sections with either bituminous plastic cement or preformed plastic gaskets using these guidelines:
 i. In bituminous plastic cement joints, fill the annular space with joint material and wipe smooth the inside of each joint in the barrel.
 ii. Pull box sections together with a come-a-long or mechanical puller to provide jointing satisfactory to the Engineer.
 2. Multiple Line Box Culverts. These precast box culverts are the alternative to cast-in-place multiple barrel box culverts.
 Where multiple lines are skewed, determine the end treatment method including the positions of the connector boxes, the parapet alignment, and the lengths of wingwalls needed for proper slope intercepts. This must occur before barrel installation begins.
 Install multiple culvert lines adjacent to one another according to Plan details.
 Use grout (see Subsection 834.2.03, “Mortar and Grout”), a concrete mix, or other material approved by the Engineer as filler material between multiple lines.

B. Protect Structures from Traffic and Loads
 Before allowing traffic or loads on the box culvert, provide the depth and width of compacted backfill as shown on the Plans to protect the structure from damage or displacement.
 Damaged or displaced structures subjected to construction loads or erosion during installation and backfill shall be repaired at the Contractors expense.

C. Use Ends for Precast Barrels
 Use precast or cast-in-place ends as follows:
 1. Precast Ends
 Precast ends are allowed in the following situations:
 a. Where either single line or multiple line precast barrels are normal to the roadway
 b. With skewed single lines or skewed multiple lines at locations shown on the Plans or approved by the Engineer
Do not use precast ends with skewed culverts if the installation would be incompatible with roadway geometrics or would cause other detrimental effects.

a. Precast Ends on Skewed Culverts. Where precast ends are allowed on skew, extend the barrel length so that the precast wing end on the acute side falls approximately at the same point that the cast-in-place long wing end would have fallen, with additional embankment warped to fit.

b. Aprons for Precast Wingwalls. Use precast wingwalls with 8 in (200 mm) thick reinforced concrete aprons for anchor connections.

For sleeve inset fill, use either expanded mortar (see Section 506) or non-shrinking mortar (used immediately after mixing) approved by the Engineer. Do not subject anchors to loads until the mortar sets up.

Use precast or cast-in-place aprons that are multi-piece or monolithic.

1) Precast Aprons. Carefully place sections to grade upon the screed bedding described in Subsection 513.3.03.A, “Excavation, Bedding, and Backfill.” Ensure that forms hold bedding for toewalls according to the Plan details and as directed by the Engineer.

Make joints between apron sections water tight.

2) Cast-in-Place Aprons. Ensure that concrete is set up before installing the wingwalls. Connect wingwalls to apron anchors according to Plan details.

2. Cast-in-Place Ends. When required and when not using precast ends, use cast-in-place ends as follows:

a. Use cast-in-place ends at the ends of precast box culvert barrels (either skewed or normal).

b. Use cast-in-place ends of the same design as cast-in-place box culvert barrels.

c. Use aprons with cast-in-place wingwalls only where specified on the Plans or Special Provisions.

d. Use cast-in-place ends with multiple precast lines as follows:

1) Minimally increase the standard parapet and toewall widths to accommodate the double inside walls.

2) Use Type C connector boxes between the standard precast boxes and the cast-in-place construction.

e. Where there is a skewed alignment or other nondescript alignment condition, the Contractor may cast-in-place a fraction of the barrel between the connector box and the parapet.

D. Finish the Culvert

After precast sections are set in their final position, do the following:

1. Repair spalled areas around the holes.

2. Fill the lift holes with mortar or concrete.

3. Cure the concrete as directed in Subsection 500.3.05.Z, “Cure Concrete.”

513.3.06 Quality Acceptance

General Provisions 101 through 150.

513.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

513.4 Measurement

Unless otherwise specified, the Contract includes alternate plans for both precast and cast-in-place box culverts. Plan quantities and payment are based upon the cast-in-place alternate.

A. Precast Box Culvert Barrels

The required linear feet (meter) of culvert will be converted for payment into cubic yards (meters) of Class A Concrete and pounds (kilograms) of reinforcement steel. These measurements will come from the standard or special design computation tables for cast-in-place box culverts.

Multiple line precast box culverts will be measured as a multiple barrel cast-in-place box culvert of the specified size.

B. Ends for Barrels

Wingwalls, parapets, toewalls, and aprons may be either precast or cast-in-place. Plan quantities and payment for these items are based upon the cast-in-place design quantities.

C. Backfill

Foundation backfill material Type II, when required, will be measured according to Subsection 207.4, “Measurement”.

508
513.4.01 Limits
No additional payment will be made when barrel lengths, apron areas, backfilling, or other items are increased due to using the precast alternate.

The following items will not be paid for:

☐ Connecting hardware
☐ Mortar
☐ Joint materials
☐ Filler material used between multiple precast culvert lines

513.5 Payment
Payment for Precast Reinforced Concrete Box Culvert Barrel Sections and End Sections will be based on the cast-in-place alternate and will include conversions when using the precast design. Cast-in-place concrete will be paid for under Section 500 and reinforcing steel will be paid for under Section 511.

Payment for Foundation Backfill Type II will be made according to and Subsection 207.5, “Payment.”

513.5.01 Adjustments
General Provisions 101 through 150.

Section 514—Epoxy Coated Steel Reinforcement

514.1 General Description
This work consists of furnishing and placing epoxy coated bar reinforcement steel according to these Specifications.

514.1.01 Definitions
General Provisions 101 through 150.

514.1.02 Related References
A. Standard Specifications
 Section 511—Reinforcement Steel
 Section 853—Reinforcement and Tensioning Steel

B. Referenced Documents
 QPL 38
 AASHTO M284

514.1.03 Submittals
A. Mill Orders and Shipping Statements
 Submit mill orders and shipping statements as required in Subsection 511.1.03.A, “Mill Orders and Shipping Statements.”

514.2 Materials
When choosing an epoxy coating material, the Contractor may do either of the following:

☐ Use an epoxy coating material from QPL 38 of acceptable, powdered epoxy resins and their manufacturer.
☐ Use powder that meets AASHTO M284.

Ensure that uncoated, deformed steel bars meet the applicable requirements of Subsection 853.2.01, “Steel Bars for Concrete Reinforcement.”

Allow the Office of Materials and Research to sample and test materials any time.
A. Epoxy Coating Requirements

1. Notify the Office of Materials and Research at least two weeks before blast cleaning the steel reinforcement bars and applying the epoxy coating. This time will allow the Department to schedule an inspection.
2. You may request, in writing, that the Department accept the coating on the basis of a Certificate of Compliance. If the Department approves your request, you must meet the following conditions:
 a. Ensure that the coating applicator has a quality assurance program approved by the Department.
 b. Furnish the Department a Certificate of Compliance from the coating applicator with each shipment of coated bars. Ensure that the Certificate of Compliance:
 - Verifies that the coated bars and coating material have been tested in accordance with the requirements of this Specification
 - States the actual test results for each requirement
 - States that the test results comply with the requirements
3. Submit from the coating applicator at the time of shipping a written certification attached to a completed Form 166-A. Ensure that the certificate states that the coated reinforcing bars meet the requirements of this Specification.
4. The epoxy for the fabrication shop repair work shall also be suitable for use in the field by the Contractor installing the coated bars in the bridge deck.

B. Fabrication

1. Immediately before applying the epoxy coating, blast clean all surfaces of the steel bars to a near-white surface finish as per the Steel Structures Painting Council Surface Preparation Specification, SSPC-SP10, for Near-White Blast Cleaning.
 a. Make the blast-cleaned surface correspond with either pictorial standard A Sa 2½, B Sa 2½, or C Sa 2½ of SSPC Vis 1.
 b. Clear the surfaces of all dust and grit.
2. Coat all tie wires, clips, chair and bar supports, and other metallic materials used to install the epoxy-coated reinforcing bars with either:
 - The same powdered epoxy resin with a minimum thickness of 6 mils (0.15 mm)
 - A plastic material approved by the Office of Materials and Research
3. Coat the ends of the coated bars cut during fabrication with the epoxy used for repairs.
4. Repair damaged areas and coat the ends of cut bars within 12 hours and before any visible rusting appears.

C. Acceptance

1. The Office of Materials and Research will inspect the application and the finished coating at the applicator’s plant, according to the provisions of Subsection 106.03, “Samples, Tests, Cited Specifications,” or will accept the Certificate of Compliance under the conditions listed in Subsection 514.2.A.
2. Grant the Department Inspector free access to the coating applicator’s plant.
 a. The Inspector may have any or all of the work specified in this section performed in his or her presence.
 b. Furnish the Inspector with check samples of the coated bars on a random basis as the Inspector deems necessary for testing by the Office of Materials and Research.

D. Materials Warranty

General Provisions 101 through 150.

514.2.01 Delivery, Storage, and Handling

Before using epoxy coated steel bars, carefully load, unload, and store them on the Project site to prevent damage or contamination.

Handle the bars as follows:

1. Use systems for handling coated bars that have padded contact areas for the bars whenever possible.
2. Use padded bundling bands.
3. To prevent sags in the bar bundle, lift bundles with a strong back, multiple supports, or a platform bridge. Sags in the bundle cause bar-to-bar abrasion.
4. Do not drop or drag bars.
514.3 Construction Requirements

514.3.01 Personnel
General Provisions 101 through 150.

514.3.02 Equipment
General Provisions 101 through 150.

514.3.03 Preparation
General Provisions 101 through 150.

514.3.04 Fabrication
A. Fabrication Shop Repair Work
 Refer to Subsection 514.2.B, “Fabrication”

514.3.05 Construction
A. Install Bars
 To protect and preserve the epoxy coating, install coated bars in the bridge deck according to Subsection 511.3.05, “Construction,” this Specification, and the Engineer’s directions.

 Have the Engineer approve additional splices to accommodate lengths suitable for coating equipment.

 Cleaning and repair methods and materials for coated bars are subject to the Engineer’s approval.

 Install the bars as follows:

 1. During and after installing bars into their deck locations, repair cuts, nicks, and abrasions in the bar coating with the epoxy repair material supplied by the powdered epoxy resin manufacturer.

 Repair damaged areas within 12 hours and before visible rusting appears.

 2. Before they rust, repair damaged reinforcing steel and metallic accessories with the epoxy repair material supplied by the powdered epoxy resin manufacturer.

 3. If small damaged areas are rusted, thoroughly remove the rust by sand blasting or other approved methods before repairing the areas.

 4. Provide a rust-free and completely coated steel reinforcement system before placing the concrete in the deck to prevent subsequent rusting.

 5. When the coated bars are incorporated into the work, keep them free from dirt, paint, oil, grease, or other foreign substance.

 6. When necessary, clean the bars to the satisfaction of the Engineer.

 7. Place the deck concrete using methods and equipment that will not damage the coated materials.

 8. Since the epoxy coating is flammable, do not expose the coated bars to fire or flame. Do not cut coated bars by burning.

514.3.06 Quality Acceptance
General Provisions 101 through 150.

514.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

514.4 Measurement
The accepted epoxy coated steel reinforcing bars will be measured according to Subsection 511.4, “Measurement.”

514.4.01 Limits
A. Theoretical Weight of Uncoated Bars
 The Department will not add to or deduct from the theoretical weight per foot (meter) of the uncoated bars because of additional Specification requirements for blast cleaning and epoxy coating of the bars.

514.5 Payment
The accepted epoxy-coated steel reinforcing bars will be paid for according to Subsection 511.5, “Payment.”
514.5.01 Adjustments

A. Additional Splices

Additional splices requested to accommodate lengths suitable for coating equipment will be subject to the Engineer’s approval. Additional splices will be at the Contractor’s expense.

B. Additional Expenses

Additional expenses incurred by the Contractor or suppliers because of the requirements in this Specification are considered incidental. These expenses are included in the Contract Price per pound (kilogram) or per Lump Sum.

Section 515—Handrail-Ferrous Metal and Pipe

515.1 General Description

This work consists of placing handrail and posts made of ferrous metal pipe. It shall include setting anchorages, preparing bearing areas, and painting or galvanizing the handrail, whichever the Plans require.

515.1.01 Definitions

General Provisions 101 through 150.

515.1.02 Related References

A. Standard Specifications

Section 500—Concrete Structures
Section 501—Steel Structures
Section 535—Painting Structures
Section 645—Repair of Galvanized Coatings

B. Referenced Documents

ASTM A 123/A 123 M
ASTM A 153/A 153 M

515.1.03 Submittals

General Provisions 101 through 150.

515.2 Materials

All materials shall meet the requirements of the following Specifications.

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Steel</td>
<td>851</td>
</tr>
<tr>
<td>Malleable Iron Castings</td>
<td>854.2.04</td>
</tr>
<tr>
<td>Steel Castings</td>
<td>854.2.05</td>
</tr>
<tr>
<td>Steel Pipe</td>
<td>847.2.01</td>
</tr>
<tr>
<td>Steel Bolts, Nuts, and Washers</td>
<td>852.2.01</td>
</tr>
<tr>
<td>Paint</td>
<td>870</td>
</tr>
<tr>
<td>Plain Steel Bars—Threaded Ends</td>
<td>852.2.02</td>
</tr>
</tbody>
</table>
515.2.01 Delivery, Storage, and Handling
Handle the rails and posts carefully to minimize damage to shop paint or galvanizing.

515.3 Construction Requirements

515.3.01 Personnel
General Provisions 101 through 150.

515.3.02 Equipment
General Provisions 101 through 150.

515.3.03 Preparation
General Provisions 101 through 150.

515.3.04 Fabrication
General Provisions 101 through 150.

515.3.05 Construction
A. Fabricate Handrail
 Fabricate handrail as follows. All fabrications shall meet the applicable Specifications of Subsections 501.3.04.H and 501.3.06.C, “Welded Construction.”
 1. Fabrication Material. Fabricate handrail from plates, shapes, bars, pipe, castings, or from combinations of these materials as shown on the Plan details.
 2. Handrail Not Supported on Concrete Parapets. When erected bridge handrail will not be supported on a concrete parapet, fabricate the handrail so posts will be plumb.
 3. Stairways on Grades. On handrail for stairways on grades, use adjustable malleable iron fittings where required or weld the handrails to the posts when specified on the Plans.
 Grind smooth all welds except fillet welds. Do not grind fillet welds; leave them as they are.
 5. Galvanizing. Before galvanizing, complete all cutting, welding, and fabrication of rails, posts, bolts, set screws, and other components.
 Galvanize material according to the following standards:

<table>
<thead>
<tr>
<th>Material</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>All material except hardware</td>
<td>ASTM A 123/A 123M</td>
</tr>
<tr>
<td>Hardware</td>
<td>ASTM A 153/A 153M</td>
</tr>
</tbody>
</table>

 6. Shop Painting. If metal or pipe handrail, posts, and their component parts will not be galvanized, paint them with the type of shop paint required on the Plans.
 All painting shall meet the requirements of Section 535.

B. Construct Handrails
 Construction shall meet the applicable Specifications of Subsections 501.3.04.H and 501.3.06.C, “Welded Construction.”
 Construct handrail according to the Plan details and as follows:
 1. Set Anchor Bolts. Set anchor bolts using these guidelines:
 - Set the anchor bolts according to the Plan details and ensure that the bolts have the correct spacing and projection.
 Projections shown on the Plans are for flat grades and assume no use of shims.
 - On other grades or where shims are needed, modify the projection shown on the Plans so that after all shims, pads, posts, and washers have been placed, the anchor bolt nut can be screwed completely onto the anchor bolt.
If the projection is too short, lengthen or replace the bolt (at the Contractor’s expense) as directed by the Engineer.

2. Prepare Bearing Areas. Before placing the posts, prepare bearing areas using these guidelines to obtain full contact between the posts or shims and the concrete:
 - Remove all concrete protrusions.
 - Fill all depressions.
 - Ensure that bearing areas for posts are true to grade.
 - Finish concrete with the Type IV—Floated Surface Finish specified in Subsection 500.3.05.AB.5, “Type IV—Floated Surface Finish.”

3. Erect Handrail. Erect handrail using these guidelines:
 - Make all rails parallel to grade.
 - Where bridge rail will be supported on a concrete parapet, set handrail posts normal to grade.
 - Set other handrail posts and pipe standards plumb. If necessary, use shims under post bases and floor flanges to achieve plumb posts.
 - Tighten the set screws as detailed on the Plans.
 - Tighten anchor bolt nuts to a snug fit with full bearing on the base of the post.
 - When posts and rails are completely bolted into place, ensure that they are true to line and grade.

4. Paint Handrail in the Field. Painting shall meet the Specifications of Section 535.
 - If metal or pipe handrail, posts, and their component parts are not galvanized, paint them with the type of paint and number of coats required on the Plans.

5. Repair Galvanized Coating. Repair damaged galvanized coatings (at the Contractor’s expense) according to Section 645.

515.3.06 Quality Acceptance
General Provisions 101 through 150.

515.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

515.4 Measurement
This work will be measured for payment in linear feet (meters) of accepted handrail. Handrail will be measured along the top rail from out-to-out of the ends of metal rail or from out-to-out of metal end posts, whichever is greater. No deductions will be made for openings at deck expansion joints or at light standards.

515.4.01 Limits
General Provisions 101 through 150.

515.5 Payment
This work will be paid for at the Contract Price per linear foot (meter) for metal or pipe handrail complete in place.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 515</th>
<th>Ferrous Metal Handrail, Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 515</td>
<td>Galvanized Steel Pipe Handrail: _____ in (mm) (Type)</td>
</tr>
<tr>
<td></td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 515</td>
<td>Black Steel Pipe Handrail</td>
</tr>
<tr>
<td></td>
<td>_____ in (mm) (Type)</td>
</tr>
<tr>
<td></td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

515.5.01 Adjustments
General Provisions 101 through 150.
Section 516—Aluminum Handrail

516.1 General Description
This work consists of placing handrail and posts made of cast, rolled, or extruded aluminum or of combinations of these materials. It also includes setting anchorages and preparing bearing areas.

516.1.01 Definitions
General Provisions 101 through 150.

516.1.02 Related References
A. Standard Specifications
 Section 500—Concrete Structures

B. Referenced Documents
 General Provisions 101 through 150.

516.1.03 Submittals
General Provisions 101 through 150.

516.2 Materials
All cast posts for any one structure shall be produced by the same manufacturer.

All materials shall meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Alloy Sheet and Plate</td>
<td>850.2.01</td>
</tr>
<tr>
<td>Aluminum Alloy Bars, Rods, Shapes, and Wire</td>
<td>850.2.02</td>
</tr>
<tr>
<td>Aluminum Alloy Bolts, Nuts, and Set Screws</td>
<td>850.2.03</td>
</tr>
<tr>
<td>Aluminum Alloy Washers</td>
<td>850.2.04</td>
</tr>
<tr>
<td>Aluminum Alloy Rivets</td>
<td>850.2.05</td>
</tr>
<tr>
<td>Aluminum Alloy Shims</td>
<td>850.2.06</td>
</tr>
<tr>
<td>Cast Aluminum Alloy Railing Post</td>
<td>854.2.02</td>
</tr>
<tr>
<td>Aluminum Alloy Sand Mold Castings</td>
<td>854.2.03</td>
</tr>
<tr>
<td>Aluminum Alloy Extruded Tubing</td>
<td>850.2.07</td>
</tr>
<tr>
<td>Aluminum Alloy Pipe</td>
<td>850.2.08</td>
</tr>
<tr>
<td>Aluminum Impregnated Caulking Compound</td>
<td>870.2.05.A.3.</td>
</tr>
<tr>
<td>Neoprene Pads</td>
<td>885.2.01</td>
</tr>
<tr>
<td>Steel Bolts, Nuts, and Washers</td>
<td>852.2.01</td>
</tr>
<tr>
<td>Plain Steel Bars—Threaded Ends</td>
<td>852.2.02</td>
</tr>
<tr>
<td>Galvanizing</td>
<td>852.2.01.B</td>
</tr>
</tbody>
</table>

516.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

516.3 Construction Requirements

516.3.01 Personnel
General Provisions 101 through 150.
516.3.02 Equipment
General Provisions 101 through 150.

516.3.03 Preparation
General Provisions 101 through 150.

516.3.04 Fabrication
A. Fabricate Handrail
 Fabricate handrail as follows:
 1. Fabrication Material
 Fabricate handrail from plates, shapes, bars, pipe, castings, or from combinations of these materials as shown on the Plan details.
 2. Handrail Not Supported on Concrete Parapets
 When erected bridge handrail will not be supported on a concrete parapet, fabricate the handrail so posts will be plumb.

516.3.05 Construction
A. Construct and Erect Handrail
 Construct and erect handrail according to the Plan details and as follows:
 1. Set Anchor Bolts
 Set anchor bolts as follows:
 a. Set the anchor bolts according to the Plan details and ensure that the bolts have the correct spacing and projection.
 Projections shown on the Plans are for flat grades and assume no use of shims.
 b. On other grades or where shims are needed, modify the projection shown on the Plans so that after all shims, pads, posts, and washers have been placed, the anchor bolt nut can be screwed completely onto the anchor bolt.
 c. If the projection is too short, lengthen or replace the bolt (at the Contractor’s expense) as directed by the Engineer.
 2. Prepare Bearing Areas
 Before placing the posts, prepare bearing areas as follows to obtain full contact between the posts or shims or pads and the concrete:
 a. Remove all concrete protrusions.
 b. Fill all depressions.
 c. Ensure that bearing areas for posts are true to grade.
 d. Finish concrete with the Type IV—Floating Surface Finish specified in Section 500.3.05.AB.5, “Type IV—Floating Surface Finish.”
 3. Protect Contact Surfaces
 Where aluminum alloys contact other materials, protect the contact surfaces as detailed on the Plans or as follows:
 a. Contact with Other Metals or Wood. Separate the contact surfaces with neoprene pads.
 Do not place aluminum alloys in direct contact with copper, copper base alloys, lead, nickel, iron, steel, or wood.
 b. Contact with Concrete, Stone, or Masonry. Separate the contact surfaces with neoprene pads.
 4. Erect Handrail
 Erect handrail as follows:
 a. If the finish on rails or posts is damaged in handling, either repair it to the satisfaction of the Engineer or replace it (both at the Contractor’s expense).
 b. Make all rails parallel to grade.
 c. Where bridge rail will be supported on a concrete parapet, set handrail posts normal to grade.
 d. Set other handrail posts plumb. If necessary, use aluminum alloy shims under post bases to achieve plumb posts.
e. Tighten the anchor bolt nuts to a snug fit with full bearing on the base of the post.
f. When posts and rails are completely bolted into place, ensure that they are true to line and grade.

516.3.06 Quality Acceptance
General Provisions 101 through 150.

516.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

516.4 Measurement
This work will be measured for payment in linear feet (meters) of accepted handrail. Handrail will be measured along the top rail from out-to-out of ends of aluminum rail or from out-to-out of aluminum end posts, whichever is greater. No deductions will be made for openings at deck expansion joints or at light standards.

516.4.01 Limits
General Provisions 101 through 150.

516.5 Payment
This work will be paid for at the Contract Price per linear foot (meter) for aluminum handrail complete in place.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 516</th>
<th>Aluminum Handrail, (Type)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
</table>

516.5.01 Adjustments
General Provisions 101 through 150.

Section 517—Protective Concrete Collar for Existing Columns

517.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 518—Raise Existing Bridge

518.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 519—Concrete Bridge Deck Overlay

519.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 520—Piling

520.1 General Description
This work consists of placing completed piling in structures. The work includes incidentals and additional work except for the following:

- Prestressed concrete cylinder piling (see Project Special Provisions)
Piling for ground-mounted roadside signs (see Section 636)

Although square, prestressed-concrete piles are a Pay Item under Section 520, have them manufactured, finished, cured, marked, handled, stored at the plant, and shipped from the plant according to Section 865.

The requirements in this Specification are minimal. Comply with the requirements and assume the responsibility for taking additional precautions to complete the work successfully.

520.1.01 Definitions

Plan Driving Objective (PDO): Statement on the Plans specifying the minimum requirements during pile driving. The PDO may require a driving resistance (tonnage [kilonewtons] by formula), a minimum tip elevation, or a combination of these.

Minimum Tip Elevation: Elevation the pile tip cannot stop above. When composite prestressed concrete piling is used, this term will refer to the protruded tip of the Steel H-Pile Section.

Long Pile: A pile more than 50 ft (15 m) in length.

520.1.02 Related References

A. Standard Specifications
 Section 101—Definitions and Terms
 Section 104—Scope of Work
 Section 109—Measurement and Payment
 Section 500—Concrete Structures
 Section 501—Steel Structures
 Section 547—Pile Encasement
 Section 636—Highway Signs
 Section 855—Steel Pile
 Section 865—Manufacture of Prestressed Concrete Bridge Members

B. Referenced Documents
 ASTM D 1143
 QPL 37

520.1.03 Submittals

A. Template Plan for Positioning Piling
 Before driving piling, submit a plan for ensuring piling stability and position, including templates, to the Engineer. Do not drive piling until the plan is approved.

B. Plans for Loading Test Methods
 Submit the plans for loading test methods to the Engineer for approval before beginning the work.
 Ensure that the test method is logical and can be rationally analyzed by a commonly accepted structural design theory.

C. Loading Test Equipment
 Submit the list of equipment for conducting loading tests to the Engineer for approval before beginning the work.
 If the testing apparatus is a hydraulic jack, furnish 5 copies of the calibration certification to the Engineer for the equipment, prepared by the manufacturer, an authorized representative, or an approved testing laboratory. Consult the Engineer to find out which laboratories are approved.
520.2 Materials

Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservative Treatment of Timber Products</td>
<td>863</td>
</tr>
<tr>
<td>Timber Piles</td>
<td>861.2.01</td>
</tr>
<tr>
<td>Prestressed Concrete Piles Bridge Members</td>
<td>865</td>
</tr>
<tr>
<td>Welded and Seamless Steel Piles</td>
<td>855.2.01</td>
</tr>
<tr>
<td>Fluted Steel Shell Piles</td>
<td>855.2.02</td>
</tr>
<tr>
<td>Steel H-Piles</td>
<td>855.2.03</td>
</tr>
<tr>
<td>Steel Bolts, Nuts, and Washers</td>
<td>852.2.01</td>
</tr>
<tr>
<td>Aluminum Alloy Sheet and Plate</td>
<td>850.2.01</td>
</tr>
<tr>
<td>Metal Caps</td>
<td>862.2.01.A.5</td>
</tr>
</tbody>
</table>

Refer to Subsection 855, “Steel Pile” for Specifications on cast steel-H pile points. For a list of sources, see QPL 37.

Use the following piling types where shown on the Plans:

- Timber piling
- Prestressed concrete piling
- Metal shell piling
- Steel H-piling

Use other piling types when the Plans and Special Provisions require it.

520.2.01 Delivery, Storage, and Handling

A. Timber Piling

Handle timber piling carefully using only non-metallic slings. Do not drop or damage the piling.

Store timber piles on skids above the supporting surface. Keep hardware covered.

B. Prestressed Concrete Piling

Handle prestressed concrete piling carefully to prevent fracture by impact or by excessive bending stress either in storage, during transportation, or when being transferred to the leads. Do not place other materials on the piling during storage or transport.

1. Transporting Prestressed Concrete Piling

Transport prestressed concrete piling using the approved limits of support spacing for the various sizes and lengths of piling. These limits are shown on Standard Plans or on other drawings and are available to the Engineer from the Department.

2. Loading and Unloading Prestressed Concrete Piling

Load and unload piles using the embedded pick-up points placed during manufacture.

3. Storing Prestressed Concrete Piling

Store piles as follows:

- Store piling in single layers directly on the ground only when there is uniform, level bearing for the full pile length.
- To store piles in tiers, support the piling using blocks of uniform thicknesses placed immediately adjacent to the embedded pick-up points and in line vertically.
- Store piling in groups of the same lengths.

4. Placing Piles in the Leads or in Position

When picking up piles from storage and placing them in the leads or in position, use only the single pick-up point, marked with “SP” or a line painted on the pile at the plant, unless noted on the Plans or otherwise directed by the Engineer.

519
520.3

5. Driving Piles

Do not subject prestressed concrete piling to excessive tensile stresses from combining a particular hammer with the soil conditions. Excessive stress may occur, for example, in these situations:

- When driving a long pile) through soft material that offers little or no soil resistance at the point of the pile
- When encountering hard driving resistance at the point of a long pile

When such situations damage pile, make changes to provide undamaged piling in place. If piles are damaged, the Engineer may require the following:

a. Reduce the energy delivered to the piling by reducing the stroke, changing the cushioning, or using a lighter ram.

b. Maintain equivalent energy but use a heavier or lighter ram with a different stroke.

c. Use a smaller hammer for the easier, initial driving.

d. Drill pilot holes, jet, or spud. When these driving aids are required or permitted, see Subsection 520.3.05.B, “Drill Pilot Holes” and Subsection 520.3.05.G, “Jet and Spud.”

C. Metal Shell Piling

Do not deform or dent metal shell piling during handling and storage. Place shells to be stored for a prolonged period on enough skids to prevent ground contact and deflection. Keep the shells fully drained.

D. Steel H-Piling

Do not deform or bend flanges on steel H-piling during handling and storage. Place steel H-piling to be stored for a prolonged period on enough skids to prevent ground contact and deflection. Keep the piling fully drained.

520.3 Construction Requirements

520.3.01 Personnel

Furnish enough labor and work to install the complete loading test, including a temporary shelter over the area if the Engineer requires it.

520.3.02 Equipment

A. Hydraulic Jack for Loading Tests

If the hydraulic jack used to apply the loading test changes behavior during use, return the jack to the manufacturer, an authorized representative, or a testing laboratory approved by the Engineer for recalibration.

B. Driving Head

Use a structural steel driving head recommended by the manufacturer as suitable for the type and size of pile being driven. The driving head shall:

- Hold the pile in the proper driving position
- Be constructed to prevent pile damage
- Be constructed to transmit the hammer energy along the pile axis
- Fit loosely enough around the pile head so that the pile can rotate slightly without binding

C. Cushion or Shock Blocks

Replace cushion blocks as necessary to prevent pile damage. Inspect cushions periodically to ensure that they prevent pile damage.

1. Hammer Cushions

Use cushions or shock blocks above the driving head to avoid damaging the pile. Replace used hammer cushions reduced to half their original thickness with new cushions.

Use hammer cushions of a man-made material only such as micarta or aluminum. Do not use materials such as plywood, hardwood, wire rope, and asbestos.

2. Pile Cushions

For prestressed concrete piling up to 24 in (600 mm), provide a suitable pile cushion block for the top of the pile. Use a cushion made of material that does not compress so far that the cushioning effect is lost.
For prestressed concrete piling, 30 in (750 mm) and 36 in (900 mm) square, use an approved solid hardwood pile cushion block at least 6 in (150 mm) thick or an equivalent in the base of the hammer to cushion the hammer ram blow on the pile or follower.

3. Follower Cushions

When a follower is permitted or required, use an approved, square-shaped laminated cushion block between the follower and the top of the pile.

Use a cushion block for a follower that is:
- At least 6 in (150 mm) thick
- Made of 1 in (25 mm) hardwood boards (preferably green) of uniform thicknesses
- Cut to fit the pile head

Subsection 520.3.02.F, “Followers,” defines a follower within the scope of these Specifications.

D. Hammers

Regardless of the requirements for hammers in these Specifications, the PDO governs in selecting the hammer. The exception for this is the tabulations for prestressed concrete piling shown in the Energy Rating Table in Subsection 520.3.02.D.1.b. Except for timber piling, drive piling with power hammers of an approved make and model (steam or diesel) that are single-acting (open end diesel) or double-acting (enclosed ram diesel).

When desired, use gravity (drop) hammers to drive timber piling and, within the conditions in Subsection 520.3.02.D.2, “Gravity Hammers,” steel H-piling and metal shell piling.

Hammer types and restrictions are as follows:

1. Power Hammers

 Maintain power hammers to obtain their potential stroke length and number of blows per minute. Driving resistance values are invalid when these requirements are not met.

 If driving resistance values are invalid, stop the driving operations and correct the problem. Do not begin driving until the problem is resolved.

 a. Power Hammer Types

 Power hammer types include:

 - Steam Hammers. Use steam or compressed air from boilers or air compressors to power steam hammers.
 - Use boilers and air compressors with an accurate pressure gauge and capacities and hose sizes at least equal to those specified by the hammer manufacturers.
 - Open-End Diesel Hammers. Use open-end diesel hammers that allow measurement of the ram stroke length above the top of the hammer.
 - Enclosed-Ram Diesel Hammers. Use enclosed-ram diesel hammers with a bounce chamber gauge and charts that will evaluate the equivalent energy being produced under any driving condition.

 b. Power Hammer Restrictions

 Follow these power hammer restrictions:

 - Timber Piling. Drive timber piling using a power hammer with a maximum energy rating of 22,400 ft·lb (30 400 N·m).
 - Steel Piling. Drive steel H-piling and metal shell piling using a power hammer with an energy per blow of at least 1 ft·lb (1.4 N·m) but not less than 9,000 ft·lb (12 200 N·m) for each pound (kilogram) of driven weight.
 - Prestressed Concrete Piling. Except as specified in the following Energy Rating Table, drive prestressed concrete piling using a power hammer with an energy per blow of at least 1 ft·lb (1.4 N·m) for each pound (kilogram) of pile weight, but not less than 15,000 ft·lb (20 300 N·m).

Driving conditions may require hammers with more energy than the minimum required on the Energy Rating Table. However, the Department will not require hammers that have more than the minimum energy rating, regardless of pile length, unless the Plans or Special Provisions specify otherwise.
Table 2. Energy Rating Table (English)

<table>
<thead>
<tr>
<th>Pile Size (in)</th>
<th>Weight Lb/Ft</th>
<th>Minimum Energy Rating Ft-Lbs, Ft-Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 solid</td>
<td>204</td>
<td>22 400, 11.2</td>
</tr>
<tr>
<td>16 solid</td>
<td>267</td>
<td>22 400, 11.2</td>
</tr>
<tr>
<td>18 solid</td>
<td>338</td>
<td>32 000, 16.0</td>
</tr>
<tr>
<td>20 solid</td>
<td>417</td>
<td>32 000, 16.0</td>
</tr>
<tr>
<td>24 voided</td>
<td>482</td>
<td>32 000, 16.0</td>
</tr>
<tr>
<td>30 voided</td>
<td>709</td>
<td>39 800, 19.9</td>
</tr>
<tr>
<td>36 voided</td>
<td>923</td>
<td>50 000, 25.0</td>
</tr>
</tbody>
</table>

Table 2. Energy Rating Table (Metric)

<table>
<thead>
<tr>
<th>Pile Size (mm)</th>
<th>Weight kg/m</th>
<th>Minimum Energy Rating N·m</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>304</td>
<td>30 400</td>
</tr>
<tr>
<td>400</td>
<td>397</td>
<td>30 400</td>
</tr>
<tr>
<td>450</td>
<td>503</td>
<td>30 400</td>
</tr>
<tr>
<td>500</td>
<td>621</td>
<td>30 400</td>
</tr>
<tr>
<td>600</td>
<td>717</td>
<td>30 400</td>
</tr>
<tr>
<td>750</td>
<td>1055</td>
<td>54 000</td>
</tr>
<tr>
<td>900</td>
<td>1374</td>
<td>67 800</td>
</tr>
</tbody>
</table>

2. Gravity Hammers

When using a gravity hammer, regulate the drop height to avoid damaging the pile. Do not allow the drop height to exceed 10 ft (3 m) for timber piling and 12 ft (3.7 m) for steel piling.

Ensure that the hammer is marked with its weight to the nearest 50 lbs (25 kg). Upon the Engineer’s request, furnish a certified scale weight of the hammer.

Follow these gravity hammer restrictions:

a. Timber Piling. Drive timber piling using a gravity hammer that weighs at least 2,000 lbs (900 kg) but no more than 3,500 lbs (1500 kg).

However, ensure that the hammer has enough weight to obtain the PDO with a maximum fall of 10 ft (3 m).

b. Steel Piling. If desired, substitute a gravity hammer for a power hammer when the quantity of a steel piling type shown on the Bridge Plans Summary of Quantities does not exceed 800 linear ft (245 linear meters), including test pile lengths if any, for that pile type for an individual bridge.

When using a gravity hammer within the scope of the linear foot (meter) condition, ensure that it has enough weight to obtain the PDO with a maximum fall of 12 ft (3.7 m). The maximum allowable hammer weight is 5,000 lbs (2300 kg).

c. Prestressed Concrete Piling. Do not use gravity hammers to drive prestressed concrete piling.
E. Leads

Equip pile driving rigs with leads that allow the hammer to move freely and support piling during driving. Use leads that meet the following requirements:

- The vertical axis of the leads and hammer coincide with the vertical axis of the pile.
- The leads are long and rigid enough to hold the pile in accurate alignment while it is being driven.

However, ensure that the driving rig can slightly adjust the lead position to compensate for minor changes in direction while driving.

When the pile is supported by the material being penetrated or by approved templates, use hammer leads only.

Driving in deep water may require special platform-type templates to ensure piling stability and position (see Subsection 520.1.03.A, “Template Plan for Positioning Piling”). Use templates with enough area to accommodate all persons necessary to perform and inspect the work.

The Engineer may require templates in other necessary locations to ensure piling stability and position.

F. Followers

Do not use inserts of similar type piling placed between the hammer and a pile to keep the hammer above water level or other levels.

Within the scope of these Specifications, a follower is part of the driving mechanism used to drive larger-sized prestressed concrete piling.

Position the follower between the pile head and the hammer driving base to evenly distribute the driving energy across the concrete area of voided-type piling.

Always use followers when driving 36 in (900 mm) prestressed concrete piling. The Department allows followers when driving 30 in (750 mm) prestressed concrete piling.

G. Spuds

Use spuds heavy enough to penetrate through strata or a stratum of firm or hard material to reach the necessary depth.

Control the alignment for battered spudding using templates that maintain the batter. Unless otherwise permitted, use templates to control vertical spudding.

Mark the distance from the top of the spud clearly at 2 ft (600 mm) intervals along the length of the stem.

Use either round or square spud tips for pile driving that meet the following requirements:

- At least as large as the pile to be driven at the spudding location
- If round, no more than approximately 2 in (50 mm) larger than the diameter or diagonal dimension of the pile
- If square, no more than approximately 2 in (50 mm) larger than the lateral dimension or diameter of the pile

H. Jetting Equipment

Provide enough pumping capacity, using at least two jets, to produce a volume and pressure that will freely erode the material next to the pile and the material 6 in (150 mm) below the pile tip.

I. Loading Test Equipment

Furnish the necessary material, tools, equipment (including a constant tension wire with a weight and sheave or a weight and round pin), and incidentals to properly install the complete loading test and a temporary shelter over the area if the Engineer requires it.

520.3.03 Preparation

A. Remove Obstacles

Unless otherwise permitted, remove or cut out portions of obstacles that interfere with attaining the PDO. This will be measured and paid for as described in Subsection 520.4.01.A, “Removing Obstacles.”
B. Form the Embankment at Bridge Ends

Before driving piling at bridge ends and unless otherwise shown on the Plans, form the embankment as follows:

1. Make the embankment at bridge ends full depth to the subgrade template except for the stage construction providing a bench for the end bent.
2. Thoroughly compact the embankment as provided in the Specifications.
3. When the Plans or Special Provisions require a waiting period, delay the construction of all or portions of the bridge as required.

The minimum acceptable length of completed full-depth embankment is specified in Subsection 101.11, “Bridge.”

520.3.04 Fabrication

General Provisions 101 through 150.

520.3.05 Construction

A. Determine the Pile Length

Use full-length piling when possible, but always use full-length timber piling. Use piling long enough to reach the PDO.

Except for test piles shown on the Plans, pile lengths are based on the lengths assumed to remain in the completed structure.

Provide fresh headings and the additional length necessary to suit the method of operation at no additional expense to the Department. Pile lengths or quantities shown on the Plans are for estimating purposes only.

The Engineer’s “Length List” will be available only after the test piles that logically cover the listed bents have been driven and evaluated and required load tests have been performed. The written “Length List” itemizes the number, type, size, and length of pile required per bent.

1. Steel H-Piling or Metal Shell Piling Lengths

Determine and furnish the required lengths of piling in place to reach the PDO, regardless of whether the Plans require test piles or show estimated lengths.

To determine these lengths of piling in place, either drive test piles, make borings, or make other investigations at no additional expense to the Department.

2. Timber Piling Lengths

Have the Department determine the lengths of this piling. Furnish the piling either according to the Plan listing or according to the Engineer’s “Length List,” as directed.

Lengths for timber piling up to 40 ft (12 m) will be given in 1 ft (300 mm) increments.
Lengths for timber piling over 40 ft (12 m) will be given in 2 ft (600 mm) increments.

3. Prestressed Concrete Piling Lengths

Have the Department determine the lengths of this piling. Furnish the piling according to the Plan listing or the Engineer’s “Length List,” as directed.

Lengths for prestressed concrete piling 18 in (450 mm) square or smaller will be given in 2-1/2 ft (750 mm) increments.

 a. Additional Lengths for Prestressed Concrete Piling. If a prestressed concrete pile, including test pile, is driven below cutoff elevation before reaching the PDO, the Engineer will determine the net additional length required and add this extension length to the written “Length List.”

 b. Composite Prestressed Concrete Piling Lengths. The composite pile length of composite prestressed concrete piling (with steel H-section tips partially embedded in and partially protruding from the concrete), is the end-to-end length of the concrete.

 The total length of the steel H-section and its embedded and protruding tips is as shown on the Plans. The steel sections are incidental to the work.

B. Drill Pilot Holes

When pilot holes are required, drill them to the diameter and approximate depth specified on the Plans.

Backfill voids and holes with sand or other suitable granular material, or other material as indicated on the Plans. This backfill is an incidental part of the work.
The following are not considered pilot holes:

- Holes created by spudding (punching)
- Holes dug to drive piling that is too long to fit leads
- Holes dug to replace a template (if permitted)

Where pilot holes are required in granular material and the material cannot be sealed off using “mudding” drilling methods, drill the pilot hole as follows:

1. Place a casing pipe with a large enough diameter around the boring device.
2. Hold the casing in position until the pilot hole is completed and the pile driving progresses deep enough into the hard material to keep loose material out of the pilot hole.

Drilling pilot holes using casing is incidental to the work.

C. Test Piling

The Plans will normally require test piles only with timber and prestressed concrete piling, including composite piling. However, the Department may require steel H or metal shell test piles.

When the Plans show the design load of a pile as well as a PDO, the design load is shown only for information purposes if a loading test is required.

Ensure that the piling to be loaded is of the size and type and at the locations specified on the Plans or designated by the Engineer.

The Engineer may revise the quantity or location of the Department’s test piles.

The Department may designate locations on the Plans where the Engineer will record pile driving data during driving operations. Such piles are designated as “Driving Data Piles.”

Follow these requirements when driving:

- Ensure that the cross-sectional dimensions of test piles are the same as the piles that will be part of the completed structure.
- Test piles are generally longer than piles that remain in the completed structure. Regardless of the PDO, drive test piles to their full length, where possible, for exploratory purposes.
- Drive test piles of the length, type, and size designated on the Plans in the locations the Engineer specifies.
- When using timber test piles, peel the piles and drive them next to the piles that will be part of the completed structure. If desired, machine-peel timber test piles and leave them untreated.
- Drive other types of test piles so that they become part of the completed structure.
- Ensure that test piles furnished and driven in permanent locations meet the requirements in Subsection 520.3.05.D.1, “Determine Driving Resistance,” and Subsection 520.3.05.A.1, “Steel H-Piling or Metal Shell Piling Lengths.”
- Drive test piles to determine required lengths in the Engineer’s presence.
- Cooperate with the Engineer to obtain the required data on “Driving Data Piles” as an incidental part of the work. “Driving Data Piles” do not need to be driven before other piling.

D. Evaluate Bearing Capacity

Determine the bearing capacity of piling by determining driving resistance, performing loading tests, or doing a combination of these.

Determine driving resistance for all piling driven regardless of PDO requirements.

1. Determine Driving Resistance

Drive a pile in one continuous operation and determine the driving resistance without delays. However, in soft material the Contractor may, at the Engineer’s discretion, determine the driving resistance after delaying driving operations.

Determine the driving resistance of the piling using the appropriate formula for the hammer type. These resistance formulas apply only when:

- The hammer has a free fall.
- The head of the pile is not broomed, crushed, spalled, or excessively crimped.
The penetration rate is reasonably uniform.

Determining driving resistance by formula is not a Pay Item. Provide the facilities for determining driving resistance by formula as an incidental part of the work.

Driving Resistance Formulas

<table>
<thead>
<tr>
<th>Hammer Type</th>
<th>Formula Number</th>
<th>Formula (DR =)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity hammer</td>
<td>1</td>
<td>(\frac{2WH}{S + 0.7})</td>
</tr>
<tr>
<td>Single-acting steam (or air) hammer; open-end</td>
<td>2</td>
<td>(\frac{2WH}{S + 0.2})</td>
</tr>
<tr>
<td>diesel hammer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double-acting, enclosed-ram diesel hammer</td>
<td>3</td>
<td>(\frac{2E}{S + 0.2})</td>
</tr>
<tr>
<td>Double-acting steam (or air) hammer</td>
<td>4</td>
<td>(\frac{2(W + Ap)H}{S + 0.2})</td>
</tr>
</tbody>
</table>

NOTE: Do not use the manufacturer’s bearing chart unless it agrees with the applicable formula above.

Driving Resistance Formulas (metric)

<table>
<thead>
<tr>
<th>Hammer Type</th>
<th>Formula Number</th>
<th>Formula (DR =)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity hammer</td>
<td>1</td>
<td>(\frac{0.167WH}{S + 17.8})</td>
</tr>
<tr>
<td>Single-acting steam (or air) hammer; open-end</td>
<td>2</td>
<td>(\frac{0.167WH}{S + 5.08})</td>
</tr>
<tr>
<td>diesel hammer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double-acting, enclosed-ram diesel hammer</td>
<td>3</td>
<td>(\frac{0.15E}{S + 5.08})</td>
</tr>
<tr>
<td>Double-acting steam (or air) hammer</td>
<td>4</td>
<td>(\frac{0.166(W + Ap)Hp}{S + 5.08})</td>
</tr>
</tbody>
</table>

NOTE: Do not use the manufacturer’s bearing chart unless it agrees with the applicable above formula.

The abbreviations in the driving resistance formulas are defined as follows:

Driving Resistance Formula Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR</td>
<td>Driving resistance in tons (kilonewtons).</td>
</tr>
<tr>
<td>W</td>
<td>Weight of the striking part of the hammer in tons (newtons).</td>
</tr>
<tr>
<td>H</td>
<td>Height of fall in feet (meters) for gravity, steam, and air hammers.</td>
</tr>
<tr>
<td></td>
<td>When using Formula 1, the maximum height is 10 ft (3 m) for timber piling and 12 ft (3.7 m) for steel H or metal shell piling.</td>
</tr>
<tr>
<td></td>
<td>Observed average height of fall in feet (meters) for open-end diesel hammers. Record "H" as the average penetration in inches (millimeters) per blow being determined.</td>
</tr>
<tr>
<td></td>
<td>When rating open-end diesel hammers to comply with energy requirements, use the height of fall as 8 ft (2.4 m).</td>
</tr>
<tr>
<td>E</td>
<td>Average equivalent energy in foot-tons (newton-meters) for enclosed-ram diesel hammers. Measure "E" as the average penetration in inches (millimeters) per blow being determined using a gauge attached to the hammer.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>A</td>
<td>Area of piston in square inches (meters) for double-acting steam or air hammers.</td>
</tr>
<tr>
<td>P</td>
<td>Pressure at the hammer in tons per in² (pascals) for double-acting steam or air hammers.</td>
</tr>
<tr>
<td>S</td>
<td>Average penetration in inches (millimeters) per blow for the last 5 to 10 blows for a gravity hammer and the last 10 to 20 blows for a power hammer.</td>
</tr>
</tbody>
</table>

2. Perform Loading Test

Unless otherwise specified on the Plans, use a test method that conforms to ASTM D 1143, modified for quick load tests.

Use loading apparatus capable of the lesser value of the following:

- For concrete piles, 400 percent of the design load or 500 tons (4450 kilonewtons)
- For steel piles, 400 percent of the design load or 90 percent of the yield strength

The Engineer may increase or decrease the number of loading tests.

The Department will furnish and read the instrumentation necessary to determine the pile settlement under load.

A loaded pile is unsatisfactory when the total settlement under 200 percent of the design load exceeds 1 in (25 mm) or the permanent settlement exceeds 1/4 in (6 mm) using the standard loading procedure in ASTM D 1143 Section 5.

The laboratory will determine the maximum safe design load or the failure load of original loading materials based on the results of the loading test.

The Engineer may require the following piles to be driven further:

- Unsatisfactory piles as defined in the paragraphs above
- Piles without enough maximum safety design or failure loads as determined by the Office of Materials and Research

Perform the loading test as follows:

a. Test load piling as required on the Plans, or as directed by the Engineer.
b. Furnish and drive the piling to be test loaded.
c. Furnish and drive necessary anchor piling.

When the Engineer permits, use piling that will remain in the completed structure after load testing as anchor piles when desired.

d. Apply the test loads in equal increments of 10 to 15 percent of the design load.
e. Apply the loads at constant 2-1/2-minute time intervals throughout the test.
f. After the test is complete, remove the temporary materials. These temporary materials remain the Contractor’s property.
g. Remove or cut off the piling that will not remain in the completed structure.

Cut off the piling at least 1 ft (300 mm) below the bottom of the footing or the ground line, whichever applies.
h. In deep water, have the Engineer direct how much pile to remove.

E. Drive Piling

Drive piling to the PDO shown on the Plans. When the PDO involves only a driving resistance requirement, the Engineer will determine the depth to drive piling. If there is no Plan PDO, drive the piling as directed by the Engineer.

If the Engineer determines that driving results and loading test results require modification, drive the piling to a PDO modified by the Department.

Drive piling as follows:

1. When using pilot holes, drive the piling enough to fix the point firmly and reach the PDO.
2. Drive piling so that it conforms closely with the position and line shown on the Plans.
3. Drive piling of a given type, including test piles, with the same type and size of hammer.
4. Use vibratory or other pile driving methods only when permitted by Special Provisions Plan Notes or directed by the Engineer.

5. Do not damage piling during driving. Pile damage includes:
 - Crushed, spalled, or cracked concrete
 - Split, splintered, or broomed wood
 - Broken piling
 - Shell collapse
 - Steel deformation

6. Do not force piling into the proper position.

7. When driving a prestressed concrete pile, ensure that the pile point is well-seated with reasonable soil resistance before using full driving energy.

8. Determine the driving resistance when driving the pile using the appropriate Driving Resistance Formula.

F. Excavate and Redrive

Do not drive foundation and end bent piling until excavation is nearly complete.

If driving a test pile to the side (one that will not become part of the structure) have it begin penetration at approximately the same ground elevation as if it were driven within the structure.

Redrive piles that are raised or moved while driving adjacent piling.

G. Jet and Spud

Jetting and, unless otherwise noted in the Contract, spudding are considered incidental to the Work.

Unless otherwise permitted by the Engineer, do not jetting or spudding operations lower than 3 ft (900 mm) above the estimated final elevation of the pile tip, or lower than 3 ft (900 mm) above the specified Minimum Tip Elevation to obtain minimum penetration.

When jetting or spudding to drive a prestressed concrete pile, ensure that the pile point is well seated with reasonable soil resistance at the point before using full driving energy.

1. Jetting

 When the Engineer permits, use jetting to properly position a pile. Additional driving may be required to determine the final driving resistance when piles are positioned by jetting.

 Should additional driving require additional length, the additional expense involved is considered incidental to the Work.

 Jetting may be required with any hammer or piling type (including test piling) and at any site. However, jet only when directed or permitted by the Engineer and as follows:
 a. Do not use jets where the Engineer determines that the jets may endanger the stability of embankments or other improvements.
 b. Perform trial jetting to determine whether to jet using one or two jets. Have the Engineer approve the trial run.
 c. Suspend the pile driving that requires jetting until the jetting is accomplished as directed by the Engineer.
 d. Jet either ahead of the actual pile driving or simultaneously with it as the Engineer determines from the results of trials.
 e. Control and dispose of water and solids that run off from the jetting.
 f. Maintain parallel drainage to railroad tracks.
 g. Do not simultaneously drive and jet a prestressed concrete pile unless there is reasonable soil resistance at the pile point.
 h. If using jets and hammers simultaneously as required or permitted by the Engineer, withdraw the jets before reaching the PDO and continue driving to fix the point of the pile firmly and reach the PDO.

 After jetting an area completely, recheck the driving resistance of questionable piles.

2. Spudding

 If the Plans or Engineer require spudding, do it to facilitate driving.

 The Engineer may require advance jetting exploration before deciding whether or not spudding is necessary to penetrate firm or hard material.
H. Cut Off, Splice, and Extend Piling

Cut off pilings at the required elevation. Splice piling driven below this elevation and extend it according to the Pile Splice Details [Figure 1 (metric)]. Ensure that the minimum splice spacing is at least 10 ft. (3 m).

Lengths of cutoff of any piling, including test piles, remain the property of the Contractor. Dispose of cutoff lengths outside the highway right-of-way according to Subsection 104.07, “Final Cleaning Up.” If desired, use undamaged pieces of steel H and metal shell cutoff for splice plates, extensions, and reinforcement for steel H-tips.

1. Cut Off Prestressed Concrete Piling
 Cut prestressed concrete piling using pneumatic tools, saws, or other approved methods as follows. Do not use explosives.
 When the Engineer considers it necessary, use an approved collar when cutting.
 a. Cut back the required amount of concrete at the end of the pile to be extended, leaving the prestressed strand exposed.
 b. Make the final cut at right angles to the pile axis.
 c. When cutting, avoid spalling or damaging the pile below the cutoff elevation.
 d. If the pile is damaged, replace the pile or repair the damage by cutting back to the extent determined by the Engineer. Replace or repair piles at no expense to the Department.

2. Extend Prestressed Concrete Piling
 Driven extensions of prestressed concrete piling shall consist of Class AAA concrete. Undriven extensions shall consist of Class A concrete.
 Extend prestressed concrete piling as follows:
 a. Build, place, and brace the form work for the extension carefully to obtain true alignment and prevent leaks at the construction joint.
 b. Just before placing the new concrete, thoroughly wet the cut area and cover it with a thin coating of cement paste.
 c. When driving the extension, chamfer the top 1 in (25 mm) at right angles to the extension axis.
 d. Remove the forms and cure and finish the concrete according to Subsection 865.2.01.B.10, “Concrete Curing” and Subsection 500.3.05.Z, “Cure Concrete.”
 e. When extending prestressed concrete piling, comply with the required details when additional driving is or is not necessary after making the extension.
 When additional driving is necessary, ensure that the extension reaches its 28-day compressive strength and has been water-cured for 5 curing days before resuming driving. The delay is considered incidental to the Work.
Steel H Piling

Butt weld

Shell thickness

Pile shell

Back up plate

NOTE: Back up plate to be cut from pile.
Cut and bend to fit inside diameter of pil

Metal Shell Piling

Figure 1 (metric)
3. Splice and Extend Steel H-Piling and Metal Shell Piling

Splice and extend steel H-piling or metal shell piling before, during, or after driving according to the Pile Splice Details [Figure 1(metric)]. Ensure that the sections have identical cross sections.

Instead of using the splice details for H-piles shown in the Pile Splice Details (Figure 1(metric)], when desired, use approved H-pile splicers as follows:

a. Ensure that H-pile splicers are the proper size recommended by the manufacturer for the pile to be spliced.

b. With the splicer in position and before making the splice, ensure that at least 90 percent of the mating ends of the piling to be spliced touch.

c. Connect the splicer and the piling by welding according to a procedure approved by the Department.

4. Cut Off and Splice Timber Piling

Accurately cut off piling to be capped with timber or precast concrete to obtain true bearing on every pile without using shims.

Replace or repair piles inaccurately cut off at no additional expense to the Department. Replace or repair to the Engineer’s satisfaction.

Do not splice timber piling without the Engineer’s permission.

I. Weld Steel Piling Splices and Swaybracing Attachments

Weld steel piling splices and swaybracing attachments according to Section 501.3.06.C.

Weld only in the Engineer’s presence. Use a welder with current Department certification for welds involved.

J. Repair and Treat Timber Piling

Repair and treat timber piling as follows:

1. Field treat cuts and abrasions in treated timber piling with either of these heated treatments:

 - Two applications of a mixture of 60 percent creosote oil and 40 percent roofing pitch
 - Two thorough brush coats of creosote oil followed by a covering of roofing pitch

 Allow each coat to dry before applying the next.

2. Before placing bolts, field treat holes made after treating with hot creosote oil.

3. Plug unused holes with treated plugs after the field treatment.

4. When the approved use of temporary forms or braces causes nail or spike holes in treated piling, fill the holes using either of these methods:

 - Drive galvanized or aluminum nails or spikes flush with the surface.
 - Plug the holes with treated plugs after the field treatment.

5. Field treat treated piling heads used in permanent structures that will not be encased in concrete footings or caps after cutoff:

 a. Treat the sawed surfaces with either of these heated treatments:

 - Three applications of a mixture of 60 percent creosote oil and 40 percent roofing pitch
 - Three thorough brush coats of creosote oil followed by a covering of roofing pitch

 Allow each coat to dry before applying the next.

 b. Cover each pile head with a minimum 28-gauge (0.015 in [0.38 mm] thick) metal.

 - The metal may be aluminum or galvanized steel. However, aluminum is preferred.
 - Trim the metal neatly.
 - Bend the metal down around the pile and fasten it to the side using large-headed aluminum or galvanized roofing nails.

K. Bolt Timber Bracing

Bolt permanent timber bracing at its intersections with piles using standard steel bolts and nuts and cast or malleable iron ogee washers. Refer to Subsection 520.2 “Materials”

1. Place an ogee washer under the bolt head and under the nut.

2. Ensure that the diameters of the bolt and the drilled hole are each 3/4 in (19 mm).

3. After adjusting the nuts, burr the bolt threads.
L. Use Prestressed Concrete Piling

Piles cracked in transportation, handling, or storage may be rejected by the Engineer as defective piles if the cracking indicates structural damage.

Piles with cracks that are not structurally damaging that will not be used in sea water or alkali soils may be accepted by the Engineer if the cracks close and are not visible when the pile is in the leads.

When using prestressed concrete piling, comply with the following:

- Do not drive prestressed concrete piles until they reach a minimum strength of 5,000 psi (35 MPa) and a minimum age of 5 days.
- Form vent holes for voided-type piles in one face of each pile at approximately 5 ft (1.5 m) on the centers. Ensure that these holes remain open permanently.
- After completing the driving, cut back and point over cable loops used as embedded pick-up points that remain above the ground or water line.

M. Use Metal Shell Piling

Metal shell piling consists of steel shells filled with Class A concrete after they are driven in place and cut off.

Ensure that the shell’s minimum wall thickness is 1/4 in (6 mm) unless otherwise shown on the Plans. However, furnish shells thick and rigid enough that they can be driven to the PDO without crimping, buckling, or distorting.

The Contractor may use either of the following:

- Shells of constant section
- Shells that meet the requirements of Subsection 855.2.02, “Fluted Steel Shell Pile”

Use metal shell piling as follows:

1. Drive metal shell piling closed-ended.
2. Unless the Plans specify another detail, construct the end closure according to Option 1 of the Closure Plate Detail [Figure 2 (metric)] so that the closure plate does not project beyond the outside diameter of the pile.
3. After driving, keep the tops of shells covered until the concrete is placed.
4. Ensure that driven shells are clean and free of water immediately before placing concrete. Use a suitable light to inspect the entire length of the shell in place.
5. Before placing concrete, examine the shells for collapse or diameter reduction.
 - Shells that are broken or are collapsed enough that bearing capacity is materially decreased will be rejected as defective piles.
 - Fill rejected shells that cannot be removed with Class A concrete at no expense to the Department.
6. When reinforcement steel is required, rigidly assemble and lower it into the shell so that its position is correct during concrete placement.
<table>
<thead>
<tr>
<th>ID in (mm)</th>
<th>OD in (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 in (50 mm)</td>
<td></td>
</tr>
</tbody>
</table>

Wall thickness

Twice wall thickness but not less than 3/8 in (10 mm)

**Base plate with dia. of "O.D." ±1/16 in (± 2 mm) x 3/4 in (19 mm) thick.

+Back up plate: To be cut from pile and bent to fit "I.D." tightly all around.

*Wall thickness.

Option 1

(Friction Pile)

3/4 in (19 mm) Bevel backup plate 20°±5°

Groove

Back up plate+

Option 2

(End Bearing Pile)

3/4 in (19 mm) Bevel pile 20°±5°

Groove

NOTE: Option 2 shall be used only when indicated on bridge plans.

Closure Plate Details

Figure 2 (metric)
7. Ensure that there are no loose reinforcement steel bars.
8. Do not place concrete in the shells until completing driving within a 30 ft (9 m) radius or until driving shells in any one bent or footing.
 If this is not possible, stop the driving within the radius limit until the concrete in the last shell filled reaches a minimum strength of 2,000 psi (14 MPa).
 The Engineer may adjust the 30 ft (9 m) limit according to the prevailing vibration conditions.
9. Place concrete in the shells continuously from tip to butt. Where shells contain reinforcement steel, use tremies to pour the concrete.
10. For shells in trestle bents, mechanically vibrate the concrete starting approximately 10 ft (3 m) below the ground and working up.
11. For shells in footings, mechanically vibrate the concrete for approximately 25 ft (7.5 m) downward from the top of the shell pile.
12. Pour footings and trestle bent caps at least two hours after filling the last shell in the footing or trestle bent with concrete.

N. Use Steel H-Piling

Wherever the Plans require HP 14 in by 73 lb (360 mm by 108 kg) steel H-piling, the Contractor may substitute HP 13 in by 73 lb (330 mm by 109 kg) steel H-piling and, as appropriate, 13 in (330 mm) pile tip reinforcement for bearing pile in footings. Do not make this substitution for pile bents. Do not change the Contract Bid Price to make the substitution.

Do not cut or trim steel H-piling to fit into an improperly sized steel driving head. Instead, replace the head with one that conforms to the requirements of Subsection 520.3.02.B, “Driving Head.”

Place swaybracing members as shown on the Plans or as required by the Engineer and weld it according to the Swaybracing Attachment Detail [Figure 3 (metric)].

![Figure 3 (metric)](image)

If steel H-piles are not driven in the position and to the alignment required, the Engineer may require fills and shims between the bracing and the pile flanges as an incidental part of the Work.

O. Coat and Paint Piling

Apply a special protective coating as described below to steel H-Piling, metal shell piling, steel swaybracing, and when specified, PSC piling. Clean and paint the piling according to Subsections 535.3.03.A, “Clean New Steel Structures,” and Subsection 535.3.05.E, “Paint Steel H-Piling, Metal Shell Piling, and Steel Swaybracing.”

1. Coating Requirements for End-Bent Piling
 Clean end-bent piling and coat it with a System IV paint for 2 ft (600 mm) below the bottom of the cap.
 As an alternate to coating, pour a concrete collar 2 ft (600 mm) deep with a 3 in (75 mm) cover around the pile.
2. Coating Requirements for Structures Crossing Streams
 Coat pilings as follows:
 a. Piles Not Encased. For piles within the stream and within 10 ft (3 m) of the top of the stream bank, extend the coating required in Subsection 520.3.05.O.1, “Coating Requirements for End-Bent Piling” for 5 ft (1.5 m) below the stream beds.
 Give piles a protective coating 5 ft (1.5 m) below ground line for bents more than 10 ft (3 m) outside each stream bank.
 b. Piles Encased. For piles that will be encased according to Section 547, extend the System IV paint 12 in (300 mm) below the top of the encasement.

3. Coating Requirements for Grade Separation Structures
 For grade separation structures, extend coatings for intermediate bent piling to 5 ft (1.5 m) below the finished ground line.

520.3.06 Quality Acceptance
A. Reaching the PDO
 The Engineer is solely responsible for determining whether the PDO has been reached satisfactorily.

B. Driving Corrections
 Correct driving deviations that exceed 3 in (75 mm) from either the position or the line shown on the Plans as directed by the Engineer.
 Do not allow the pile heave from driving nearby piling to exceed 1/4 in (6 mm) without retapping.

C. Correcting Rejected Piles
 Rejected piles are:
 - Unable to meet material certification
 - Damaged by internal defects or by improper driving
 - Driven out of proper location as described in Subsection 520.3.06.B, “Driving Corrections”.
 - Incorrectly driven below the elevation fixed by the Plans or the Engineer
 - Excessively crimped in driving (steel piling)

 If cracks develop in a prestressed concrete pile that do not classify the pile as defective, seal the cracks with an approved epoxy crack sealer at no expense to the Department. Place the sealer as directed by the Engineer.

 If a pile is driven excessively out of position or below cutoff elevation through no fault of the Contractor, correct it using the method designated by the Engineer at the Department’s expense.

 Correct rejected piling at no expense to the Department using one or more of the following methods approved for the pile:
 1. Extract the pile and replace it with a new one.
 2. Drive a second pile next to the defective pile.
 3. Cut off the pile to obtain a fresh heading, splice it, and extend the pile according to Subsection 520.3.05.H, “Cut Off, Splice, and Extend Piling.”
 4. Extend the footing or cap concrete to embed the pile properly and change the bar reinforcement steel as required.
 5. Delay the Work pending a design analysis (performed by the Contractor with a Department review) and make the corrections specified by the Engineer. The delay is considered incidental to the Work.

520.3.07 Contractor Warranty and Maintenance
A. Unused Piling (Prestressed Concrete or Timber)
 Undriven and undamaged whole lengths of piling ordered by the Engineer will become the property of the Department.
 Assemble and neatly stack the lengths as directed by the Engineer at a convenient location for loading on Department vehicles.
 Guard the lengths against damage or loss for 10 days after notifying the Engineer in writing that the lengths are ready for loading. The 10-day period begins when the Engineer receives the notice.
520.4 Measurement
The items included in this work will be measured for payment as described in Subsection 520.4.01, “Limits.”

520.4.01 Limits
A. Removing Obstacles
 When the obstacle removed (see Subsection 520.3.03.A, “Remove Obstacles”) consists of the structure being replaced, and the Department has previously paid for removing the structure, remove or cut the obstacle at no cost to the Department.
 When the obstacle consists of another object below the original ground and its removal or cutting is necessary, the removal or cutting is measured as Extra Work if it is not covered by another Pay Item.
 Cutting by spudding is not measured for payment.

B. Order Lengths
 The Department will not recognize, accept, or pay any claim for adjusting the Contract Unit Prices because of underruns or overruns of estimated lengths or quantities of piling.

C. Test Piling
 Accepted test piles required by the Plans or the Engineer are measured per each and paid for at the Contract Unit Price.
 Accepted piles furnished and driven as test piles at the Contractor’s option to determine order lengths are measured and paid for the same as for other piling in place of that type used in the completed structure.
 Piling measured and paid for as test piles is not included in other measurement for payment.
 There is no additional measurement for payment for “Driving Data Piles.”

D. Steel H-Piling and Metal Shell Piling
 These piling types are measured in linear feet (meters) of piling in place remaining in the completed work and will be paid for at the respective Contract Price. Measurement does not include piling measured as test piling.
 Payment is full compensation for furnishing, driving, jetting, spudding, lining, filling with concrete, disposing of cutoffs, and painting, including special protective coatings.
 Pile encasement will be paid for by the linear foot (meter) according to Section 547.5.
 Steel swaybracing of steel H-piling will be measured and paid for under Subsection 501.4, “Measurement” and Subsection 501.5, “Payment.”

E. Prestressed Concrete Piling and Timber Piling
 These piling types are measured in linear feet (meters) of piling in place (plus an allowance for cutoff lengths noted in Subsection 520.4.01.F, “Cutoffs”) and paid for at the Contract Price. Measurement does not include piling measured as test piling.
 Pay lengths will be based on the Engineer’s pile order length.
 Payment is full compensation for furnishing, driving, jetting, spudding, lining, disposing of cutoffs, and placing special protective coatings on prestressed concrete piling, if required.
 For timber piling, this payment is also full compensation for the costs of furnishing, placing, and removing temporary bracing necessary to hold the piles in alignment.
 The pay quantity includes prestressed concrete piling extensions (see Subsection 520.4.01.G.2, “Extensions”).

F. Cutoffs
 No separate payment will be made for cutting off pile or for using the cutoff lengths of steel H or metal shell piling.
 However, cutoff undamaged pieces of steel H or metal shell piling used to make other piles or used as extensions will be paid for as piling in place, described in Subsection 520.4.01.D, “Steel H-Piling and Metal Shell Piling,” Subsection 520.4.01.G, “Splices and Extensions,” and Subsection 520.4.01.G.2, “Extensions.”

G. Splices and Extensions
 All extensions and splices are measured and paid for the same way, whether or not the pile is a test pile.
Splicing and extending timber piling, if allowed, will be measured and paid for as Extra Work according to Subsection 109.05, “Extra Work.”

1. Splices
 For any pile including test piles, each splice per steel H or metal shell pile provided for in the Splice Tabulations will be included in the pay quantities and paid for as a Specification allowance of piling in place in the amounts of 4 linear ft (1.2 m) for steel H-pile and 2 linear ft (600 mm) for metal shell pile.
 When the original length of a Department test pile is increased by the Engineer after being driven, each splice required as ordered and accepted is measured for payment in the amount provided above. Other steel pile splices, including others made on test piles, will be performed at the Contractor’s expense.
 For prestressed concrete piling, each splice ordered and accepted (except those required because of Contractor negligence) will be measured and paid for as a Specification allowance of 5 linear ft (1.5 m) of piling. This payment compensates for the costs of making the actual splice within the limits of the cut-back portion. Include uncompensated costs in the overall bid submitted.

<table>
<thead>
<tr>
<th>Splice Tabulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel H or Metal Shell Piling</td>
</tr>
<tr>
<td>In Place Length</td>
</tr>
<tr>
<td>60 ft (18 m) or less</td>
</tr>
<tr>
<td>Above 60 ft (18 m) through 90 ft (27 m)</td>
</tr>
<tr>
<td>Above 90 ft (27 m) through 120 ft (36 m)</td>
</tr>
<tr>
<td>Above 120 ft (36 m) and up</td>
</tr>
</tbody>
</table>

Splices will be paid for only when performed.

2. Extensions
 The extension of a prestressed concrete pile, including test piles, will be the net length ordered by the Engineer measured from the original pile head to the extended head. This extension is measured as piling.
 The actual splice within the cutback portion is measured separately as specified in Subsection 520.4.01.G.1, “Splices.”
 Extensions required because of the Contractor’s negligence are not measured for payment.
 The Engineer will determine the length of extensions for the Department’s steel H or metal shell test piling. These extensions will be paid for as piling in place according to Subsection 520.4.01.D, “Steel H-Piling and Metal Shell Piling.”

H. Alternate to Extending Test Piling
 Instead of extending a prestressed concrete test pile that requires additional driving to reach the PDO (as provided in Subsection 520.4.01.G.2, “Extensions.”), the Engineer may give the Contractor the option of abandoning the pile as a test pile as far as measurement and payment are concerned.
 If the Contractor chooses this option, the Engineer will allow the Contractor to drive a substituted, longer pile of the required length as the test pile at another location selected by the Engineer.
 The Engineer will determine the net additional length required. This additional length will be paid for as piling with no splice allowance.
 Complete the abandoned test pile, which is measured the same as non-test piles.
 The Engineer will not allow the option if the driving data obtained is sufficient or if a loading test is needed instead of further driving.

I. Loading Tests
 The number of loading tests completed and accepted will be measured and paid for per each at the Contract Price.
 Any loading test or additional stage of loading abandoned because of Contractor fault will not be measured.

J. Cast Steel H-Pile Points
 Cast steel H-Pile points of the type and size designated on the Plans are measured per each.
K. Pilot Holes
 Pilot holes drilled and accepted as a Contract Item are measured per linear foot (meter) from the natural ground (intermediate trestle bents) or from the bottom of concrete, whichever applies. Pilot holes will be paid for at the Contract Price.
 Pilot holes not required by the Plans but made at the request of the Engineer will be measured and paid for as Extra Work according to Subsection 109.05, “Extra Work.”

L. Composite Prestressed Concrete Piling
 No separate payment will be made for furnishing and driving steel H-pile sections partially embedded in and partially protruding from prestressed concrete piling, including test piles.

M. Unused Prestressed Concrete or Timber Piling
 Unused prestressed concrete or timber piling will be paid for at invoiced cost, including transportation plus 10 percent.

520.5 Payment
This work will be measured and paid for at the Contract Prices, complete in place.
Payment is full compensation for all costs of complying with these Specifications, including incidentals and additional work.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>520</td>
<td>Piling in place, (type), (size)</td>
<td>Per linear foot</td>
</tr>
<tr>
<td>520</td>
<td>Piling, (type), (size*)</td>
<td>Per linear foot</td>
</tr>
<tr>
<td>520</td>
<td>Test pile, (type), (size*)</td>
<td>Per each</td>
</tr>
<tr>
<td>520</td>
<td>Loading test, (type), (size*)</td>
<td>Per each</td>
</tr>
<tr>
<td>520</td>
<td>Pilot holes</td>
<td>Per linear foot</td>
</tr>
<tr>
<td>520</td>
<td>H-pile points (type), (size)</td>
<td>Per each</td>
</tr>
<tr>
<td>520</td>
<td>Cast steel H-pile points (type), (size)</td>
<td>Per each</td>
</tr>
</tbody>
</table>

*For timber piling, size will be omitted.

520.5.01 Adjustments

A. Test Piles
 No deduction will be made when a required test pile underruns in length with the Engineer’s consent.
 When a required test pile overruns in length with the Engineer’s consent, see Subsection 520.4.01.G.1, “Splices.”

B. Cutoff Allowances
 Cutoff allowances exclude test piling.
 Cutoff allowances will be made for each excess linear foot (meter) removed to achieve the cutoff elevation as follows:
 - For timber piling, the cutoff allowance is 50 percent of the Contract Price.
 - For prestressed concrete piling, the cutoff allowance is 75 percent of the Contract Price.

C. Loading Tests
 If the loaded pile does not carry the load satisfactorily after the load is placed and it is necessary to redrive and reload the pile, this reload constitutes an additional stage of loading but not an additional loading test.
 Each additional stage of loading made and accepted on any single pile as specified will be measured and paid for as 50 percent of a loading test.
Section 522—Shoring

522.1 General Description
This work consists of furnishing, placing, maintaining, and removing all materials and equipment required for shoring as shown on the Plans and as described in other Special Provisions. It also includes all incidental and additional work related to shoring.

522.1.01 Definitions
General Provisions 101 through 150.

522.1.02 Related References
A. Related Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 General Provisions 101 through 150.

522.1.03 Submittals
A. Drawings
 The Engineer may require the Contractor to submit drawings of the proposed shoring for review. If this is required, the Contractor shall not start work until the Engineer completes the review. The review will not relieve the Contractor of responsibility for the adequate and safe performance of the shoring.

522.2 Materials
Use materials that meet the requirements of the Plans and Specifications.

The Contractor retains ownership of all shoring materials.

522.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

522.3 Construction Requirements

522.3.01 Personnel
General Provisions 101 through 150.

522.3.02 Equipment
General Provisions 101 through 150.

522.3.03 Preparation
General Provisions 101 through 150.

522.3.04 Fabrication
General Provisions 101 through 150.

522.3.05 Construction
A. Shoring Design
 Ensure that shoring is structurally adequate to withstand forces including the following:
 - Forces and pressures resulting from excavation
 - Forces and pressures of surcharge loads from adjacent structures, roadbeds, tracks, slopes, and equipment
B. Work Standards
 Ensure this work conforms to the Sequence of Construction outlined on the Plans and in the Special Provisions.

522.3.06 Quality Acceptance
General Provisions 101 through 150.
522.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

522.4 Measurement
This work is not measured separately for payment.

522.4.01 Limits
General Provisions 101 through 150.

522.5 Payment
This work will be paid for at the Contract Price for shoring complete in place, maintained, and removed.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 522</th>
<th>Shoring</th>
<th>Per lump sum</th>
</tr>
</thead>
</table>

522.5.01 Adjustments
General Provisions 101 through 150.

Section 523—Dynamic Testing of Pile

523.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 524—Drilled Caisson Foundations

524.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 525—Cofferdams

525.1 General Description
This work consists of designing, constructing, maintaining, dewatering, removing, and disposing of cofferdams, which are necessary for constructing substructures and for protecting personnel and adjacent structures, roadbeds, tracks, channels, slopes, or other property (public or private) whether on or off the Rights-of-Way from water, caving soil, and other dangers.

525.1.01 Definitions
General Provisions 101 through 150.

525.1.02 Related References
A. Standard Specifications
 Section 109—Measurement and Payment
 Section 211—Bridge Excavation and Backfill
 Section 500—Concrete Structures
B. Referenced Documents
 General Provisions 101 through 150.
525.1.03 Submittals
A. Drawings
 The Engineer may require the Contractor to submit drawings of proposed cofferdams for review. If this is required, the Contractor shall not start work until the Engineer completes the review.

 The review will not relieve the Contractor of the responsibility for providing an adequate and safe cofferdam.

525.2 Materials
Materials used in cofferdam construction may be of any type suitable for the design requirements and for the particular dam being constructed, subject to the Engineer's approval.

Earth dams, sand bags, or dams constructed using excavated materials are not considered cofferdam construction.

525.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

525.3 Construction Requirements
525.3.01 Personnel
General Provisions 101 through 150.

525.3.02 Equipment
A. Pumps
 Supply sufficient pumping capacity to dewater the cofferdam.

525.3.03 Preparation
General Provisions 101 through 150.

525.3.04 Fabrication
General Provisions 101 through 150.

525.3.05 Construction
A. Designing Cofferdams
 Cofferdams shall be structurally adequate to withstand external and internal forces including the following:
 1. Forces and pressures from an excavation depth of not less than 6 ft (2 m) below the elevation of the bottom of the footing
 2. Forces and pressures from surcharge loads from adjacent structures, roadbeds, tracks, slopes, and equipment.
 Design the cofferdam to meet these conditions:
 □ Cofferdams shall permit placing pumping equipment outside the footing forms.
 □ Cofferdams shall permit driving piling between braces.
 □ Cofferdams shall be watertight to permit the construction of the footings, seals, or substructure.

B. Correcting Cofferdams
 Correct to the Engineer’s satisfaction cofferdams that tilt or move laterally during construction.

C. Lowering Cofferdams
 Substructure elevations shown on the Plans are approximate; therefore, the Engineer may require that both substructures and cofferdams be lowered by a specified amount.

D. Dewatering Cofferdams
 Try to dewater cofferdams without using seal concrete unless the Plans require seals.
 1. Dewatering Cofferdams Without Seal Concrete
 Use all reasonable methods to provide a dewaterable enclosure, including the following:
 a. Drive all sheeting within the cofferdam to a depth of at least 1 ft (300 mm) below the bottom of the excavation.
 b. Provide a double-walled cofferdam lined with clay or other reasonably impervious material.
The Engineer decides if the Contractor has used all reasonable methods to provide watertight cofferdams. If the enclosures are not dewaterable, and the Engineer decides the Contractor has not used all reasonable methods to provide watertight cofferdams, the Engineer may do either of the following:
- Require the Contractor to place Seal Concrete at the Contractor’s expense.
- Permit the Contractor to place Seal Concrete at the Contractor’s expense instead of trying further dewatering methods without a seal.

2. Dewatering Cofferdams with Seal Concrete

If all reasonable methods to provide a dewaterable enclosure have been used and the Engineer determines that seal concrete is necessary, place the concrete as outlined in Subsection 500.3.05.V, “Place Seal Concrete.” When using seal concrete, dewater the cofferdam no earlier than 24 hours after the concrete is placed unless the Engineer determines that a longer period is necessary.

E. Removing Cofferdams

Unless otherwise specified, completely remove all cofferdam material. This material shall remain the property of the Contractor.

525.3.06 Quality Acceptance
General Provisions 101 through 150.

525.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

525.4 Measurement

A. Measuring Cofferdams for Separate Payment

Cofferdams will be measured for separate payment only when set up as a Pay Item on the Plans. Separate measurement will be made only for cofferdams constructed at the specific locations required on the Plans, regardless of cofferdams built at other locations within the limits of the structure and regardless of site conditions. The Contractor may request permission to enclose more than one footing in a single cofferdam at a pay measurement location. If the Engineer approves, the number of cofferdams measured for payment will equal the number of footings enclosed within that single cofferdam.

If cofferdams are not set up as a Pay Item on the Plans and their use becomes necessary, they will not be measured for payment.

B. Measuring Lowered Cofferdams for Payment

The following restrictions apply to lowered cofferdams:

1. If lowering a footing requires lowering a separately measured cofferdam, lower the cofferdam enough distance to permit construction at an elevation not to exceed 6 ft (2 m) below Plan elevation at the Contractor’s expense.

2. Any lowering of a cofferdam to permit construction at an elevation more than 6 ft (2 m) below Plan elevation will be paid for as Extra Work.

3. The Specifications intend that no Extra Work be paid for lowering a separately measured cofferdam until the Contractor completes the cofferdam to the extent that footings or substructure can be successfully constructed at an elevation no more than 6 ft (2 m) below Plan elevation. No Extra Work shall be done under this Item until the requirements of Subsection 109.05, “Extra Work” have been met.

525.4.01 Limits
General Provisions 101 through 150.

525.5 Payment

A. Cofferdams Measured for Separate Payment.

Each cofferdam eligible for separate measurement and payment will be paid for at the Contract Price per each, complete in place, maintained, dewatered, removed, and disposed of.
B. Cofferdams Not Measured for Separate Payment.

The cost of cofferdams not measured for separate payment will be included in the Contract Price for bridge excavation.

If lowering a footing requires lowering a cofferdam not measured for separate payment, the compensation for extra depth excavation provided for in Subsection 211.5.A, “Bridge Excavation”, will be full compensation for the cost of lowering the cofferdam.

Payment for cofferdams eligible for separate measurement will be made under the following:

| Item No. 525 | Cofferdams | Per each |

525.5.01 Adjustments

A. Partial Payment Adjustments

Partial payment for measured cofferdams will be made as follows:

1. After a satisfactory initial dewatering of the cofferdam, 75 percent of the Contract Price per cofferdam will be included in the next statement.
2. The remaining 25 percent will be included in the next statement after the satisfactory removal and disposal of the cofferdam.

B. Extra Work Qualifications

When the excavation elevation reaches 6 ft (2 m) below the Plan elevation and the cofferdam is satisfactory (as determined by the Engineer) for dewatering to that elevation, then any lowering of the cofferdam to permit construction at an elevation more than 6 ft (2 m) below Plan elevation will be considered Extra Work.

Section 528—Epoxy Pressure Injection of Concrete Cracks

528.1 General Description

This work consists of labor, material, equipment, and services necessary for repairing concrete cracks. The Plans will specify or the Engineer will determine the extent of repair. The work shall comply with the Specifications including Special Provisions where applicable.

528.1.01 Definitions

General Provisions 101 through 150.

528.1.02 Related References

A. Standard Specifications

Section 886—Epoxy Resin Adhesives

B. Referenced Documents

General Provisions 101 through 150.

528.1.03 Submittals

General Provisions 101 through 150.

528.2 Materials

Ensure epoxy used for crack repair complies with the requirements of Section 886, Type V epoxy adhesive.

Ensure epoxy used for sealing cracks at the surface is strong enough to withstand injection pressures up to 250 psi (2 MPa).

528.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.
528.3 Construction Requirements

528.3.01 Personnel
General Provisions 101 through 150.

528.3.02 Equipment
A. Injection Equipment

Ensure that dispensing equipment for the injection complies with the following performance requirements:

- Self-monitor pressures of 250 psi (2 MPa) for extended periods under flow.
- Maintain a ratio of accuracy of one percent at the required pressures.
- Mix in-line using a static mixing head.

When using screen wire, wire brushes, or other elements for mixing, provide independent certification that the material is mixing thoroughly at the flow rate and temperatures for the job. Also demonstrate that the unit will not dispense resin if the material line is blocked on the supply or dispense side of the system.

528.3.03 Preparation
Before repairing the cracks specified on the Plans, prepare the concrete surfaces next to the cracks by exposing clean and sound concrete.

The exact procedures for exposing clean and sound concrete shall be the Contractor’s option and responsibility. However, the procedures must comply with any traffic handling and construction sequencing requirements for the Project.

528.3.04 Fabrication
General Provisions 101 through 150.

528.3.05 Construction
Seal concrete cracks as follows:

1. After preparing the concrete surfaces, seal the cracks at the surface with epoxy.
 Port spacing, location, and port type shall be the Contractor’s option and responsibility.

2. If the voids are not thoroughly penetrated, use the following procedure:
 a. Wet core on 8 in (200 mm) centers the holes that are 1/2 in (13 mm) diameter and 3/4 in (19 mm) to 1 in (25 mm) depth.
 b. Insert into the cored holes to the full depth copper or plastic tubes 1/2 in (13 mm) diameter and notched at the base.
 c. Seal the circumference of the ports at the surface.
 d. Inject the epoxy at a constant pressure not to exceed 250 psi (2 MPa) for at least 10 minutes or until penetration occurs.

3. After the injection operation is complete, clean the sealed cracks to the original concrete surface.

4. Remove nipple devices and surface sealers over the injection holes.

528.3.06 Quality Acceptance
General Provisions 101 through 150.

528.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

528.4 Measurement

No measurement for payment will be made for any material, equipment, or labor necessary to accomplish this Work.

528.4.01 Limits
General Provisions 101 through 150.

528.5 Payment
All costs for material, equipment, or labor shall be included in the Lump Sum price bid for Epoxy Pressure Injection of Concrete Cracks.
Payment will be made under

<table>
<thead>
<tr>
<th>Item No. 528</th>
<th>Epoxy Pressure Injection of Concrete Cracks, Bridge No.</th>
<th>Per lump sum</th>
</tr>
</thead>
</table>

528.5.01 Adjustments
General Provisions 101 through 150.

Section 529—Navigation Lighting

529.1 General Description
This work consists of furnishing and installing navigation lighting (complete or to the extent indicated on the Plans) on bridges and on fender systems where required on the Plans and approved Shop and Work Drawings.
The Specification’s intent is to secure a complete, operational system according to the National Electrical Code and applicable local ordinances.

529.1.01 Definitions
Qualified Electrician: A journeyman electrician with one of the two following classifications:
- Has a Class II license issued by the Georgia State Construction Industry Licensing Board
- Has completed an approved four-year apprenticeship training program

529.1.02 Related References
A. Standard Specifications
 Section 500—Concrete Structures
 Section 645—Repair of Galvanized Coatings
 Section 852—Miscellaneous Steel Materials
 Section 863—Preservative Treatment of Timber Products
 Section 921—Luminaries
 Section 922—Electric Wire and Cable
 Section 923—Electrical Conduit
 Section 924—Miscellaneous Electrical Materials
B. Referenced Documents
 National Electrical Code
 ASTM A 123/A 123M

529.1.03 Submittals
A. Contractor Qualifications
 The Contractor performing this work must be on the Department’s list of approved electrical contractors or electrical subcontractors.
B. Product Lists
 To avoid misunderstanding and ensure compliance with the Specifications, submit to the Engineer for approval a complete list of the products proposed for use before purchasing materials or equipment. Products must comply with Plan requirements to be approved.
 The product list shall include the following information:
 - Manufacturer’s name for each item
 - Manufacturer’s catalog number for each item
 Where the Engineer deems necessary, alternate equipment will be specified.
C. Fees and Permits
 Pay the fees and obtain the permits required by power companies and governmental agencies.
529.2 Materials
All electrical material shall be approved by the Underwriter’s Laboratory or other acceptable testing agency. Ensure that materials conform to the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Pole</td>
<td>863</td>
</tr>
<tr>
<td>Disconnect Switch</td>
<td>924.2.05</td>
</tr>
<tr>
<td>Magnetic Contactor</td>
<td>924.2.07</td>
</tr>
<tr>
<td>Lightning Arrester</td>
<td>924.2.03</td>
</tr>
<tr>
<td>Miscellaneous Electrical Materials</td>
<td>924</td>
</tr>
<tr>
<td>Electrical Conduit</td>
<td>923</td>
</tr>
<tr>
<td>Ground Rod</td>
<td>924.2.01</td>
</tr>
<tr>
<td>Luminaries and Lamps</td>
<td>921</td>
</tr>
<tr>
<td>Electrical Wire and Cable</td>
<td>922</td>
</tr>
<tr>
<td>Miscellaneous Steel Materials</td>
<td>852</td>
</tr>
<tr>
<td>Photoelectric Control</td>
<td>924.2.06</td>
</tr>
</tbody>
</table>

If this Specification or the Plans omit any item needed to install and operate the navigation lighting satisfactorily, include the item in the system.

If necessary, have a qualified person (including a Registered Professional Electrical Engineer) check, verify, or modify (with the Department’s permission) the Contract requirements. The Department will review and approve a person’s qualifications.

529.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

529.3 Construction Requirements
529.3.01 Personnel
A. Qualified Electrician
 Have a Qualified Electrician on the job site when electrical wiring is being pulled or electrical connections are being made.
 Ensure that the Qualified Electrician possesses evidence of classification and displays this evidence to the Department’s engineer in charge of the construction.

529.3.02 Equipment
General Provisions 101 through 150.

529.3.03 Preparation
General Provisions 101 through 150.

529.3.04 Fabrication
General Provisions 101 through 150.

529.3.05 Construction
A. Contractor Guidelines
 Comply with the following:
 - Local ordinances, rules, and regulations
 - The Plans
 The Plans are not intended to show the complete details of the overall work, but they will indicate the general layout and designate acceptable manufacturers’ equipment.
 - Approved Shop and Working Drawings, including drawings by others, if any
B. Contractor Responsibilities

Take responsibility for the following:

- Provide fittings, devices, materials, and work necessary to install the complete, functional system.
 Any necessary drilling, cutting, patching, galvanizing repair, and other work required because of misplaced or plugged conduit or improper workmanship shall be done without additional compensation and shall be approved by the Engineer.
- Ensure that electrical work is adequate.

C. Construction Precautions

When a bridge is under construction, provide the lights and other signals necessary for protecting navigation as may be prescribed by the U.S. Coast Guard.

D. Galvanized Steel Items

The following steel items shall be galvanized according to ASTM A 123/A 123M, except the weight of zinc coating per square foot (meter) of actual surface for 1/8 in (3 mm) and 3/16 in (5 mm) steels shall average at least 1.25 oz (375 g) and no individual specimen shall show less than 1.0 oz (300 g).

- Structural steel conduit support angles on fender system
- Junction boxes, except stainless steel
- Conduit clamps and screws
- Luminaire retriever chain and swivel
- Lag screws

Powder-actuated galvanized studs may be of commercial galvanizing quality.
Repair damaged galvanized areas according to Section 645.

E. Conduit, Boxes, Fittings, Wiring, and Supports

Furnish and install as required by the National Electrical Code the conduit, boxes, fittings, wiring, supports, and accessories required to complete the work.

1. Conduit Specifications

Ensure that conduit connections are waterproof.
Provide approved conduit expansion joints at each bridge expansion joint.

Use flexible conduit when going from the bridge superstructure to the substructure, from the bridge to the fender system, and in the transition areas between rigid members.

a. Conduit for Service Risers and Bridges

Unless otherwise shown on the Plans, use 1-1/4 in (32 mm) rigid galvanized steel conduit for the service riser and along the bridge.

b. Underground Conduit

Unless otherwise specified on the Plans, use 1-1/4 in (32 mm) nonmetallic conduit for the underground conduit between the service riser and the bridge. Join underground conduit according to the manufacturer’s recommendations and bury it at least 24 in (600 mm).

c. Conduit for the Fender System Walkway

The conduit placed along the fender system walkway may be 1 in (25 mm) size and shall be either liquid tight flexible conduit or rigid galvanized steel conduit. Use the conduit size specified on the Plans.

d. Conduit Connections

Use flexible conduit to connect the rigid galvanized steel conduit located on the faces of pier or bent columns to the conduit located on the fender system walkway.
Ensure this flexible conduit has waterproof couplings and is of sufficient length and slack to permit at least 2 ft (600 mm) of horizontal movement in each direction.

2. Conduit Installation

Install conduit as follows:

a. Install conduit perpendicular to or parallel with the principal structural members.

b. Fit conduit terminals at the junction boxes with bushings.
c. Support the rigid galvanized steel conduit at least every 10 ft (3 m) and within 3 ft (1 m) of junction boxes, luminaires, etc.
d. Use ¼ in (6 mm) galvanized lag screws and clamps to fasten the conduit to the timber walkway of the fender system.

The Contractor may use powder-actuated galvanized studs and clamps to fasten the following items (located underneath the bridge and down the face of pier or bent columns) to the concrete:
- Rigid galvanized steel conduit
- Expansion devices

3. Specifications of Pull and Junction Boxes

Pull and junction boxes mounted on bridges and the fender system shall be waterproof; shall be made of galvanized steel, stainless steel, or cast aluminum; and shall comply with the National Electrical Code. There are two options for providing pull and junction boxes to be installed in the ground:
- Construct the boxes according to the Plan design and dimensions and at the locations shown on the Plans. Construct the concrete boxes of Class A Concrete meeting the applicable requirements of Section 500, including precast concrete boxes.
- Furnish and install manufactured boxes approved by the Engineer. Manufactured boxes will be permitted when the Engineer determines they are equal to the boxes constructed of Class A concrete in design, quality, and structural strength. Boxes must meet the requirements of Section 500.

Provide with each pull or junction box cast iron, steel, or reinforced concrete covers as shown on the Plans.

4. Pull and Junction Box Installation

Install pull and junction boxes as follows:
- If necessary, use powder-actuated galvanized studs and clamps to fasten junction boxes located underneath the bridge and down the face of pier or bent columns to the concrete.
- Seal conduit entrance holes in pull or junction boxes around the conduit as approved by the Engineer.
- Blank off unused entrance holes and openings for conduit to be extended by others with suitable plugs of plastic, bituminous fiber, or other material approved to keep out foreign matter.

5. Luminaire Installation

Install luminaires as follows unless otherwise shown on the Plans:
- Use the number and diameter of studs, bolts, and lag screws the luminaire manufacturer recommends.
- Fasten each channel marker to the bridge with powder-actuated, galvanized, threaded studs or cadmium-plated expansion bolts.
- Fasten each fender marker to the timber walkway with galvanized lag screws.

F. Power Supply and Wiring

Unless otherwise noted, the power supply shall be 120/240 volts, 3-wire, and single phase. The Department and the serving electric utility will agree upon the supply point, which in most cases will be near the Rights-of-Way line near the bridge location.

1. Service Pole

Set up a service pole as follows:
- To receive the service from the Utility Company (unless otherwise indicated on the Plans or in the Specifications), set up a wood pole that complies with Section 863. The pole shall be at least 30 ft (9 m), Class 5, or as shown on the Plans.
- Install the following on the service pole:
 - A metallic service riser with a weatherhead
 - A weatherproof enclosure containing a fusible disconnect switch of the appropriate voltage and ampere rating or as shown on the Plans (see Subsection 529.3.05.H, “Power Control,” for information on additional items contained in the waterproof enclosure)
 - An underwriter-approved meter base in the service riser (where required by the power company or where indicated on the Plans)
G. Grounding System Construction
Furnish and install an approved lightning arrester at the weatherproof enclosure on the service pole and connect it to the grounding system.

1. Grounding System
Construct the grounding system as follows:
- Install a ground rod adjacent to the service pole.
- Connect neutral and grounding conductors to the ground rod.
- Install a separate, continuous copper grounding conductor (green) throughout the system.
- Solidly connect metallic, noncurrent carrying materials in the lighting system to the grounding conductor.
- Drive single ground rods vertically until the top of the rod is at least 12 in (300 mm) below the finished ground.
- Attach a length of No. 6 AGW bare copper, 7-stranded wire to the ground rod with suitable ground rod clamps. Connect this wire to the neutral and grounding conductors at the service pole.

2. Ground Rod System
When the above procedure does not result in sufficient penetration, construct a ground rod system as follows:

a. Place 3 parallel ground rods at least 6 ft (1.8 m) center-to-center in a horizontal pattern and at least 12 in (300 mm) below the finished ground.

b. Joint and connect these rods to the neutral and grounding conductors at the service pole using suitable ground rod clamps and No. 6 AWG bare copper, 7-stranded wire.

H. Power Control
Unless otherwise specified on the Plans or the Specifications, furnish the following items for each service pole:
- Photocell control complete with receptacle and accessories. The control shall provide ON operation as indicated under Subsection 924.2.06, “Photocell Controls.”
- Disconnect switch
- Magnetic contactor. The contactor shall supply power to the lighting circuit.
- Transformer. If the supply voltage is other than 120/240 volts, furnish and install a transformer to provide 120 volt control voltage
- NEMA-3R lockable weatherproof enclosure(s)

The disconnect switch and magnetic contactor shall have the number of poles required to open each ungrounded conductor and shall be accessible from the ground.
Install the following items as follows:

1. Install the Photocell Control

a. Mount the photocell control near the top of the service pole.

b. Direct the photocell control toward the north sky.

c. Enclose wiring to and from the photocell control in rigid galvanized conduit.

The photocell control shall operate the magnetic contactor.

2. Install the Disconnect Switch, Magnetic Contactor, and Transformer
Mount the disconnect switch, magnetic contactor, and transformer, if required, in NEMA-3R lockable weatherproof enclosure(s) on the service pole.

3. Install the Weatherproof Enclosure

a. Install the weatherproof enclosure(s) so that it is accessible from the ground.

b. Furnish a padlock(s) approved by the Engineer with two keys each for locking the weatherproof enclosure(s).

When a project requires more than one padlock, key the padlocks alike.

529.3.06 Quality Acceptance

A. Inspection of the Navigation Lighting System
Materials and workmanship shall meet the requirements of the Plans and these Specifications and shall comply with the National Electrical Code.

The Work shall be inspected by the Department, the utility company involved, and the U.S. Coast Guard. The navigation lighting system shall be approved by both the Department and the U.S. Coast Guard.
529.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

529.4 Measurement
Each navigation lighting system completed and accepted at the location specified will be measured for payment on a lump sum basis. See Subsection 529.1, “General Description.”

529.4.01 Limits
General Provisions 101 through 150.

529.5 Payment
Each navigation lighting system completed and accepted at the location specified will be paid for at the Lump Sum Price bid for each system. This payment shall be full compensation for furnishing and installing materials and for labor, equipment, and incidental necessary to complete the Item.

Payment will be made under:

| Item No. 529 | Navigation lighting, bridge no. | Per lump sum |

529.5.01 Adjustments
General Provisions 101 through 150.

Section 530—Waterproofing Fabrics

530.1 General Description
This work consists of waterproofing concrete and other masonry surfaces by preparing and applying a composite waterproofing membrane at locations shown on the Plans.

530.1.01 Definitions
General Provisions 101 through 150.

530.1.02 Related References
A. Standard Specifications
 Section 500—Concrete Structures

B. Referenced Documents
 General Provisions 101 through 150.

530.1.03 Submittals
General Provisions 101 through 150.
530.2 Materials

Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterproofing Membrane Material</td>
<td>888.2.03</td>
</tr>
<tr>
<td>Mortar</td>
<td>834.2.03</td>
</tr>
</tbody>
</table>

For a list of waterproofing membrane sources, see QPL 22.

530.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

530.3 Construction Requirements

530.3.01 Personnel

General Provisions 101 through 150.

530.3.02 Equipment

General Provisions 101 through 150.

530.3.03 Preparation

A. Prepare the Concrete

Prime the concrete and apply the membrane only under the following conditions:

- Air and concrete temperatures are above 40 °F (4 °C).
- All surfaces are thoroughly dry.
- Concrete is at least 14 days old.

Prepare the concrete as follows:

1. Fill all hole cracks and depressions in the concrete surface flush with mortar composed of one part Portland cement and two parts approved sand and cure according to Subsection 500.3.05.Z, “Cure Concrete.”

 The Contractor may use approved, commercially produced, fast setting, no sag grouts to expedite the work.

2. Chip or grind smooth all high spots, sharp points, and edges.

3. Thoroughly clean and dry the concrete surface.

B. Prime the Concrete

Prime all areas that will receive membrane and allow the areas to cure according to the manufacturer’s recommendations or as directed by the Engineer.

Areas not covered with membrane in 24 hours must be reprimed.

530.3.04 Fabrication

General Provisions 101 through 150.

530.3.05 Construction

A. Seal Openings and Structure Edges

At openings for drains and pipes and at the edges of structures, construct a seal to prevent water from passing between the waterproofing and the surface that it overlays.

Apply a manufacturer-recommended edge seal to any area of the membrane permanently exposed to sunlight.

B. Waterproof Joints

Joints require a double thickness of waterproofing membrane over properly sealed expansion, construction, or control joints.

Pre-strip the joint with a 12 in. (300 mm) wide membrane before applying the main waterproofing. The surface of this pre-strip does not need priming.
C. **Seal Seams**
 Edge and end seams must overlap at least 4 in (100 mm) on all applications.

D. **Apply Membrane**
 Apply the membrane as follows:
 - Rub the entire membrane firmly and completely as soon as possible to minimize bubbles caused by air outgassing or water vapor from the concrete.
 - Slit all fish mouths, overlap the flaps and repair with a patch pressed or rolled to make the seal. Seal the edges with mastic.
 - Patch misaligned or inadequately lapped seams with the membrane.

E. **Protect Membrane**
 When necessary, use a manufacturer-approved protection system to protect waterproofing membranes from damage caused by backfill material or other construction activities.

F. **Repair Membrane**
 As soon as possible, patch all tears and inadequately lapped seams with waterproofing membrane.
 - Slit fish mouths and repair with a patch extending 8 in (200 mm) in all directions from the slit and seal the edges of the patch with mastic.

530.3.06 Quality Acceptance
General Provisions 101 through 150.

530.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

530.4 Measurement
This work will be measured for payment in square yards (meters) of accepted waterproofing.

530.4.01 Limits
General Provisions 101 through 150.

530.5 Payment
This work will be paid for at the Contract Price per square yard (meter) for waterproofing complete in place.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 530</th>
<th>Waterproofing</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
</table>

530.5.01 Adjustments
General Provisions 101 through 150.

Section 531—Dampproofing

531.1 General Description
This work consists of dampproofing concrete and other types of masonry surfaces.

531.1.01 Definitions
General Provisions 101 through 150.

531.1.02 Related References

A. **Standard Specifications**
 General Provisions 101 through 150.
B. Referenced Documents
 General Provisions 101 through 150.

531.1.03 Submittals
 General Provisions 101 through 150.

531.2 Materials
 Ensure that materials meet the requirements of the following Specifications.

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bituminous Material for Dampproofing or Waterproofing</td>
<td>826.2.01</td>
</tr>
</tbody>
</table>

Unless otherwise specified, Pitch Type I or II shall only be used when required by the Contract. When pitch is required, use Type I on vertical surfaces and Type II on flat surfaces.

Use the primers specified in Subsection 826.2.01 with asphalt and pitch seal coats.

531.2.01 Delivery, Storage, and Handling
 General Provisions 101 through 150.

531.3 Construction Requirements

531.3.01 Personnel
 General Provisions 101 through 150.

531.3.02 Equipment
 General Provisions 101 through 150.

531.3.03 Preparation
 A. Prepare Surfaces
 Concrete surfaces shall cure at least 5 days before dampproofing.
 Prepare the surface as follows before dampproofing:
 1. Thoroughly clean and dry the surface to be dampproofed.
 2. Spray at least two applications of primer, allowing primer to be thoroughly absorbed before the next application.

531.3.04 Fabrication
 General Provisions 101 through 150.

531.3.05 Construction
 A. Dampproof Surfaces
 After the final primer coat has been absorbed, dampproof the surface as follows:
 1. Evenly apply a seal coat having a temperature of 300 °F (150 °C) to 350 °F (175 °C) for asphalt and 200 °F (90 °C) for pitch.
 2. Allow the seal coat to dry at least two days or longer. The seal coat shall be hard before any water or earth contacts it.
 3. Protect the seal coat from the weather during the drying period.

531.3.06 Quality Acceptance
 General Provisions 101 through 150.

531.3.07 Contractor Warranty and Maintenance
 General Provisions 101 through 150.

531.4 Measurement
 This work will be measured for payment in square yards (meters) of accepted dampproofing.
531.4.01 Limits
General Provisions 101 through 150.

531.5 Payment
This work will be paid for at the Contract Price per square yards (meters) for dampproofing complete in place. Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 531</th>
<th>Dampproofing</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
</table>

531.5.01 Adjustments
General Provisions 101 through 150.

Section 533—Bridge Deck Waterproofing Membrane

533.1 General Description
This work consists of preparing surfaces for and applying a protective membrane to concrete bridge decks. The membrane shall serve as a waterproof barrier to be overlaid with asphalitic concrete.

The waterproofing method shall be as specified on the Plans and shall be one of the following:

- Method B: A waterproofing membrane system placed directly on a specified grade and thickness of freshly placed asphalitic concrete on the bridge deck.

533.1.01 Definitions
General Provisions 101 through 150.

533.1.02 Related References
A. Standard Specifications
 - Section 400—Hot Mix Asphalitic Concrete Construction
 - Section 413—Bituminous Tack Coat
 - Section 500—Concrete Structures

B. Referenced Documents
 General Provisions 101 through 150.

533.1.03 Submittals
General Provisions 101 through 150.

533.2 Materials
All materials shall meet the requirements of the following specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalitic Concrete</td>
<td>400</td>
</tr>
<tr>
<td>Bituminous Prime</td>
<td>412</td>
</tr>
<tr>
<td>Bituminous Tack Coat</td>
<td>413</td>
</tr>
<tr>
<td>Sand for Blast Cleaning</td>
<td>804</td>
</tr>
<tr>
<td>Waterproofing Membrane Materials</td>
<td>888.2.01</td>
</tr>
<tr>
<td>Mortar</td>
<td>834.2.03</td>
</tr>
</tbody>
</table>

For a list of sources, see QPL 22.
533.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

533.3 Construction Requirements

533.3.01 Personnel
General Provisions 101 through 150.

533.3.02 Equipment
General Provisions 101 through 150.

533.3.03 Preparation
A. Method A Surface Preparation

Cure new bridge decks that will receive waterproofing membrane according to Subsection 500.3.05.Z, “Cure Concrete” without using membrane-forming curing compounds or linseed oil treatments.

Prepare concrete surfaces receiving Method A waterproofing as follows:

1. Chip or grind smooth high spots, sharp points, and edges on the deck surface.
2. Fill holes and depressions in the concrete surface flush with mortar.
 Mortar shall be composed of one part Portland Cement and two parts sand and shall be cured according to Subsection 500.3.05.Z, “Cure Concrete.”
 Approved, commercially produced, fast setting grout may be used to expedite the Work.
3. Allow the mortar to cure.
4. Clean and remove all traffic paint and other harmful materials from the deck by sand-blasting the entire deck surface to which the waterproofing membrane will be applied.
5. Remove all sand-blasting residue with compressed air. Do not use water to clean the deck.

B. Method B Surface Preparation

Prepare concrete surfaces receiving Method B waterproofing as follows:

1. Prepare the Joints
 When the Plans specify to place the waterproofing membrane continuously across any joint, prepare the joints as follows before applying the asphaltic concrete:
 a. Place an additional strip of preformed sheet membrane transversely across deck joints. This strip shall have a minimum width of 18 in. (450 mm) and shall be centered across the joint.
 b. Apply a mastic (of the type specified by the manufacturer) at the face of the curb and at joints to ensure that the membrane uniformly adheres to the concrete.
2. Apply the Asphaltic Concrete
 Once the joints have been prepared, apply the asphaltic concrete as follows:
 a. Apply a tack coat to the bridge deck at the rate specified by the Engineer.
 b. Place the specified grade and thickness of asphaltic concrete.
 c. Compact the asphaltic concrete according to the applicable provisions of Section 400.

533.3.04 Fabrication
General Provisions 101 through 150.

533.3.05 Construction
A. Method A Waterproofing

Use the following guidelines when waterproofing by Method A:

1. Observe Weather Conditions
 Do not perform the work when the relative humidity is above 80 percent or when rain is imminent.
 Prime surfaces and place membrane only when the air and concrete surface temperatures are above 50°F (10°C) and the surface is thoroughly dry.
2. Prime the Surface
Prime the surface as follows:
 a. Ensure that the concrete decks are at least 14 days old before applying prime and membrane.
 b. Prime and cure all areas that will receive membrane according to the manufacturer’s recommendation or as directed by the Engineer.
3. Place the Waterproofing Membrane
Place the waterproofing membrane as follows:
 a. Unless otherwise designated on the Plans, extend the waterproofing membrane at least 6 in (150 mm) up the faces of the curbs, parapets, and barriers in the transverse direction and to the outer limits of the approach slabs in the longitudinal direction.
 b. Apply the membrane to the deck surface using either hand methods or mechanical applicators.
 c. Apply the membrane to the concrete deck so that it forms a butt joint with the faces of open joints and at expansion devices and other joints.
 d. Seal the edges of the membrane and the drain openings to prevent water from passing between the waterproofing and the surface it covers.
 e. Install preformed sheet membrane in a shingled pattern so that water can drain to the low areas of the deck without accumulating against seams. Follow these steps to install the membrane:
 1) Roll the preformed sheet membrane into place with a lawn-type roller to minimize air bubbles and to ensure that the membrane bonds with the primed surface and bonds at the overlaps.
 2) Overlap each strip of preformed sheet membrane at least 4 in (100 mm).
 3) Place the membrane so that end laps are in the direction of the paving operation.
 4) When the Plans indicate to place the waterproofing membrane continuously across any joint, prepare the joints as described in Section 533.3.03.B.1.
 f. Eliminate air bubbles by puncturing the membrane and forcing the air out.
 g. Repair these holes and other ruptures as recommended by the manufacturer. Extend patches at least 6 in (150 mm) beyond the defect.
 h. Completely open all drain holes in the deck before paving over them.
4. Place the Pavement
Place the pavement as follows:
 a. Do not allow construction traffic over the waterproofing membrane before placing the surface pavement.
 b. Apply the paving over the membrane.
 c. Completely open drain holes in the deck after placing the pavement course.
B. Method B Waterproofing

After the asphaltic concrete is compacted and water used in the compaction process has dried completely, place waterproofing membrane directly on the asphaltic concrete using the methods specified in Method A Waterproofing with the following exception:
The tack coat or primer is not required on the asphaltic concrete beneath the waterproofing membrane.
C. Method A and Method B Applying Bituminous Overlay

The paving operation and asphaltic concrete temperatures shall comply with the membrane manufacturer’s recommendations and the applicable asphalt concrete pavement Specifications, or as directed by the Engineer.

Only vehicles necessary for the overlay or paving operations shall be on the membrane.

The Contractor shall be responsible for maintaining the condition of the waterproofing membrane until it is covered with pavement.

Apply bituminous overlay in either Method A or Method B as follows:
1. Before placing the overlay and if required, apply a bond coat of adhesive (bituminous tack coat) to the surface of the waterproofing membrane according to the membrane manufacturer’s recommendations.
2. Overlay the waterproofing membrane with the thickness or quantity and the type of asphaltic concrete specified on the Plans. Bituminous overlay application shall begin as soon as possible after the membrane and, if required, after the bond coat are placed.

3. Dump the asphalt concrete directly into the receiving hopper of the paving machine.

4. Have the truck pull forward and avoid contacting the paving machine while it is moving.

5. Do not permit the mixture to be dumped onto the deck ahead of the paving machine.

6. Spread and roll the asphalt concrete so that the membrane will not be damaged. Roll the first asphalt concrete lift with a breakdown roller as soon as possible after the paving machine has passed. Do not permit the use of vibratory rollers with the vibrator on.

7. Since a minimum percent compaction is not specified, compact the asphaltic concrete to the satisfaction of the Engineer and applicable compaction requirements in Subsection 400.3.06.C.

8. Place a final surface course of Open Graded Surface Mixture according to Subsection 828.2.01, “Open Graded Surface Mixtures” in the amount specified on the Plans unless otherwise specified.

533.3.06 Quality Acceptance
General Provisions 101 through 150.

533.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

533.4 Measurement
Bridge deck waterproofing membrane, complete in place and accepted, will be measured by the number of square yards (meters) of bridge deck and approach slabs covered. Material placed on curb faces and overlaps will not be measured.

Tack coat and asphaltic concrete will be measured and paid for as provided under the respective Items of Section 400 and Section 413.

533.4.01 Limits
General Provisions 101 through 150.

533.5 Payment
Bridge deck waterproofing membrane will be paid for at the Contract Unit Price per square yards (meters) for preparing the surfaces and for furnishing and applying the waterproofing system.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 533</th>
<th>Bridge deck waterproofing membrane (method___)</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
</table>

533.5.01 Adjustments
General Provisions 101 through 150.

Section 534—Pedestrian Overpass Bridge

534.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 535—Painting Structures

535.1 General Description
This work consists of painting new and existing steel structures, steel H-piling and metal shell piling, and steel swaybracing. The work includes applying special protective coatings to piling and swaybracing, complete in place. The work also includes protecting traffic and property.
535.1.01 Definitions
SSPC: Steel Structure Painting Council

535.1.02 Related References
A. Standard Specifications
 Section 107—Legal Regulations and Responsibility to the Public
 Section 501—Steel Structures
 Section 520—Piling
 Section 647—Traffic Signal Installation
 Section 870—Paint
B. Referenced Documents
 SSPC Guide 71 (DIS), Section 5
 SSPC-SP6, “Commercial Blast Cleaning”
 SSPC-SP7, “Brush-Off Blast Cleaning”
 OSHA Standards 29 CFR 1910 and 29 CFR 1926
 Toxicity Characteristic Leaching Procedure (TCLP)
 EPA “Uniform Hazardous Waste Manifest”

535.1.03 Submittals
At least 4 weeks before beginning the work, make the following submittals to the Engineer for approval:
A. Health and Safety Responsibilities
 Provide effective engineering and work practice controls to protect employee health and safety.
 1. Comply with all relevant Environmental Protection Agency (EPA), Resource Conservation and Recovery Act (RCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), Occupational Safety and Health Act (OSHA), and Environmental Protection Division (EPD) Regulations.
 2. Certify to the Engineer that personnel involved with lead paint removal operations (including rigging and material handling personnel) have received training and understand the applicable parts of the latest edition of OSHA Standards 29 CFR 1910 and 29 CFR 1926, including any amendments. Have the certification signed by all personnel involved with lead paint removal.
 3. Provide test results from an OSHA Certified Laboratory showing blood lead levels of employees that may be exposed to lead during the Project.
 4. Provide a medical monitoring schedule to verify acceptable blood lead levels during the Project and after the Project is completed.
B. Blast Cleaning Containment System
 1. Before beginning work at each bridge, submit design and drawings of the proposed containment system to the Engineer for review and approval. Include tarpaulin data sheets to verify that the material is airtight, and tightly secured at the seams. Do not use burlap or open weave materials.
 2. When the proposed containment system will induce large loads on the existing structure, the Engineer may direct the Contractor to submit an analysis of the load that will be added to the existing structure by the containment system and blast waste. Have a licensed Professional Engineer registered in the State of Georgia with bridge experience perform and stamp the load analysis. Ensure that the analysis shows that the system will not induce a load on the bridge that overstresses it or affects the structural integrity of the bridge.
 3. Do not allow the containment system or equipment to violate the minimum bridge clearances shown on the Plans, unless otherwise approved by the Engineer.
C. Emergency Contingency Plan
Submit to the Engineer for review and approval an emergency contingency plan for cleaning up spills from failure of the containment system, spent material recovery system, or storage containers. Define procedures for spills or releases of waste and indicate the training of workers handling the waste as required by RCRA.

D. Spent Material Sampling Plan
Submit in writing to the Engineer for review and approval the proposed method for collecting the spent material. Include a sampling plan that conforms to EPA SW849 or a statement of intent to use the DOT sampling plan (Subsection 535.3.03.B.9). This submittal will also include the name of the company(ies) and responsible person(s) that will sample, treat, and haul the spent material.

E. Material Safety Data Sheets
Submit Material Safety Data Sheets on the abrasive and paint materials that will be used.

F. Hazardous Waste Transporter Information
Provide the name and EPA identification number of each licensed Transporter used for shipping hazardous waste to a treatment, storage, or disposal facility.

G. Permitted Site Information
Provide the name and EPA identification number, phone number, and address for each permitted off-site treatment, storage, or disposal facility to which the waste will be shipped.

H. Accredited Laboratory Information
Provide the name of the Environmental Lead Laboratory Accreditation Program (ELLAP) accredited laboratory that will perform the TCLP tests.
The Engineer will forward a copy of these submittals to the Office of Materials and Research for review.

535.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasives for Blast Cleaning</td>
<td>Note 1*</td>
</tr>
<tr>
<td>Paint</td>
<td>870</td>
</tr>
</tbody>
</table>

Note 1*
Use low dusting mineral abrasives which contain a minimum of ten percent (10%) by weight G-80 steel grit blended homogeneously throughout the blasting abrasive or 100% steel grit. Alternate abrasive mixtures proposed by the Contractor require approval by the Office of Materials and Research before use. Abrasives shall contain no more than 100 ppm of any corrosive compound such as sulfate or chloride. Abrasives shall not contain EPA characteristic compounds such as lead, chromium, or arsenic which can be detected by the EPA Toxicity Characteristic Leaching Procedure (TCLP). The mineral abrasive used to blend with steel grit will be listed in the Department’s Qualified Products Manual.

535.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

535.3 Construction Requirements

535.3.01 Personnel

A. Contractor Certification

Ensure that no Contractor performs work on this Item who is not certified.

To become certified to remove lead paint, either:
- Attend a Departmental Structural Steel Painting Workshop
- Be SSPC certified for hazardous paint removal according to the SSPC-QP2 Contractor Certification Program
Have certified structural steel painting supervisors onsite during Project lead paint removal or spent materials activities (collecting, storing, separating, treating, and moving spent materials).

535.3.02 Equipment

A. Brushes

Preferably, use brushes with round or oval cross sections. If using flat brushes, ensure that the maximum width is 4 in (100 mm).
For surfaces inaccessible to brushes, apply paint with sheepskin daubers made for painting.
Application of inorganic zinc by brush is prohibited except for small areas and touch up work.

B. Spray Equipment

If spraying paint, use air, cold airless, or hot circulating airless equipment. Spray equipment is subject to the Engineer’s approval.

Use spray equipment that can constantly agitate the paint. Also, use equipment with a device that thoroughly mixes paints in their shipping containers before the paints are removed.

Water traps are required as follows:

- When using air spray equipment, ensure that the air lines in the system have suitable water traps.
- For cold airless spray equipment, water traps are not required in the air lines; use them if desired.

C. Rollers

Rollers are subject to the Engineer’s approval.

Use rollers suitable to the type of paint applied and the work areas involved. Provide pans for dipping the rollers into the paint.

Follow these restrictions:

- Do not use worn rollers.
- Do not use rollers to apply special protective coatings or paints to piling and swaybracing.
- If a surface is inaccessible to rollers, apply the paint with sheepskin daubers made for painting.

D. Inspection Equipment

Ensure that the system applicator has the following:

- Wet-film gauge
- Dry-film gauge
- Surface thermometer
- Sling psychrometer
- Abrasive blasting finish gauge

During and after field cleaning and painting, furnish a safety belt and a lift truck, bucket truck, or snooper truck to the Engineer’s satisfaction to inspect the cleaning and painting operation.

E. Protection Equipment

Furnish signs, warning lights, barricades, enclosures, and watchmen as required by the Manual on Uniform Traffic Control Devices or by the Engineer.

535.3.03 Preparation

Refer to Subsection 535.3.05B.1, “weather conditions” before performing any cleaning operations.

A. Clean New Steel Structures

Before painting, clean new steel structures as follows:

1. Clean steel H-piling, metal shell piling, and steel swaybracing.
2. Field blast clean steel H-piling, metal shell piling, and steel swaybracing that will receive paints systems or special protective coatings by field blasting. The extent of cleaning shall be SSPC-SP6, “Commercial Blast Cleaning.”
3. Thoroughly shop clean the following structural steel metal surfaces to be painted. The extent of cleaning shall be SSPC-SP6, “Commercial Blast Cleaning.”

4. Clean field weld or bolted connection surfaces as follows:
 a. Before cleaning the steel, straighten bent metal according to Subsection 501.3.05.A, “Straightening Material.”
 b. Before welding or bolting, field clean the surfaces that will touch after the welding or bolting as described in Subsection 535.3.03.A, “Clean New Steel Structures,” step 1 and step 2.
 c. Keep the surfaces free of paint and metal spatters.
 d. Field clean the remainder of the structural steel.
 If desired, delay cleaning the rest of the structural steel until concrete work is complete and the main painting operation is ready to begin.

5. Prepare new steel structure surfaces for painting as follows:
 a. Have the Engineer inspect each span or unit of work.
 b. Do not begin painting until the Engineer approves the spans or units of work.

B. Clean Existing Steel Structures

Ensure that no work is performed before a Project Bridge Painting / Repainting Pre-Construction Conference is held.

Clean only as much metal as can be painted before it rusts. If surfaces rust after cleaning, clean them again before painting them.

Blast clean existing steel structures as follows:

1. Construct protection devices. Assume responsibility for damages to vehicles, persons, or property caused by cleaning operations.
 Protect the following from blast-cleaning hazards:
 □ Portions of the structure (superstructure, substructure, and highway appurtenances) that could be damaged by the blast cleaning
 □ Existing pedestrian, vehicular, and other traffic on, underneath, or adjacent to the structure
 Construct protection devices as follows:
 a. Cover or shield portions of the structure that could be damaged.
 b. Construct a system that protects traffic from direct blasting and prevents abrasive materials and debris from spreading and creating a traffic hazard.
 c. If blast cleaning disrupts traffic flow, stop cleaning or clean behind screens.
 d. If the protection devices are not providing protection, stop the work and correct the problem.
 Do not begin work until effective corrections are made.
 e. Before reopening work areas to traffic, remove abrasive material and debris deposited on the pavement, shoulders, or slope paving in the area.

2. Prepare the structures for blast cleaning as follows:
 a. If the Project Inspector requires, remove railings, nameplates, and other interfering parts from surfaces to be cleaned and painted.
 b. Straighten bent metal.
 c. Before blast cleaning a beam or girder, remove dust and debris from the top of the bottom flange.

3. Remove all coats of paint to clean, bare metal by blast cleaning or other approved means.
 The extent of cleaning shall be SSPC-SP6, “Commercial Blast Cleaning,” with an anchor pattern between 1.0 and 2.0 mils (0.025 and 0.051 mm). Anchor patterns greater than 2.0 mils (0.051 mm) will require that the primer be applied at a thickness of at least 1 mil (0.025 mm) over the anchor pattern or that the steel be re-blasted unless otherwise approved by the Engineer.

4. After blast cleaning and before painting, prepare the steel surfaces as follows:
 a. Remove sand, dust, and other foreign matter from the following:
 □ Deck
 □ Piers
 □ Railing
□ Other adjoining parts of the structure
□ Slope paving
b. Remove any fins, tears, or slivers from the steel.
c. Remove burried or sharp edges that appear on any steel members.
d. Have the Engineer inspect each span or unit of work.
e. Do not begin painting until the Engineer approves the spans or units of work.

5. Contain the paint chips, abrasive particles, and dust or debris (spent material) caused by cleaning and blasting as follows:
 a. Contain spent material according to the 1992 edition of SSPC Guide 61 (CON), Class 3. The containment materials and support structure may be flexible or rigid.
 b. Ensure that tarpaulins are airtight and secure at the seams.
 c. Do not use burlap or open-weave materials.
 d. Seal seams and joints by taping or overlapping tarps at least 24 in (600 mm). Overlap the entryway at least 3 ft (1 m).
 e. Use negative pressure and verify it as follows:
 □ Verify pressure through the concave nature of the containment materials, taking into account wind effects.
 □ Observe air flow using smoke or other visible means inside or outside the containment.
 f. Filter the air exhausting from the containment with a properly sized dust collector, bag house, or other approved method.
 g. During abrasive blasting operations, ensure that the cross-draft and downdraft air movements within the containment comply with OSHA Standard 29 CFR 1910.94.

6. Additional blast-cleaning requirements for bridges over waterways:
 a. Ensure that there is no scum on the surface of the water outside a 200 ft (60 m) limit of the bridge. Stretch a floating boom across the waterway at or before this 200 ft (60 m) limit on the downstream and downwind sides of the bridge to contain floating spent material.
 b. If floating residue is found outside this 200 ft (60 m) limit, the Engineer will consider protection inadequate and will require further containment measures.
 c. If the wind velocity is high enough to blow the residue outside the 200 ft (60 m) limit, the Engineer will temporarily suspend the blast cleaning.
 d. Provide a flotation device in the water underneath the area being blast cleaned to collect the spent material.
 e. If the stream is too shallow for a barge, erect a temporary platform or tarp arrangement to collect the spent material.

7. Alternate Containment System
 If desired, propose an alternate method for containing the dust and spent materials from blast cleaning the structural steel.
 The Department may reject a proposed alternate method that does not satisfy the Department’s concerns for the safe removal and containment of lead-based paint from bridge structures.
 Submit the proposal for evaluation and approval as follows:
 a. Submit a detailed, written proposal describing the alternate containment and blasting method.
 b. Include in the description specific information on materials and equipment, noise levels, and worker safety and health.
 c. Supply references of other locations where the alternate method has been used.
 d. The Department will review the information submitted and may reject the proposal or issue a conditional approval.
 e. If the Department grants conditional approval, demonstrate the alternate method for containment and blast cleaning on a trial basis.
 1) The Department will evaluate the effectiveness of dust and spent material containment, worker safety and health concerns, and noise levels.

562
2) If the Department finds the alternate method unacceptable, the Department may reject it and require work according to this Specification.

3) If the Department approves the alternate method, the Contractor will receive no additional payment above the established Contract Unit Price.

8. Handling Spent Materials

Handle spent materials according to the following requirements:

a. Collect the spent material daily and store it in sealed waste disposal containers.

b. Use waste containers that are approved by the Engineer and located where they will not cause a potential hazard.

c. Store waste containers in a temporary, fenced, secured area that is not located in a storm water runoff course, in standing water, nor on Department property. Ensure compliance with the requirements of EPA 40 CFR 264.14 and 40 CFR 264.18.

d. Label waste containers in compliance with hazardous waste laws.

e. Have the Contractor or his/her Consultant sample the spent materials according to the approved sampling plan referenced in Subsection 535.1.03.D.

f. Test the material using certified independent laboratory in accordance with the Toxicity Characteristic Leaching Procedure (TCLP).

g. Collection, storage, sampling, and testing shall be performed in accordance with EPA RCRA Regulations (40 CFR 240-299).

h. Forward a copy of all TCLP results to the Engineer and to OMR.

i. If the TCLP toxicity test results do not classify the spent materials as a hazardous waste, uniformly blend twenty percent Portland cement with the spent materials and solidify the mixture before disposing of it at a licensed solid waste landfill. The cost of treatment and disposal of non-hazardous spent material is considered incidental to the pay item.

j. If the TCLP test results classify the material as a hazardous waste, treat the material to the Land Disposal Restriction standard of 0.75mg/l. The waste shall not be disposed of until authorized by the Engineer.

1) If the waste is to be treated on-site, submit a waste analysis plan to the regional EPA office in accordance with 40 CFR 264.13 within 30 days of receipt of the TCLP results.

2) If the waste is to be treated off-site, submit TCLP results to the EPA permitted hazardous waste treatment facility.

k. Forward a copy of all manifests and pertinent documents to the Engineer and to OMR.

9. Sampling for Lead Paint Residue

a. Use the approved detailed sampling plan included in Subsection 535.1.03.D, “Spent Material Sampling Plan” which could either be the sampling plan listed below or a similar plan that conforms to EPA SW 846, Chapter 9 Test Methods for Evaluating Solid Waste Physical/Chemical Methods.

 Ensure the plan includes the following:

1) Who will be responsible for the sampling

2) How often samples will be taken

3) How the samples will be obtained

4) Where the samples will be taken

5) How the samples will be handled

6) How the sample results will be tied back to the waste from which it was sampled.

b. Inform the Project Personnel and Independent Assurance Engineer as to when (date and time) the samples will be taken. The Department will monitor the sampling procedure and the Project Personnel will enter all pertinent information in a logbook. Information to be recorded is as follows:

1) Project and Contract ID numbers

2) Sampling points

3) Field contact personnel

4) Producer of waste

5) Type of process producing the waste
6) Type of waste
7) Total number of samples
8) Number of drums each sample will cover
9) Which bridge location and the drum number i.e. 1-10, 11-18 that the sample will cover.
 a) Label all of the drums on the project. Ensure that the labels are weatherproof and include the following:
 - The Date
 - The Project Number
 - The Contract ID Number
 - The Bridge Location
 - Assign drums a series of consecutive numbers, i.e., 1-40.

c. Take one grab sample (using random sampling technique) from a drum for each bridge location. Use a thieving device to secure samples from each of the drums. The minimum sample size is 0.66 lb (300 g) which is about a cupful.

d. Samples may be taken by the paint Contractor or his/her consultant who will treat the waste.
 1) Send the samples to a certified private testing lab.
 2) Attach a Sampling Analysis Request (sample card) to the samples which includes:
 a) The Date
 b) Project Number
 c) Contract ID number
 d) Bridge Location
 e) Name of collector
 f) Place of collection
 g) Number of drums from Bridge each sample will cover, and
 h) Drum numbers, i.e. 1-10, 11-18 that sample will cover.

3) Include this information on the test report and the manifest so that the waste on the manifest can be keyed to the results on the TCLP report.

4) Ensure that a chain of custody form accompanies the sample and is returned with the test results.

e. Test the samples for EPA Method 1311, Toxicity Characteristic Leaching Procedure (TCLP).

f. Test one (1) sample for each bridge location.
 1) If the results are 5 mg/l or greater leachable lead, the waste is to be declared hazardous and no further testing is needed until the waste has been treated. After treatment, the waste shall be re-sampled and re-tested in accordance with an approved sampling plan and shall be below 0.75 mg/l before disposal.
 2) If the results are below 5mg/l, the waste is to be declared non-hazardous, then the contractor or his/her consultant shall uniformly blend twenty percent Portland cement with the spent material and solidify the mixture before disposing of it at a licensed solid waste landfill.

g. Additional samples must be acquired according to EPA SW 846 and SSPC-Guide 7 Section 5.6.5.

h. Mail the Test reports and manifests to the Engineer's office, who will review them, take the appropriate action and send them to the lab files at the Office of Materials and Research. Send an extra copy of each to the Office of Materials and Research/Independent Assurance.

If the TCLP toxicity test results classify the spent materials as a hazardous waste, treat the waste either on-site or off-site to the Land Disposal Restriction Standard of 0.75 mg/l. Do not dispose of the waste until authorized by the Engineer. Hazardous waste material may be treated off-site if the treatment is performed by a licensed hazardous waste treatment facility in accordance with EPA and EPD guidelines. Forward a copy of all manifests and other pertinent documents to the Engineer and to OMR. These documents will be maintained in the project file for three years.

If after treatment, the spent material is classified as a hazardous waste by the TCLP test, retreat it until the Universal Treatment Standard is met. Hazardous waste disposal shall be paid for as specified under Subsection 535.5 “Payment”, of this Specification.
10. Handle hazardous waste as follows:
 a. Comply with Section 107 of the Specifications. The Contractor is responsible for complying with the hazardous waste laws when performing the Work. Obtain a separate United States Environmental Protection Agency, Generator I.D. Number for each project where the spent material is hazardous waste according to the Toxicity Characteristic Leaching Procedure (TCLP) results. Obtain the generator I.D. number from the Georgia Environmental Protection Division, Hazardous Waste Management, (404) 656-2833. Obtain the Generator I.D. Number within 30 days of receiving the TCLP results and provide copies of the number to the Project Engineer and the Office of Maintenance, Bridge Inspection Unit, No. 2 Capitol Square, Atlanta, Georgia 30334.
 b. Dispose of hazardous spent material only at a licensed hazardous waste disposal facility.
 c. If the disposal facility requires it, send a sample of spent material for confirmation testing before delivering the shipment.
 d. Transport the waste to the facility using EPA-approved licensed waste haulers.
 e. Document each truckload of hazardous waste using an EPA “Uniform Hazardous Waste Manifest.”
 f. According to EPA and EPD rules, provide GDT and the Georgia EPD notification and certification of treated hazardous spent abrasives. Include the following:
 □ Name and address of facility receiving the shipment Description of the waste as initially generated, including the applicable EPA Hazardous Waste Number(s) and treatability group(s)
 □ Treatment standards applicable to the waste at the initial generation point
 □ Signature of an authorized Contractor representative on the certification
 g. Hazardous waste disposal is paid for as specified under Subsection 535.4.01.A, “Spent Materials.”

C. Clean Structures Under or Over Railroads

When cleaning and painting steel structures involves work on, over, or below the railroad right-of-way or the property of a railroad company (Railroad), comply with the following:

□ The additional requirements, including railroad flagging and insurance coverage, listed in the Special Provision for Protection of Railway Interests
□ The Railroad’s general rules, regulations, and requirements including those on safety, fall protection, and personal protective equipment

Coordinate the work with the Railroad and ensure that there will be no interference with or delay to Railroad operations, including train, signal, and communication services.

1. Railroad Protection Requirements

The Contractor is responsible for damages to vehicles, persons, or property resulting from cleaning operations. Ensure that the facilities and property of the Railroad or any tenants remain undamaged. Comply with the following:

a. Protect the following from the damages of blast-cleaning operations:
 □ Traffic (pedestrian, vehicular, rail, train, and other kinds of traffic) on, under, or next to the structure
 □ Portions of the structure (superstructure, substructure, and highway appurtenances) that could be damaged
b. Weight or anchor ground cloths to withstand the suction effects of a passing train.
 c. Restrain ropes, hoses, tarps, booms, and other equipment so they do not hang from the bridge or otherwise infringe on the clearances around an active track (see Subsection 535.3.03.C.2, “Railroad Construction Clearance Limits,” below). Account for the following:
 □ Wind billowing of draped tarpaulins
 □ Sag from the weight of collected spent materials
2. Railroad Construction Clearance Limits

Comply with the Railroad Construction Clearance Limits:

<table>
<thead>
<tr>
<th>Track Type</th>
<th>Horizontal Limits</th>
<th>Vertical Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Track</td>
<td>25 ft (8 m) from the center line</td>
<td>The existing vertical clearance from the top of the rail to the underside of the bridge</td>
</tr>
<tr>
<td>Multiple Tracks</td>
<td>25 ft (8 m) from the center lines of the outermost tracks</td>
<td>The existing vertical clearance from the top of the rail to the underside of the bridge</td>
</tr>
</tbody>
</table>

3. Requirements on Bridges Carrying Roadways Over Railroad Tracks

When work is required within the Railroad Construction Clearance Limits, ensure that the following can be moved outside the clearance limits when the Railroad flagman notifies you to clear the track for rail traffic.

- Working platforms
- Scaffold
- Containment systems
- Other equipment necessary to complete the Work

While the track is open to rail traffic, do not allow ropes, hoses, tarps, booms, or other equipment or items to hang from the bridge or infringe on the clearance limits.

4. Requirements on Bridges Carrying Railroad Tracks over Roadways

When work is required on the Railroad bridge, ensure that the following can be moved completely off the bridge when the Railroad flagman notifies you to clear the track for rail traffic.

- Working platforms
- Scaffold
- Containment systems
- Other equipment necessary to complete the Work
- Spent material

Do not attach rigging or other items to the bridge rails or barriers at the sides of the bridge.

While the track is open to rail traffic, do not allow ropes, hoses, tarps, booms, or other equipment or items to remain on the bridge.

D. Prepare Steel Piling, Swaybracing, and Concrete Piling Surfaces for Special Protective Coatings

Prepare surfaces and material for special protective coatings according to the manufacturer’s recommendations. For a list of sources, see QPL 18.

535.3.04 Fabrication

General Provisions 101 through 150.

535.3.05 Construction

A. Provide Protection

Protect the structure, adjoining property, and the public from the dangers and damages of cleaning and painting.

Protect the following:

- Pedestrian, vehicular, and marine traffic on or underneath the structures being painted
- Structures
- Slope paving
 Clean slope paving stained during painting to the Engineer’s satisfaction.
B. Meet General Painting Requirements

Follow these requirements when painting new and existing steel structures:

1. Weather Conditions

Cleaning or Painting shall not take place during windy or gusty conditions unless the contractor can demonstrate to the satisfaction of the Engineer that containment is sufficient to prevent the escape of paint overspray or spent material. If any paint overspray or spent material is detected outside containment areas, cease all operations until clean up has been completed. Do not recommend cleaning or painting operations until additional measures have been taken to prevent any future escape of spent material and/or paint overspray.

When the Plans specify System VI (waterborne), ensure that the minimum air and surface temperature is 50 °F (10 °C). Comply with the other weather requirements listed below.

When the Plans specify System VII, ensure that the minimum air and surface temperatures are above 35 °F (2 °C) and the relative humidity is greater than 50% when applying the inorganic zinc primer. Apply System VII waterborne intermediate and top coats only when the temperatures of both the air and surface are above 50 °F (10 °C).

For Systems IV and V (alkyd), apply paint only when the air and surface temperatures are both above 40 °F (4 °C).

<table>
<thead>
<tr>
<th>Weather Requirements for Painting All Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum surface temperature</td>
</tr>
<tr>
<td>Relative humidity</td>
</tr>
<tr>
<td>Minimum surface temperature</td>
</tr>
</tbody>
</table>

Follow these weather restrictions:

- Do not apply paint to surfaces that are damp or otherwise unsatisfactory as determined by the Engineer.
- Do not paint in open yards or on erected structures when the metal is hot enough to cause the paint to blister or produce a porous film.
- Do not paint metal hot enough to cause oil separation in the alkyd paint.
- Do not paint metal when freezing weather 32 °F (0 °C) is forecast or expected before the paint can dry.
- Do not store at temperatures below 32 °F (0 °C) or above 100 °F (38 °C). When outdoor temperatures exceed these limits, paint shall be stored in an appropriate indoor location.

2. Oxidation

If a prime coat on structural steel fades or chalks because of oxidation, thoroughly remove the oxidation by brushing or by washing with water until the sound prime coat is visible.

3. Paint Thinning

Do not thin or dilute paints.

4. Application Methods

Thoroughly mix paints in their shipping containers using mechanical devices before removing the paint.

For inorganic zinc primers, add the powder component to the liquid component with thorough stirring, and continue stirring until the powder is well dispersed. Strain the mixture through a 30-60 mesh sieve to remove large particles. Use pressure pots equipped with a mechanical agitator, which will remain in motion throughout the application.

Ensure that the paint formulation matches the application method (brush, roller, airless spray, or air spray).

Apply paint neatly by brushing, spraying, or rolling. Use rollers only as specified in Subsection 535.3.02.C, “Rollers.”

When using brushes or rollers, apply the paint as follows:

a. Produce an even coating covering the metal or the previous coat.

b. Work the paint into corners and crevices.

c. Keep enough paint on rollers and overlap the applications to avoid unsightly or mottled areas.
Use the paint numbers shown in the Table of Application Methods, below.

<table>
<thead>
<tr>
<th>Brush</th>
<th>Roller</th>
<th>Airless</th>
<th>Spray</th>
<th>Hydraulic</th>
<th>Air Spray</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2A</td>
<td>2A</td>
<td>2A</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3B</td>
<td>3B</td>
<td>3B</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Heavy Exposure Green System V (Lead Free Alkyd)

<table>
<thead>
<tr>
<th>No. of Coats</th>
<th>Color of Coats</th>
<th>Thickness, mils (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>1A</td>
<td>X</td>
</tr>
<tr>
<td>1A</td>
<td>1A</td>
<td>X</td>
</tr>
<tr>
<td>1A</td>
<td>1A</td>
<td>X</td>
</tr>
<tr>
<td>2A</td>
<td>2A</td>
<td>X</td>
</tr>
<tr>
<td>3B</td>
<td>3B</td>
<td>X</td>
</tr>
</tbody>
</table>

Ordinary Exposure Green System VI (Waterborne)

<table>
<thead>
<tr>
<th>No. of Coats</th>
<th>Color of Coats</th>
<th>Thickness, mils (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1W</td>
<td>1W</td>
<td>1W</td>
</tr>
<tr>
<td>1W</td>
<td>1W</td>
<td>1W</td>
</tr>
<tr>
<td>2W</td>
<td>2W</td>
<td>2W</td>
</tr>
<tr>
<td>3W</td>
<td>3W</td>
<td>3W</td>
</tr>
</tbody>
</table>

Ordinary Exposure Green System VII (Zinc Primer)

<table>
<thead>
<tr>
<th>No. of Coats</th>
<th>Color of Coats</th>
<th>Thickness, mils (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>Inorganic Zinc Primer X</td>
</tr>
<tr>
<td>2W</td>
<td>2W</td>
<td>2W</td>
</tr>
<tr>
<td>3W</td>
<td>3W</td>
<td>3W</td>
</tr>
</tbody>
</table>

5. Paint Systems and Dry Film Thickness

Apply the minimum required dry film thickness and the additional coats according to the paint system required on the Plans.

<table>
<thead>
<tr>
<th>No. of Coats</th>
<th>Color of Coats</th>
<th>Thickness, mils (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer</td>
<td>Red</td>
<td>2.0 (0.051) to 5.0 (0.127)</td>
</tr>
<tr>
<td>Touch-Up</td>
<td>Red</td>
<td>*</td>
</tr>
<tr>
<td>2nd Coat</td>
<td>Buff</td>
<td>2.0 (0.051) to 5.0 (0.127)</td>
</tr>
<tr>
<td>3rd Coat</td>
<td>Green</td>
<td>1.0 (0.025) to 3.0 (0.076)</td>
</tr>
<tr>
<td>4th Coat</td>
<td>None</td>
<td>X</td>
</tr>
</tbody>
</table>

Heavy Exposure Green System V (Lead Free Alkyd)

<table>
<thead>
<tr>
<th>No. of Coats</th>
<th>Color of Coats</th>
<th>Thickness, mils (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer</td>
<td>Red(T)</td>
<td>2.0 (0.051) to 5.0 (0.127)</td>
</tr>
<tr>
<td>Touch-Up</td>
<td>Red</td>
<td>*</td>
</tr>
<tr>
<td>2nd Coat</td>
<td>Red</td>
<td>2.0 (0.051) to 5.0 (0.127)</td>
</tr>
</tbody>
</table>
Table of Paint Systems and Minimum Required Dry Film Thickness

<table>
<thead>
<tr>
<th>No. of Coats</th>
<th>Color of Coats</th>
<th>Thickness, mils (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd Coat</td>
<td>Buff</td>
<td>1.5 (0.038) to 5.0 (0.127)</td>
</tr>
<tr>
<td>4th Coat</td>
<td>Green</td>
<td>1.0 (0.025) to 3.0 (0.076)</td>
</tr>
</tbody>
</table>

Ordinary Exposure Green System VI (Waterborne)

<table>
<thead>
<tr>
<th>No. of Coats</th>
<th>Color of Coats</th>
<th>Thickness, mils (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer</td>
<td>Brown</td>
<td>3.0 (0.076) to 5.0 (0.127)</td>
</tr>
<tr>
<td>Touch-Up</td>
<td>Brown</td>
<td>*</td>
</tr>
<tr>
<td>2nd Coat</td>
<td>Buff or White</td>
<td>3.0 (0.076) to 5.0 (0.127)</td>
</tr>
<tr>
<td>3rd Coat</td>
<td>Green</td>
<td>3.0 (0.076) to 5.0 (0.127)</td>
</tr>
<tr>
<td>4th Coat</td>
<td>None</td>
<td>X</td>
</tr>
</tbody>
</table>

Ordinary Exposure Green System VII (Zinc Primer)

<table>
<thead>
<tr>
<th>No. of Coats</th>
<th>Color of Coats</th>
<th>Thickness, mils (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer</td>
<td>Gray</td>
<td>3.0 (0.076) to 5.0 (0.127)</td>
</tr>
<tr>
<td>2nd Coat</td>
<td>Buff or White</td>
<td>2.0 (0.051) to 5.0 (0.127)</td>
</tr>
<tr>
<td>3rd Coat</td>
<td>Green</td>
<td>2.0 (0.051) to 5.0 (0.127)</td>
</tr>
<tr>
<td>4th Coat</td>
<td>None</td>
<td>X</td>
</tr>
</tbody>
</table>

* = 2.0 (0.051) for touch-up coats
(T) = Tinted

6. Proper Drying

Ensure that each coat is thoroughly dry and cured before applying the next coat. Allow at least 24 hours between coats.

If weather conditions and paint type require, allow longer periods between coats.

7. Cracks and Cavities

Before applying the second field coat, fill small cracks and cavities that are not sealed watertight by the first field coat using the following

<table>
<thead>
<tr>
<th>Plan-Required Paint System</th>
<th>Fill Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV or V</td>
<td>Pasty mixture of zinc hydroxy phosphite and linseed oil</td>
</tr>
<tr>
<td>VI</td>
<td>Pasty mixture recommended and supplied by the manufacturer</td>
</tr>
<tr>
<td>VII</td>
<td>Pasty mixture recommended and supplied by the manufacturer</td>
</tr>
</tbody>
</table>

C. Paint New Steel Structures

Paint new steel structures as follows:

1. Use the correct paint system. The Plans usually specify one of the systems shown in the Table of Paint Systems and Minimum Required Dry Film Thickness. If the Plans do not specify a paint system, use System VI.

If the structure is located in the 13 county ozone non-attainment region, use only Waterborne coatings for any painting operation conducted between May 1 and September 30. The 13 metro Atlanta counties that comprise the non-attainment region are: Cherokee, Clayton, Cobb, Coweta, DeKalb, Douglas, Fayette, Forsyth, Fulton, Gwinnett, Henry, Paulding, and Rockdale. Do not apply Alkyd coatings and the System VII inorganic zinc primer under the above conditions. System VI and the System VII waterborne intermediate and top coats may be applied.

2. Paint new structural metal with one shop prime coat, one field touch-up coat, and two field weather coats. When severe exposure conditions require, apply one additional prime coat. Once painting has commenced, (including shop coat) succeeding coats of paint are to be the same paint system and from the same paint manufacturer.
3. Apply the type and color of paint coats as required by the system number shown on the Plans. If succeeding coats are the same type and color, tint one of the underlying coats as required by Subsection 870.2.01.B.1.d and Subsection 870.2.06.A.6.

4. Do not paint advertising on structural steel.

5. Adhere to the following requirements for special surfaces:
 a. Concrete Contact Areas
 If the following surfaces will touch previously poured and hardened concrete, apply two coats of primer to them:
 - Steel surfaces
 - Nongalvanized handrail posts
 - Nonembedded armored joints
 Unless otherwise specified on the Shop Drawings, do not shop paint surfaces that will touch plastic concrete.
 b. Inaccessible Areas
 Before assembly, paint surfaces that will be inaccessible after assembly or installation with two coats of primer.
 c. Connection Areas
 Do not shop paint the following connection areas:
 - Surfaces that will touch after welding or bolting
 - Areas next to field welds
 d. Machine-Finished Surfaces
 Using the materials specified, either shop paint or coat the machine-finished surfaces according to Subsection 501.3.04.D.9, “Coating Machine-Finished Steel Surfaces.”
 e. Plates That Touch Elastomeric Pads
 Apply one coat of the shop primer specified on the Plans to plates that will touch elastomeric bearing pads.
 1) Paint surfaces and edges that will be exposed after components are erected.
 2) Do not apply the primer paint to areas that will be welded.
 3) Do not apply the primer paint to the area that will bear against the elastomeric pad.
 4) Dimension and locate the blocked-out, no-paint areas to within plus or minus 1/2 in (13 mm) of the theoretical location and size of the elastomeric pad.

6. Do not handle or load steel until the shop paint is dry.

7. Field paint steel surfaces according to this time line:
 a. Before Erection
 If the following surfaces will touch previously poured and hardened concrete, touch them up as required with primer (or apply two coats of primer if the item was not shop painted) before installing them:
 - Steel surfaces
 - Nongalvanized handrail posts
 - Nonembedded armored joints
 Do not install until the paint is thoroughly dry.
 b. After Erection
 After completing steel erection, clean unprimed surfaces of connection areas requiring paint as specified in Subsection 535.3.03.A, “Clean New Steel Structures,” step 3.
 Connection areas include welded or bolted splices, beam and diaphragm connections, and bracing connections.
 Prime connection areas with the paint specified in the system number shown on the Plans.
 Do not prime welded connections until the following occurs:
 - Weld metal is cleaned according to Subsection 501.3.04.I.2, “Paragraph 3.10.1,” and Subsection 501.3.04.I.3, “Paragraph 4.30.1.”
 - Radiographic or magnetic particle inspection work, if specified, is complete and the welds are approved.
c. After Concreting
 After completing concreting work, clean surfaces as specified in Subsection 535.3.03.A, “Clean New Steel Structures,” and field paint as follows:
 1) Cover the following with one coat of touch-up primer paint and allow it to dry:
 □ Shipping and erection marks
 □ Bolt heads
 □ Other surfaces with worn off or defective prime coat
 2) During touch up, stripe or paint the following with an additional coat of primer:
 □ Exposed edges of flanges on rolled beams and built-up girders
 □ Edges of angles and stiffeners
 □ Exposed edges of gusset plates, splice plates, and cover plates
 3) Ensure that sharp, exposed edges have two full coats of primer paint, including the shop coat.
 4) If removing oxidation as described in Subsection 535.3.05.B.2, “Oxidation,” damages the prime coat so that bare metal is exposed after cleaning, prime the exposed bare metal with an additional coat at no expense to the Department.
 5) If removing oxidation reduces the prime thickness, use two field weather coats, if desired, to obtain the total thickness required for the paint system.
 However, when the two field weather coats are different types of paint, use additional prime paint to obtain the prime thickness.

D. Paint Existing Steel Structures
 Paint existing steel structures as follows:
 1. Prevent paint overspray by using containments.
 2. The weather conditions specified for new steel structures described in Subsection 535.3.05.B also apply to existing steel structures.
 3. Apply the correct colors and number of coats as follows:
 Only steel which has undergone complete removal of all coats and which has a surface cleanliness conforming to SSPC SP-6 may be coated with System VI.
 Give this steel one full prime coat and two weather coats, all of the color and type required by the Special Provisions or Plans. If succeeding coats are of the same type and color, tint one of the underlying coats as required by the Specifications.
 4. The drying requirements of Subsection 535.3.05.B.6 specified for new steel structures shall apply to existing steel structures.
 5. The paint thinning requirements of Subsection 535.3.05.B.3 specified for new steel structures shall apply to existing steel structures.
 6. Painting Of Surfaces:
 a. Methods Of Application: The requirements of Subsection 535.3.05.B.4 as specified for new steel structures shall apply to existing steel structures.
 b. Cracks And Cavities: The requirements of Subsection 535.3.05.B.7 as specified for new steel structures shall apply to existing steel structures.
 c. Paint Thickness: The minimum required dry film thickness as specified in Subsection 535.3.05.B.5 and the additional coats specified in Subsection 535.3.05.B.5 for new steel structures shall apply to existing steel structures. However, when new paint is applied over existing sound paint, the required wet film thickness of the new coats shall be that required by the Special Provisions or Plans.
 7. Apply the minimum required dry film thickness and the additional coats specified in the Table of Paint Systems and Minimum Required Dry Film Thickness.
 However, when applying new paint over existing sound paint, comply with the required wet film thickness specified by the Special Provisions or Plans for new coats.
 8. After completing the painting, replace the railings, name plates, and other interfering parts removed (as described in Subsection 535.3.03.B, “Clean Existing Steel Structures” step 2.a) to the Engineer’s satisfaction.
E. Paint Steel H-Piling, Metal Shell Piling, and Steel Swaybracing
Paint this material as follows:

1. Weather Conditions
 Except as specified below, apply paint in the weather conditions specified in Subsection 535.3.05.B.1, “Weather Conditions.”
 a. Painting in open yards or on erected structures shall not be done when the metal is sufficiently hot to cause the paint to blister or produce a porous film.
 b. Metal shall not be painted when freezing weather [32 °F (0 °C)] is forecast or expected in the time that would occur before the paint has dried.

2. Thinning Paint
 Do not thin or dilute pile paints.

3. Number of Coats and Color
 Unless the Plans require a No. 1P or 2P system, described in Subsection 870.2.05.A.1, “Paint for Steel Piling and Swaybracing,” paint steel H-piling, metal shell piling, and steel swaybracing with a System VII paint system.
 Apply a No. 1P system as follows:
 a. When using a No. 1P system formulated as a first application primer and a separate finish coat, ensure that containers are clearly labeled as primer or finish coat.
 b. Apply the primer first.
 c. Apply successive coats using either primer or finish coat.
 d. Ensure that the final coat is a finish coat.

4. Method of Application
 Apply the black paints noted in Subsection 535.3.05.E.3, “Number of Coats and Color” using either brushes or sprayers.
 When using a brush, apply the paint as follows:
 a. Apply a thick application of paint to be plastered or troweled on the steel surfaces.
 b. Brush out the paint only as required to obtain uniform thickness; do not attempt to brush it out neatly.
 c. Work the paint into corners and crevices.

5. Application Rate
 For each coat, apply at least 1 gal of paint type per 60 ft² (0.7 L/m²). Ensure that the total dry-film thickness of paint coats is as specified in Subsection 535.3.05.E.6, “Thickness of Paint,” below.

6. Thickness of Paint
 Ensure that the final, dry-film thickness of the completed work is at least 25 mils (0.635 mm).
 Apply additional coats to achieve the minimum dry-film thickness at no expense to the Department.

7. Extent of Paint
 Paint to the following extent:
 - Coat exposed piling with a System VII paint system unless a No. 1P or No. 2P system is specified on the Plans.
 - Coat piling in the stream bed and within 10 ft (3 m) of the top of the stream bank with the System VII from 5 ft (1.5 m) below the stream bed to the bottom of the concrete cap.
 - Coat end bent piles 2 ft (600 mm) below the bottom of the cap or concrete encased as defined in Subsection 520.3.05.O, “Coat and Paint Piling.”
 - For piling that will be encased according to Section 547, paint the piling with System VII to the extent specified in Subsection 520.3.05.O, “Coat and Paint Piling.”
 - Before driving, coat test piles located in permanent surface water with a System VII according to Subsection 520.3.05.O, “Coat and Paint Piling.”
 Paint enough of the test pile to ensure that the coated portion extends 5 ft (1.5 m) below the stream bed or bottom.

8. Drying Requirements
 Ensure that each coat is thoroughly dry before the next coat is applied.
F. Apply Special Protective Coatings to Steel Piling, Steel Swaybracing, and Concrete Piling
 Unless the Plans require No. 1P or 2P system, apply a System VII coating. Apply the coating to the extent specified in Subsection 520.3.05.O, “Coat and Paint Piling.”
 Ensure that coverage, wet- and dry-film thicknesses, temperature considerations, primer use, and drying and curing time comply with the manufacturer’s recommendations.
 Apply the special protective coating as follows:
 1. When the structure will be welded, do not apply the material until the weld is placed and cleaned.
 2. Apply the material in at least two coats by brushing.
 3. Apply the second coat at right angles to the first coat.
 4. Use the elapsed time between coats recommended by the manufacturer.
 5. Ensure that the finished film has no holidays and pinholes and completely covers the underlying surface.
 6. After applying the coating material, recoat damaged areas where the protection is ineffective as determined by the Engineer.
 7. Where swaybracing members will be welded to piles and painted in advance, burn off the coating at the weld location and proceed as follows:
 a. Thoroughly clean the burned area by scraping and power-operated wire brushing before welding.
 b. After making and cleaning the weld, recoat the area.
 8. Do not drive piles painted in advance until the second coat has thoroughly dried and completely cured.

535.3.06 Quality Acceptance

A. Correct Defective Work
 If applied paint does not meet the requirements of this Specification, remove the paint or correct it using SSPC-approved means.
 Remove paint that is applied to improperly cleaned surfaces. Clean the surfaces and repaint them to the Engineer’s satisfaction.

B. Meet the Required Total Dry-Film Thickness
 If the minimum required total dry-film thickness specified for the paint system is not reached after applying the required number of coats and colors, apply additional coats at no expense to the Department until the required thickness is obtained.
 The Department considers the applied zinc primer deficient in thickness for measured dry thickness values less than 3 mils (0.076 mm). If more than four deficient thickness values (one measurement per 25 ft² (2.32 m²) of surface area) are found in any 200 ft² (18.6 m²) of continuous metal section, blast clean the entire section to a SSPC-SP6, Commercial Blast condition. Repaint the section with inorganic primer to achieve a dry film coating thickness of 3.0 to 5.0 mils (0.076 to 0.127 mm).
 Repair primed areas having excessive dry film coating thickness, coating “dry spray”, visible coating “mudcracking”, visible surface hackles, handling abrasions, and missed paint in bolt holes. Repair in accordance with the written recommendations of the paint manufacturer. Obtain the Engineer’s approval for all repair recommendations. Include current product data and application instruction sheets with the repair recommendations.

535.3.07 Contractor Warranty and Maintenance
 General Provisions 101 through 150.

535.4 Measurement

The cost of painting new steel structures shall be included in the Contract Price for structural steel. No separate payment will be made.

Cleaning and painting existing steel bridge structures will be measured and paid for at the Contract Unit Price for “Painting Existing Steel Structure Station or Bridge I.D. No. _____.” This includes payment for the following:

- Equipment (including a “flotation device” or temporary platform on waterway bridges)
- Work platform
- Bucket truck or snooper truck with safety belt
- TCLP testing
535.4.01

- Materials and work necessary to remove lead-based paint and contain the spent materials
- Collection and storage of spent materials, water, and slurry generated by abrasive blasting

535.4.01 Limits

A. Spent Materials

Treatment of hazardous waste and subsequent disposal shall be paid for under a force account basis. The Engineer will reimburse the Contractor based upon invoices from the licensed hauler and disposal facility. An additional amount equal to 3% of the total invoices will be paid as administrative costs incurred by the Contractor.

The costs of collecting spent material, furnishing the containers, loading the material into containers, treating the material onsite, and loading the containers into the licensed hauling unit will not be paid for separately. These costs are considered incidental to the pay item.

The disposal of other spent materials collected is incidental to the Pay Item “Painting Existing Steel Structures.”

B. Piling and Steel Swaybracing

The cost of applying special protective coatings or paint to piling shall be included in the Contract Price for piling. No separate payment will be made.

The cost of applying special protective coatings or paint to steel swaybracing shall be included in the Contract Price for structural steel. No separate payment will be made.

535.5 Payment

Payment is full compensation for the costs, direct and indirect, of complying with the requirements of this Specification. Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 535</th>
<th>Painting existing steel structure, Station No. ____</th>
<th>Per lump sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 535</td>
<td>Painting existing steel structure, Bridge I.D. No. ____</td>
<td>Per lump sum</td>
</tr>
<tr>
<td>Item No. 535</td>
<td>Painting existing steel structures, Railroad Special, Station No. ____</td>
<td>Per lump sum</td>
</tr>
<tr>
<td>Item No. 535</td>
<td>Painting existing steel structures, Railroad Special, Bridge I.D. No. ____</td>
<td>Per lump sum</td>
</tr>
</tbody>
</table>

535.5.01 Adjustments

General Provisions 101 through 150.

Section 537—Cattle Pass

537.1 General Description

Specifications for this work will be included elsewhere in the Contract.

Section 538—Post-tensioned Prestressed Concrete Construction

538.1 General Description

Specifications for this work will be included elsewhere in the Contract.

Section 540—Removal of Existing Bridge

540.1 General Description

This work consists of removing and disposing of or salvaging as specified in Subsection 540.3.05.C, “Disposal and Ownership of Material” all or parts of an existing bridge for the Department’s further disposition.
The work includes, but is not limited to, the following:

- Removing all or part of the superstructure or the substructure as described Subsection 540.3.05.A, “Extent of Removal.”
- Excavating to remove the structure unless the excavation is required as a part of another Pay Item.
- Necessary backfilling because of the removal or excavation.

Parts of the structure removed will not be included in the measurements for any excavation to be paid under another Pay Item.

540.1.01 Definitions
General Provisions 101 through 150.

540.1.02 Related References
A. Standard Specifications
 Section 201—Clearing and Grubbing Right-of-Way
B. Referenced Documents
 General Provisions 101 through 150.

540.1.03 Submittals
General Provisions 101 through 150.

540.2 Materials
General Provisions 101 through 150.

540.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

540.3 Construction Requirements

540.3.01 Personnel
General Provisions 101 through 150.

540.3.02 Equipment
General Provisions 101 through 150.

540.3.03 Preparation
A. Sequence of Operations
 No existing structure shall be removed or closed to traffic until traffic has been satisfactorily provided for as required by the Plans or the Engineer.
 No burial will be allowed under any conditions in areas designated by the Department as wetlands.

540.3.04 Fabrication
General Provisions 101 through 150.

540.3.05 Construction
A. Extent of Removal
 Where culverts will replace an existing bridge, remove portions of the existing bridge, including piling, within the area of the proposed culvert to a minimum depth of 5 ft (1.5 m) below the flow line of the culvert.
 Otherwise, do the following:
 - Remove the superstructures, or parts of them, as shown on the Plans.
 - Remove the entire substructure down to the streambed or the natural ground line unless the Plans require that old substructures or parts of them be used as permanent parts of the new structure.
 - Remove the parts of the substructure that interfere with the new work. Do not leave parts within the limits of an excavation required as part of another Pay Item.
 - Remove fender systems and dolphins to the streambed.
B. Care in Removal
Use only approved methods to remove an existing bridge and be careful during blasting to prevent property damage or injury.

1. Reuse of Existing Structures
Handle existing structures being reused as follows:
 a. If part of a separate unit of an existing structure will be incorporated into the new structure, remove the part from that unit without blasting.
 b. If the Plans provide for reusing existing reinforcement, clean, straighten, or bend reinforcement to the required dimensions and cut it as an incidental part of this work.
 c. When existing structures will remain as part of a widened structure, neatly remove parts from the structures. Leave the face of the joint essentially true to the line and plane indicated on the Plans.

2. Salvageable Material
Handle salvageable material as follows:
 a. Determine from the Plans the parts, if any, to be salvaged for the Department’s further disposition.
 b. Arrange the salvaging method accordingly.
 The Contractor shall be responsible for damage to salvageable materials because of carelessness and shall replace or compensate the Department for damaged salvageable materials.
 c. When a wrecking ball is used, have no blows struck within 24 in (600 mm) of the edge of any member to be salvaged for the Department.

C. Disposal and Ownership of Material
Dispose of material as follows:
 1. Salvage only the material designated on the Plans for salvage.
 2. Disassemble this material and neatly stockpile it near the bridge site and above high water.
 3. Do not use any materials stockpiled for the Department without written permission from the Engineer.
 All other materials removed shall become the property of the Contractor, who shall remove them from the bridge site or, if permitted, bury them neatly within the right-of-way, all without additional compensation.
 Dispose of the above materials according to Subsection 201.3.05.E, “Removal and Disposal of Materials.”

540.3.06 Quality Acceptance
General Provisions 101 through 150.

540.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

540.4 Measurement
This work will not be measured separately for payment

540.4.01 Limits
General Provisions 101 through 150.

540.5 Payment
This work will be paid for at the Contract Price per Lump Sum, which will be full compensation for all things necessary to complete the Work.

The cost of excavation needed only to remove or dispose of all or parts of an existing structure, and which is not within the limits of an excavation required as part of another Pay Item, shall be included in the Contract Price for this work. This price shall also include the cost of backfilling excavation performed for these purposes.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 540</th>
<th>Removal of existing bridge___ sta_______</th>
<th>Per lump sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 540</td>
<td>Removal of parts of existing bridge___ sta_______</td>
<td>Per lump sum</td>
</tr>
</tbody>
</table>

540.5.01 Adjustments
General Provisions 101 through 150.

Section 541—Detour Bridges

541.1 General Description
This work consists of constructing, maintaining, and removing detour bridges.

Construct detour bridges the width and length required on the Plans. (The bridge width is the clear distance between curbs or hubguards.) Construct the bridges at the locations required on the Plans and provide the necessary end walls or bulkheads as part of the Work.

541.1.01 Definitions
General Provisions 101 through 150.

541.1.02 Related References
A. Standard Specifications
 Section 104—Scope of Work
 Section 105—Control of Work
 Section 540—Removal of Existing Bridge

B. Referenced Documents
 AASHTO HS-15
 AASHTO Standard Specifications for Highway Bridges
 Georgia Standard 4960 and 4961

541.1.03 Submittals
A. Bridge Design Considerations
 Unless otherwise shown, design detour bridges for an AASHTO HS-15 live load capacity. This capacity is based on the working stresses allowed for the materials used and for the design criteria of the AASHTO Standard Specifications for Highway Bridges.
 The Contractor may omit lane loadings from design considerations. Load factor design is allowed.

B. Bridge Drawings
 Submit the proposed layout and details for each detour bridge to the Engineer for review as follows:
 1. Do not begin work until the drawings have been approved.
 2. Submit drawings in either of the following forms:
 - Three prints
 - A reproducible drawing
 The Engineer can require the Contractor to change the drawings to conform to the Specifications.
 3. After making required changes, resubmit the drawings for final review.
541.2 Materials
Use materials approved by the Department. Material restrictions are as follows:

- Do not use timber in the superstructure.
- Do not use structurally unsound materials of any type.

Piling may be timber. Tight bark does not need to be removed from timber piles.

541.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

541.3 Construction Requirements

541.3.01 Personnel
General Provisions 101 through 150.

541.3.02 Equipment
General Provisions 101 through 150.

541.3.03 Preparation
General Provisions 101 through 150.

541.3.04 Fabrication
General Provisions 101 through 150.

541.3.05 Construction
A. Construct the Detour Bridge
 Construct the detour bridge according to drawings approved by the Engineer.

B. Construct Safety Features
 Construct either of the following safety features at both ends of the detour bridge:
 1. Guard rail
 Construct according to the Construction Details shown in the Plans.
 2. Precast median barrier according to Ga. Std. 4960 and 4961
 When the precast median barrier option is selected, construct the barrier as follows:
 a. Place the precast median barrier on both sides and both ends of the detour bridge unless otherwise directed by the Engineer.
 b. Ensure that the barrier extends at least 40 ft (12 m) from the bridge ends unless the Plans show otherwise.

C. Remove the Detour Bridge
 After the permanent construction is open to traffic, remove the detour bridge according to Section 540.
 Material salvaged from the detour bridge remains the property of the Contractor. Consider the salvage value when compiling the bid.

541.3.06 Quality Acceptance
General Provisions 101 through 150.

541.3.07 Contractor Warranty and Maintenance
A. Maintain the Detour Bridge
 Except as otherwise provided in Subsection 104.05.D, “Detours Outside Right-of-Way,” maintain the detour bridge so it can safely carry the design loading at all times. Furnish labor and material to maintain the bridge.

 If the Engineer determines that the detour bridge endangers public safety, promptly repair the bridge. If the bridge is not repaired immediately, the Engineer will proceed according to Subsection 105.15, “Failure to Maintain Roadway or Structures.”
541.4 Measurement
This work will not be measured separately for payment.

541.4.01 Limits
General Provisions 101 through 150.

541.5 Payment
This work will be paid for at the Contract Price per detour bridge complete in place, maintained, and removed.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 541</th>
<th>Detour bridge (requires width, length, and sta. no.)</th>
<th>Per lump sum</th>
</tr>
</thead>
</table>

541.5.01 Adjustments
After the detour bridge is completed, the Engineer will include 80 percent of the Contract Price for the detour bridge in the next statement.

After the detour bridge is satisfactorily removed, the Engineer will include the remaining 20 percent in the next statement.

Section 542—Contractor Proposed Alternate to Reinforced Concrete Deck Girder

542.1 General Description
This Specification covers design requirements for superstructures proposed by the Contractor as alternates to cast-in-place reinforced concrete deck girder structures.

This work is limited to construction using precast reinforced or precast prestressed concrete stems, including AASHTO Type I beams.

For areas not specifically covered in this Specification, refer to the applicable portions of the Project Specifications, Standard and Supplemental Specifications of the Department, and Part I of the AASHTO Specifications for Highway Bridges with interim and Guide Specifications.

542.1.01 Definitions
General Provisions 101 through 150.

542.1.02 Related References
A. Standard Specifications
 Section 105—Control of Work
B. Referenced Documents
 AASHTO Specifications
 AASHTO Specifications for Highway Bridges, including interim and Guide Specifications

542.1.03 Submittals
A. Department’s Responsibilities
 The Department will quickly review submittals to avoid delaying the Contractor’s scheme.
 The Department will judge the completeness, accuracy, and structural acceptability of submittals.
B. Contractor’s Bid Price
 Include the following in the bid price:
 - Costs for complying with this Specification
 - Costs for completing and revising the Department Plans
C. Submittals

The Contractor may bid based on using precast reinforced or precast prestressed concrete stems. When bidding is based on an alternate design, submit a Contractor-proposed alternate.

1. Follow Submittal Guidelines
 Follow these guidelines for submittals:
 a. Submit the Plan on reproducible mylar sepias.
 b. Submit design notes, except for computer printouts, on A4 paper, neatly bound, indexed, and stamped by the Design Engineer.
 c. Allow the Department 60 days from the date it receives the submission to review the construction Plan.
 d. Do not begin bridge construction until the construction Plans are reviewed and approved.
 e. Ensure that the Plans and notes indicate they have been checked by the Department’s Bridge and Structural Design section.

2. Submit the Contractor-Proposed Alternate

Even when submitting an alternate, assume responsibility for the Plans and working drawings required by Subsection 105.02, “Plans and Working Drawings.”

Submit alternate construction Plans and design notes that are prepared and stamped by the Design Engineer.
The alternate Plans submitted shall include, but not be limited to, the items below. Indicate the information using the same format used on the Department Plans.
 a. General Plan and Elevation Sheet
 Show the following on this sheet for each Contractor-proposed alternate structure bid:
 - Span lengths
 - Pier locations
 - Minimum horizontal clearances from the pier face to the edge of the roadway
 - Minimum vertical clearances from the bottom of the lowest portion of the superstructure to the roadway surface (outside edge of shoulder to outside edge of shoulder)
 - The 28-day concrete strength for the superstructure and substructure
 - Yield and working strengths of the reinforcing steel proposed for the superstructure and the substructure
 - Design Specifications and interim Specifications used during the design of the structure
 - Design live loading, impact factor, and the future wearing surface loading.
 b. Details of the Proposed Structure
 On projects that involve widening existing structures, eliminate the tie strips shown on the Department Plans. Include in the proposal for the Project the cost savings from eliminating the tie strips.
 Include the following items in the structure details:
 - Each cross section at the midspan, end bent, and intermediate bent showing reinforcing steel size, spacing, and location
 - Concrete dimensions relative to computing the structural properties of the members
 - The dimensions of fillets
 - The spacing and size of the web stirrups and longitudinal reinforcing, shown in a longitudinal view of the stem
 - Design notes indicating how the spacings and sizes of reinforcing bars were obtained
 c. Details of the Size and Type of Tendons for Prestressed Alternate
 Include on the drawings the size and type of tendons for prestressed alternate, the horizontal location, and the vertical profile. Also include the following:
 - Location of the hold-down point for the tendons
 - Initial prestress force and strength of concrete when the tendons are released
 - Method of retaining the depressed tendons in place
 - Calculations for determining the tendon elongation required to produce the specified pretensioning force
542.3.05

- Calculations for determining the casting length
- Detensioning schedule

d. Dead Load Deflections from the Slab, Stem, Coping, and Barrier
e. Camber for the Stems
 Include in the camber the effects of vertical curvature.

542.2 Materials
General Provisions 101 through 150.

542.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

542.3 Construction Requirements

542.3.01 Personnel
General Provisions 101 through 150.

542.3.02 Equipment
General Provisions 101 through 150.

542.3.03 Preparation
General Provisions 101 through 150.

542.3.04 Fabrication
General Provisions 101 through 150.

542.3.05 Construction
A. Design and Construct Team
 Contractor-proposed alternates are considered a design and construct proposal. The design and construct team shall consist of a Contractor and a Design Engineer.
 1. Contractor
 The Contractor is responsible for engineering design, drawing, detailing, Plan preparation, printing, and other Work necessary to modify the Department Plans for the proposed scheme.
 2. Design Engineer
 The Design Engineer must be registered as a Professional Engineer in the State of Georgia.
 The Design Engineer is responsible for the following:
 - Remain a part of the team and be available to discuss the Project with the Department at any time during the Project.
 - Keep a record of Project-related communications with the Department, including copies of correspondence and transcripts of conversations.
 - Provide copies of the communication record to the Department and the Contractor.

B. Criteria for Contractor-Proposed Alternates
Contractor-proposed alternates shall be subject to the following criteria:
 1. Comply with the traffic handling and sequence of operation schemes found on the Plans and Specifications.
 2. Do not change the following items from the Department Plans:
 - Horizontal and vertical alignments
 - Beginning and ending bridge stations
 - Minimum horizontal clearance
 - Span lengths
 3. If necessary, reduce vertical clearances from those indicated on the Plans by following the restrictions below and submitting mathematical computations indicating a check of revised vertical clearance.
a. Ensure that the minimum vertical clearance as measured from the lowest point of the bridge superstructure to the roadway beneath is no less than 16.5 ft (5.1 m) the minimum amount shown on the Plans, whichever is less.

b. Do not reduce the vertical clearance from the bottom of the superstructure to the flood elevations indicated on the Plans if either of these situations occur:
 □ The proposed alternate involves a structure crossing a waterway.
 □ The bottom of the beam intrudes into the 100-year flood plain.

4. Construct the bridge superstructure using either a precast reinforced or precast prestressed concrete stem that meet the following criteria:

 a. The section depth, measured from the top of the top slab to the bottom of the stem may deviate from the Plans if the vertical clearance requirement in Item 3 of Subsection 542.3.05.B.3 “Criteria for Contractor-Proposed Alternates,” is satisfied. The stem depth shall be constant throughout the length of each structure unless indicated otherwise on the Plans.

 b. The stem and deck thicknesses may vary from the Plans; however, the center-to-center stem spacing shall not vary.

 c. Give particular attention to skewed structures. The Plans shall clearly indicate all diautous and skewed end dimensions.

 d. Precast stems shall be fabricated at a site approved by the Department.

 e. Precast stems shall be designed for construction without using falsework.

5. Meet the following design criteria for alternate Plans:

 a. The bearing area and edge distance requirements follow AASHTO Specifications.

 b. The substructure remains as designed on the Department Plans except for the following adjustments:
 □ Elevations that accommodate a deeper superstructure
 □ Cap widths that provide adequate bearing area

 The Department will not allow adjustments in substructure quantities resulting from adjusting the elevations or cap widths.

 c. The design complies with applicable requirements of the following:
 □ Current AASHTO Specifications for highway bridges, including interim and guide Specifications
 □ This Specification

 If this Specification and the AASHTO Specifications conflict, this Specification shall apply.

 d. The structure meets the AASHTO live-loading requirement indicated on the Department Plans.

 e. The design dead load of the structure considers the following:
 □ Weight of the structure
 □ Weight of the future wearing surface
 □ Construction loads

 f. Precast prestressed concrete stems meets the following requirements:
 □ Initial tension (before losses from creep and shrinkage) shall not exceed 200 psi (1.38 MPa) or \(3\sigma_{ci} \)
 □ Final tension (after losses) shall not exceed \(3\sigma_{ct} \)

 g. Concrete is normal weight and has a minimum concrete cylinder compression strength at 28 days of at least that indicated on the Plans.

 For design purposes, do not consider 28-day concrete strength above 3,000 psi (20 MPa) for cast-in-place deck construction.

 h. The deck has drain openings the same shape, size, and location as those shown on the Plans.

 i. The barrier curbs are not considered effective in resisting longitudinal stresses and are constructed as shown on the Plans.

 j. Reinforcing steel in the superstructure having a vertical clearance of 4 in (100 mm) or less, as measured from the top of the top slab to the top of the reinforcing bar, is epoxy coated if the Plans specify epoxy-coated bars.

 Barrier curb reinforcing steel is epoxy coated as shown on the Department Plans.

 k. The minimum cover for reinforcing steel is as shown on the Plans.
1. The effective flange depth is altered as follows:
 1) When calculating design section properties, deduct 1/4 in (6 mm) from the flange depth. However, when calculating the dead load moment, shear, and reaction, include the 1/4 in (6 mm).
 2) Where stay-in-place PSC deck panels are used, deduct 1 in (25 mm) from the effective flange depth when calculating design section properties. However, when calculating the dead load moment, shear, and reaction, include the 1 in. (25 mm).

m. Bearing pads or bearing assemblies are placed normal to beams.
 Place bearing pads or bearing assemblies no closer than 1-1/2 in (40 mm) to the end of the beams and 3 in (75 mm) to the edge of the cap.

n. Sole plates are beveled.

o. Bent tops are not sloped for bearing purposes.

p. Neoprene bearing pads used with a precast beam alternate have 3/16-in (5 mm) sealing ribs on the top and bottom of each neoprene pad.

q. The following dead loads are added to the non-composite loads for metal stay-in-place forms:

<table>
<thead>
<tr>
<th>Description</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Slab Reinforcement Normal to Beams</td>
<td>9.25 lbs/ft² (45 kg/m²)</td>
</tr>
<tr>
<td>Main Slab Reinforcement Skewed to Beams</td>
<td>16.00 lbs/ft² (78 kg/m²)</td>
</tr>
</tbody>
</table>

542.3.06 Quality Acceptance

General Provisions 101 through 150.

542.3.07 Contractor Warranty and Maintenance

Ensure the following:

- The design meets the Specification requirements for final design loads.
- Calculations and construction engineering ensure that adjustments during construction account for deflections.
- Proper line, grade, structural capacity, and stresses in the substructure and the superstructure are retained during construction.

542.4 Measurement

Material or work required to construct the Contractor-proposed concrete superstructures are not measured for payment.

Payment for the superstructure will be full compensation for furnishing the labor, materials, equipment, tools, and incidentals necessary to complete the Work, including the following:

- Concrete
- Reinforcing steel
- Expansion joint material
- Waterproofing
- Bearing pads
- Barrier concrete
- Design
- Redesign
- Plan preparation
- Shop drawings
- Concrete finish
- Other superstructure elements necessary for constructing the bridge
542.4.01 Limits
A. Additional Compensation
 No additional compensation will be made for the following:
 - Additional material, equipment, or other items the Department requires after its review of the Contractor’s alternate for Project Specification conformance
 - Changes or deviations from the Contractor’s Plan, as approved by the Department
 - Additional material, equipment, or other costs needed because of changes in the Contractor’s Plan

542.5 Payment
A. Preparation and Review Time
 Charge the time required for preparation of construction plans and design notes to the allowable Contract time.

B. Superstructure
 Work performed and materials furnished in place as required by this Specification will be paid for at the Contract Price bid for “Lump Superstr Conc, CL, Br. No.,” and “Lump Superstr Reinf Steel, Br No.,”

C. Superstructure—Bridge Complete
 Work performed and materials furnished in place as required by this Specification will be paid for at the Contract Price bid for “Lump Construction of Bridge Complete to Bottom of Cap—Alt 4.”

542.5.01 Adjustments
A. Partial Payment
 The Department will determine a schedule for partial payments for the lump superstructure items.

Section 543—Bridge Complete

543.1 General Description
This work consists of constructing the bridge complete as shown in the Contract. The work includes furnishing and placing all bridge components from the bottom of the cap to the top of the superstructure.

543.1.01 Definitions
General Provisions 101 through 150.

543.1.02 Related References
A. Standard Specifications
 Section 211—Bridge Excavation and Backfill
 Section 500—Concrete Structures
 Section 511—Reinforcement Steel
 Sections 500 to 542

B. Referenced Documents
 AASHTO Specifications

543.1.03 Submittals
A. Alternative Designs
 The Contractor may submit for approval an alternative design for the portion of the bridge between the top of the superstructure and the bottom of the cap. The alternative design shall meet the following criteria:
 - The design conforms to current AASHTO Specifications, including the latest Interim Specifications.
 - The design live load is HS20-44, including impact.
Submit the design to the Bridge Engineer for review and approval. Do not begin Work or order materials until the Bridge Engineer approves the Plans in writing.

Include the following in the alternative design:

- Three copies of the Plans bearing a Professional Engineer’s Stamp of Approval.
 The Engineer may require additional copies of the Plans.
- Two copies of complete design notes for the elements of the structure that are a part of the alternate design.
 Bridge Plans developed and published by industry organizations, Federal Highway Administration, and other States may be acceptable without design notes. However, the Bridge Engineer will judge the acceptability of the design notes and the Plans.

If the Bridge Engineer does not accept the design, construct the bridge according to the Contract Plans.

543.2 Materials

Use materials that meet the requirements of the applicable Materials sections of the Specifications. Material references are listed in the Specification sections pertaining to the item of work.

543.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

543.3 Construction Requirements

543.3.01 Personnel
General Provisions 101 through 150.

543.3.02 Equipment
General Provisions 101 through 150.

543.3.03 Preparation
General Provisions 101 through 150.

543.3.04 Fabrication
General Provisions 101 through 150.

543.3.05 Construction

A. Bridge Construction

Construct bridges under this Specification according to the drawings.

B. Order Lengths for Prestressed Concrete Pile

The prestressed concrete pile order lengths shown on the Plans are the estimated pile lengths.

On bridges with more than four bents, the estimated pile lengths shown on the Plans apply to the first four bents constructed. The Engineer will adjust the pile order lengths for the remaining bents based on the pile driving for the first four bents constructed.

Instead of using Plan lengths or lengths determined by the Engineer, the Contractor may determine order lengths by furnishing and driving a test pile in a permanent pile location. There will be no additional compensation for this test pile.

543.3.06 Quality Acceptance
General Provisions 101 through 150.

543.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

543.4 Measurement

Bridge construction complete to the bottom of the substructure caps will be measured for payment based on a lump sum basis for the bridge complete, accepted in place.
543.4.01 Limits
A. Lump Sum Inclusions and Exclusions
 The lump sum includes payment for superstructure elements and substructure caps.
 The lump sum does not include the cost of piling portions embedded in the substructure caps as shown on the Plans.
B. Concrete Bent Measurement
 Where foundation conditions require the use of a concrete bent instead of a trestle pile bent, concrete and reinforcement steel below the bottom of the substructure cap will be measured and paid for according to Section 500, Section 511, and Section 211.

543.5 Payment
This work will be paid for at the Contract Unit Price bid. Payment will be full compensation for furnishing all materials and completing the Item according to these Specifications.
Payment will be made under:

| Item No. 543-1100 | Construction of bridge complete to bottom of cap | Per lump sum |

543.5.01 Adjustments
Statements for partial payment include:

| Caps, each | 20% of Item 543 divided by number of caps |
| Superstructure, per span | 80% of Item 543 divided by number of spans |

Section 544—Deck Drain System

544.1 General Description
This work includes furnishing deck drainage systems according to Plan details.

544.1.01 Definitions
General Provisions 101 through 150.

544.1.02 Related References
A. Standard Specifications
 Section 645—Repair of Galvanized Coatings
 Section 870—Paint
B. Referenced Documents
 General Provisions 101 through 150.

544.1.03 Submittals
Submit complete detail Shop Drawings for the deck drain system to the Engineer for approval.
If the deck drain system is for a railway, the Engineer will submit the Shop Drawings to the Chief Engineer of the railway company for approval.
In either case, obtain approval from the Engineer prior to fabrication or installation.

544.2 Materials
Use materials that meet Plan requirements. Use commercial-grade steel hardware (clips, brackets, bars, etc.) unless otherwise noted on the Plans. Use galvanizing repair compound that meets the requirements of Section 870.
544.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

544.3 Construction Requirements
544.3.01 Personnel
General Provisions 101 through 150.
544.3.02 Equipment
General Provisions 101 through 150.
544.3.03 Preparation
General Provisions 101 through 150.
544.3.04 Fabrication
General Provisions 101 through 150.
544.3.05 Construction
Repair damaged galvanized areas according to Section 645.
Install deck drain systems according to the Plans.
544.3.06 Quality Acceptance
General Provisions 101 through 150.
544.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

544.4 Measurement
This work is not measured separately for payment.
544.4.01 Limits
General Provisions 101 through 150.

544.5 Payment
This work will be paid for at the Contract Price for deck drain system complete in place.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 544</th>
<th>Deck drain system—bridge no.</th>
<th>Per lump sum</th>
</tr>
</thead>
</table>

544.5.01 Adjustments
General Provisions 101 through 150.

Section 547—Pile Encasement

547.1 General Description
This item includes furnishing all labor, materials, equipment, and services necessary to clean and encase steel piles as indicated on the Plans. Complete all work according to this Specification and to the Engineer’s satisfaction.
547.1.01 Definitions
General Provisions 101 through 150.
547.1.02 Related References
A. Standard Specifications
 Section 500—Concrete Structures
Section 514—Epoxy Coated Steel Reinforcement
Section 801—Fine Aggregate

B. Referenced Documents
ASTM 2262
ASTM C 939
ASTM D 737
ASTM D 1682

547.1.03 Submittals
When substituting equal products or systems for one of the two encasement procedures noted in this Specification, obtain approval from the Engineer before use. Submit complete data, including:

- Company name and address
- Description of the product or system previously used on similar projects and how they were used
- List of products and their application
- Length of time the products have been in use (at least three years)
- Length of time the applicator has been in business

547.2 Materials
A. Fabric for Pile Jacket

For encasement systems, use pile jacket fabric that conforms to the following requirements:

<table>
<thead>
<tr>
<th>Requirements for Pile Jacket Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warp</td>
</tr>
<tr>
<td>21 ends per inch (25 mm) 1260 denier</td>
</tr>
<tr>
<td>Fill</td>
</tr>
<tr>
<td>Nylon 66 fill -- 20 picks per inch (25 mm) 1840 denier</td>
</tr>
<tr>
<td>Approximate Weight</td>
</tr>
<tr>
<td>Dupont Cordura -- 9 oz per sq yd (305 g/m²)</td>
</tr>
<tr>
<td>Tensile Strength</td>
</tr>
<tr>
<td>(ASTM D 1682 grab method at 1 in/min (25.4 mm/min) in excess of 400 lbs/inch (70 N per mm) in both warp and fill directions)</td>
</tr>
<tr>
<td>Tearing Strength</td>
</tr>
<tr>
<td>(Tongue method ASTM 2262)—100 lbs (445 N)</td>
</tr>
<tr>
<td>Air Permeability</td>
</tr>
<tr>
<td>(ASTM D 737) in excess of 100 ft (30 m) per min.</td>
</tr>
</tbody>
</table>

B. Mortar for Pile Encasement Procedure 2

Maintain mortar at a uniform consistency to avoid pumping problems. When using concrete sand, keep mortar consistency in the 12-second to 15-second range through the 3/4 in (19 mm) orifice of a standard flow cone, as described in ASTM C 939. When using mason’s sand, keep consistency in the 30- to 35-second range through a 1/2 in (13 mm) orifice.

1. Admixtures

When recommended by the manufacturer, use admixtures such as grout super plasticizer, water-reducing agent, or air-entraining agent to improve pumpability or to retard setting time. The Department recommends that a pozzolanic admixture be substituted for up to 30 percent of the cement.
2. Mortar mix for Pile Encasement Procedure 2
 Use mortar mix for pile encasement that conforms to the following proportions:

<table>
<thead>
<tr>
<th>Material</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>1,130 lbs/yd(^3) (670 kg/m(^3))</td>
</tr>
<tr>
<td>Sand, Concrete, or Masonry</td>
<td>2,000 lbs/yd(^3) (1187 kg/m(^3))</td>
</tr>
<tr>
<td>Water</td>
<td>565 lbs/yd(^3) (335 kg/m(^3))</td>
</tr>
<tr>
<td>Water/Cement Ratio</td>
<td>0.50</td>
</tr>
</tbody>
</table>

C. Epoxy-Coated Steel Reinforcement
 Use epoxy-coated steel reinforcement that conforms to Subsection 514.2, “Materials.”

D. Class A Concrete Deposited in Water
 Use concrete with a 10 percent increase in cement factor. Ensure that concrete is air entrained according to Section 500, with a maximum slump of 8 in. (200 mm).

547.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

547.3 Construction Requirements
General Provisions 101 through 150.

547.3.01 Personnel
General Provisions 101 through 150.

547.3.02 Equipment
General Provisions 101 through 150.

547.3.03 Preparation
A. Cleaning
 Sandblast piles on existing structures to be encased to remove loose dirt, rust, scale, and other deleterious material from the surface. Rinse thoroughly with clean water. Do not sandblast piles to be used on new construction. Clean new piles with a wire brush to free them of rust or other loose material.

547.3.04 Fabrication
General Provisions 101 through 150.
547.3.05 Construction

A. Encasement

To perform encasement, follow the details of Figure 1 (Figure 1 metric) and one of the following procedures:

Slope top of encasement as indicated positive drainage.

```
Cost of #3 ties and #4 bars to be
in price bid for pile encasement. #3 ties
#4 bars shall be epoxy
coated.  2 ft
1 ft 1 ft 3 in **

4-#4 bars
(1 in ea. cor.)
Top of pile
encasement el,
(as shown on Plans.) #3 ties at 1 ft

2 in CL., TYP.
```

Plan

Detail “A”

Pile Encasement

```
Encasement may conform to
details or either detail “A”
detail “B”
Stirrups for encasement on
bridges may be
lapped.

#3 ties at 1 ft
```

Plan

Figure 1
1. **Procedure 1**

 Form the pile encasement with class “A” concrete deposited in water and epoxy-coated steel reinforcement.

 Place the concrete according to Subsection 500.2.01.E, “Concrete Handling and Placing,” where site construction conditions allow. The Department will not require cofferdams. Concrete may be deposited in water.

2. **Procedure 2**

 Form the pile encasement with a Fabrif orm Pile Jacket System or an approved equal.

 Pump mortar into the fabric jacket using two tremie hoses extending to the bottom of the jacket. Withdraw these hoses during pumping so that the lower end remains 1 to 2 ft (300 to 600 mm) under the rising mortar surface.

 Pump mortar at a rate to provide a rise of approximately 6 in (150 mm) per minute.

B. **Installation**

 After cleaning the pile, place steel reinforcement as shown in Figure 1 (Figure 1 metric). Place spacers, tremie hoses, and fabric jacket or forms according to the Specifications or the manufacturer-recommended methods. Fill the encasement with concrete or mortar.

547.3.06 Quality Acceptance

A. **Limits of Encasement**

 Ensure that the pile encasement extends from 2 ft (600 mm) below the existing streambed to the top elevation for pile encasement, as shown on the Plans.

547.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

547.4 Measurement

Pile encasement is measured by the linear foot (meter) for each pile size indicated.

547.4.01 Limits

General Provisions 101 through 150.
547.5 Payment
Pile encasements will be paid for at the Contract Price per linear foot (meter) for the pile size indicated, complete in place as specified.
This payment will be full compensation for furnishing all materials, tools, labor, equipment, and other items necessary to complete the Work.
Payment will be made under:

| Item No. 547 | Pile encasement, __in.(mm) pile | Per linear foot (meter) |

547.5.01 Adjustments
General Provisions 101 through 150.

Section 550—Storm Drain Pipe, Pipe-Arch Culverts, and Side Drain Pipe

550.1 General Description
This work includes furnishing and installing the following:

- Storm drain pipe
- Pipe-arch culverts
- Side drain pipe flared end sections
- Tapered pipe inlets

Install structures according to the Specifications and the details shown on the Plans, or as directed by the Engineer.

550.1.01 Definitions
General Provisions 101 through 150.

550.1.02 Related References
A. Standard Specifications
 - Section 205—Roadway Excavation
 - Section 207—Excavation and Backfill for Minor Structures
 - Section 208—Embankments
 - Section 645—Repair of Galvanized Coatings
 - Section 834—Masonry Materials
 - Section 840—Corrugated Aluminum Alloy Pipe
 - Section 841—Iron Pipe
 - Section 843—Concrete Pipe
 - Section 844—Steel Pipe
 - Section 845—Smooth Lined Corrugated Polyethylene (PE) Culvert Pipe
 - Section 846—Polyvinyl chloride (PVC) Profile Wall Drain Pipe
 - Section 847—Miscellaneous Pipe
 - Section 848—Pipe Appurtenances

B. Referenced Documents
 General Provisions 101 through 150.

550.1.03 Submittals
General Provisions 101 through 150.
550.2 Materials

Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backfill Materials</td>
<td>207</td>
</tr>
<tr>
<td>Reinforced Concrete Pipe</td>
<td>843.2.01</td>
</tr>
<tr>
<td>Nonreinforced Concrete Pipe</td>
<td>843.2.02</td>
</tr>
<tr>
<td>Mortar And Grout</td>
<td>834.2.03</td>
</tr>
<tr>
<td>Bituminous Plastic Cement</td>
<td>848.2.05</td>
</tr>
<tr>
<td>Rubber Type Gasket Joints (Concrete Pipe)</td>
<td>848.2.01</td>
</tr>
<tr>
<td>Preformed Plastic Gaskets</td>
<td>848.2.06</td>
</tr>
<tr>
<td>Corrugated Steel Pipe</td>
<td>844.2.01</td>
</tr>
<tr>
<td>Bituminous Coated Corrugated Steel Pipe</td>
<td>844.2.02</td>
</tr>
<tr>
<td>Corrugated Aluminum Alloy Pipe</td>
<td>840.2.01</td>
</tr>
<tr>
<td>Bituminous Coated Corrugated Aluminum Pipe</td>
<td>840.2.03</td>
</tr>
<tr>
<td>Aluminized Type 2 Corrugated Steel Pipe</td>
<td>844.2.06</td>
</tr>
<tr>
<td>Ductile Iron Pipe, Fittings and Joints</td>
<td>841</td>
</tr>
<tr>
<td>Precoated, Galvanized Steel Culverts</td>
<td>844.2.05</td>
</tr>
<tr>
<td>Smooth Lined Corrugated Polyethylene Pipe</td>
<td>845.2.01</td>
</tr>
<tr>
<td>Poly vinyl chloride (PVC) Profile Wall Drain Pipe</td>
<td>846</td>
</tr>
<tr>
<td>Miscellaneous Pipe</td>
<td>847</td>
</tr>
</tbody>
</table>

Use any of the following types of pipe:

- Reinforced concrete
- Nonreinforced concrete
- Corrugated steel or Aluminum
- Smooth-lined corrugated polyethylene
- Ductile iron
- Poly Vinyl Chloride (PVC) Profile Wall Drain Pipe

Use the type of pipe designated on the Plans, or acceptable alternate types when applicable.

550.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

550.3 Construction Requirements

550.3.01 Personnel

General Provisions 101 through 150.

550.3.02 Equipment

General Provisions 101 through 150.

550.3.03 Preparation

Before installing pipe and pipe-arches, shape the foundation material as shown on the Plans.

Prepare structure excavations and foundation according to Section 207. Except, do not use Class II B3 or II B4 soils as backfill for smooth-lined corrugated polyethylene pipe or polyvinyl chloride (PVC) profile wall drain pipe.
550.3.04 Fabrication
General Provisions 101 through 150.

550.3.05 Construction
A. Drainage
 Provide necessary temporary drainage. Periodically remove any debris or silt that constricts the pipe flow to maintain drainage throughout the life of the Contract.

B. Damage
 Before allowing traffic over a culvert, protect the structure by providing sufficient depth and width of compacted backfill. Repair damage or displacement from traffic or erosion that occurs after installing and backfilling at no additional cost to the Department.

C. Installation
 1. Concrete Pipe
 Lay flat-bottom and circular sections in a prepared trench with the socket ends pointing upstream. To join sections, use any of the following joint types:
 - Mortar
 - Bituminous plastic cement
 - Rubber-type gasket
 - O-ringed gasket
 - Preformed plastic gasket

 If using mortar and bituminous plastic cement joints:
 a. Fill the annular space with the joint material and wipe the inside of each joint smooth.
 b. Construct mortar joints in the same manner, but thoroughly wet the annular space before filling it with joint material.
 c. After the initial set, protect the outside mortar from air and sun with thoroughly wet earth or burlap cover.
 Install rubber-type, O-ring, and preformed plastic gasket joints according to the manufacturer’s recommendations.

 2. Ductile Iron Pipe
 Lay pipe sections in a prepared trench, with bells pointing upstream. Construct joints according to Subsection 841.2.02.A.

 3. Corrugated Aluminum or Steel Pipe and Pipe-Arches
 Lay pipe sections in a prepared trench, with outside laps of circumferential joints pointing upstream and longitudinal joints at the sides. Join the sections with coupling bands, fastened by two or more bolts. Keep no more than 2 in (50 mm) of space between adjoining sections.
 Before backfilling the structure:
 a. Repair exposed base metal in metal coating according to Section 645.
 b. Recoat exposed base metal in bituminous coating with asphalt.

 4. Smooth-Lined Corrugated Polyethylene Pipe
 Install smooth-lined corrugated polyethylene pipe according to ASTM D 2321. Use fitting and couplings that comply with the joint performance criteria of AASHTO Standard Specifications for Highway Bridges, Division II. Ensure that all joints are “soiltight” as stated in the AASHTO bridge specifications.

 5. Specials (Wyes, Tees, and Bends)
 Install wyes, tees, and bends as shown on the Plans or as directed.

 6. Tapered Pipe Inlets
 Locate and install tapered pipe inlet end sections as shown on the Plans or as directed.

 7. Elongation
 Elongate metal pipe as shown on the Plans. Order the elongation of the vertical axis of the pipe to be done in the shop.
Have the manufacturer ship metal pipe with wire ties in the pipe ends. Remove wire-ties immediately after completing the fill.

8. Flared End Sections
 Use flared end sections on the inlet, outlet, or on both ends of storm drain pipe, according to Plan details.

9. Polyvinyl Chloride (PV) Profile Wall Drain Pipe
 Install polyvinyl chloride (PVC) profile wall pipe according to ASTM D 2321. Use fittings and couplings that comply with the joint performance criteria of AASHTO Standard Specifications for Highway Bridges, Division II. Ensure that all joints are “soiltight” as stated in the AASHTO bridge specifications.

550.3.06 Quality Acceptance
Clean pipes and pipe-arch culverts before final acceptance of the Work.

The Department may conduct video surveillance on storm drain (cross drain and longitudinal drain) installations after all activities are complete that may damage the pipe, but before the placement of the base and paving when applicable. If video surveillance shows problems such as pipe deformation, cracking, or joint separation, the Contractor shall repair or replace these pipes at no cost to the Department.

Use a nine-point mandrel to test a minimum of 25% of the installed length of smooth-lined corrugated polyethylene or PVC profile wall drain pipe for deformation (pieces will be selected by the Engineer). Use a mandrel that has an effective diameter equal to 95% of the base inside diameter. Provide the Engineer with a proving ring to verify the mandrel size. Mandrel testing shall not be paid for separately.

Ensure that smooth-lined corrugated polyethylene or PVC profile wall drain pipe installations have a maximum of 5% deflection when checked after completing all construction activities that may damage the pipe, but before placing the base and paving when applicable. If mandrel testing reveals problems, the Engineer may require that up to 100% of the storm drain installations be checked for deformation. Remove and replace pipe with over 5% deflection at no cost to the Department.

550.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

550.4 Measurement

A. Excavation and Backfill
 Backfill materials types II and III are measured according to Subsection 207.4, “Measurement.”

B. Flat Bottom and Circular Pipe (All Types)
 The overall length of pipe installed, excluding tapered inlets, is measured in linear feet (meters), along the central axis of the diameter of the pipe. Wyes, tees, and bends are included in this measurement.

C. Pipe-Arches
 The overall length of pipe-arch installed is measured in linear feet (meters), along the bottom center line of the pipe.

D. Multiple Installations
 In multiple installations, each single line of culvert structure is measured separately.

E. Tapered Pipe Inlets
 Tapered pipe inlet sections are measured as a unit; do not include them in the overall length of the pipe.

F. Flared-End Sections
 Flared-end sections are measured separately by the unit and not included in the overall pipe length.

G. Smooth-Flow Pipe
 Smooth-flow pipe is measured by the linear foot(meter) along the pipe invert.

H. Elliptical Pipe
 Elliptical pipe is measured in linear feet (meters) along the bottom center line of the pipe.

550.4.01 Limits
Excavation and normal backfill are not measured for payment.
550.5 Payment

A. Backfill

Backfill will be paid for according to Section 207.

B. Pipe Installations

Pipe installations complete in place and accepted will be paid for at the Contract Pipe for each item.

This payment is full compensation for excavating, furnishing, and hauling materials; installing, cutting pipe where necessary; repairing or replacing damaged sections; making necessary connections; strutting, elongating, providing temporary drainage; joining an extension to an existing structure where required; and removing, disposing of, or using excavated material as directed by the Engineer.

1. Smooth Flow Pipe

The quantity of each diameter and steel thickness of smooth flow pipe as measured will be paid for at the Contract Unit Price per linear foot (meter) bid for the various sizes. Payment is full compensation for furnishing labor, materials, tools, O-ring mechanical joints, equipment, and incidentals to complete this Item, including removing and disposing excavation material.

2. Flared-End Sections

Flared-end sections, measured as specified above, will be paid for at the Contract Unit Price for each section of the specified size.

Payment will also include sawing, removing, and replacing existing pavement removed to install a new drainage structure.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 550</th>
<th>Storm drain pipe____ in (mm), H=____</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 550</td>
<td>Side drain pipe____ in (mm), H=____</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 550</td>
<td>Pipe arch (span)____ in (mm) x (rise)____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 550</td>
<td>Tapered pipe inlet____ in (mm),</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 550</td>
<td>Flared-end section____ in (mm),</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 550</td>
<td>Elliptical pipe____ in (mm) wide x ____ in (mm) high</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

550.5.01 Adjustments

Excavation will not be paid for separately, but the other provisions of Section 205 and Section 208 shall govern.

Section 551—Pile Protection in Earth Walls

551.1 General Description

This work includes protecting bridge end bent piles located in the stabilized backfill of earth retaining walls.

551.1.01 Definitions

General Provisions 101 through 150.

551.1.02 Related References

A. Standard Specifications

Section 535—Painting Structures
Section 801—Fine Aggregate
Section 806—Aggregate for Drainage
B. Referenced Documents
 ASTM A 123/A 123M
 ASTM B 512
 ASTM D 92
 ASTM D 95
 ASTM D 992
 ASTM D 1241
 ASTM D 1743
 ASTM D 1621
 ASTM D 1622
 APHA 426 D

551.1.03 Submittals
 General Provisions 101 through 150.

551.2 Materials
 A. Cans
 Place cans of smooth or corrugated steel pipe over piling. Use cans thick enough to prevent buckling while placing and
 compacting earth-stabilized embankment. Coat both inside and outside of the cans with either of the following:

 | Material | Section |
 |-----------------|-------------------|
 | 2P Coating | 535.3.03.D |
 | Galvanizing | ASTM A 123/A 123M |

 B. Backfilling Cans
 Use aggregate for the backfilling of cans according to Section 801 or Section 806.

 C. Corrosion Inhibitor (Grease)
 Use grease that conforms to the following requirements:

 | Requirement | Section |
 |-------------------------------------|------------------|
 | Drop point 350 °F (175 °C) minimum | ASTM D 1241 |
 | Flash point 350 °F (175 °C) minimum | ASTM D 92 |
 | Water content 0.1% maximum | ASTM D 95 |
 | Rust test | ASTM D 1743 |
 | Water soluble ions | |
 | Chlorides, 10 PPM maximum | ASTM B 512 |
 | Nitrates, 10 PPM maximum | ASTM D 992 |
 | Sulfides, 10 PPM maximum | APHA 426 D |

 D. Polyurethane Foam
 Use foam approved for commercial use in Georgia that meets the following requirements:

 | Requirement | Section |
 |---|------------------|
 | Minimum density 1.5 lbs/ft³ (24 kg/m³) | ASTM D 1622 |
 | Compressive strength perpendicular 16 psi (110 kPa) @ 6 percent | ASTM D 1621 |

 E. Polypropylene Fluted Sheets
 Use “plastic cardboard” ultra-violet stabilized sheets that are at least 48 in (1.2 m) long. Score or grease sheets to fold
 around piling and into H-pile web. When adding sections, use at least a 3 in. (75 mm) (shingle style) overlap.
F. Duct Tape

Use duct tape to patch and secure plastic cardboard and polyurethane. Keep duct tape from grease or pile. Use duct tape in sandy backfill to seal overlaps and prevent sand infiltration.

551.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

551.3 Construction Requirements

551.3.01 Personnel
General Provisions 101 through 150.

551.3.02 Equipment
General Provisions 101 through 150.

551.3.03 Preparation
General Provisions 101 through 150.

551.3.04 Fabrication
General Provisions 101 through 150.

551.3.05 Construction
When the Plans require, protect end bent piles from negative skin friction by using one of the following methods.

A. Method A

After driving the end bent piles and before installing the earth reinforcing elements:

1. Place a cylindrical can over each pile to prevent the earth wall backfill material from contacting the pile.
 Use a can large enough in diameter to give a 1 in (25 mm) minimum clearance from the pile to the inside of the can.
2. Place a spacer between the pile and the can to prevent the can from contacting the pile during wall backfilling.
 Extend the cans from the bottom of the earth-stabilized backfill to the bottom of the bridge end bent cap.
3. After positioning the cans, seal them at the top while backfilling to keep rubbish or aggregate out of the can. Keep the cans sealed until fill settlement time has expired.
4. When the wall backfill has reached the bottom of the cap and fill settlement time has expired, fill the cans with aggregate.

B. Method B

Cover the piles with the following amounts of corrosion-inhibiting grease as follows:

- Steel piling = 1/16 in (2 mm) minimum
- Concrete piling = 1/4 in (6 mm) minimum

1. Apply grease only after driving the piles. Treat only the pile portion that will be in contact with the wall backfill.
2. In addition to the grease, install a urethane or polypropylene sleeve to protect the grease coating from the backfill.
3. Use spray-on or preformed sleeves. Replace portions of the sleeve damaged or removed by construction activities during backfill.

551.3.06 Quality Acceptance
General Provisions 101 through 150.

551.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

551.4 Measurement

No separate measurement for payment will be made of the materials and labor required to conform with this Specification.

551.4.01 Limits
General Provisions 101 through 150.
551.5 Payment
No separate payment will be made for pipe protection. Include all costs incurred in complying with this Specification in the price bid for the piling.

551.5.01 Adjustments
General Provisions 101 through 150.

Section 555—Tunnel Liner

555.1 General Description
This work includes:
- Driving a tunnel
- Furnishing and installing steel plates for tunnel liner
- Furnishing and erecting brick portals to close each end of the tunnel, when required
- Pressure grouting

Construct to Plan line, grade, and dimensions, according to the applicable Specifications.

555.1.01 Definitions
General Provisions 101 through 150.

555.1.02 Related References
A. Standard Specifications
 - Section 608—Brick Masonry
 - Section 615—Jacking or Boring Pipe
 - Section 645—Repair of Galvanized Coatings
 - Section 834—Masonry Materials
 - Section 844—Steel Pipe
B. Referenced Documents
 - AASHTO Design Specification for Tunneling
 - AASHTO Standard Specifications for Highway Bridges, Section 26
 - Manual on Uniform Traffic Control Devices
 - ASTM A 569/A 569M

555.1.03 Submittals
A. Special Permit Application
 Before working with explosives, apply to the Department for a special permit. This permit will be in addition to a tunneling permit not involving explosives.
 Special permits will be issued when the proposed operational procedures outlined in the permit form are submitted and approved.

B. Design Data
 For Projects not under Contract to the Department but are being performed under permit, the owner shall submit complete design data including working or Shop Drawings for approval before receiving the permit. Include the following applicable design data:
 - Design data as required by AASHTO design specification for tunneling
 - Subsoil surveys, including the elevation of the water table and the classification and relative density of the soils from the ground line to 3 ft (1 m) below the tunnel liner
555.2

- Rock coring data, including rock type and core recovery, where required
- Water control plans, where required

C. Repair Plan

If tunneling damages the roadway, submit a roadway repair plan for approval.

555.2 Materials

Ensure that materials meet the following requirements:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liner Plates</td>
<td>ASTM: A 569/A 569M</td>
</tr>
<tr>
<td>Galvanizing Bituminous Coating and Bolts</td>
<td>844</td>
</tr>
<tr>
<td>Brick for Portal</td>
<td>608</td>
</tr>
<tr>
<td></td>
<td>834.2.01</td>
</tr>
</tbody>
</table>

A. Liner Plates

Construct the completed liner with a series of steel liner plates assembled with staggered longitudinal joints and fabricated to fit the tunnel cross section.

1. Characteristics

 Use hot-dipped galvanized, bituminous-coated steel of the size, thickness, and sectional modulus specified. Use plates made of hot-rolled, cold-formed steel that conform to ASTM A 569/A 569 M. Use plates with the following mechanical properties before cold forming:

 - Tensile strength = 42,000 psi (290 MPa)
 - Yield strength = 28,000 psi (190 MPa)
 - Elongation, 2 in (50 mm) = 30 percent

2. Grout Intrusion Nipples

 Provide grout intrusion nipples 2 in (50 mm) or larger in diameter in the top plates at intervals 10 ft (3 m) or less. This will permit grouting while the tunnel liner is erected. For larger tunnels, or where conditions make more grout openings advisable, install additional plates with nipples at the top quarter points and/or on each side between the top openings. Stagger these additional openings, but keep the distance between them 10 ft (3 m) or less in any one line.

3. Flanged Joints

 Form plates to provide circumferential flanged joints. Use longitudinal joints that are flanged or offset lap seam type.
 Punch plates for bolting on both longitudinal and circumferential seams or joints.
 Space bolts in circumferential flanges according to the manufacturer’s standard spacing. Space bolts a multiple of the plate length so that plates with the same curvature are interchangeable and will permit staggering of longitudinal seams.

4. Longitudinal Seams

 For lapped longitudinal seams, ensure that bolt size and spacing is according to the manufacturer’s standard, but meets the longitudinal seam strength requirements of Section 16 of AASHTO Standard Specifications for Highway Bridges. Galvanizing Bituminous Coating and Bolts shall be in compliance with applicable information in Section 844.

B. Grout

Use grout that consists of:

- One part Portland cement
- Two parts masonry lime
- Four parts mortar sand
- Two percent of an approved admixture, (i.e., Bentonite, Septamine Stearex, or Hydrocide Liquid)
- A retardant, where required
Use enough mixing water to produce a workable mixture of grout capable of being pumped into the voids created by tunneling.

C. Brick

Brick for portal shall conform to Section 608 and Subsection 834.2.03.

555.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

555.3 Construction Requirements

555.3.01 Personnel
General Provisions 101 through 150.

555.3.02 Equipment
A. Pumping Equipment

Provide pumping equipment for grouting operations. Use equipment with enough pump horsepower and grouting line pressure to completely fill voids without buckling or shifting the liner plates or damaging the roadway.

B. Water Control

When water control is required, operate well points or other drainage systems in the vicinity of the tunnel construction limits.

555.3.03 Preparation
General Provisions 101 through 150.

555.3.04 Fabrication
General Provisions 101 through 150.

555.3.05 Construction

Excavate the tunnel using any of the following procedures:

- Full face
- Heading and bench
- Multiple drift

Do not use a full or partial shield, a tunneling machine, or other equipment that exerts a force on the liner plates to propel, steer, or stabilize the equipment.

Prevent the overpassing roadway or railway section from settling when constructing tunnels by using:

- Poling plates
- Brest boards
- Shields
- Soil solidification
- A combination of these methods

A. Installation of Liner Plates

Use the same type of liner plates for the full length of the tunnel. Flanged and lapped seam methods of construction are acceptable.

1. General

Install self-supporting steel liner plates according to the manufacturer’s recommendations. Do not leave more than 5 ft (1.5 m) of tunnel unlined while tunneling. Do not leave more than 1 ft (300 mm) of tunnel unlined at the end of the day’s operation.

2. Sealing

Before grouting tunnel liner segments, seal that segment sufficiently between the liner plates and the surrounding soil to retain the grouting pressure. Place the seals in these locations:

- At the tunnel entrance
555.3.06

- Between grout intrusion nipples
- Within 1 ft (300 mm) of the end of the tunnel

3. Pressure Grouting
 Pressure grout voids in the area outside the plates every 10 ft (3 m) at the end of the work shift. Grout more frequently if soil conditions dictate.

4. Repair
 Repair damaged spelter coating according to Section 645. Replace plates with damaged spelter or bituminous coatings at no additional cost to the Department if the Engineer determines they cannot be repaired.

B. Safety
 Schedule the Work to avoid interfering with or endangering traffic flow on the highway or railway. Follow required safety measures specified in the Manual on Uniform Traffic Control Devices.

 1. Begin tunneling at one end of a pit that has been sheeted and shored as necessary. Comply with Section 615. Perform work below the level of the roadbed.
 2. Complete tunneling at one location before beginning work at another.
 3. If the Engineer determines that tunneling is endangering overpassing roadway or the traveling public, stop tunneling until making the necessary corrections.
 4. Provide a well-braced, temporary bulkhead against the face of the excavation when work stops while the heading is within 20 ft (6 m) of railroad tracks or highway pavement.
 5. If distress occurs to roadway due to tunneling, the Contractor shall submit for approval a Plan to repair the roadway.

C. Portals
 Close tunnel portals at each end using a three-course mortared brick wall according to Plan details. Erect one of the three courses inside the liner.

555.3.06 Quality Acceptance
 Ensure that the tunnel has a diameter essentially the same as the outside diameter of the liner plates.

555.3.07 Contractor Warranty and Maintenance
 General Provisions 101 through 150.

555.4 Measurement
 Tunnel liner installed according to the approved design and these Specifications is measured by the linear foot (meter) complete in place. The liner is measured between the ends of the liner along the invert.

555.4.01 Limits
 Portals are not measured for separate payment.

555.5 Payment
 This Work, measured as specified above, will be paid for at the Contract Unit Price bid per linear foot (meter) of liner for each diameter and plate thickness. The specified thickness is used for either a two-flange plate or a four-flange plate.

 This payment will be full compensation for:
 - Furnishing materials, labor, tools, and equipment
 - Removing and satisfactorily disposing of all excavated materials
 - Force grouting
 - Providing tunnel portals, where required
 - Restoring and cleaning, including regrassing, as required
 - Installing liner

 Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 555</th>
<th>Tunnel liner ___ diameter, ___ plate thickness (2 flange), or ___ plate thickness (4 flange)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
</table>

602
Section 560—Structural Plate Pipe, Pipe-Arch and Arch Culverts

560.1 General Description
This work includes furnishing and installing structural plate pipe, pipe-arch, and arch culverts. Use the type of structural plate structure shown on the Plans.
Install structures according to the Specifications and to Plan details, or as directed by the Engineer.

560.1.01 Definitions
General Provisions 101 through 150.

560.1.02 Related References
A. Standard Specifications
 Section 205—Roadway Excavation
 Section 207—Excavation and Backfill for Minor Structures
 Section 208—Embankments
 Section 645—Repair of Galvanized Coatings
 Section 840—Corrugated Aluminum Alloy Pipe
 Section 844—Steel Pipe
B. Referenced Documents
 General Provisions 101 through 150.

560.1.03 Submittals
General Provisions 101 through 150.

560.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backfill Materials</td>
<td>207</td>
</tr>
<tr>
<td>Steel Structural Plate for Pipe, Pipe-Arches, and Arches</td>
<td>844.2.03</td>
</tr>
<tr>
<td>Corrugated Aluminum Alloy Structural Plate Pipe, Pipe-Arches and Arches</td>
<td>840.2.04</td>
</tr>
</tbody>
</table>

560.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

560.3 Construction Requirements

560.3.01 Personnel
General Provisions 101 through 150.

560.3.02 Equipment
General Provisions 101 through 150.

560.3.03 Preparation
Prepare structure excavation and foundation according to Section 207.
Before installing structural plate pipe, pipe-arch, or arch culverts, shape their foundation material as shown on the Plans.
560.3.04 Fabrication
General Provisions 101 through 150.

560.3.05 Construction
A. Drainage
 Provide necessary temporary drainage.
 Immediately remove debris or silt that constricts the flow through a structural plate pipe, pipe-arch, or arch culvert to maintain drainage throughout the life of the Contract.

B. Protection and Repair
 Before allowing traffic over a culvert, provide compacted backfill of a depth and width to protect the structure. Repair and correct damage or displacement from traffic, erosion, or negligence at no additional cost to the Department.

C. Installation
 Erect structural plate pipe-arches and arches in the sequence recommended by the manufacturer.
 1. Bolts
 Tighten the bolts only after erecting the whole structure. Set bolts using drift pins or bars to line up the holes. Tighten bolts with torque wrenches to at least 150 ft lbs (200 N-m), but not more than 200 ft lbs (270 N-m) of torque.
 2. Repair
 If there are damaged spots in the galvanized coating of the pipe, pipe-arch, or culvert where the base metal is exposed, repair according to Section 645.
 If there are damaged spots in the bituminous coating of the pipe, pipe-arch, or arch culvert where the base metal is exposed, repair by recoating with asphalt before backfilling the structure.
 3. Elongation
 Elongate structural plate pipe as shown on the Plans. Have the vertical axis of the pipe elongated in the shop. Ensure that when erection is complete, the elongated axis is in a vertical position.

560.3.06 Quality Acceptance
Clean all structures before final acceptance of the Work.

560.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

560.4 Measurement
A. Excavation and Backfill
 Backfill materials Types II and III are measured according to Subsection 207.4, “Measurement.”

B. Circular Pipe (All Types)
 The overall length of circular pipe in place and accepted is measured in linear feet (meters) along the central axis of the pipe diameter.

C. Pipe-Arches
 The overall length of pipe-arch in place and accepted is measured in linear feet (meters) along the bottom center line of the pipe-arch.

D. Multiple Installations
 In multiple installations, each single line of culvert structure is measured separately.

E. Arch Culverts
 Arch culverts of the dimensions and materials shown on the Plans, complete in place, are measured as a unit that includes necessary foundations, walls, and wings.

560.4.01 Limits
Excavation and normal backfill are not measured for payment.
560.5 Payment
A. Backfill
 Backfill will be paid for according to Section 207.
B. Structural Plate Pipe, Pipe-Arch, and Arch Culvert
 Structural plate pipe and pipe-arch installations, complete in place and accepted, will be paid for at the Contract Price per linear foot(meter). Arch culvert installations, complete in place and accepted, will be paid for per Lump Sum. This payment will be full compensation for the Item, including:
 - Excavating
 - Furnishing and hauling materials
 - Installing
 - Cutting pipe where necessary
 - Repairing or replacing damaged sections
 - Making connections, strutting and elongating
 - Providing temporary drainage
 - Joining an extension to an existing structure, where required
Payment will also be full compensation for removing, disposing, or using excavated materials as directed by the Engineer.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 560</th>
<th>Structural plate pipe ___ in (mm) H= ___</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 560</td>
<td>Structural plate pipe-arch (span) in (mm), (rise) in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 560</td>
<td>Structural plate arch culvert, structure no. ___</td>
<td>Per lump sum</td>
</tr>
</tbody>
</table>

560.5.01 Adjustments
Excavation will not be paid for separately, but all of the other provisions of Section 205 and Section 208 shall govern.

Section 561—Renovating Existing Pipe

561.1 General Description
This work includes furnishing and inserting helically corrugated metal pipe, smooth-lined corrugated polyethylene pipe, high density polyethylene profile wall pipe, and high density polyethylene solid wall pipe or a polyvinyl chloride pipe inside an existing metal pipe and pressure grouting the space between the two pipes.

561.1.01 Definitions
General Provisions 101 through 150.

561.1.02 Related References
A. Standard Specifications
 - Section 801—Fine Aggregate
 - Section 830—Portland Cement
 - Section 831—Admixtures
 - Section 844—Steel Pipe
 - Section 845—Smooth Lined Corrugated Polyethylene (PE) Culvert Pipe
 - Section 880—Water
 - Section 882—Lime
 - Section 883—Mineral Filler
B. Referenced Documents

GDT 84

561.03.03 Submittals
General Provisions 101 through 150.

561.2 Materials

Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrugated Steel Pipe (Helically Corrugated)</td>
<td>844.2.01*</td>
</tr>
<tr>
<td>Smooth-Lined Corrugated Polyethylene (PE) Culvert Pipe</td>
<td>845</td>
</tr>
<tr>
<td>Portland Cement, Types I or II</td>
<td>830</td>
</tr>
<tr>
<td>Mineral Filler (Limestone Dust)</td>
<td>883</td>
</tr>
<tr>
<td>Fly Ash, Type A</td>
<td>831</td>
</tr>
<tr>
<td>Water</td>
<td>880</td>
</tr>
<tr>
<td>Fine Aggregate, Size No. 20</td>
<td>801.2.02</td>
</tr>
<tr>
<td>Agricultural Lime</td>
<td>882.2.02**</td>
</tr>
</tbody>
</table>

*Use Georgia Standard 1030D to determine the metal thickness of the insert pipe.

**For this Work, use agricultural lime that has 90 percent minimum passing the No. 30 (600 µm) sieve and 30 percent minimum passing the No. 200 (75 µm) sieve.

A. High Density Polyethylene (HDPE) Profile Wall Pipe

Use pipe liner that consists of a HDPE profile wall pipe that conforms to the requirements of ASTM F 894. HDPE profile wall pipe shall have a minimum pipe stiffness of 46 psi (317 kPa) when tested according to ASTM D 2412. Polyethylene material shall have polyethylene pipe liners material designation of PE 3408 and shall have a material classification per ASTM F 1248 of Type III C5 P34 with a cell classification per ASTM D 3350 of 345434C.

Join HDPE profile wall pipe liner by butt or heat fusion method according to ASTM D 2657, or provide a positive mechanical joint. The joint shall be able to be pulled or pushed into the host pipe without joint separation.

B. High Density Polyethylene (HDPE) Solid Wall Pipe

Pipe liner shall consist of a HDPE solid wall pipe that conforms to the requirements of ASTM F 714 with an SDR of 21. Polyethylene material shall have polyethylene pipe liners material designation of PE 3408 and shall have a material classification per ASTM F 1248 of Type III C5 P34 with a cell classification per ASTM D 3350 of 345434C.

Join HDPE solid wall pipe liner by butt or heat fusion method according to ASTM D 2657, or provide a positive mechanical joint. The joint shall be able to be pulled or pushed into the host pipe without joint separation.

C. Polyvinyl Chloride (PVC) Pipe

Pipe liner shall consist of PVC corrugated pipe with a smooth interior that conforms to the requirements of ASTM F 949. PVC pipe shall have a minimum pipe stiffness of 46 psi (317 kPa) when tested according to ASTM D 2412. Use pipe made of PVC compound with a cell classification per ASTM D 1784 of 1245B.

Join the PVC pipe liner with a PVC coupling that uses elastomeric sealing gaskets. The assembled joint shall meet the performance requirements of ASTM D 3212. The joint shall be able to be pulled or pushed into the host pipe without joint separation. Ensure that elastomeric seals meet the requirements of ASTM F 477.

D. Grout Mixtures

Mix water with the dry ingredients to produce a grout with an efflux time from the flow cone of at least 16 seconds and no more than 22 seconds when tested according to GDT 84.

Add cement, cement and limestone dust, or cement and fine aggregate to the batch proportions to produce the required consistency.
561.2.01 Delivery, Storage, and Handling
Add cement, cement and limestone dust, or cement and fine aggregate to the batch proportions to produce the required consistency.

561.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

561.3 Construction Requirements

561.3.01 Personnel
General Provisions 101 through 150.

561.3.02 Equipment
A. Batching

Use weight hoppers and scales for each dry material or calibrated volumetric batch hopper. Calibrate volumetric batch hoppers in increments equivalent to one 94 lb (42.6 kg) bag of cement.

B. Mixing

Use a watertight batch-type mixer capable of blending the various materials into a homogenous mixture.

C. Grout Pumping

Use a positive-displacement, piston-type pump or a screw-type worm pump equipped with the following:

+ Discharge line with a positive cut-off valve at the nozzle end and a by-pass return line to recirculate the grout back into a holding tank or mixer
+ A nozzle or device at the end of the discharge line that will remain secure in the 1 in (25 mm) grout pipe and free of leaks

D. Pulling

Provide equipment capable of pulling the new helically corrugated metal pipe.

561.3.03 Preparation
General Provisions 101 through 150.

561.3.04 Fabrication
General Provisions 101 through 150.

561.3.05 Construction
A. Grout Mixtures

Use the Table of Grout Mixtures in Subsection 561.2.D, “Grout Mixtures.”

B. Installation

Install pipe liner according to the manufacturer’s guidelines and as specified in the plans, with the following requirements:

1. Clean and inspect the existing pipe before pulling or pushing the new pipe through.

<table>
<thead>
<tr>
<th>Dry Materials</th>
<th>Grout Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Cement</td>
<td>25</td>
</tr>
<tr>
<td>Limestone dust</td>
<td></td>
</tr>
<tr>
<td>Fly ash</td>
<td></td>
</tr>
<tr>
<td>Fine aggregate</td>
<td></td>
</tr>
</tbody>
</table>

Table of Grout Mixtures

Mix Proportions, Percent by Weight of Dry Materials
2. Use a nose cone on all on all pipe liners. The nose cone shall have enough strength to withstand pulling or pushing of the new pipe liner. Weld or bolt the nose cone to the end of the liner. Use a nose cone that includes a ring for attaching the pulling cable.

3. After pulling or pushing the new pipe through the old one, plug the space between the pipes at both ends with concrete or mortar. Insert a 1 in (25 mm) grout pipe with threaded ends on the outside into the tops of the plugs at both ends of the pipes, and screw on a threaded cap.

4. After the pipe plugs have been in place long enough to develop strength to withstand pressure grouting, remove the grout pipe caps. Connect the grout pump to the downstream grout pipe and pump grout into the void until it flows freely from the upstream grout pipe.

5. After pumping is complete, replace the grout pipe caps.

561.3.06 Quality Acceptance
General Provisions 101 through 150.

561.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

561.4 Measurement
Renovating existing pipe is measured by the linear foot (meter) of the specified diameter of new pipe installed.

561.4.01 Limits
General Provisions 101 through 150.

561.5 Payment
Renovating existing pipe will be paid for at the Contract Unit Price bid per each diameter and metal thickness of new pipe. This payment will be full compensation for completing all work described in this Section, including cleaning and restoring damaged areas.

Payment will be made under:

| Item No. 561 | Renovating existing pipe in (mm) diameter | Per linear foot (meter) |

561.5.01 Adjustments
General Provisions 101 through 150.

Section 570—Minor Drainage Structures for Detours

570.1 General Description
This work includes selecting, constructing, and maintaining minor structures used on detours for cross drains or side drains. Remove these structures when the detour is no longer needed.

This Item covers only the use of minor structures. When the Plans call for constructing, maintaining, and removing a detour bridge, apply Section 541.

570.1.01 Definitions
General Provisions 101 through 150.

570.1.02 Related References
A. Standard Specifications
 Section 541—Detour Bridges
B. Referenced Documents
 AASHTO HS-15

570.1.03 Submittals
If using a bridge-type structure instead of one or more pipes, present plans of the proposed structure to the Engineer for approval before beginning construction.
570.2 Materials
All selected materials are subject to the following requirements:

A. Bridge-Type Structure
 Ensure that each bridge-type structure roadway width is at least 2 ft (600 mm) greater than the approach pavement width or 24 ft (7.2 m), whichever is greater. Ensure that load capacity is equivalent to AASHTO HS-15. Provide suitable hub guards and handrails.

B. Pipe Culvert
 Use pipe culverts long enough to accommodate the detour grade and cross section shown on the Plans.

570.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

570.3 Construction Requirements

570.3.01 Personnel
General Provisions 101 through 150.

570.3.02 Equipment
General Provisions 101 through 150.

570.3.03 Preparation
General Provisions 101 through 150.

570.3.04 Fabrication
General Provisions 101 through 150.

570.3.05 Construction
Have the Engineer approve selected construction methods.
Use structures that have adequate openings and are suitable for the purpose intended. Unless otherwise modified by a special provision, provide for an uninterrupted flow of traffic over the existing highway or the completed detour, as the case may be. Assume all risks involved in the design, construction, maintenance, and removal of each structure, including any damage from any cause.

570.3.06 Quality Acceptance
General Provisions 101 through 150.

570.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

570.4 Measurement
The entire structure at the location specified is measured for payment. Multiple lines of pipe used instead of a bridge-type structure or a single larger diameter pipe is considered one structure.

570.4.01 Limits
General Provisions 101 through 150.

570.5 Payment
This Item will be paid for at the Lump Sum price bid for each structure. This price includes the materials, labor, equipment, and small tools necessary to construct, maintain, and remove the structure and to dispose of the materials. Upon removal, materials become the property of the Contractor.

Sixty percent of the Lump Sum price will be paid when the structure is complete in place. The remaining 40 percent will be paid when the maintenance period is complete, the structure removed, and the materials disposed of.

Payment will be made under:

| Item No. 570 | Construct, maintain, and remove detour drainage structure no.,___ | Per lump sum |
570.5.01 Adjustments
General Provisions 101 through 150.

Section 573—Underdrains

573.1 General Description
This work includes constructing underdrains with perforated pipe according to the Specifications and the details, lines, and grades shown on the Plans or as directed by the Engineer.

573.1.01 Definitions
General Provisions 101 through 150.

573.1.02 Related References
A. Standard Specifications
 Section 806—Aggregate for Drainage
 Section 839—Corrugated Polyethylene Underdrain Pipe
 Section 840—Corrugated Aluminum Alloy Pipe
 Section 844—Steel Pipe
B. Referenced Documents
 General Provisions 101 through 150.

573.1.03 Submittals
General Provisions 101 through 150.

573.2 Materials
Ensure that materials meet the requirements of the Specifications below.
Use any pipe specified below unless the Plans state otherwise. Use only one type of pipe in each continuous, interconnecting line.

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate for Underdrain</td>
<td>806.2.01</td>
</tr>
<tr>
<td>Corrugated Aluminum Alloy Underdrain Pipe</td>
<td>840.2.01</td>
</tr>
<tr>
<td>Corrugated Steel Underdrain Pipe</td>
<td>844.2.04</td>
</tr>
<tr>
<td>Corrugated Polyethylene Underdrain Pipe</td>
<td>839</td>
</tr>
</tbody>
</table>

573.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

573.3 Construction Requirements
573.3.01 Personnel
General Provisions 101 through 150.

573.3.02 Equipment
General Provisions 101 through 150.

573.3.03 Preparation
General Provisions 101 through 150.

573.3.04 Fabrication
General Provisions 101 through 150.
573.3.05 Construction
Schedule the work so that underdrain installations coincide with other operations on the Project to prevent conflict, damage, or infiltration of materials.

A. Excavation

To intercept water-bearing strata, excavate according to the details and elevation shown on the Plans, or to an increased depth if the Engineer directs.

When the material in the bottom of the trench is unstable, remove unstable material, add approved granular material, and compact to provide a stable foundation for the pipe.

B. Laying Pipe

Lay pipe according to Plan details with the perforations on the underside of the pipe, unless otherwise directed by the Engineer.

1. Lay bell and spigot and tongue and groove pipe with the bell or grooved end upstream and the bells embedded in the foundation material.
2. Firmly connect the joints.
3. Connect pipe and butt joints securely, using the appropriate size and type of band or coupling.
4. Install the following miscellaneous items as indicated on the Plans or otherwise specified:
 - Pipe screens
 - Caps
 - Plugs
 - Ells
 - Wyes
 - Tees
 - Markers

C. Backfilling

After laying the pipe, place drainage aggregate in 6 in (150 mm) layers. Compact each layer thoroughly until reaching the total Plan depth. Do not disturb pipe alignment.

D. Marking

Mark each outlet end of the drainage system according to Plan details.

E. Protecting from Contamination

Protect the filter material from contamination by foreign matter.

1. Particular attention must be given to the top surface of the filter blanket when it will be covered by an aggregate drainage course. Soil infiltration from placing soil courses over the filter material is incidental to the Work and is not considered contamination.
2. If aggregates become contaminated, remove the contaminated portion and replace it with clean filter material before placing succeeding layers of filter blanket or placing aggregate drainage course.

573.3.06 Quality Acceptance
General Provisions 101 through 150.

573.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

573.4 Measurement
The quantity of underdrain pipe with or without drainage aggregate, complete in place and accepted, is measured in linear feet (meters) along each line or lateral, from center to center of junctions and fittings.

573.4.01 Limits
When the trench is required to be undercut, the depth measurement for determining the underdrain pipe payment will be from the bottom of the required undercut to the final elevation established for the top of the trench.
573.5 Payment
Each size of underdrain pipe will be paid for at the Contract Price per linear foot (meter) as follows:

A. Underdrain Pipe Only
 Payment for pipe under this Item will include:
 - Ground preparation
 - Excavation
 - Backfilling
 - Disposal of surplus material
 - All appurtenances required to complete the Item including screens, tees, wyes, ells, and markers

B. Underdrain Pipe Including Drainage Aggregate
 Payment for pipe under this Item will include specified drainage aggregate and all items listed under Subsection 573.5.A above.
 Underdrain pipe including drainage aggregate to depths greater than 6 ft (1.8 m) below the final elevation established for the top of the trench will have an adjusted Unit Price. This price will be computed by increasing the Contract Unit Price by a percentage based on the extra depth as follows:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Price Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>From over 6 ft (1.8 m) to and including 8 ft (2.4 m)</td>
<td>At contract price plus 20 percent</td>
</tr>
<tr>
<td>Over 8 ft (2.4 m) deep</td>
<td>By supplemental agreement or force account</td>
</tr>
</tbody>
</table>

C. Contaminated Aggregate
 Removal and replacement of contaminated aggregate will not be paid for separately, but will be included in the Bid Price for underdrain pipe.

 Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 573</th>
<th>Underdrain pipe only ___ in (mm)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 573</td>
<td>Underdrain pipe including drainage aggregate ___ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

573.5.01 Adjustments
General Provisions 101 through 150.

Section 574—Edgedrains

574.1 General Description
This work includes constructing edgedrains with perforated pipe according to the Specifications and to the details, lines, and grades shown in the Plans, or as directed by the Engineer.

574.1.01 Definitions
General Provisions 101 through 150.

574.1.02 Related References
A. Standard Specifications
 - Section 400—Hot Mix Asphaltic Concrete Construction
 - Section 800—Coarse Aggregate
 - Section 839—Corrugated Polyethylene Underdrain Pipe
 - Section 840—Corrugated Aluminum Alloy Pipe
 - Section 843—Concrete Pipe
 - Section 881—Fabrics
B. Referenced Documents
 GDT 59
 QPL 28

574.1.03 Submittals
General Provisions 101 through 150.

574.2 Materials
Ensure that materials meet the requirements of the following Specifications.

Use pipe specified below unless the Plans state otherwise. Use only one type of pipe in each continuous, interconnecting line.

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrugated Aluminum Alloy Underdrain Pipe</td>
<td>840.2.02</td>
</tr>
<tr>
<td>Concrete Underdrain Pipe</td>
<td>843.2.03</td>
</tr>
<tr>
<td>Corrugated Polyethylene Underdrain Pipe</td>
<td>839</td>
</tr>
<tr>
<td>Drainage Aggregate Backfill, Size No. 78</td>
<td>800.2.01</td>
</tr>
<tr>
<td>Asphalitic Concrete</td>
<td>400</td>
</tr>
<tr>
<td>Plastic Filter Fabric (Non-woven)</td>
<td>881.2.05</td>
</tr>
</tbody>
</table>

574.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

574.3 Construction Requirements

574.3.01 Personnel
General Provisions 101 through 150.

574.3.02 Equipment
General Provisions 101 through 150.

574.3.03 Preparation
Before placing edgedrains, pressure grout and cure pavement slabs in the immediate area. Do not begin work until the Engineer determines that pavement slabs are stable.

574.3.04 Fabrication
General Provisions 101 through 150.

574.3.05 Construction
Complete any opened trenches, including the asphalt cap, each working day. Install edgedrains with other operations on the Project to prevent conflict, damage, or improper infiltration of other materials.

A. Excavating
 Excavate according to the details and elevations shown on the Plans or as directed by the Engineer.

B. Placing Filter Fabric
 Place filter fabric according to Plan details.
 If the drainage aggregate or the filter fabric become contaminated or the filter fabric is damaged during the backfilling operation, remove the contaminated or damaged materials and replace them at no additional cost to the Department.

C. Laying Pipe
 Lay pipe according to the Plan details, with perforations on the underside of the pipe, unless otherwise directed by the Engineer.
 1. Lay bell and spigot and tongue and groove pipe with the bell or grooved end upstream and the bells embedded in the foundation material.
2. Firmly connect the joints.
3. Connect butt joint pipes securely using the appropriate size and type of band or coupling.
4. Install the following miscellaneous Items according to the Plans or as otherwise specified:
 - Pipe screens
 - Caps
 - Plugs
 - Covers
 - Ells
 - Wyes
 - Tees
 - Markers

D. Backfilling
 After laying the pipe, place the additional backfill material in 6 in (150 mm) layers.
 1. Before compacting, establish the target density as 1.18 times the average of 5 dry-density determinations made on the material in the trench. Space the 5 determinations over at least 500 ft (150 m), and determine them using the 6-in (150 mm) direct transmission density mode according to GDT 59.
 2. Thoroughly compact each layer to 100 percent of the target density and complete to the depth shown on the Plans, details, or as directed by the Engineer.
 3. Do not disturb the pipe alignment or damage the filter fabric.
 4. Place a compacted asphaltic concrete cap on the trench as shown in the Plan details or as directed by the Engineer.

E. Marking
 Mark each outlet end of the drainage system according to Plan details.

F. Protecting from Contamination
 Protect the backfill material from contamination by foreign matter.
 If aggregates become contaminated, remove the contaminated portion and replace it with clean material before placing succeeding layers.

574.3.06 Quality Acceptance
General Provisions 101 through 150.

574.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

574.4 Measurement
The quantity of edgdrain pipe, including backfill material and filter fabric, complete in place and accepted is measured in linear feet (meters) along each line or lateral, from center to center of junctions and fittings.

574.4.01 Limits
General Provisions 101 through 150.

574.5 Payment
Each size of edgdrain pipe will be paid for at the Contract Price per linear foot (meter).

Payment for pipe under this Item includes:
 - Preparation
 - Excavation
 - Backfilling
 - Specified backfill materials and filter fabric
Disposal of surplus material
Screens, tees, wyes, and ells
The asphaltic concrete cap over the trench

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 574</th>
<th>Edgedrain pipe, including backfill material and filter fabric ___ in (mm)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
</table>

574.5.01 Adjustments
General Provisions 101 through 150.

Section 576—Slope Drain Pipe

576.1 General Description
This work includes furnishing and installing slope drains made of corrugated steel pipe, corrugated aluminum pipe, or corrugated smooth-lined polyethylene pipe where shown on the Plans.

576.1.01 Definitions
General Provisions 101 through 150.

576.1.02 Related References
A. Standard Specifications
 Section 840—Corrugated Aluminum Alloy Pipe
 Section 844—Steel Pipe
 Section 845—Smooth Lined Corrugated Polyethylene (PE) Culvert Pipe
B. Referenced Documents
 General Provisions 101 through 150.

576.1.03 Submittals
General Provisions 101 through 150.

576.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrugated Aluminum Alloy Slope Drain Pipe</td>
<td>840.2.02</td>
</tr>
<tr>
<td>Corrugated Steel Culvert Pipe</td>
<td>844.2.01</td>
</tr>
<tr>
<td>Corrugated Smooth Lined PE Pipe</td>
<td>845.2.01</td>
</tr>
</tbody>
</table>

Ensure that the nominal thickness of the metal for slope drain pipe conforms to the minimum thickness or gauge specified in the design tables, unless otherwise shown on the Plans.

576.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

576.3 Construction Requirements
576.3.01 Personnel
General Provisions 101 through 150.
576.3.02 Equipment
General Provisions 101 through 150.

576.3.03 Preparation
Before placing the pipe, compact the foundation until firm and stable.

576.3.04 Fabrication
General Provisions 101 through 150.

576.3.05 Construction
Place slope drain pipe in an open trench, excavated to the line and grade shown on the Plans or as directed. Lay pipe sections that have circumferential joints with the outside laps of the circumferential joints uphill. After installing the pipe:

1. Immediately backfill the trench with excavated materials or other approved material.
2. Place backfill in layers 8 in (200 mm) thick or less.
3. Compact each layer until firm and stable.

576.3.06 Quality Acceptance
General Provisions 101 through 150.

576.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

576.4 Measurement
Slope drain pipe is measured by the actual number of linear feet (meters) of the size installed and accepted.

576.4.01 Limits
General Provisions 101 through 150.

576.5 Payment
Accepted slope drain will be paid for at the Contract Price per linear foot (meter) for the size specified. This price includes full compensation for labor and incidental necessary to complete the Item.

Payment will be made under:

| Item No. 576 | Slope drain pipe ___ in (mm) | Per linear foot (meter) |

576.5.01 Adjustments
General Provisions 101 through 150.

Section 577—Metal Drain Inlets

577.1 General Description
This work includes installing metal drain inlets according to the Specifications and Plan details.

On Projects where the grading and paving are let simultaneously, the Item will be designated as “Metal Drain Inlets—Complete Assembly.” For this type of construction, complete the Work in two stages. Perform Stage 1 Construction immediately after completing an embankment. Perform Stage 2 Construction progressively as the paved shoulders are completed.

On grading Projects where no paving is involved, limit the installations to Stage 1 Construction.

On paving Projects where the grading has been completed and metal drain inlets are in place under Stage 1 Construction, complete each assembly as specified under Stage 2 Construction.

577.1.01 Definitions
General Provisions 101 through 150.
577.1.02 Related References
A. Standard Specifications
 Section 400—Hot Mix Asphalt Concrete Construction
 Section 436—Asphaltic Concrete Curb
 Section 441—Miscellaneous Concrete
 Section 576—Slope Drain Pipe
 Section 603—Rip Rap
 Section 645—Repair of Galvanized Coatings
 Section 844—Steel Pipe
B. Referenced Documents
 General Provisions 101 through 150.

577.1.03 Submittals
General Provisions 101 through 150.

577.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Aprons</td>
<td>441</td>
</tr>
<tr>
<td>Sand-Cement Bag Rip Rap</td>
<td>603</td>
</tr>
<tr>
<td>Slope Drain Pipe</td>
<td>576</td>
</tr>
<tr>
<td>Asphaltic Concrete Curb</td>
<td>436</td>
</tr>
<tr>
<td>Metal Sheeting and Spelter Coating</td>
<td>844.2.03</td>
</tr>
</tbody>
</table>

For asphaltic concrete spillways, use the mixture for asphaltic concrete curb.

577.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

577.3 Construction Requirements

577.3.01 Personnel
General Provisions 101 through 150.

577.3.02 Equipment
General Provisions 101 through 150.

577.3.03 Preparation
General Provisions 101 through 150.

577.3.04 Fabrication
Fabricate metal inlets as integral units to the shape and dimensions shown on the Plans. The end section and reducer shall not be corrugated or perforated.

577.3.05 Construction
Install metal inlet drainage assemblies at locations shown on the Plans or where directed by the Engineer. Locate inlets to avoid future installations such as guard rail posts and lighting standards.

A. Repair
 Repair damaged galvanized coating according to Section 645.
B. Stage Construction

On combination grading and paving Projects, install metal drain inlet assemblies in two construction stages as follows:

1. Stage 1 Construction

 As soon as the initial grading of an embankment is completed:
 a. Install metal drain inlets where shown on the Plans or as directed by the Engineer. Each installation includes:
 - Metal inlet
 - Necessary slope drain pipe
 - Concrete aprons or rip rap as required by the Engineer, to control erosion at the outlet end
 b. To direct the water to the inlets, crown the roadbed and construct a roll of embankment material at the shoulder line. Protect and maintain this drainage system to prevent leakage, erosion, and scouring. Keep gutters, pipes, and inlets open.

2. Stage 2 Construction

 Complete this second stage operation immediately after paving shoulders to provide a complete drainage installation and prevent erosion of the embankment slopes.

 As soon as a section of paved shoulder is completed:
 a. Remove each adjacent inlet from its position placed under Stage 1 Construction and place it in its final position as shown on the Plans.
 b. Field cut a section of slope drain pipe to the required length to connect the existing slope drain pipe to the metal inlet in its new position.
 c. Thoroughly compact the embankment material around the inlet, including the subgrade under the asphaltic concrete spillway. Finish to a smooth, firm surface.
 d. Place the asphaltic concrete mixture for the spillway on the prepared subgrade within the temperature limits set by the Engineer. Thoroughly compact by rolling. Use a hand-operated roller weighing 300 lbs (135 kg) or more or a small power roller satisfactory to the Engineer.
 When areas cannot be reached with rollers, compact them with vibratory tampers or hand tampers approved by the Engineer.
 e. After compaction, ensure that the surface and texture is smooth, even, and dense. Shape and complete the shoulders and slopes to conform to the required finished section.
 f. As soon as each drainage assembly is completed, place the asphaltic curb at the edge of the paved shoulder and connect it to the inlet as shown on the Plans.

3. Metal Drain Inlet

 Complete assembly construction of each metal drain inlet shall include both Stage 1 Construction and the Stage 2 Construction specified above.

577.3.06 Quality Acceptance
General Provisions 101 through 150.

577.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

577.4 Measurement

Each of the three different types of metal drain inlet installations is measured separately for payment, complete in place and accepted. In each instance, the 2 ft (600 mm) section of corrugated pipe (which is an integral part of each Unit) is included in the measurement.

Measurement of each Metal Drain Inlet—Complete Assembly and each Metal Drain Inlet—Stage 2 Construction includes the asphaltic concrete spillway and the portion of asphaltic concrete curb included, within the limits of each inlet assembly, as shown on the Plans.

Measurement of each Metal Drain Inlet—Stage 1 Construction includes the integral drain unit and rip rap, earth roll, or other incidental construction necessary to direct water into the Inlet.

Other items of construction required in the work and eligible for payment such as slope drain pipe, asphaltic concrete curb, rip rap, and concrete aprons are measured for payment according to the applicable Specification for such items.
577.4.01 Limits
General Provisions 101 through 150.

577.5 Payment
Each of the three types of metal drain inlet installation, measured for payment as described above, will be paid for at the Contract Unit Price per each.

Payment of each Metal Drain Inlet—Complete Assembly will include both the First Stage and Second Stage Construction outlined above.

When First Stage Construction is completed and the installation is satisfactory to the Engineer, 50 percent of the bid price for each such Unit will be included for payment on the next statement.

When the Second Stage Construction is completed and the installation is satisfactory to the Engineer, the remaining 50 percent of the Bid Price for each Unit will be included for payment on the next statement.

All other Items needed to complete the installation and that are eligible for payment will be paid for according to the applicable Specification for such items.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 577</th>
<th>Metal drain inlet—complete assembly</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 577</td>
<td>Metal drain inlet—stage 1 construction</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 577</td>
<td>Metal drain Inlet—stage 2 construction</td>
<td>Per each</td>
</tr>
</tbody>
</table>

577.5.01 Adjustments
General Provisions 101 through 150.

Section 581—Pot Bearings

581.1 General Description
This work includes furnishing and installing pot bearings (fixed and expansion types). Use the quality, type, and size designated in this Specification, on the Plans, or ordered by the Engineer.

581.1.01 Definitions
General Provisions 101 through 150.

581.1.02 Related References
A. Standard Specifications Section
 501—Steel Structures Section
 506—Expanded Mortar Section
 535—Painting Structures Section
 851—Structural Steel
 Section 852—Miscellaneous Steel Materials
 Section 885—Elastomeric Bearing Pads
 Section 886—Epoxy Resin Adhesives
 Section 887—Bearing Plates with Polytetrafluoroethylene Surfaces

B. Referenced Documents
 ASTM A 709 Grade 36 (ASTM A 709M Grade 250)
 A 709 Grade 50 (A 709M Grade 345)
581.1.03 Submittals

Provide the following reports to the Project Engineer and the Office of Materials and Research:

- Certified test reports
- Materials certificates
- Certificate of Compliance to conform with the requirements in this Specification
- Shop drawings
- Certification

A. Shop Drawings

Before fabricating the bearings, submit to the Engineer Shop Drawings according to Subsection 501.1.03.B, “Shop Drawings.” Include the following on the drawings:

- Bearing plan and elevation
- Complete details and sections that show the materials incorporated into the bearing
- ASTM or other material designations
- Vertical and horizontal load capacity
- Rotation and translation capacity
- Compression stress on sliding surfaces and elastomeric surfaces at maximum and minimum design loads
- Complete design calculations
- Complete erection and installation procedure

B. Certification

Have the pot bearing manufacturer furnish the following to the Project Engineer and the Office of Materials and Research:

- Certified test reports
- Material certificates
- Certificate of compliance to conform with these Specifications for each bearing furnished

581.2 Materials

Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Painting</td>
<td>535</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>851</td>
</tr>
<tr>
<td>Anchor Bolts, Nuts, and Washers</td>
<td>852.2.02</td>
</tr>
<tr>
<td>Elastomeric Bearing Pads</td>
<td>885</td>
</tr>
<tr>
<td>Epoxy Resin Adhesives</td>
<td>886</td>
</tr>
<tr>
<td>Bearing Plates with PTFE Surfaces</td>
<td>887</td>
</tr>
</tbody>
</table>

A. Metals

Use the stainless steel sliding surfaces indicated below:

- **Stainless Clad Steel Plate**: Minimum eight percent stainless steel conforming to the requirements of ASTM A 264 (both Shear Strength and Bond Strength tests in 8.13 and 8.14 of ASTM A 264 are required). Use stainless steel cladding that meets Type 304. Use backing steel (base metal) that meets ASTM Designation A 709 Grade 50W (A 709M, Grade 345 W).
- **Stainless Steel Plate Welded To A Steel Backup Plate**: Use at least 16 gage (1.6 mm) thickness of the stainless steel plate that meets ASTM 240 Type 304. Use steel backing plate that meets ASTM Designation A 709 Grade 50W (A 709M Grade 345W) unless otherwise indicated on the Plans. Use qualified welders to weld the stainless steel plate to the steel backing. Furnish welding procedures and welder qualification documents to the
Department for review and approval prior to fabrication. Weld entirely around the perimeter of the stainless steel plate.

- **Solid Stainless Steel Plate**: Mill-finish the stainless steel sliding surfaces to a maximum surface roughness of 20 micro-inches (0.50μm), RMS, according to the requirements of ANSI Standard B 46.1. Remove and replace, at no additional cost to the Department, bearing plates whose stainless steel sliding surfaces have been scratched or damaged.

B. Structural Steel

Use structural steel for the masonry plates and the components of the bearings that meet the requirements of these ASTM Specifications:

- ASTM A 709, Grade 36 (ASTM A 709M, Grade 250)
- A 709, Grade 50 (A 709M, Grade 345)

Machine the base pot from a solid steel plate.

C. Anchor Bolts

Use anchor bolts, including nuts and washers, that meet the requirements of Subsection 852.2.02.

D. Elastomeric Material

Ensure that the elastomeric material used as the confined medium within the pot is 100 percent virgin chloroprene (“Neoprene”) that meets the requirements of Section 885. Ensure that the elastomer is a minimum Grade 2 and has a durometer hardness of 50 ± 5.

Ensure that the sealing rings for containing the elastomer in the pot bearings are as specified by the pot bearing manufacturer, and meet the following requirements:

- Made of brass or stainless steel
- Withstands and transmits all imposed loading
- Allows free movement of the piston
- Contains the elastomer within the pot under the maximum static and dynamic loading
- Prevents contamination of the elastomer with foreign matter

E. Expanded Mortar

Set anchor bolts in preformed or drilled holes using expanding mortar that meets the requirements of Section 506.

F. Paint

Paint exposed steel of each bearing assembly other than stainless steel according to System VI of Section 535. Take care to keep Polytetrafluoroethylene (PTFE) or sliding surfaces free of paint.

G. Design and Applicable Codes

Design, fabricate, and erect pot bearings according to these Specifications and the applicable requirements of the following Standard Codes and Specifications.

- Section 501, including supplements
- Current AASHTO Standard Specifications for Highway Bridges

Additional design parameters with which the pot bearing manufacturer must comply:

1. **Bearing on Concrete**: Maximum bearing pressure is as indicated in AASHTO.
2. **Elastomeric Disc**: Design compressive strength is 3,500 psi (25 MPa).
3. **Sliding Surfaces**: Accommodate translation by sliding of a hard mating surface of stainless steel across a PTFE surface.
 a. **Stainless Steel Sliding Surface**: Accurate, flat surface with Brinnell hardness of 125 minimum.
 1) Stainless steel sliding surface to completely cover PTFE surface in all operating positions of the bearing.
 2) Position the stainless steel sliding surface so that the sliding movement causes the dirt and dust accumulation to fall from the surface of the stainless steel.
 b. **PTFE Sliding Surface**: Do not use holes of slots in the PTFE sliding surface.
c. **Static Coefficient of Friction**: Under a load of 3,500 psi (25 MPa), do not exceed 4 percent for unfilled PTFE nor 8 percent of filled PTFE surfaces.

d. **Rotation**: 0.015 radians.

e. **Piston-Cylinder Clearance**: Limit clearance to 0.30 in (0.76 mm). Use a brass or stainless steel sealing ring to prevent extrusion of the elastomeric material.

H. **Substituted Bearings**

Pot bearings with a design similar to that shown on the Plans may be used provided the bearings to be substituted are approved by the State Bridge Engineer and comply with the following:

1. Equal or better load carrying and moment capacity.
2. All control dimensions are maintained and bearings fit within the limits of detailed masonry plate.
3. Use filled or unfilled (recessed) PTFE.
4. Piston-cylinder clearance is limited to 0.030 in. (0.76 mm) and a brass or stainless steel sealing ring shall be used to prevent extrusion of the elastomeric material.
5. Elastomeric material is used as a confined medium within the pot.
6. The elastomeric disc is lubricated by a means acceptable to the Engineer.
7. Do not use aluminum or aluminum alloy.
8. Equal or better than the pot bearings shown on the Plans in all structural respects and meets all design requirements.

581.2.01 Delivery, Storage, and Handling

A. **Assembling and Marking**

Have each pot bearing assembled at the plant, marked for identification, and delivered to the construction site as a complete unit.

Each bearing shall be marked with permanent match-marks to indicate the normal position of the bearing.

B. **Transportation, Storage, and Handling During Construction**

Follow these guidelines to transport, store, and handle pot bearings during construction:

1. Protect each pot bearing from dust and moisture.
2. Store the PTFE surface in the shade to avoid the damaging effects of ultraviolet rays.
3. Protect the pot bearings from damage during construction and prevent contamination of the various components of the pot bearings.

Ensure that the Fabricator also follows the above requirements.

During transportation and storage, cover the bearings with moisture-proof and dust-proof covers.

581.3 Construction Requirements

581.3.01 Personnel

A. **Skilled Representative**

Have the bearing manufacturer provide a skilled representative who is certified by the manufacturer to be experienced in similar installations.

The representative shall:

- Give aid and instruction during the pot bearing installation.
- Be present during the initial bearing installation.
- Be present during welding of the pots to the masonry plates, if not performed in the manufacturer’s shop.
- Remain on the job until the bearing installation proceeds without trouble and until the workmen are experienced with the work for each installation as determined by the Engineer.

Arrange to have the manufacturer’s skilled representative present whenever requested by the Engineer.
581.3.02 Equipment
General Provisions 101 through 150.

581.3.03 Preparation
General Provisions 101 through 150.

581.3.04 Fabrication
A. Polytetrafluoroethylene (PTFE)
 Ensure that the PTFE, including its connection to its backup material, conforms with the requirements of Section 887, except as modified in this Specification.
 Have the PTFE sliding surface bonded under factory controlled conditions, or mechanically connect it to a rigid backup material that can resist bending stresses of the sliding surfaces.
 As an alternate, PTFE material of twice the thickness specified above may be recessed for half its thickness in the backup material. Ensure that it is at least 1/8 in (3 mm) thick.
 1. When shown on the Plans, weld the pot to the masonry plate before installing the elastomer.
 If welding procedures established and approved by the Engineer restrict the temperature of the bond area to no greater than 300 °F (150 °C), welding to steel plates with a bonded PTFE surface is permitted.
 Use temperature-indicating wax pencils or other suitable means to determine the temperature.
 2. After fabricating the backup material, plane it before bonding the stainless steel or PTFE to a true plane surface.
 3. Have the PTFE sheets bonded at the bearing manufacturer’s factory under controlled conditions according to the approved adhesive system manufacturer’s written instructions.
 4. When epoxy bonding PTFE sheets, ensure that the side of the PTFE sheet to be bonded to the metal is factory treated by the sodium naphthalene or sodium ammonia process.
 5. After the bonding operation, ensure that the PTFE surface is smooth, flat, and bubble free. Polish the filled PTFE surfaces.
 6. Positively locate the elements of the bearing in the bearing manufacturing and assembling.
 7. If using bearing other than those detailed on the Plans, obtain approval before constructing the substructure upon which the bearings will be installed.
 8. Have each bearing assembled at the manufacturer’s plant, marked for identification, and delivered to the construction site as a complete unit.
 Ensure that the bearings have permanent match-marks to indicate the normal position of the bearing.

581.3.05 Construction
A. Erection
 Place bearings at their proper locations before erecting the superstructure supported by the bearings.
 1. Install Pier Tops
 Install pier tops horizontal at the correct elevation with a plus or minus tolerance of zero. Do not install the masonry plates until the Engineer accepts the pier tops.
 2. Install the Anchor Bolts
 Cast anchor bolts in the concrete or set them in preformed holes, unless otherwise shown on the Plans. If setting them in preformed holes, fill the preformed holes in the concrete substructure with epoxy grout.
 a. Insert the anchor bolts to the prescribed depth.
 b. Place additional grout as required in the annular space around the anchor bolts until the grout is well packed and flush with the top surface of the concrete.
 c. Wipe clean the exposed surfaces of the anchor bolts and substructure. Do not allow a load on grout that has not been in place at least 7 days.
 3. Install Masonry Plates
 Set the masonry plates to the proper elevation on the previously finished concrete pads.
 4. Install the Bearings
 a. Place the bearing at the predetermined locations when erecting the superstructure.
 b. Remove the temporary restraints as directed by the bearing manufacturer.
c. Adjust the bearings as follows:
 □ Adjust the expansion bearings from the normal position at 60 °F (15 °C) to allow for the ambient temperature during erection or casting.
 □ Adjust the pot bearings to allow them to move when dead loads are applied. Ensure that the bearing is properly positioned and parallel (free from rotation) after applying the dead load.
 □ Adjust the bearings horizontally on the masonry plate to properly fit the superstructure members being erected.

d. After adjustments and approval by the Engineer, weld the bearings to the masonry plate.

581.3.06 Quality Acceptance

Instruct the manufacturer to furnish facilities to test and inspect the completed bearings in the plant or at an independent test facility. An approved testing laboratory or the manufacturer supervised by an approved independent expert shall perform the testing.

Follow these testing guidelines:

□ Instruct the manufacturer to allow the Engineer and Inspectors access to the plant and test facilities.
□ Furnish certified test reports, materials certificates, and a certificate of compliance to conform with the requirements in the Specifications.
□ Perform testing according to Section 887 and this Specification. The Department reserves the right to sample and test the material and pot bearing assemblies as shown in Section 106.
□ Test complete bearing assemblies or a specially manufactured pot bearing prototype that has a capacity of 400 kips (181 000 kg).

Successfully tested full-size bearings that meet the requirements of this subsection and have no damaged components, finishes, or surfaces may be used in construction. Provide prototype pot bearings, if used, at no additional expense to the Department.

Specific Items tested are as follows:

A. Coefficient of Friction

Perform tests to determine the static coefficient of friction of the first movement under a load of 3,500 psi (25 MPa) on a piston area applied continuously for 12 hours before testing. Determine under a load of 2,000 psi (14 MPa) on a piston area the following:
 1. The static coefficient of friction value shall not exceed 10 percent for filled PTFE surfaces and 6 percent for unfilled PTFE surfaces.
 2. The first movement static and dynamic coefficient of friction at a sliding speed of less than 1 in per min (0.4 mm per sec). Values shall not exceed 10 percent for filled PTFE surfaces and 6 percent for unfilled PTFE surfaces.
 3. The static and dynamic coefficient of friction is determined after the bearing is subjected to 100 design movements at a speed of less than 1 ft per min (5 mm per sec). Values shall not exceed those indicated in step 2 above. Signs of bond failure or other defects are cause for pot bearing rejection.

B. Proof Loading

Perform, under maximum design loads, proof loading and compression deflection tests on a full-size pot bearing.

C. Cold Flow

Subject an approved sample of filled PTFE or unfilled PTFE to a static pressure of 3,500 psi (25 MPa) for at least 24 hours. Ensure that the PTFE material is bonded or mechanically connected to its backup material in the same way as the pot bearing.

Apparent cold flow of the PTFE material is cause for pot bearing rejection.

581.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

581.4 Measurement

Pot bearing assemblies are measured by Lump Sum for each bridge. Determine the actual quantities required before submitting the bid.
581.4.01 Limits
General Provisions 101 through 150.

581.5 Payment
The work in this Specification will be paid for on a Lump Sum basis.

Payment is full compensation for:

- Furnishing materials and equipment including structural steel components of the bearings, masonry plates, top plates, sole plates, PTFE, elastomers, anchor bolts, and welding
- Designing the pot bearing
- Performing tests
- Furnishing prototype bearings and test samples
- Performing Work as described and specified in this Specification or the Plans
- Providing incidentals to complete the work

Payment will be made under:

| Item No. 581 | Pot bearings, bridge No. | Per lump sum |

581.5.01 Adjustments
General Provisions 101 through 150.

Section 600—Controlled Low Strength Flowable Fill

600.1 General Description
This work consists of furnishing and placing Flowable Fill as an alternate to compacted soil as approved by the Engineer. Applications for this material include beddings, encasements, and closures for tanks and pipe, and general backfill for trenches and abutments.

600.1.01 Definitions
General Provisions 101 through 150.

600.1.02 Related References
A. Standard Specifications
 - Section 500—Concrete Structures
 - Section 801—Fine Aggregate
 - Section 830—Portland Cement
 - Section 831—Admixtures
 - Section 880—Water
B. Referenced Documents
 - SOP 10
 General Provisions 101 through 150.

600.1.03 Submittals
Mix designs for flowable fill, and other documentation listed in Subsection 500.1.03.
600.2 Materials
All materials shall meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Fine Aggregate</td>
<td>Subsection 801.2.02</td>
</tr>
<tr>
<td>Portland Cement</td>
<td>Subsection 830.2.01</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>Subsection 831.2.03</td>
</tr>
<tr>
<td>**Air-Entraining Admixtures</td>
<td>Subsection 831.2.01</td>
</tr>
<tr>
<td>Water</td>
<td>Subsection 880.2.01</td>
</tr>
</tbody>
</table>

*Note—Gradation requirement is waived.

**Note—High air generators or foaming agents may be used in lieu of conventional air entraining admixtures and may be added at the jobsite and mixed according to the manufacturer’s recommendation.

600.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

600.3 Construction Requirements

600.3.01 Personnel
General Provisions 101 through 150.

600.3.02 Equipment
General Provisions 101 through 150.

600.3.03 Preparation
A. Mix Design
Flowable fill is a mixture of Portland cement, fly ash, fine aggregate, air entraining admixture, and water. Flowable fill contains a low cementitious content for reduced strength development.

1. Submit mix designs for flowable fill to the Engineer for approval by the Office of Materials and Research. The following table lists mix design proportion ranges for excavatable and non-excavatable flowable fill:

<table>
<thead>
<tr>
<th></th>
<th>Excavatable</th>
<th>Non-Excavatable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement Type I</td>
<td>75-100 lbs/yd³ (45-60 kg/m³)</td>
<td>75-150 lbs/yd³ (45-90 kg/m³)</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>-</td>
<td>150-600 lbs/yd³ (90-355 kg/m³)</td>
</tr>
<tr>
<td>Water</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>**Air</td>
<td>15 to 35%</td>
<td>5-15%</td>
</tr>
<tr>
<td>**28-Day Compressive Strength</td>
<td>Maximum 100 psi (690kPa)</td>
<td>Minimum 125 psi (860 kPa)</td>
</tr>
<tr>
<td>**Unit Weight (Wet)</td>
<td>90-100 lbs/ft³ (1440-1600 kg/m³)</td>
<td>100-125 lbs/ft³ (1600-2000 kg/m³)</td>
</tr>
</tbody>
</table>

*Mix designs shall produce a consistency that will result in a flowable self-leveling product at time of placement.

**The requirements for percent air, compressive strength, and unit weight are for laboratory designs only and are not intended for jobsite acceptance requirements.

600.3.04 Fabrication
Ensure flowable fill is manufactured at plants that qualify as approved sources according to the Standard Operating Procedure for Quality Assurance for Ready-Mix Concrete Plants in Georgia (SOP 10). Mix and deliver according to Subsection 500.2.01 of the Specifications or other methods approved by the Engineer. Revolution counter requirements are waived.

600.3.05 Construction
When using as backfill for pipe, where flotation or misalignment may occur, assure correct alignment of the pipe by using straps, soil anchors, or other approved means of restraint.
Protect flowable fill from freezing for 36 hours after placement.

600.3.06 Quality Acceptance

A. Jobsite Acceptance

Acceptance of flowable fill is based on documentation as outlined in Subsection 500.1.03 of the Specifications and a minimum temperature of flowable fill at the point of delivery of 50 °F (10 °C).

600.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

600.4 Measurement

Flowable fill will be measured for payment in cubic yards (meters) in-place and accepted when shown as a pay item in the Contract. When flowable fill is not shown as a pay item, include the cost of the work in the bid price for the appropriate item.

600.4.01 Limits

General Provisions 101 through 150.

600.5 Payment

When shown as a pay item in the Contract, flowable fill complete, inplace and accepted will be paid for Per cubic yard (meter)

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 600</th>
<th>Flowable fill</th>
<th>Per cubic yard (meter)</th>
</tr>
</thead>
</table>

600.5.01 Adjustments

General Provisions 101 through 150.

Section 602—Doublewal™—Precast Wall

602.1 General Description

This work includes the materials, manufacture, construction, measurement, and payment for Doublewal™ precast walls. The scope of work of the wall erection includes:

- Grading for wall construction
- Compacting the wall foundation (including areas underlying the footings and the precast modules)
- Dewatering (general and local) to execute the work properly
- Constructing footings
- Erecting precast concrete modules and caps
- Placing and compacting soils within the Doublewal™ modules
- Excavating and replacing unsuitable materials
- Constructing berms

Ensure that the architectural treatment of the modules is according to the Plan details.

602.1.01 Definitions

Doublewal™—Doublewal™ is a trademark.

602.1.02 Related References

A. Standard Specifications

 Section 106—Control of Materials
 Section 208—Embankments
 Section 500—Concrete Structures
Section 573—Underdrains
Section 806—Aggregate for Drainage
Section 853—Reinforcement and Tensioning Steel
Section 865—Manufacture of Prestressed Concrete Bridge Members
Section 881—Fabrics

B. Referenced Documents
GDT 35
AASHTO T 22
ASTM D 573
ASTM D 1752 Type II

602.1.03 Submittals

A. Shop Drawings
Submit Shop Drawings with each job to the Department for review and approval. The Shop Drawings shall be approved by the Department before beginning to fabricate the wall elements. Indicate on the Shop Drawings:

- General notes for constructing the wall
- Dimensions for the modules
- Fabrication tolerances
- Material requirements
- Reinforcing steel
- Module size markings that will agree with the wall designations on the construction Plans
- Project construction number, Prime Contractor, and wall designation in the title block in the lower right corner of the sheet
- Summary of quantities that indicate the cubic yards (meters) of concrete and pounds (kilograms) of reinforcing steel in each module and unit of parapet and footings

602.2 Materials

A. Reinforcing Steel
Ensure that reinforcing steel conforms to Section 853.

B. Concrete
For precast modules and caps, use Class AAA concrete according to Section 500.
For footings, traffic barriers, and precast parapets use Class A cast-in-place concrete according to Section 500.

C. Joint Treatment
Follow these joint treatment requirements:

1. Cover the joints with plastic filter fabric between the modules on the back side of the front face of the wall and on the inside of the back of the wall. Use fabric that meets the requirements of Subsection 881.2.05.
 In floodplains, use only woven fabric 3 ft (1 m) above and entirely below the 100-year flood elevations.
2. For bearing pads between the modules, use rubber pads that have a durometer hardness of 80+5. See Figure 1 (Figure 1 metric).
3. Place preformed cork that conforms to ASTM D 1752, Type II, adjacent to the key of transition modules as recommended by the Doublewal™ Corporation.
4. Ensure that the minimum width and lap of plastic filter fabric sheets are as follows:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical joints</td>
<td>12 in (300 mm)</td>
</tr>
<tr>
<td>Horizontal joints</td>
<td>12 in (300 mm)</td>
</tr>
<tr>
<td>Laps in fabric</td>
<td>44 in (1.1 m)</td>
</tr>
</tbody>
</table>

D. Backfill

Use modular backfill materials within the rectangular cells of the Doublewal™ precast wall that meet the following requirements:

- Are free from organic or otherwise harmful material
- Conform to the following gradation limits:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 in (100 mm)</td>
<td>100</td>
</tr>
<tr>
<td>2 in (50 mm)</td>
<td>80 to 100</td>
</tr>
<tr>
<td>No. 10 (2.00 mm)</td>
<td>20 to 90</td>
</tr>
<tr>
<td>No. 200 (75 µm)</td>
<td>0 to 12</td>
</tr>
</tbody>
</table>

E. Drainage

Ensure that underdrain pipe meets the requirements of Subsection 573.2, “Materials.”

Ensure that filter fabric meets the requirements of Section 881.2.05.

Ensure that stone conforms to Subsection 806.2.01.
Front face of wall

* 3/8 in thick x 5 in wide x L long rubber bearing pad

** 3/8 in thick x 5 in wide x L long rubber bearing pad to be used where module width transitions

*** 3/8 in thick x 5 in wide x L long rubber bearing pad

For length of bearing pad see shop drawings. Thickness may vary ± 1/8 in to account for leveling adjustments.

NOTE: Front face and rear face of modules shall be reinforced sufficiently to prevent cracking which might result from unequal distribution of bearing pressures. The reinforcing for the modules shall be as shown on the plans.

Figure 1
Front face of wall

* 10 mm thick x 127 mm wide x L long rubber bearing pad

** 10 mm thick x 127 mm wide x L long rubber bearing pad to be used where module width transitions

*** 10 mm thick x 127 mm wide x L long rubber bearing pad

For length of bearing pad see shop drawings. Thickness may vary ±3 mm to account for leveling adjustments.

NOTE: Front face and rear face of modules shall be reinforced sufficiently to prevent cracking which might result from unequal distribution of bearing pressures. The reinforcing for the modules shall be as shown on the plans.

Figure 1 (metric)
602.2.01

F. Certification

Joint filler acceptance furnished for the work is based on Subsection 106.05, “Materials Certification.”

G. Bearing Pads

Use resilient, weather-resistant elastomer bearing pads. Use fiber reinforcement with rayon, nylon, and fiberglass or combinations of these fibers. The physical properties of the material are as follows:

- Dimensions. Ensure that dimensions are as detailed on the Plans. Various thicknesses may be required for leveling purposes.
- Compression Modulus. Ensure 1,200 psi (8 MPa) compression at less than 50 percent of the ultimate compressive strain. Determine compression on a 0.5 in (13 mm) specimen.
- Shear Modulus. Ensure 500 psi (3.5 MPa) in direct shear while compressed and 1,200 psi (8 MPa) at 50 percent ultimate shear strain uncompressed. Determine shear on a 0.5 in (13 mm) specimen.
- Tensile Strength. Ensure at least 400 psi (3 MPa) tested in transverse and longitudinal directions.
- Property Retention. Ensure heat aging at ASTM D 573 at 158 °F (70 °C) for 72 hours. Ensure change in tensile strength does not exceed 25 percent. Ensure change in elongation does not exceed 25 percent. Ensure no creep failure when stressed to the above maximum requirements for long periods.

Have the above properties certified according to Subsection 106.05, “Materials Certification.”

602.2.01 Delivery, Storage, and Handling

Safely handle, store, and ship modules and prevent damage to the module.

602.3 Construction Requirements

602.3.01 Personnel

The Contractor shall have Doublewal™, or its licensee, provide an Erection Supervisor who is thoroughly familiar with the Doublewal™ erection technique to assist the Contractor in erecting the Doublewal™ and verify that the Doublewal™ is erected properly.

602.3.02 Equipment

General Provisions 101 through 150.

602.3.03 Preparation

Make arrangements to obtain precast concrete modules and caps, joint materials, and the expertise to construct the Doublewal™ precast wall.

602.3.04 Fabrication

A. Reinforcing Steel

Have the reinforcing steel for precast modules and other components shop fabricated according to the requirements of the Doublewal™ Corporation.

B. Precast Concrete

1. Casting

 Perform casting according to the requirements of the Doublewal™ Corporation.

 a. Place the concrete in each unit without significant interruption.

 b. Consolidate the concrete by using an approved internal vibrator and external vibrators that are securely attached to the steel form.

2. Curing

 Cure the units as specified in Subsection 865.2.01.B.10 and long enough for the concrete to develop the specified compressive strength.

3. Removing the Forms

 Keep the forms in place until they can be removed without damaging the unit.
4. Concrete Finish and Tolerances
 Cast concrete surfaces for the front face against steel forms or architectural form liners if noted on the Plans. Ensure that the units are manufactured within the following tolerances:
 a. Keep all dimensions within 3/16 in (5 mm).
 b. Keep deviation from the square measured on the diagonal to 5/16 in. (8 mm).
 c. Finish the bearing surfaces (top of the module’s front panel and back panel) to within 1/8 in (3 mm) when measuring with a 8 ft (2.4 m) straightedge.
 d. Meet exposed surface tolerances as follows:
 1) Smooth Finish. Correct variations greater than 0.1 in (2.5 mm) when tested with a 5 ft (1.5 m) straightedge before moving the panel from the casting yard.
 2) Other Finish Types. Ensure that other finish types conform to approved samples displayed by the manufacturer.

5. Compressive Strength
 Perform compression tests to determine the minimum strength requirements on cylinders.
 a. Make at least three cylinders to determine when the units may be put into service from each day’s production.
 b. Cure the cylinders according to GDT 35.D.B.6.
 c. Ensure that the shipping strength is equal to the required 28-day strength.
 d. Make an additional 2 cylinders to determine 28-day strength for each day’s production or for each 50 yd³ (40 m³) of concrete placed, whichever amount of concrete is less.
 Cure according to GDT 35.D.B.6.
 e. Ensure that the 28-day compressive strength is at least 5,000 psi (35 MPa).
 f. Perform compressive strength tests according to AASHTO T 22.
 If the cylinder tests are questionable, take cores from modules at the manufacturer’s option and expense and use them to determine the 28-day strength.

6. Testing and Inspection
 Determine the acceptability of the precast units at the casting yard by performing compression tests and visually inspecting them during and after casting. Ensure the units conform with the Specifications and drawings.
 The precast units are acceptable, regardless of curing age, when compression test results show that the strength will conform to 28-day Specifications and all other requirements.
 Instruct the manufacturer to furnish the facilities and assistance to perform sampling and testing rapidly and satisfactorily.

7. Marking
 Mark each unit according to the requirements of the Office of Materials and Research.

8. Repairs at the Plant
 Before shipment, concrete technical service personnel from the OMR and/or the plant’s certified personnel shall examine the surfaces of precast units for approval.
 The Engineer will inspect the surfaces at the job site. Patch honeycombing and other defects in the wall surfaces to the Engineer’s satisfaction.

9. Rejection
 Units will be rejected if they do not meet the requirements in Subsection 602.3.04.B.4, “Concrete Finish and Tolerances,” Subsection 602.3.04.B.5, “Compressive Strength,” and any of the above paragraphs.
 Units that are cracked or damaged, or do not meet tolerance requirements in this Specification will not be allowed on the job site.

602.3.05 Construction
A. Foundation Bed
 Excavate and compact the foundation bed for the Doublewal™ precast wall as required in this Specification. Obtain the Engineer’s approval before beginning the erection.
B. Foundation

Cast the footings in place to the dimensions and details shown on the project Plans. Construct the footings with or without forms. Strictly follow the top of footing elevations shown on the Plans.

Before erecting the wall, compact the foundation area to at least 95 percent of maximum laboratory dry density specified in Subsection 208.3.05.B.2.c.

C. Wall Erection

Install the precast concrete module units according to the manufacturer’s recommendations as shown on the approved shop drawings.

1. Set the bottom course of units to true line and grade. Grade the foundation for the wall level with a width equal to the width of the lower course unit.
2. Remove and replace foundation soils that cannot sustain the required compaction as provided in this Specification.
3. When placing the modules on the footing, do not vary from level the horizontal levelness from one module to another (measured on the top of the module’s front face and back face), by more than 1/8 in (3 mm). Measure with a 10 ft (3 m) straightedge and level.
4. Maintain this tolerance when placing additional layers of modules on the existing layer.
5. If leveling is required, use various thickness of bearing pads to level the module. Place these pads on the beam bearing pads. Do not allow the total thickness of the rubber bearing pads to exceed 0.75 in. (20 mm).
6. Interlock the modular units above the first course with lower courses. Stagger vertical joints with each successive course.
7. Ensure that the vertical joint opening on the front face of the wall does not exceed 0.75 in (20 mm). Install joint treatment in the horizontal joints of both faces as in Subsection 602.2.C, “Joint Treatment.”
8. Ensure that the tolerances and alignment are according to the Department’s Specifications for concrete structures.
 - Vertical tolerances (plumbness) and horizontal alignment tolerances shall not exceed 3/8 in (10 mm) when measured along a 8 ft (2.4 m) straightedge.
 - Overall wall vertical tolerance (plumbness from top to bottom) shall not exceed 0.5 in per 8 ft (5 mm/m) of wall height, except for battered wall designs. In this case, the variation of the battered plane from the theoretical shall not exceed 0.5 in per 8 ft (5 mm/m) of wall.
 - The footing surface shall not vary from level more than 1/8 in per 10 ft. (1 mm/m).
9. If repairs at the job site are necessary, have experienced personnel use methods and materials recommended by the manufacturer.

Perform patching only when the repaired area will conform to the balance of the work in appearance, strength, and durability. Repair to the Engineer’s satisfaction.

D. Modular Backfill Materials

Backfill each successive course of modular units.

1. Fill the rectangular cells of the Doublewal™ precast walls directly below the edge of the travelway with modular backfill material in two lifts or layers.
 a. Compact each layer to 95 percent of the maximum laboratory dry density.
 b. Fill the cells beyond step a above in one lift or layer and compact to 90 percent of the maximum laboratory dry density.
2. Place modular backfill material and embankment around the outside of the wall according to Section 208.
3. When erecting a wall, backfill behind the wall immediately after erecting successive courses of units. Do not allow the modular backfill material and the top of the last erected course to differ in elevation by more than 6 ft. (1.8 m).
4. Place the underdrain, if required, according to the Plans and Specifications. Include underdrain costs in the modular backfill material cost.
5. Ensure that the modular backfill material at bridge structures, and extending for 100 ft (30 m) from the lateral limits of the bridge, contains fines to fill the voids in the aggregate. Compact the aggregate material to at least 95 percent of the maximum laboratory dry density.
6. Place the modular backfill material in two lifts.
E. Storm Drains
Cast the appropriate storm drainage into wall modules at the elevation and locations indicated on drainage profiles.
Construct the catch basin and place the storm drain in coordination with construction of the Doublewal™ precast wall.

F. Dewatering
Furnish, install, operate, and maintain dewatering systems as necessary to:
- Keep the site dry and workable
- Grade and compact the wall foundation
- Erect and backfill the wall
Ensure that these systems include equipment and materials and are continued as long as necessary. Include dewatering costs in the price bid for modular backfill material.

602.3.06 Quality Acceptance
General Provisions 101 through 150.

602.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

602.4 Measurement
When a Doublewal™ precast wall is built to plan dimensions, the Plan quantities will be the pay quantities. When the Engineer changes the Plan dimensions during construction or when original Plans are in error, the revised Plan quantities will be the pay quantities.

A. Excavation and Shoring
Excavation, including removing unstable material and shoring to construct a Doublewal™ precast wall will not be measured and paid for separately.

B. Modules
The area of modules, complete in place and accepted, are designated for payment by the surface area per square foot (meter) of the front face of each module width. The front face of the wall is the face exposed to view.

C. Modular Backfill Material
The modular backfill material used in the modules is designated for payment by the cubic yard (meter), complete in place.
Modular backfill material that extends beyond the width and height of modules is incidental. The cost will be included in the price bid for Contract Items.
Increases in foundation excavation from undercut ordered by the Engineer that requires modular backfill material to provide stability will be measured and paid for at the Contract Unit Price per cubic yard (meter) of modular backfill material.
Backfilling undercut areas with materials of grades at or lower than common excavation soils will not be measured or paid for separately.

D. Concrete Footing
The concrete footings will be measured for payment by the cubic yard (meter). This measurement includes steps and reinforcing steel indicated on the Plans.

E. Precast Barriers and Parapets
The following Units, complete in place and accepted, will be designated on the Plans and measured and paid for at the Contract Unit Price bid per yard (meter) for each type Unit.
- Precast parapet A
- Precast parapet B
- Cast-in-place coping
- Cast-in-place traffic barrier A
602.4.01

- Cast-in-place traffic barrier B
- Precast traffic barrier B

This measurement also includes cast-in-place concrete and reinforcing steel to install the precast units as shown on the Plans.

Use precast parapet B and cast-in-place traffic barrier B, or use precast traffic barrier B, whenever noise walls, light standards, or other appurtenances are mounted on top of the traffic barrier or parapet. Use precast parapet A and cast-in-place traffic barrier A, or use precast traffic barrier B when no appurtenance is used on top of the parapet or traffic barrier.

602.4.01 Limits
General Provisions 101 through 150.

602.5 Payment

When the wall is built to Plan dimensions, the Plan quantities will be the pay quantities. When plan dimensions are revised as directed by the Engineer, the wall will be paid for using the revised Plan quantities. Payment is full compensation for fabricating, transporting, and erecting materials according to the Plans and Specifications.

No separate measurement or payment will be made for tools, supervision, labor, coatings, joint materials (including but not limited to cork, rubber pads, and filter fabric), site preparation, or other incidentals to perform the work.

The following items, when shown on the Plans, will be paid for according to the applicable sections of the Project Specifications:

- Concrete side barrier
- Sound barriers
- Light standards
- V gutters
- Guard rail
- Fencing
- Handrail

Sleeves for chain link fencing and anchor bolts for light standards and noise barriers, when installed on the wall shall be included in the price bid for wall items.

Modifications to accommodate drainage systems are incidental and shall be included in the price bid for wall items.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 602</th>
<th>Modules—(width)</th>
<th>Per square foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 602</td>
<td>Modular backfill material</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 602</td>
<td>Concrete footing</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 602</td>
<td>Precast parapet A</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 602</td>
<td>Precast parapet B</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 602</td>
<td>Cast-in-place traffic barrier A</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 602</td>
<td>Cast-in-place traffic barrier B</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 602</td>
<td>Cast-in-place coping</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 602</td>
<td>Precast traffic barrier B</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

602.5.01 Adjustments
General Provisions 101 through 150.
Section 603—Rip Rap

603.1 General Description
This work includes placing protective coverings of sand-cement bag rip rap or stone rip rap.
When required, this work includes placing crushed stone filter material or plastic filter fabric beneath stone rip rap on:
- Fill slopes
- Cut slopes
- End rolls
- Shoulders
- Ditches
- Stream banks
- Channel banks
- Other locations

603.1.01 Definitions
General Provisions 101 through 150.

603.1.02 Related References
A. Standard Specifications
Section 800—Coarse Aggregate
Section 801—Fine Aggregate
Section 805—Rip Rap and Curbing Stone
Section 815—Graded Aggregate
Section 830—Portland Cement
Section 832—Curing Agents
Section 880—Water
Section 881—Fabrics
B. Referenced Documents
AASHTO T 134
QPL 28

603.1.03 Submittals
General Provisions 101 through 150.

603.2 Materials
Ensure that the materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland cement</td>
<td>830.2.01</td>
</tr>
<tr>
<td>Rip Rap (Stone)</td>
<td>805.2.01</td>
</tr>
<tr>
<td>Membrane Curing Compound</td>
<td>832.2.03</td>
</tr>
<tr>
<td>Stone Filter Blanket</td>
<td>815.2.01 or</td>
</tr>
<tr>
<td></td>
<td>800.2.01 (Size No. 467*)</td>
</tr>
<tr>
<td>Fine Aggregate for Sand Cement Rip Rap</td>
<td>801.2.03</td>
</tr>
<tr>
<td>Water</td>
<td>880.2.01</td>
</tr>
</tbody>
</table>
603.2.01

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woven Plastic Filter Fabric</td>
<td>881.2.05</td>
</tr>
</tbody>
</table>

*Except that up to 10% is allowed to pass the No. 4 (4.75 mm) sieve.

A. Bags for Sand-Cement Bag Rip Rap

Use cotton, burlap, or fiber reinforced paper bags that can contain the sand-cement mixture without leaking during handling and placing. Do not use bags that previously held sugar or other material that will adversely affect the sand-cement mixture.

Ensure that the capacity is at least 0.75 ft³ (0.02 m³) but not greater than 2 ft³ (0.5 m³).

B. Stone Dumped Rip Rap

Stone dumped rip rap is designated on the Plans as Type 1 or Type 3 as defined in Subsection 805.2.01.

603.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

603.3 Construction Requirements

603.3.01 Personnel

General Provisions 101 through 150.

603.3.02 Equipment

General Provisions 101 through 150.

603.3.03 Preparation

General Provisions 101 through 150.

603.3.04 Fabrication

General Provisions 101 through 150.

603.3.05 Construction

Construct this Work according to the following requirements:

A. Preparing the Foundations

Prepare the ground surface where the rip rap will be placed to conform with the correct lines and grades before beginning the placement.

1. When filling depressions, compact the new material with hand or mechanical tampers.
 Dispose of excess material by spreading it neatly within the right-of-way as an incidental part of the work.
2. Unless otherwise shown or provided below, begin placing the rip rap in a toe ditch constructed in original ground around the toe of the fill or the cut slope.
 Ensure that the toe ditch is 2 ft (600 mm) deep in original ground and the side next to the fill or cut has the same slope.
3. After placing the rip rap, backfill the toe ditch and spread the excess dirt neatly within the right-of-way as an incidental part of the work.
4. When beginning rip rap in water or below normal water level, substitute an apron of rip rap for the toe ditch.
 Ensure that the width and thickness of this apron is as shown on the Plans or determined by the Engineer.

B. Placing Stone Rip Rap

Place rip rap to the limits shown on the Plans or as directed by the Engineer. Place and classify rip rap as follows:

1. Stone Plain Rip Rap
 Dump and handle stone plain rip rap into place to form a compact layer to the design thickness.
 Ensure that the thickness tolerance for the course is plus 12 in (300 mm) with no under-tolerance. If the Plans do not show a thickness, place stone rip rap to at least 12 in (300 mm) thick, but no greater than 2 ft (600 mm) thick.
2. Stone Dumped Rip Rap
 Dump stone dumped rip rap into place to form a uniform surface as thick as specified in the Plans.
 a. Ensure that the thickness tolerance for the course is minus 6 in (150 mm) and plus 12 in (300 mm). If the Plans or Proposal do not specify a thickness, place the course to at least 2 ft (600 mm) thick.
 b. Recycled concrete that meets the requirements of Subsection 805.2.01 may be used instead of stone when shown on the Plans or approved by the Engineer.
 Use recycled concrete only when materials do not contain steel after processing.

| NOTE: Do not use recycled concrete in aesthetically sensitive areas. |

3. Stone Grouted Rip Rap
 Place stone grouted rip rap according to specifications for stone plain rip rap and these guidelines:
 a. Prevent earth from filling the spaces between the stones.
 b. After placing the stone, fill the spaces between them with 1:3 grout composed of Portland cement and sand mixed thoroughly with enough water to make a thick, creamy consistency.
 c. Place the grout beginning at the toe. Finish it by sweeping with a stiff bristle broom.
 d. After grouting, cover the rip rap and keep it wet for 5 days, or cover and keep wet for 24 hours and then coat with white pigmented membrane curing compound.

C. Placing Filter
 Place woven plastic filter fabric under all rip rap. Follow these requirements for placing the filter fabric:
 1. Prepare the surface to receive the fabric until it is smooth and free from obstructions, depressions, and debris.
 2. Place the fabric with the long dimension running up the slope. Minimize the number of overlaps.
 3. Place the strips to provide a width of at least 1 ft (300 mm) of overlap for each joint.
 4. Anchor the filter fabric in place with securing pins of the type recommended by the fabric manufacturer. Place the pins on or within 3 in (75 mm) of the centerline of the overlap.
 5. Place the fabric so that the upstream strip will overlap the downstream strip.
 6. Loosely place the fabric to prevent stretching and tearing during stone placement.
 Do not drop the stones more than 3 ft (1 m) during construction.
 7. Always protect the fabric during construction from clogging due to clay, silts, chemicals, or other contaminants.
 8. Remove contaminated fabric or fabric damaged during installation or rip rap placement. Replace with uncontaminated or undamaged fabric at no expense to the Department.

D. Placing Sand-Cement Bag Rip Rap
 Place rip rap to the limits shown on the Plans or as directed by the Engineer.
 1. Proportioning Materials
 Mix sand and Portland cement at the maximum ratio of 5:1 by weight.
 a. Obtain a minimum compressive strength of 500 psi (3 MPa) in 7 days.
 b. For sand-cement bag rip rap, use enough water to make up the optimum moisture content of the aggregate and cement as determined by AASHTO T 134.
 c. When sand-cement rip rap is to be prebagged, mix the sand cement dry. After placing each course, wet the bags until the bags are wet enough for proper cement hydration.
 2. Placement
 Before placing sand-cement bag rip rap, fill the bags full, but allow room to tie the bags.
 a. Place the bagged rip rap by hand with the tied ends facing the same direction. Produce close, broken joints.
 b. Place header courses when directed by the Engineer or required by the Plans.
 c. After placing the bags, ram or pack them against one another to produce the required thickness and form a consolidated mass.
 d. Do not allow the top of each bag to vary more than 3 in (75 mm) above or below the required plane.
E. Placing Stone Blanket Protection

Ensure that the stone blanket protection meets the materials Specifications for stone filter blanket as specified in Subsection 603.2, “Materials,” except stone size No. 357 will be allowed instead of size No. 467.

Place stone blanket protection to the limits shown on the Plans, or as directed by the Engineer.

Uniformly place this material to the thickness shown on the Plans and to a thickness tolerance of 0.5 in (± 15 mm). Do not use stone blanket protection on slopes steeper than two horizontal to one vertical or in areas highly susceptible to erosion. Do not use plastic filter fabrics with stone blanket protection.

603.3.06 Quality Acceptance
General Provisions 101 through 150.

603.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

603.4 Measurement
This work is measured for payment in square yards (meters) of accepted material of the specified thickness. Area measurements are made parallel to the surface on which the material is placed. Plastic filter fabric will be measured as the area of rip rap placed and accepted. No separate measurement will be made for fabric overlap joints, seams, or vertical sections at toe of slopes. No separate measurement is made for grout or cushioning sand.

Plan dimensions are figured by the use of filled bags 12 by 18 by 6 in. (300 by 450 by 150 mm) thick.

When filled bags are less than Plan dimensions or are of varying lengths or width, Plan square yards (meters) will be used to determine pay quantities, if overall dimensions are equal to or greater than those shown on the Plans.

603.4.01 Limits
General Provisions 101 through 150.

603.5 Payment
This work will be paid for at the Contract Price per square yard (meter) of material complete in place.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 603</th>
<th>Description</th>
<th>Payment Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 603</td>
<td>Stone plain rip rap ___ in (mm) thick</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 603</td>
<td>Stone dumped rip rap (type) ___ in (mm) thick</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 603</td>
<td>Stone grouted rip rap (thick)</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 603</td>
<td>Filter blanket</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 603</td>
<td>Sand-cement bag rip rap, ___ in (mm) thick</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 603</td>
<td>Stone blanket protection, ___ in (mm)</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 603</td>
<td>Plastic filter fabric</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

603.5.01 Adjustments
General Provisions 101 through 150.

Section 607—Rubble Masonry

607.1 General Description
This work includes constructing rubble masonry from classes such as coursed, random, and random range work, from roughly squared and dressed stone laid with or without mortar as specified on the Plans.

607.1.01 Definitions
General Provisions 101 through 150.
607.1.02 Related References
A. Standard Specifications
 Section 834—Masonry Materials
B. Referenced Documents
 General Provisions 101 through 150.

607.1.03 Submittals
General Provisions 101 through 150.

607.2 Materials
Ensure that materials meet the requirements of the following specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone for Masonry</td>
<td>834</td>
</tr>
<tr>
<td>Mortar and Grout</td>
<td>834</td>
</tr>
</tbody>
</table>

607.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

607.3 Construction Requirements

607.3.01 Personnel
General Provisions 101 through 150.

607.3.02 Equipment
General Provisions 101 through 150.

607.3.03 Preparation
General Provisions 101 through 150.

607.3.04 Fabrication
General Provisions 101 through 150.

607.3.05 Construction
Construct rubble masonry as follows:

A. Shaping the Stone
 Roughly square the stones on joints, beds, and faces. At angles and ends of walls, use selected stone roughly squared and pitched to line. If specified, finish the corners or angles in exterior surfaces with a chisel draft.

 Before laying the stone in the wall, shape and dress it so that it will not loosen after it is placed. No dressing or hammering which will loosen the stone will be permitted after it is placed.

B. Laying the Stone
 1. Decrease the stone thickness from the bottom to the top of wall.
 2. Ensure that the headers in the heart of the wall are the same size as shown in the face and extend at least 12 in (300 mm) into the core or backing.
 3. Ensure that headers in walls 2 ft (600 mm) or less in thickness extend entirely through the wall. The headers shall occupy at least 20 percent of the face of the wall.
 4. Lay the masonry to line and in roughly leveled courses. Ensure that the bottom of the foundation is large, selected stones.
 5. Lay the courses with leaning beds parallel to the natural bed of the material.
 6. Regularly diminish the thicknesses of the courses, if varied, from the bottom to the top of the wall. Keep a surplus supply of stones at the site to select from.
7. When mortar masonry is specified:
 a. Clean each stone and saturate it with water before setting it. Clean and moisten the bed that will receive it.
 b. Bed the stones in freshly made mortar with full joints. Carefully settle the stones in place before the mortar sets.
 c. Do not permit spalls in the beds. Ensure that the joints and beds have an average thickness of not more than 1 in. (25 mm).
 d. Ensure that the vertical joints in each course break with the adjoining courses at least 6 in. (150 mm).
 e. Do not place vertical joints directly above or below a header joint.
 If a stone is moved or if the joint is broken after the mortar has set, take the stone up and thoroughly clean the mortar from the bed and joints. Reset the stone in fresh mortar.
 Do not lay the masonry in freezing weather or when the stone contains frost, except by permission and subject to required conditions.

 NOTE: Do not lay the masonry in freezing weather or when the stone contains frost, except with permission.

 f. Whenever possible, properly point the face joints before the mortar sets. If joints cannot be pointed, rake them out to a depth of 1 in (25 mm) before the mortar sets.
 Do not smear the stone face surfaces with the mortar forced out of the joints or the mortar used in pointing.
 g. Thoroughly wet the joints pointed after the stone is laid with clean water and fill with mortar.
 h. Drive the mortar into the joints and finish with an approved pointing tool.
 i. Keep the wall wet while pointing. In hot or dry weather, protect the pointed masonry from the sun and keep it wet for at least three days after the pointing is finished.

 NOTE: Do not perform pointing in freezing weather or when the stone contains frost.

 j. After the pointing is completed and the mortar is set, thoroughly clean the walls and leave them in a neat condition.

8. Dry Rubble Masonry
 When laying dry rubble:
 a. Take care that each stone takes a firm bearing no less than in three separate points upon the underlying course.
 b. Ensure that face joints are no greater than 1 in (25 mm) wide.
 c. Chink the open front and rear joints with spalls fitted to take firm bearing upon the top and bottom surfaces throughout the length of the stone.
 d. Fill the interstices in the heart of the wall with spalls. When specified, thoroughly slush the open joint on the rear surfaces with mortar to prevent water from seeping through the joints.

C. Weep Holes
 Provide adequate drainage for retaining walls with weep holes as shown on the Plans or required by the Engineer.
 When backfilling at weep holes, build chimneys and french drains extending through the parts of the fill to be drained. The cost of chimneys, weep holes, and french drains is included in the Contract Price for rubble masonry.

D. Copings
 Use copings, bridge seats, and back walls made from the materials shown on the Plans. If not otherwise specified, they shall be Class A concrete.
 Make concrete copings in sections at least 12 in (300 mm) thick and from 5 to 10 ft (1.5 to 3 m) long, extending the full width of the wall. Cast the sections in place or precast and set them in place in free mortar beds.

607.3.06 Quality Acceptance
 General Provisions 101 through 150.

607.3.07 Contractor Warranty and Maintenance
 General Provisions 101 through 150.
607.4 Measurement
This work is measured in cubic yards (meters) of accepted masonry. The dimensions shown on the Plans shall be used except for changes made by the Engineer.

Excavation for rubble masonry is not measured for separate payment.

607.4.01 Limits
General Provisions 101 through 150.

607.5 Payment
This work will be paid for at the Contract Price per cubic yard (meter) for mortar rubble masonry or dry rubble masonry complete in place.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 607</th>
<th>Mortar rubble masonry</th>
<th>Per cubic yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 607</td>
<td>Dry rubble masonry</td>
<td>Per cubic yard (meter)</td>
</tr>
</tbody>
</table>

607.5.01 Adjustments
General Provisions 101 through 150.

Section 608—Brick Masonry

608.1 General Description
This work includes laying brick in mortar.

608.1.01 Definitions
General Provisions 101 through 150.

608.1.02 Related References
A. Standard Specifications
 - Section 207—Excavation and Backfill for Minor Structures
 - Section 834—Masonry Materials
B. Referenced Documents
 - General Provisions 101 through 150.

608.1.03 Submittals
General Provisions 101 through 150.

608.2 Materials
Ensure that the materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Brick for Masonry</th>
<th>834</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortar and Grout</td>
<td>834</td>
</tr>
</tbody>
</table>

608.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

608.3 Construction Requirements

608.3.01 Personnel
General Provisions 101 through 150.

608.3.02 Equipment
General Provisions 101 through 150.
608.3.03 Preparation
General Provisions 101 through 150.

608.3.04 Fabrication
General Provisions 101 through 150.

608.3.05 Construction
A. Brick Selection
 Select brick for exposed surfaces, corners, etc. from brick approved as to color and uniformity.

B. Laying Brick
 Follow these guidelines when laying brick:
 1. Saturate the brick with water before laying it.
 2. Lay the brick using the shove-joint method to bond it thoroughly into the mortar.
 3. Arrange headers and stretchers to bond the mass thoroughly.
 4. For straight masonry walls using stretcher courses, ensure that at least 1 course in 7 is a header course.
 5. Finish joints properly as the Work progresses. Create joints at least 0.25 in (5 mm) but no more than 0.5 in (15 mm) thick.

NOTE: Do not use spalls or bats except to shape around irregular openings or to use at corners.

C. Observing Weather Limitations
 Do not lay brick in freezing weather or when the bricks contain frost, except with permission from the Engineer and when required.
 In hot and dry weather, protect the masonry and keep it wet for at least 48 hours after laying the brick.

D. Backfilling
 Do not place backfill against the masonry until it is at least 7 days old. During cold weather, the restricted period may be longer as directed.

608.3.06 Quality Acceptance
All brick masonry shall present an even, uniform, neat, and workmanlike appearance.

608.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

608.4 Measurement
This work is measured for payment by one of the two methods specified below. The unit of measurement is stated in the Contract. Separate payment is not made for brick masonry used in catch basins, inlets, manholes, and similar items, which are measured and paid for per each.

Excavation and backfill for this work is not measured for payment except as specified in Section 207. Mortar is not paid for separately, and the cost is included in the Contract Price for brick masonry.

A. Measurement by Cubic Meter
 When brick masonry is measured by the cubic yard (meter), the volume measured is the brick and mortar placed within the lines indicated on the Plans and typical cross sections or as directed by the Engineer.

B. Measurement by Number of Bricks
 When brick masonry is measured by the brick, the unit of measurement is each thousand (M) bricks and fraction placed within the lines indicated on the Plans and typical cross sections or as directed by the Engineer.

608.4.01 Limits
General Provisions 101 through 150.
608.5 Payment
This work will be paid for at the Contract Price per cubic yard (meter) or per thousand (M) bricks for brick masonry complete in place.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 608</th>
<th>Brick masonry</th>
<th>Per cubic yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 608</td>
<td>Brick masonry</td>
<td>Per thousand (M)</td>
</tr>
</tbody>
</table>

608.5.01 Adjustments
General Provisions 101 through 150.

Section 609—Removal of Portland Cement Concrete Roadway Slabs

609.1 General Description
This work includes removing the full depth of existing jointed Portland cement concrete pavement slabs of various lengths. The slabs to be removed are shown on the Plans or are designated by the Engineer.

609.1.01 Definitions
General Provisions 101 through 150.

609.1.02 Related References
A. Standard Specifications
 Section 886—Epoxy Resin Adhesives
B. Referenced Documents
 General Provisions 101 through 150.

609.1.03 Submittals
General Provisions 101 through 150.

609.2 Materials
General Provisions 101 through 150.

609.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

609.3 Construction Requirements
609.3.01 Personnel
General Provisions 101 through 150.

609.3.02 Equipment
General Provisions 101 through 150.

609.3.03 Preparation
General Provisions 101 through 150.

609.3.04 Fabrication
General Provisions 101 through 150.

609.3.05 Construction
The Engineer will determine which slabs to remove and replace and whether to use full or partial slab replacement.
A. Partial Slab Replacements
 The Engineer will determine the limits of removal. Remove and replace at least 6 ft (1.8 m) of slab measured longitudinally and 12 ft (3.6 m) measured transversely.
Any slab removal beyond the limits determined by the Engineer will be at no additional cost to the Department for removal and replacement.

1. Saw the slab full depth longitudinally along the center-line joint and shoulder joint and transversely along the area marked for removal, including transverse joints where applicable.
 a. If approved by the Engineer, omit the shoulder joint cut if doing so does not damage the shoulder.
 b. If necessary and if approved by the Engineer, make additional cuts within the removal area to remove the damaged slab more easily.
2. Thoroughly remove saw slurry and other contaminants from the over-cutting beyond limits of the removal area. Repair by filling the overcuts with Type II epoxy adhesive that meets the requirements of Section 886. Clean and fill the overcuts as soon as possible, but no later than when the joints are sealed.
3. Remove the damaged slabs by lifting. Do not fragment the slabs for removal unless approved by the Engineer.
4. Drill holes in each slab section to accommodate the expanding type lift anchors. Remove sections nearest the centerline joint first to minimize damage to the shoulder.

NOTE: During removal, avoid damaging the pavement base, shoulder, or sides that will not be removed.

5. Repair the damaged shoulder area to the Engineer’s satisfaction at the Contractor’s expense.
6. If the adjacent concrete pavement is damaged during removal, enlarge the removal area to include the damaged sections of adjacent concrete.
 All applicable rules regarding the minimum size of remaining slab will apply as shown on the Plans. Remove and replace additional slab lengths damaged from removing the initial slab at the Contractor’s expense.
7. Remove loose underlying base material to produce a sound, well-compacted base.
8. Thoroughly tamp the material loosened in the removal process to the Engineer’s satisfaction before replacing the slab.
9. Dispose of the slabs and underlying base material removed during this work.
10. Obtain the disposal site and necessary permits and agreements.

609.3.06 Quality Acceptance

General Provisions 101 through 150.

609.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

609.4 Measurement

Slabs and portions of slabs removed are measured by the square yard (meter) using the average squared dimensions. Removing underlying base material and cleaning and repairing overcuts is not measured for payment.

609.4.01 Limits

General Provisions 101 through 150.

609.5 Payment

Slabs and portions of slabs, measured as specified in Subsection 609.4, “Measurement” above, will be paid for at the Contract Unit Price bid. Payment is full compensation for sawing, cleaning, repairing over-cutting, and removing and disposing of the concrete and any underlying base material.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 609</th>
<th>Remove roadway slab</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
</table>

609.5.01 Adjustments

General Provisions 101 through 150.
Section 610—Removal of Miscellaneous Roadway Items

610.1 General Description
This work includes removing, salvaging, or disposing of items listed in the Proposal as Pay Items to be removed, and backfilling the excavations made during removal.
Remove structures not separately listed as Pay Items in the Contract as specified in Sections 201, 202, or 205.

610.1.01 Definitions
General Provisions 101 through 150.

610.1.02 Related References
A. Standard Specifications
 Section 201—Clearing and Grubbing Right-of-Way
 Section 202—Random Clearing and Grubbing
 Section 205—Roadway Excavation
 Section 208—Embankments
 Section 540—Removal of Existing Bridge
 Section 611—Relaying, Reconstructing, or Adjusting to Grade of Miscellaneous Roadway Structures

B. Referenced Documents
 General Provisions 101 through 150.

610.1.03 Submittals
General Provisions 101 through 150.

610.2 Materials

610.2.01 Delivery, Storage, and Handling
A. Materials Retained by the Department
 Unless removed under Sections 201, 202, or 205, or unless otherwise provided for in the Plans or Proposal, carefully remove materials with a salvage value.
 1. Neatly stack or stockpile the materials along the right-of-way near the removal point and above high water.
 2. Store highway signs standing on edge and protected from the elements.
 3. Replace materials damaged, defaced, or destroyed by removing them carefully at no cost to the Department.
 4. Notify the Engineer when the materials have been stockpiled and are ready to be transported.
 5. Keep materials secure and replace (at the Contractor’s expense) materials lost, stolen, or missing within a maximum of 10 days after the Engineer has been notified that the materials are ready to be transported.

B. Materials Reused in the Work
 Maintain structures, portions of structures, and other materials to be salvaged and reused in reconstruction work.
 Assume responsibility for the material until Project Final Acceptance.
 Repair or replace materials lost or stolen before reuse at the Contractor’s expense.
 Spread suitable surplus excavation material on the slopes of the roadway embankments. Otherwise, dispose of the waste materials off the right-of-way at the Contractor’s expense.

C. Bridge Components
 Dispose of bridge components according to Section 540. Replace or repair at the Contractor’s expense structures, portions of structures, or materials to be salvaged, retained, or used in the reconstructed work but that were carelessly damaged or destroyed by the Contractor.
610.3

610.3 Construction Requirements

610.3.01 Personnel
General Provisions 101 through 150.

610.3.02 Equipment
General Provisions 101 through 150.

610.3.03 Preparation
If removing a structure may endanger a new construction, finish that part of the work before beginning the new construction.

610.3.04 Fabrication
General Provisions 101 through 150.

610.3.05 Construction
A. Protection of Remaining Structures
Do not use explosives, equipment, or devices that may endanger structures, facilities, or other property to remain in place. If parts of structures are to remain in place, protect them from damage during construction. Protect and preserve the salvage value of materials to be salvaged.

B. Extent of Removal
Separate and remove existing structures, with their attached parts and connections, as shown on the Plans or designated to be removed.

1. When a part of an existing structure is to remain in place, ensure that the part to be removed extends to a construction joint or is cut off to the lines shown on the Plans, leaving reasonably smooth faces.
 Remove walls and other masonry construction to the bottoms of the foundations unless otherwise specified.

2. Remove walls and their foundations within the roadbed area to an elevation at least 3 ft (900 mm) below the top of the finished subgrade, unless otherwise specified.

3. See Subsection 201.3.05.C.1.c, “Abandoned Obstructions,” for guidelines for rigid surfaces.

C. Railway Tracks
Removing railway tracks includes removing rails, ties, switches, towers, concrete structures, sign posts, and other related railway structures. Leave ballast in place, unless otherwise specified.

D. Inlets, Catch Basins, Manholes, and Culverts

1. Remove gratings, traps, and other metal castings of inlets, catch basins, and manholes without damaging them.
 Reuse them on new structures or salvage them, whichever the Engineer directs.

2. Remove old culverts down to the ground level or to the adjacent water level, unless otherwise shown on Plans.

3. Remove the bottom slabs of inlets, catch basins, manholes, and culverts. If the Engineer permits them to remain in place, break them up so that water will readily pass through them.

E. Removing Pipe
Uncover the pipe to remove it without damage. Exercise care in removing the pipe. Replace pipe sections damaged by negligence at the Contractor’s expense.

After removing the pipe, clean it and neatly stack it at points directed by the Engineer along the line of the work. Unless otherwise specified, the pipe is the property of the Department.

F. Septic Tanks
When encountering septic tanks, completely remove the contents of each tank.

1. Remove and dispose of the tank’s contents as required by the State Department of Health and local health authorities.

2. Before backfilling the remaining portion of the septic tank, drill holes in the bottom of the tank or break it up as the Engineer directs, to permit drainage.
G. Backfilling

Backfill trenches and other excavations dug for removing miscellaneous structures.

1. Use approved materials in the backfill.
2. Compact the backfill in layers no more than 6 in (150 mm) thick and with the proper moisture content. Use pneumatic tampers or other approved equipment.
3. Under the roadway, ensure that the degree of compaction conforms to Section 208.
 Elsewhere, compact the backfill equal to the soil surrounding it.

H. Structures to Remain

Preserve unharmed the miscellaneous structures, including fences, buildings, pipe lines, pole lines, water and sewer lines, and other improvements that owners or the Department will retain or that others will remove.

I. Culverts to be Extended

Where concrete culverts are to be extended, remove a minimum amount of concrete in parapets, wing walls, and wing wall footings to clear the new construction. Make the joint or connection as shown on the Plans or as directed by the Engineer.

J. Fences

When removing fences, do not allow livestock to escape. If fences are to be reset according to Section 611, protect the spelter coating of fence fabric, steel fence posts, and braces.

The Engineer will require that reusable posts removed be clean and free of concrete. If desired, furnish new posts instead of cleaning the old ones at no additional cost to the Department.

K. Raised Edge Curb

Remove raised edge curb to a reasonably true line at the elevation of normal finished pavement.

If the average of the plus and minus deviations approximate the original normal edge of pavement, a tolerance of approximately 1 in (25 mm) above or below this elevation will be accepted.

Do not shatter pavement that will be retained.

L. Highway Signs

Remove the entire sign from the supports, and remove the supports from the concrete foundation.

M. Lighting Standards and Appurtenances

Disassemble the lighting standard, and separate each component part including the transformer base. Cut the underground duct before removing these items.

610.3.06 Quality Acceptance
General Provisions 101 through 150.

610.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

610.4 Measurement
Removing miscellaneous roadway items is measured to determine the Unit or Units of each type specified in the Proposal and on the Plans. Only when listed as a Pay Item in the Contract will a removed item be measured for separate payment.

610.4.01 Limits
General Provisions 101 through 150.

610.5 Payment
Removing miscellaneous roadway items will be paid for at the Contract Unit Price. Payment is full compensation for removing and disposing of the structures according to these Specifications.

Payment will be made under:

| Item No. 610 | Remove | Per unit shown in Proposal |
610.5.01 Adjustments
General Provisions 101 through 150.

Section 611—Relaying, Reconstructing, or Adjusting to Grade of
Miscellaneous Roadway Structures

611.1 General Description
This work includes relaying, reconstructing, resetting, adjusting to grade, capping minor structures, resetting guard rail, or adjusting other miscellaneous roadway structures as specified in the Proposal or on the Plans.

611.1.01 Definitions
General Provisions 101 through 150.

611.1.02 Related References
A. Standard Specifications
 Section 610—Removal of Miscellaneous Roadway Items
 Section 641—Guard Rail
 Section 668—Miscellaneous Drainage Structures
 Section 854—Castings and Forgings
B. Referenced Documents
 General Provisions 101 through 150.

611.1.03 Submittals
General Provisions 101 through 150.

611.2 Materials
Most materials for the work in this Specification are salvaged from the removal of existing structures. The Engineer will determine the suitability of the salvaged material for use.

Use other materials to complete the structure, such as mortar, sand-cement grout, sand for sand cushion, bituminous filler, brick, and other materials that meet the requirements of the applicable Specifications for such materials for use in new structures of the same character and type.

611.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

611.3 Construction Requirements
611.3.01 Personnel
General Provisions 101 through 150.

611.3.02 Equipment
General Provisions 101 through 150.

611.3.03 Preparation
General Provisions 101 through 150.

611.3.04 Fabrication
General Provisions 101 through 150.
611.3.05 Construction

A. Miscellaneous Roadway Items

Follow these procedures to construct miscellaneous roadway items:

1. Remove existing structures to be rebuilt according to Section 610.
2. Clean the material salvaged for use in the rebuilt structure and stockpile it in convenient places. Protect it from damage until it is used.
3. Dispose of the portions of structures not suitable for reuse as provided in Section 610. Replace them with suitable new material.
4. Relay or rebuild the structures according to the Specifications for new structures of the same type.
5. Adjust to the required grade miscellaneous structures specified in the Proposal or on the Plans by raising or lowering the upper portion of the fixture, including sleeve extensions, adjustable manhole rings, gaskets, mastic, mortar, masonry, and other material.
6. Furnish materials such as mortar, sand-cement grout, sand cushion, bituminous filler, brick, castings, and other materials to excavate, trench, prepare earth foundation, backfill, and other work necessary to complete the Item.

B. Capping an Existing Structure

When capping an existing structure requires removing adjacent existing pavement, sidewalk, curb, gutter, or other improvement not otherwise affected by the work, follow these guidelines:

1. Remove the improvements to expose only the portion of the structure to be modified.
2. Replace the removed improvements to the Engineer’s satisfaction without additional compensation.
3. Remove enough existing masonry to lower the top elevation to a point not less than the thickness of the cap plus 3 ft (1 m) below subgrade elevation, unless otherwise indicated.
4. Cap the remaining portion of the structure with a fitted reinforced concrete cover constructed to the general details shown on the Plans.
 Grates, rings, plates, covers, hoods, or other castings or fittings removed while capping and not re-used become the property of the Department unless otherwise indicated on the Plans.

C. Resetting Guard Rail

When resetting the guard rail is specified in the Proposal:

1. Reset guard rail removed according to Section 610 where the Plan indicates and to the required post spacing.
2. Furnish materials, including additional hardware, offset blocks, and posts.
3. Replace posts that do not conform to the Plans.
4. Follow the applicable provisions of Section 641.

D. Raising Manholes

When raising manholes:

1. Adjustments may be made by using adjustable extension rings that do not require removing the existing manhole frame.
2. Ensure that the extension device locks to the existing frame and permits height and diameter adjustment. The adjustable extension ring to be used shall have the Engineer’s prior approval.
3. Choose an extension ring compatible with the existing casting and cover. Ensure that the adjustment range conforms to the finished pavement surface.
 a. Use an adjustable extension ring made of materials that meet the requirements of Subsection 854.2.01 or are manufactured from ASTM A 36/A 36M steel and approved by the Office of Materials and Research.
 b. Ensure that the extension ring and cover are machine ground to reduce contact irregularity. Ensure that the grates are rattleproof.
 c. Obtain the Engineer’s approval for the type of adjustable extension ring used.

E. Replacing Fences

Replace fences removed under Section 610 in kind, using the removed materials as far as possible. Unless the Plans provide for new fence at the particular location, include new materials required in the Bid Price for resetting fence.
611.3.06 Quality Acceptance
General Provisions 101 through 150.

611.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

611.4 Measurement
Relaying, reconstructing, or adjusting to grade, capping minor structures, resetting guard rail, or adjusting other miscellaneous roadway structures is measured to determine the unit or units of each type completed and accepted.

Manhole tops to be raised or lowered 2 ft (600 mm) or less are considered “Adjust to Grade.”

Manhole tops to be raised between 2 ft (600 mm) and 6 ft (1.8 m), or tops to be lowered more than 2 ft (600 mm), are considered “Reconstruct Manhole” and are paid as shown in Subsection 611.5, “Payment.”

Remove manholes to be raised more than 6 ft (1.8 m) as clearing and grubbing, and construct a new manhole in its place according to Section 668.

611.4.01 Limits
General Provisions 101 through 150.

611.5 Payment
Relaying, reconstructing, resetting, adjusting to grade, capping minor structures, resetting guard rail, or adjusting other miscellaneous roadway structures will be paid for at the Contract Unit price. Payment is full compensation for relaying, resetting, reconstructing, or adjusting to grade the structures as specified in this Specification.

Excavation and backfill necessary for capping is considered incidental to the Item and is not paid for separately.

Tapping a new pipeline into an existing structure is not considered reconstruction of the existing structure.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 611</th>
<th>Description</th>
<th>Per unit shown in Proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 611</td>
<td>Relay</td>
<td>Per unit shown in Proposal</td>
</tr>
<tr>
<td>Item No. 611</td>
<td>Reconstruct</td>
<td>Per unit shown in Proposal</td>
</tr>
<tr>
<td>Item No. 611</td>
<td>Reset</td>
<td>Per unit shown in Proposal</td>
</tr>
<tr>
<td>Item No. 611</td>
<td>Adjust to grade</td>
<td>Per unit shown in Proposal</td>
</tr>
<tr>
<td>Item No. 611</td>
<td>Cap minor structures</td>
<td>Per unit shown in Proposal</td>
</tr>
</tbody>
</table>

611.5.01 Adjustments
General Provisions 101 through 150.

Section 612—Construct, Maintain, and Remove Median Crossover

612.1 General Description
This item includes constructing, maintaining, and removing median crossovers according to the Plans.

612.1.01 Definitions
General Provisions 101 through 150.

612.1.02 Related References
A. Standard Specifications
 Section 700—Grassing
B. Related Documents
 General Provisions 101 through 150.
612.1.03 Submittals
General Provisions 101 through 150.

612.2 Materials
Furnish materials that meet the following requirements:
A. Drainage
 Use temporary drainage structures, if required, as shown on the Plans or as directed by the Engineer. Use structures
 satisfactory for the required use. They do not have to be new.
B. Other Materials
 Ensure that other materials meet the applicable requirements of the Specifications.

612.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

612.3 Construction Requirements
612.3.01 Personnel
General Provisions 101 through 150.

612.3.02 Equipment
General Provisions 101 through 150.

612.3.03 Preparation
General Provisions 101 through 150.

612.3.04 Fabrication
General Provisions 101 through 150.

612.3.05 Construction
A. Constructing the Crossover
 Construct the crossover according to the details shown on the Plans and these guidelines:
 1. Place the materials to construct each crossover according to the applicable Specifications and as directed by the
 Engineer.
 2. Place and remove barricades and warning signs as directed by the Engineer.
 3. When the Engineer determines that the crossover has served its purpose, remove and dispose of the materials,
 including temporary drainage structures used in its construction.
 4. Reshape the area where the crossover was removed to comply with the appropriate typical section, and grass the
 reshaped area.
 5. Grass according to Section 700. Substitute loose sod if the Engineer approves.

612.3.06 Quality Acceptance
General Provisions 101 through 150.

612.3.07 Contractor Warranty and Maintenance
Maintenance includes, but is not limited to, filling washes as they occur and repairing defects in the pavement as directed by
the Engineer.

612.4 Measurement
Median crossovers, constructed, maintained, and removed are measured by the individual unit.

612.4.01 Limits
General Provisions 101 through 150.
612.5 Payment
Crossovers measured as shown above will be paid for at the Unit Price for each crossover constructed, maintained, and removed. Payment is full compensation for:

- Earthwork, materials, pavement, drainage structures, signs, and barricades used and reused as directed on the Plans.
- Removal and disposal of materials when the crossover is no longer needed
- Grassing or regrassing of the disturbed areas

The first monthly statement following satisfactory construction will pay 75 percent of the Unit Price bid. The remaining 25 percent will be paid upon removal and restoration of the site.

Payment will be made under:

| Item No. 612 | Construct, maintain, and remove median crossover, station | Per each |

612.5.01 Adjustments
General Provisions 101 through 150.

Section 613—Docks

613.1 General Description
This work includes constructing docks according to Plan details and locations, maintaining the docks, and/or removing the docks as specified by the Engineer.

613.1.01 Definitions
General Provisions 101 through 150.

613.1.02 Related References
A. Standard Specifications
 Section 863—Preservative Treatment of Timber Products
B. Referenced Documents
 General Provisions 101 through 150.

613.1.03 Submittals
When the Proposal includes constructing docks, submit to the Engineer for approval three prints or a reproducible drawing showing the proposed construction details for each dock.

The Engineer will check the design and request changes to ensure the design conforms with the Specifications and the intended purpose.

After making the required changes, resubmit the drawings to the Engineer for final approval. Do not begin work on the dock until the drawings receive the Engineer’s final approval.

613.2 Materials
Ensure that dock timber (except timber used for handrails) is creosote-treated according to Section 863.

Piles for docks may be untreated, but they must be peeled and have a minimum 8 in (200 mm) butt diameter. Use piles of a wood species that will withstand driving and will support the load required by the Engineer.

Nails and hardware do not need to be galvanized. Materials used to construct these expendable items will not be pre-inspected, sampled, or tested.

Replace, repair, or strengthen defective, worn, deteriorated, corroded, or unsatisfactory material according to Subsection 613.3.07.A, “Dock Maintenance.”

613.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.
613.3 Construction Requirements

613.3.01 Personnel
General Provisions 101 through 150.

613.3.02 Equipment
General Provisions 101 through 150.

613.3.03 Preparation
General Provisions 101 through 150.

613.3.04 Fabrication
General Provisions 101 through 150.

613.3.05 Construction
Ensure that the dock is suitable for its intended purpose. Select construction methods approved by the Engineer. Drive piling deep enough to provide a safe dock under weather and construction conditions peculiar to the Project area.

613.3.06 Quality Acceptance
General Provisions 101 through 150.

613.3.07 Contractor Warranty and Maintenance

A. Dock Maintenance
Maintain the docks to the satisfaction of the Engineer. Follow these guidelines:

1. Immediately replace, repair, or strengthen defective, unduly worn, corroded, deteriorated, or otherwise unsatisfactory material at the Engineer’s request.

 NOTE: If repairs are not made promptly, the Engineer may make the repairs and have the costs deducted from the monies due the Contractor.

2. If the dock will not be removed as part of the Work, maintain it as directed by the Engineer to keep it in serviceable condition for future use before moving off the Project or relinquishing it to a subsequent Contractor.

3. When the dock was constructed for use on a previous Project or Contract, assume responsibility for the dock and promptly restore and maintain it in a safe and satisfactory condition as directed by the Engineer. Maintain the dock for the duration of the Contract as directed by the Engineer.

B. Dock Removal
When the dock is no longer needed the Engineer will direct in writing to remove it. The salvaged material becomes the Contractor’s property.

613.4 Measurement
This work is not measured separately for payment.

613.4.01 Limits
General Provisions 101 through 150.

613.5 Payment
This item will be paid for according to the Plans, Proposal, and the following:

A. Construct, Maintain, and Remove Dock

 After the dock is constructed satisfactorily, 50 percent of the Lump Sum price bid will be included in the next monthly statement.

 If the dock maintenance is satisfactory, monthly increments of 35 percent of the Lump Sum price bid will be paid based on the percent complete of the Contract. When the dock is no longer required and has been removed, the remaining 15 percent of the Lump Sum price bid will be included in the next monthly statement.

 Each dock, complete in place and accepted, suitably maintained until no longer needed, and satisfactorily removed, will be paid for at the Lump Sum price bid, which is full compensation for the Item.
613.5.01

B. **Construct and Maintain Dock**

After the dock is constructed satisfactorily, 60 percent of the Lump Sum price bid will be paid. If the dock maintenance remains satisfactory, the remaining 40 percent of the Lump Sum price bid will be paid in monthly increments based on the percent complete of the Contract.

C. **Maintain and Remove Dock**

When the dock was constructed for use on a previous Project or Contract as defined in Subsection 613.3.07.A.3, the Contractor who satisfactorily maintains and removes the dock will be paid 50 percent of the Lump Sum price bid in monthly increments based on the percent complete of the Contract.

When the dock is removed, the remaining 50 percent of the Lump Sum price bid will be paid on the next monthly statement.

D. **Maintain Docks**

When the Contractor assumes satisfactory maintenance of the dock as provided in Subsection 613.3.07.A, the Lump Sum price bid will be paid in monthly increments based on the percent complete of the Contract.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 613</th>
<th>Construct, maintain, and remove dock No.____</th>
<th>Per lump sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 613</td>
<td>Construct and maintain dock No.____</td>
<td>Per lump sum</td>
</tr>
<tr>
<td>Item No. 613</td>
<td>Maintain and remove dock No.____</td>
<td>Per lump sum</td>
</tr>
<tr>
<td>Item No. 613</td>
<td>Maintain dock No.____</td>
<td>Per lump sum</td>
</tr>
</tbody>
</table>

613.5.01 Adjustments

General Provisions 101 through 150.

Section 615—Jacking or Boring Pipe

615.1 **General Description**

This work includes installing different sizes and types of pipe by jacking or boring through various materials.

615.1.01 **Definitions**

General Provisions 101 through 150.

615.1.02 **Related References**

A. **Standard Specifications**

 Section 205—Roadway Excavation
 Section 208—Embankments
 Section 550—Storm Drain Pipe, Pipe-Arch Culverts, and Side Drain Pipe
 Section 841—Iron Pipe
 Section 847—Miscellaneous Pipe

B. **Referenced Documents**

 General Provisions 101 through 150.

615.1.03 **Submittals**

A. **Handling Method**

Furnish for the Engineer’s approval, a plan showing the proposed method of handling, including:

- Design for the jacking head, jacking support, or back stop
- Arrangement and position of jacks, pipe guides, etc., complete as assembled
B. Welding Procedure

Before welding steel pipe or ductile iron pipe as casing and carrier, submit to the State Materials and Research Engineer a written welding procedure. Include joint details, preheat temperature, and electrodes to be used. Do not use welded steel pipe as a sanitary sewer carrier.

615.2 Materials

Use pipe types and sizes that conform to the Plans and the following:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrugated Metal Pipe</td>
<td>550</td>
</tr>
<tr>
<td>Concrete Pipe</td>
<td>550</td>
</tr>
<tr>
<td>Steel Pipe</td>
<td>847.2.02</td>
</tr>
<tr>
<td>Ductile Iron Pipe (Plain Ends)</td>
<td>841</td>
</tr>
</tbody>
</table>

615.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

615.3 Construction Requirements

615.3.01 Personnel

General Provisions 101 through 150.

615.3.02 Equipment

General Provisions 101 through 150.

615.3.03 Preparation

General Provisions 101 through 150.

615.3.04 Fabrication

General Provisions 101 through 150.

615.3.05 Construction

Dispose of the excavated material from the following jacking or boring operations or use it as directed by the Engineer at no additional cost to the Department.

A. Jacking

Follow these requirements when jacking:

1. Excavate suitable pits or trenches for the jacking operation and for placing the end joints of pipe, when required. Securely sheet and brace the pits or trenches to prevent caving, where necessary.
2. When installing pipe under railroads, highways, streets, or other facilities by jacking or boring, perform construction and prevent:
 - Interfering with the facility operation
 - Weakening the roadbed or structure
3. To force the pipe through the roadbed, use a jack with a head constructed to apply uniform pressure around the ring of the pipe.
4. Set the pipe to be jacked on guides, braced together to properly support the pipe section and to direct it to the proper line and grade.
5. Excavate the roadbed as follows:
 a. Excavate roadbed material just ahead of the pipe.
 b. Remove the excavated material through the pipe.
 c. Ensure that the excavation diameter conforms to the outside diameter and circumference of the pipe as closely as possible.
6. Force the pipe through the roadbed into the excavated space.
7. Use an approved mix to pressure grout voids that develop during installation and that the Engineer determines are detrimental to the work.

8. Ensure that the excavation does not extend beyond the pipe more than 2 ft. (600 mm).
 Decrease the distance at the Engineer’s direction or if the character of the excavated material allows.

9. Jack the pipe from the low or downstream end. The line and grade from the pipe’s final position established by the Engineer may vary no more than two percent in lateral alignment and one percent in vertical grade. Ensure that the final grade of the flow line is in the direction indicated on the Plans.

10. Use a cutting edge around the head end. Extend it a short distance beyond the pipe end with inside angles or lugs to keep the cutting edge from slipping back into the pipe.

11. Once the pipe jacking has begun, proceed with the operation without interruption to prevent the pipe from becoming firmly set in the embankment.

12. Remove and replace pipe damaged in jacking operations at no additional expense to the Department.

13. After completing the jacking, immediately backfill the excavated pits or trenches.

B. Boring

Proceed with the boring from a pit provided for boring equipment and workmen. Complete these steps:

1. Excavate for pits and shoring installation as outlined above.

2. Locate the pit at the Engineer’s approval.

3. Bore the holes mechanically using a pilot hole approximately 2 in. (50 mm) in diameter that is bored the entire length of the installation.
 a. Check the pilot hole for line and grade on the opposite end of the bore from the work pit.
 b. Use the pilot hole to serve as the center line of the larger diameter hole to be bored.

4. Place excavated material near the top of the working pit and dispose of it as required. Use water or other fluids with the boring operation to lubricate the cuttings. Do not perform jetting.

5. In unconsolidated soil formations, use a gel-forming colloidal drilling fluid with at least 10 percent of high grade carefully processed bentonite to consolidate excavated material, seal the walls of the hole, and lubricate subsequent removal of material and immediate pipe installation.

6. Ensure that the diameter of the excavation conforms to the outside diameter of the pipe as closely as possible.

7. See Subsection 615.3.05.A, “Jacking,” for the allowable variation from line and grade.

8. Use an approved mix to pressure grout voids that develop during the installation operation and that the Engineer determines are detrimental to the Work.

615.3.06 Quality Acceptance
General Provisions 101 through 150.

615.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

615.4 Measurement
Pipe installed by jacking or boring is measured by the linear foot (meter) of pipe complete in place. Measurement is made between the ends of the pipe along the control axis as installed.

615.4.01 Limits
General Provisions 101 through 150.

615.5 Payment
Work performed and materials furnished as prescribed by this item and measured as provided above will be paid for at the Contract Price per linear foot (meter) for jacking and boring of the pipe type, size, and class specified. Payment is full compensation for furnishing the pipe and the incidentals to complete the Item.

Excavation will not be paid for separately but will conform to Section 205 and Section 208.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 615</th>
<th>Jack or bore pipe (type), (class), (size)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
</table>

658
Section 617—Permanent Anchored Walls

617.1 General Description
This work includes furnishing materials, labor, tools, equipment, and other incidental items to design, detail, and construct an anchored wall. This Specification applies to any Contractor-proposed alternate design of Department-furnished plans.

617.1.01 Definitions
Anchor—Synonymous with the terms tie-back or tie-down.

The term Anchored Wall includes the following items:
- Anchors
- Soldier piles
- Lagging
- Facing
- Drainage

617.1.02 Related References
A. Standard Specifications
 Section 500—Concrete Structures
 Section 511—Reinforcement Steel
 Section 853—Reinforcement and Tensioning Steel

B. Referenced Documents
 General Provisions 101 through 150.

617.1.03 Submittals
A. Proof of Ability
 Submit the following proof of ability (or ability of the Subcontractor) when requested by the Department to design or construct anchored walls:
 - Evidence of successfully completing at least 5 Projects similar in concept and scope to the proposed wall.
 - Resumes of foremen, anchor testing personnel, and drilling operators to be employed on this Project. Show the type, length, and number of ground anchors each has installed or tested within the past 5 years.
 - Evidence of experience in anchor testing. Persons performing anchor testing must prove experience by performing sample tests supervised by the Engineer.

 The Department is the sole judge of the qualifications of the foreman, drilling operator, and testing personnel. Do not begin wall construction until the Engineer has approved proof of ability.

B. Design Criteria for Alternate Design
 If the Department receives more than 2 submittals of the Plans and calculations for review, the Contractor will be assessed $60 per hour of engineering time for reviews in excess of the 2 submittals.

C. Construction Drawings and Design Notes
 If a Contractor-proposed alternate anchored wall is a part of the low bid, submit construction drawings and design notes within 28 days of the date of award of the Contract. The Design Engineer shall prepare and stamp the submission.
Include design notes and reproducible drawings in the submission concerning the following:

- Details, dimensions, and schedules of reinforcing steel, including dowels or studs for attaching the facing to the tied back wall
- Details of the anchors and soldier piling, including spacing and size of piles and spacing and angle of anchor installation
- Detailed plans for anchor proof and performance testing that show loading and measuring devices used and procedures followed

D. Wall Final Plans and Calculations

Submit final wall plans and calculations to the Department for review and approval before beginning construction on the wall. The time required for Plan and calculation preparation and review will be charged to the allowable Contract time. The Department has 30 days for Plan and calculation review per Item after receiving the structure calculations and drawings.

New submittals from the Contractor showing corrections from the Department’s review or changes to ease construction or to correct field errors have a 30-day review. The Department is the sole judge of information adequacy.

The Department’s review and acceptance of the final Plans and construction methods does not relieve the Contractor from successfully completing the work. Time extensions are not granted for Contractor delays from untimely submissions and insufficient information.

E. Admixture Literature

Before using an admixture, submit to the Engineer the manufacturer’s literature. Indicate the admixture type and the manufacturer’s recommendations for mixing the admixtures with grout.

F. Structural Steel

Submit to the Engineer the mill test reports for each heat or lot of prestressing material used to fabricate tendons.

617.2 Materials

A. Concrete

Use concrete that conforms to Section 500.

B. Reinforcing Steel

Use reinforcing steel that conforms to Section 511.

C. Structural Steel

Use structural steel as follows:

1. Use prestressing bars made of continuously threaded full-length steel that conforms to ASTM Designation A 722, Type II. Do not use couplers. Ensure material requirements, coating application, and epoxy coating sampling and testing conform to Section 514.
2. Use full-length prestressing strands and wires according to Section 853.

D. Cement Grout

Produce cement grout using Portland cement that conforms to AASHTO M 85, Type I, II, or III, and potable water. Use cement that is fresh and free of lumps and hydration.

Follow these restrictions if using admixtures:

1. Do not use admixtures with chemicals that may harm the prestressing steel or cement.
2. Do not use expansive additives that cause air bubbles in the grout.
3. If approved by the Engineer, use admixtures that will impart low water content, flowability, and minimum bleeding in the cement grout.

E. Plastic

For corrosion protection, use polypropylene plastic that conforms to designation grade II 26500D as per ASTM D-2146. Ensure that the environmental stress crack resistance of the material prevents failures at 1,000 hours when tested by ASTM D-1693.
F. Corrosion Inhibitor

Use corrosion inhibitor (grease) that conforms to the following test requirements:

- Drop point 300 °F (149 °C) minimum by ASTM D-566
- Flash point 300 °F (149 °C) minimum by ASTM D-92
- Water content 0.1 percent maximum by ASTM D-95
- Rust grade 7 or better after 720 hours, aggressive conditions: rust grade 7 or better after 1,000 hours by ASTM B-117 and ASTM D-610

Water-soluble ions must follow these requirements:

1. Oil separation—0.5 percent by weight maximum at 160 °F (71 °C) by FIMS791B, Method 321.2
2. Soak test—5 percent salt fog at 100 °F (38 °C) 5 mils (0.13 mm) (Q panel type S). (Immerse panels in 50 percent salt solution and expose to 5 percent salt fog—no emulsification after 720 hours—by ASTM B-117 modified.)

<table>
<thead>
<tr>
<th>Chlorides</th>
<th>10 ppm max by ASTM B-512</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrates</td>
<td>10 ppm max by ASTM D-992</td>
</tr>
<tr>
<td>Sulfates</td>
<td>10 ppm max by APHA427D</td>
</tr>
</tbody>
</table>

617.2.01 Delivery, Storage, and Handling

A. Protection Systems

Protect prestressed rock and soil anchors against corrosion by properly storing, fabricating, and handling the tendon components before inserting them into the borehole.

Avoid prolonged exposure of the tendon components to the elements, and avoid mechanical or physical damage that reduces or impairs the component’s ability to resist adverse conditions during service.

Tendon components will be rejected for heavy corrosion or pitting, but not for a light coating of rust.

Use the protection systems as follows:

1. Prestressing Steel

 Protect the entire length of prestressing steel from the anchor plate to the end of the tendon from corrosion.
 a. Encase the prestressing steel in a corrugated plastic tube.
 b. Use cement grout to fill the voids between the tube and the prestressing steel and the tube and the soil. Fill the cement grout between the soil and the tube to at least 1/2 in (13 mm) thick and extend the entire length of the tendon.
 c. Provide centralizers spaced a maximum of 5 ft (1.5 m) center-to-center throughout the bond length. Do not use wood or material harmful to the tendon steel or corrugated plastic tubing as centralizers.
 d. Provide a smooth piece of plastic sheath to encapsulate the entire free length. Do not splice the sheath. Ensure that the sheath is at least 0.05 in (1.27 mm) thick.
 e. Place a grease film, compounded to lubricate and inhibit corrosion, between the sheath and the prestressing steel in the entire free length. Ensure that the plastic sheath is seamless, hot melt extruded polypropylene shrunk tightly onto the grease.
 Ensure that the sheath has a coefficient of friction with the steel of less than 0.05 and a wall thickness of at least 0.05 in. (1.27 mm).
 f. Ensure that the sheath exerts a positive pressure on the grease. Ensure that the grease film is at least 0.01 in (0.25 mm) thick. Minimize the void space between the sheath and the steel by filling visible void spaces with grease and sealing the bottom to keep the grout out.

2. Area Underneath Anchorage

Protect the area immediately behind the stressing anchorage.
 a. Weld a pipe sleeve to the bearing plate, and seal the pipe sleeve to the anchor sheath at the other end of the sleeve.
 b. Clean the pipe sleeve to remove dirt, rust, or other harmful material before inserting the tendon into the pipe sleeve.
617.3

c. If a seal is not provided at the lower end of the pipe sleeve, during installation and grouting fill the lower end of
the pipe sleeve with grout.
Keep the pipe sleeve free of harmful material until the upper portion of the pipe sleeve and anchor head is filled
with grout.

d. After stressing the anchors, fill the void inside the sleeve and anchor head with anti-bleed expansion grout.

3. Anchorage
Encase the anchorage system head at each lift into a corrosion protective system before proceeding to the next lift.
Install the protective system for each lift within 30 days after installing the anchors for that lift.
Ensure that the anchorage system has a cover of at least 3 in (75 mm) once the wall face is placed.

617.3 Construction Requirements

617.3.01 Personnel
A. Contractor Qualifications
The Contractor and Subcontractor shall be experienced in designing or constructing permanently anchored walls.
Provide at least one Registered Professional Engineer licensed to perform work in the State of Georgia and a supervising
Engineer for the Project with at least 5 years of experience in constructing permanently anchored walls.
Furnish verification of these qualifications to the Engineer before beginning operations.

B. Design Engineer
The Design Engineer shall:

☐ Be registered as a Professional Engineer in the State of Georgia
☐ Have considerable knowledge and experience designing and constructing anchored walls
☐ Be available at any time during the Contract to discuss the design of the walls with the Department

C. Registered Professional Engineer
Retain the services of a second registered Professional Engineer licensed to perform work in the state of Georgia and
prequalified by the Department. The Engineer shall operate independently from the Professional Engineer of
Subsection 617.3.01.A, “Contractor Qualifications.”
This Engineer will independently check the design calculations and Plan details for the permanent anchored walls before
submitting them to the Department for review.

617.3.02 Equipment
A. Anchorage and Hardware
Use anchorage and hardware suitable for the type of anchor tendon used. Ensure that anchorage and hardware are
capable of the following:

☐ Developing 95 percent of the guaranteed specified minimum ultimate tensile strength of the tendon, when tested
in the unbonded state and without failure of the tendon
☐ Holding a load of prestressing steel that produces a stress of at least 95 percent of the guaranteed specified
minimum ultimate tensile strength of the prestressing steel, without exceeding the anticipated set and without
causing anchorage or prestressing steel failure
☐ Lifting-off, detensioning, or retensioning a tendon before secondary grouting to fill voids at the top of the pipe
sleeve

B. Anchor Nut and Plate for Bars
Use anchor nuts and plates for bars that have complementary spherical shapes at the contact areas.

617.3.03 Preparation
Before beginning the work, survey the condition of the adjoining properties. Keep records and photograph settlement or
cracking of adjacent structures that may become the subject of possible damage claims. Deliver the report to the Department
before beginning work at the site.

Obtain a Foundation Investigation Report from the Geotechnical Engineering Bureau of the Department to assist in
evaluating existing conditions for design and construction.
617.3.04 Fabrication

A. Tendons

 Fabricate the tendons according to the approved details.
 1. Keep the tendons free of dirt, rust, or other harmful substances.
 2. Use a plastic sheath that is a single piece without splices.
 3. Install the sheath at the fabrication shop, not in the field.
 4. Before installation, handle and store the tendons so as to avoid corrosion and physical damage.
 Tendons will be rejected for damage such as abrasions, cuts, nicks, welds, weld splatters, or heavy corrosion and pitting.
 Replace the tendons at the Contractor’s expense for material replacements or time delays.
 5. Repair damaged coatings in the field at the Engineer’s approval.

617.3.05 Construction

A. Design Criteria for Alternate Design

 The design criteria for a proposed alternate or design include:
 1. Design rock anchors and soil anchors according to this Specification.
 2. Assume responsibility for lagging. Design the lagging with sound engineering principles.
 3. Use reinforced concrete facing according to the latest AASHTO Standard Specifications for Highway Bridges, including interims.
 Ensure that the facing structural thickness is at least 12 in (300 mm). Perform architectural facing treatment as shown on the Department drawings.
 4. Ensure that the concrete strength for a proposed alternate is at least 3,000 psi (20 MPa) 28-day strength. Extend the facing 2 ft (600 mm) below the gutterline or, if applicable, the ground line adjacent to the wall unless otherwise indicated on the Plans.
 5. Design soldier piles for shear, bending, and axial stresses according to the latest AASHTO design criteria.
 Use steel or concrete soldier piles with a steel yield strength at least 36,000 psi (248 MPa). Ensure that the concrete has a 28-day strength of at least 3,000 psi (20 MPa).
 6. Design and install permanent drainage systems behind the wall. Connect drainage systems to the nearest drop inlet using pipe or free drainage through traffic barriers or other obstructions.
 Ensure that holes through traffic barriers or facing are no higher than 3 in (75 mm) above the gutterline or ground line.
 7. Have the wall design account for live load, dead load, and wind load from traffic barriers, lights, overhead signs, or other appendage on top or adjacent to the wall. Figure 1, Figure 2, and Figure 3 indicate loading conditions for soldier piles, lagging, and anchors at critical stages of construction.
Figure 1

Load Case II

Intermediate Excavations for Subsequent Anchor Installations

- Load case 1: Solid or pile and lightly counteracted
 - during excavation for top row of anchors
 - Subcharge +

 ![Diagram of excavation with load case 1 calculations]

Temporary bottom of excavation

- H

- k^a

- (k^a) k^p

- b

- b H

- y H k^a

- y H k^a

- y H k^a

- b

- b H

- y H k^a

- y H k^a

- y H k^a

Figure 2

- Design pressure diagram shall include the effect of surcharge loading.
- Design pressure diagram shall include the effect of surcharge loading.
- Design pressure diagram shall include the effect of surcharge loading.
- Design pressure diagram shall include the effect of surcharge loading.
- Design pressure diagram shall include the effect of surcharge loading.
- Design pressure diagram shall include the effect of surcharge loading.
- Design pressure diagram shall include the effect of surcharge loading.

NOTES:
- The above diagrams apply for column action. For column action, the effect of column load may be considered.
- Force acting on piles is caused by the pressure over the entire wall surface. Below surface, act as earth pressure to only on the solid pile width and passive earth pressure is generated at the bottom.
- In soft and competent soils, if free cut is 0 ft or less, a passive pressure is generated over 3 ft near the solid pile width. In clay, non-soil incompetent soils, act as earth pressure for less cut or pile width over the width of the solid pile.
- Vertical component of one torse must be estimated by embedded length of solid or piles below assumed excavation.
- Density in pounds per cubic foot.

K_a = Coefficient of active earth pressure
K_p = Coefficient of passive earth pressure
g = Unit weight of soil
Figure 3

8. Ensure that the wall is compatible with horizontal and vertical criteria indicated on the Department Plans.

9. Include the following on the design criteria for rock anchors:
 a. Determine the tendon size to ensure that the anchor design load is no greater than 53 percent of the guaranteed ultimate tensile strength of the tendon.
 b. Ensure that the free stressing length is no less than 15 ft (4.5 m).
 c. Estimate the bond length using the following equation:
 \[L_b = P(3.1416) \left(\frac{d}{2} \right) (tw) \]
 where
 \(L_b \) = Bond length (not less than 10 ft [3 m])
 \(P \) = Design load for the anchor
 \(d \) = Diameter of the drill hole
 \(tw \) = Bond stress in the interface between the rock and grout
 When determining the bond stress, consider the critical nature of the anchor application, rock property variations, and installation procedures.

10. Include the following in the design criteria for soil anchors:
 a. Analyze the anchor structure system to ensure a well-anchored structure.
 b. Analyze the overall earth mass stability and the assumed failure plane to ensure that the anchor bond length is started at least 5 ft (1.5 m) beyond the failure plane. Consider the following in the analysis:
 - Type of foundation, nearness, and susceptibility to movement of adjacent buildings (see Figure 4).
 - Interaction of anchor groups when the anchor center-to-center spacing is less than or equal to 6 times the bulb diameter
Figure 4 (metric)

c. Determine the tendon size so that the anchor design load does not exceed 53 percent of the guaranteed ultimate tensile strength of the tendon.

d. Ensure that the free stressing length is at least 15 ft. (4.5 m).

e. Use the existing theoretical and empirical methods only to predict anchor capacity for preliminary design estimates. Verify the final anchor capacity by field testing each anchor.

11. Retain a second registered Professional Engineer to operate independently from the Design Engineer Professional Engineer of Subsection 617.3.01.B.

Have this Engineer independently check the design calculations and Plan details of the permanent anchored walls before submitting them to the Department for review.

B. Ground Movements and Load Transfer Instruments

The Department may install devices to monitor ground movements and load transfers during and after construction. The Department will schedule installation to minimize interference with the Contractor’s operations. Cooperate with the instrumentation installers. Anticipate delays of two to four hours per instrumented anchor.

Although the Instrumentation Specialist maintains the instruments, assume responsibility for damage to the instruments, connections, or readouts from operations. Replace and install damaged equipment at the Department’s approval and at the Contractor’s expense.

C. Rock Anchors

1. When required on the Plan or by the Engineer, use a prestressed rock anchor made of high-strength steel tendon fitted with a stressing anchorage at one end and a way to transfer force to the grout and rock on the other end.

2. Insert the rock anchor tendon into a prepared hole of suitable length and diameter, fixed to the rock, and stressed to a specified force. The basic components of a prestressed rock anchor are as listed below:

 a. Prestressing steel may be single or multiple wires, strands, or bars. The rock anchor length is composed of these two parts:

 □ Bond length (socket)—the portion of the anchor that transmits the force to the surrounding rock

 □ Free length (stressing length)—the portion of the anchor free to elongate elastically during stressing
b. The stressing anchorage is the device that permits the stressing and anchoring of the prestressing steel under load.

c. The fixed anchorage is a mechanism opposite the stressing anchorage on the tendon that transfers the induced force to the surrounding grout or rock. Deformed bars and strand tendons do not have fixed anchorages since the anchor load is transferred to the grout by bond.

d. Provide grout, vent pipes, and miscellaneous appurtenances to inject the anchor grout. Pump grout through the drill casing or rods.

D. Rock Anchor Installation

Install the rock anchors as follows:

1. Before installation, visit the site to observe existing conditions that may affect the work or design, if applicable, and to review the geotechnical data available for the Project.

2. Drive or drill the holes for the anchors by core drilling, rotary drilling, auger drilling, or percussion drilling. If using water in the drilling operation, dispose of the water to minimize wall erosion.

3. If the hole will not stand open, install casing to maintain a clean and open hole. Ensure that the hole diameter is at least 3 in (75 mm) if no pressure grouting is used.

Pressure grouting is grouting with a pressure greater than 60 psi (415 kPa).

4. Ensure that the drill bit diameter is not less than 1/8 in (3 mm) smaller than the specified hole diameter.

5. Start anchor holes within an angle tolerance of 1 to 3 degrees from the inclination specified on the approved design Plans. Do not allow holes to deviate from a straight line by more than 1 to 2 in. (25 to 50 mm) in 10 ft. (3 m).

Do not allow holes to extend outside the Right-of-Way limits. Thoroughly clean holes of rock dust, rock chips, grease, or other material before inserting the tendon.

6. Install the tendon in the casing or in a hole drilled for the anchor. Ensure that the tendon’s corrosion protection is not damaged during handling or installation.

7. Install the tendon in the bond length, to achieve at least 0.5 in (13 mm) of grout cover.

Degrease the bond length of strands or wires before installing by using Acetone, MEK, or MIBK. Do not leave residue on the tendon. Use other substances only after the Department’s approval. Include the costs of cleaning tendons in the price bid for Contract Items.

8. If using multi-element tendons without a fixed anchorage at the lower end, adequately space the tendon elements to achieve proper grout coverage.

| NOTE: | Do not use anchors to ground electric equipment and do not subject anchor tendons to sharp bends. |

9. Provide centralizers spaced a maximum of 5 ft (1.5 m) center to center throughout the bond length. Do not use wood spacers or other material harmful to the tendon steel or sheathing.

10. Inject the grout at the lowest point of the anchor and place over the entire anchor length.

a. Ensure that the grouting equipment can continuously mix and produce lump-free grout.

 Equip the grout pump nozzle with a grout pressure gauge capable of measuring pressure of at least 150 psi, (10 kPa) or twice the actual pressure used.

b. Base the material proportions used in the grout on grout tests made before beginning the grouting. Or, select the proportions based on prior documented experience with similar materials and equipment under comparable field conditions.

c. Use the minimum water content necessary for proper placement and do not exceed a water-cement ratio of 0.45. Do not leave grout in the mixer longer than 45 minutes.

Only fill voids at the top of the free length with grout after final lock-off.

11. After grouting, do not disturb the tendon until the grout has reached a cube strength of 3,500 psi (25 MPa). Keep the mouth of the hole clean after grouting. Record the following data in a Project field book during the grouting operation:

- Type of mixer
- Water-cement ratio
- Type of additives
617.3.05

- Grout pressure
- Type cement
- Test sample strengths (before stressing)
- Volume of grout placed in bond and free lengths

12. If using pressure grouting, choose whether to perform a watertightness test. However, if injecting grout with a pressure of 60 psi (415 kPa) or less, always perform a watertightness test. Perform the test as follows:
 a. Fill the entire hole in the rock with water and subject it to a pressure of 5 psi (35 kPa) in excess of the hydrostatic head as measured at the top of the hole.
 b. If after 10 minutes the leakage rate from the hole exceeds 0.001 gal per inch diameter per foot of depth per minute (12 mL per 25 mm diameter per meter of depth per minute), consolidate grout, redrill, and retest the hole. If the second watertightness test fails, repeat the entire process.
 c. During the tests, observe holes adjacent to the hole being tested for watertightness to detect and seal inter-hole connections.
 d. If finding artesian or flowing water in the drilled hole, maintain the pressure on the consolidation grout until the grout has initially set.

E. Cutting of Tendon Protrusions

After the Engineer accepts an anchor, the portion of the anchored tendon protruding over the anchor may be cut if it is not required for use in retesting. Cut the tendon according to the tendon manufacturer’s recommendations as approved by the Engineer. Do not damage the tendon anchor.

F. Redesign

If the anchors fail during performance tests or proof tests, modify the design or construction tests and procedures. The design is subject to Department review. These modifications may include:
- Reducing the anchor design load by increasing the number of anchors
- Increasing the grout pressure
- Requiring post-grouting or increasing the bond length

Modify the design or construction procedures, install the redesigned anchors in the wall, and test as previously defined at no cost to the Department.

Anchors that fail the performance or proof tests may be incorporated in the wall. Propose a reduced design load and retest as noted above. The Department will determine acceptance of such anchors.

G. Soil Anchors

A prestressed soil anchor is a high-strength steel tendon fitted with a stressing anchor at one end and an anchor device that transfers force to the soil on the other end. These anchors are used in clay, silt, sand, or gravel and are inserted in a prepared hole that is drilled or driven into the ground.

The following are the two soil anchors considered for use:
- Friction type—rely on friction between the drilled borehole walls
- Anchor grout—rely on an enlarged pressure-grouted bulb or an underreamed bulb to provide resistance to pull-out

Test the soil anchors after placing the anchor grout and after the curing period. The basic components of the soil anchor are identical to the rock anchor as described previously.

For installation, see Subsection 617.3.05.D, “Rock Anchor Installation,” except watertightness tests are not required. Test and stress soil anchors according to 617.3.06.A, “Anchor Testing and Stressing” except that 15% of the anchors remaining after the initial testing shall be performance tested.

H. Cutting of Tendon Protrusions

See Subsection 617.3.05.E, “Cutting of Tendon Protrusions.”

I. Redesign

See Subsection 617.3.05.F, “Redesign.”
617.3.06 Quality Acceptance

A. Anchor Testing and Stressing

Perform testing and stressing according to this subsection.

Test each anchor to ensure that the maximum test load does not exceed 80 percent of the guaranteed ultimate tensile strength of the tendon.

Performance test the first 2 anchors installed of each design load capacity and 5 to 10 percent of the remaining anchors (the Engineer will choose the locations). Proof test the remaining anchors.

1. Performance test by incrementally loading and unloading the anchor according to the following schedule.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AL (AL = Alignment Load)</td>
</tr>
<tr>
<td></td>
<td>0.25P</td>
</tr>
<tr>
<td></td>
<td>AL</td>
</tr>
<tr>
<td>2</td>
<td>0.25P</td>
</tr>
<tr>
<td></td>
<td>0.50P</td>
</tr>
<tr>
<td></td>
<td>AL</td>
</tr>
<tr>
<td>3</td>
<td>0.25P</td>
</tr>
<tr>
<td></td>
<td>0.50P</td>
</tr>
<tr>
<td></td>
<td>0.75P</td>
</tr>
<tr>
<td></td>
<td>AL</td>
</tr>
<tr>
<td>4</td>
<td>0.25P</td>
</tr>
<tr>
<td></td>
<td>0.50P</td>
</tr>
<tr>
<td></td>
<td>0.75P</td>
</tr>
<tr>
<td></td>
<td>1.00P</td>
</tr>
<tr>
<td></td>
<td>AL</td>
</tr>
<tr>
<td>5</td>
<td>0.25P</td>
</tr>
<tr>
<td></td>
<td>0.50P</td>
</tr>
<tr>
<td></td>
<td>0.75P</td>
</tr>
<tr>
<td></td>
<td>1.00P</td>
</tr>
<tr>
<td></td>
<td>1.25P</td>
</tr>
<tr>
<td></td>
<td>AL</td>
</tr>
<tr>
<td>6</td>
<td>0.25P</td>
</tr>
<tr>
<td></td>
<td>0.50P</td>
</tr>
<tr>
<td></td>
<td>0.75P</td>
</tr>
<tr>
<td></td>
<td>1.00P</td>
</tr>
<tr>
<td></td>
<td>1.25P</td>
</tr>
<tr>
<td></td>
<td>AL</td>
</tr>
</tbody>
</table>

2. 1.50P (Test conditions—hold for at least 50 mins.)

2. Record the tendon movement at each increment to the nearest 0.001 in (0.025 mm) referring to an independent fixed reference point.

3. Monitor the jack load with the production gauge and load cell calibrated as a set.

4. Adjust to a transfer load of 1.0P. Actual lock-off loads may be somewhat higher to account for seating losses.

5. To prevent misalignment of testing equipment, maintain an Alignment Load (AL) of at least 0.05P.
6. Hold the load at each increment long enough to obtain the movement reading. Submit the loading and unloading rates (tons [megagrams] per minute) for approval. Each load must be applied in less than 30 seconds after starting the jack pump.

7. Perform the creep test by holding the 1.50P load for 50 minutes while maintaining the load constant. Record the anchor movement (total movement) referenced to a fixed point at 30 seconds, 1, 2, 3, 4, 5, 6, 10, 15, 20, 25, 30, 40, and 50 minutes.

Begin the observation time when the jack begins to load the anchor from 1.25P to the test load.

8. If performance tests indicate that the loaded substrata is sensitive to creep, maintain the load for an additional 250 minutes and record the movements at 60, 75, 90, 100, 120, 150, 180, 210, 240, 270, and 300 minutes.

9. Have the Engineer review the performance tests to determine if the anchor is acceptable. An anchor is acceptable if:
 a. The total movement obtained exceeds 80 percent of the theoretical elastic elongation of the free length and is less than the theoretical elastic elongation of the total of the free length plus 50 percent of the bond length.
 b. The creep movement does not exceed 0.08 in (2.00 mm) during 5- to 50-minute time increments regardless of tendon length and load.
 c. If held for an additional 250 minutes, creep movement does not exceed 0.08 in (2.00 mm) from the 30-minute to the 300-minute time increment regardless of tendon length and load.

10. Perform proof tests as follows:
 a. Incrementally load the anchor according to the following schedule:

 AL
 0.25P
 0.50P
 0.75P
 1.00P
 1.25P
 1.50P (Test conditions—hold for at least 10 minutes)
 b. At each increment, record the movement of the tendon to the nearest 0.001 in (0.025 mm) referring to an independent fixed reference point.
 c. Monitor the jack load with a production gauge that was calibrated with the load cell used for the performance test.
 If required by the Engineer, monitor the jack load with the production gauge and load cell that were calibrated as a set.
 d. Adjust to a transfer load of 1.0P. Actual lock-off load may be somewhat higher to account for seating losses.
 e. To prevent misalignment of testing equipment, maintain an alignment load (AL) of at least 0.05P.
 f. Perform the creep test by holding the 1.50P load for 10 minutes while maintaining the load constant. Record the anchor movement (total movement) referenced to a fixed point at 30 seconds and 1, 2, 3, 4, 5, 6, and 10 minutes.
 Begin the observation time when the jack begins to load the anchor from 1.25P to the test load.
 g. If the movement between the 1-minute and 10-minute readings exceed 0.040 in (1.00 mm), maintain the load for an additional 40 minutes. Record the movements at 15, 20, 25, 30, 40, and 50 minutes.
 h. Have the Engineer review the proof tests to determine if the anchor is acceptable. An anchor is acceptable if:
 a. The total movement obtained exceeds 80 percent of the theoretical elastic elongation of the free length and is less than the theoretical elastic elongation of the total of the free length plus 50 percent of the bond length.
 b. The creep movement does not exceed 0.04 in (1.00 mm) during the 1-minute to 10-minute increment regardless of tendon length and load.
 c. If held for an additional 40 minutes, creep movement does not exceed 0.08 in (2.00 mm) during the 5- to 50-minute increment regardless of tendon length and load.

11. Use the following test equipment:
 a. Use a dial gauge that can measure elongation to the nearest 0.001 in. (0.025 mm).
b. Use a production gauge with an accuracy of at least 0.5 to 1 percent of full scale with gradation no greater than 100 psi (690 kPa). Ensure that it has a non-parallax dial.
c. Use test gauges with an accuracy of at least 0.25 of 1 percent of full scale with gradations no greater than 50 psi (345 kPa). Ensure that they have a non-parallax dial.
d. Use a load cell with a resolution of at least 1/10 of 1 percent constructed to eliminate inaccuracy with uneven loading.
e. Ensure that the jack, gauges, and load cell are calibrated as a set and independently.
 Check the pressure gauge and load cell calibration every week (or when erratic results are found) against a test
gauge that is kept onsite for this purpose. Have the Department’s Inspector witness these calibration checks.
 Perform installation, testing, and stressing in the Department Inspector’s presence.
12. Perform lift-off tests when using anchors. Make a lift-off reading after transferring the load to the end anchorage and
 before removing the jacks.
 a. Determine the load within 5 percent of 1.00P. If the lift-off load is less than 0.95P, reset the end anchorage and
 make another lift-off reading.
 b. Perform additional lift-off tests 7 days after the load was locked-off in the anchor.
 After performing 5 additional lift-off tests, perform lift-off tests randomly. The total number of tests will be
 performed on no more than 10 percent of the remaining anchors.

617.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

617.4 Measurement
Permanently Anchored Walls are not measured separately for payment.

617.4.01 Limits
In cases where additional wall area is required due to unforeseen foundation conditions or other reasons as approved by the
Engineer, or, if the wall area is decreased, measurements based on Plan dimensions will be used to adjust the Lump Sum
Price Bid referenced under Payment.

617.5 Payment
Payment for this work is made per Lump Sum. Payment includes costs for concrete, reinforcing steel, excavation, backfill,
lagging, piles, anchors, labor, design, and other materials and equipment. Payment also includes grouting, drilling holes, post-
tensioning, performing and evaluating tests, and submitting records of tests, tools, and other items to complete the work.

Payment will be made under:

| Item 617 | Permanent anchored wall, wall no. | Per lump sum |

617.5.01 Adjustments
Additional wall area required because of unforeseen foundation conditions or other reasons that are approved by the
Engineer, will be paid for by increasing the Lump Sum Price Bid. The increase in wall area will be multiplied by an
adjustment price of $45 per square foot ($485 per square meter).

If the wall area is decreased, the Lump Sum Price Bid is adjusted proportionally to the decrease in wall area. The adjustment
price is the Lump Sum Price Bid divided by the original plan area of the wall.

No additional compensation will be made for additional material, equipment, design, or other items to comply with the
Project specifications as a result of the Department’s review of an alternate design. If based on a redesigned wall, the bid
price includes costs to comply with the requirements of this Specification.

No additional compensation will be made for subsequent changes or deviations from the approved Plan for additional
material, labor, or equipment that may be required to comply with the acceptance criteria of this Specification.
Section 621—Concrete Barrier

621.1 General Description
This work includes constructing Portland Cement concrete barriers according to these Specifications and in conformance with the lines, grades, type and typical sections shown on the Plans, or established by the Engineer.

This Specification may require barriers suitable for medians or side installation on both roadways and bridges.

621.1.01 Definitions
General Provisions 101 through 150.

621.1.02 Related References
A. Standard Specifications
 Section 433—Reinforced Concrete Approach Slabs
 Section 500—Concrete Structures
 Section 833—Joint Fillers and Sealers
 Section 853—Reinforcement and Tensioning Steel

B. Referenced Documents
 GDT 7
 GDT 20
 GDT 21
 GDT 24a
 GDT 24b
 GDT 49
 GDT 59
 GDT 67

621.1.03 Submittals
General Provisions 101 through 150.

621.2 Materials
Use materials that meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement Concrete, Class A or AA</td>
<td>500</td>
</tr>
<tr>
<td>Steel Bars for Concrete Reinforcement</td>
<td>853.2.01</td>
</tr>
<tr>
<td>Joint Fillers and Sealers</td>
<td>833</td>
</tr>
</tbody>
</table>

Ensure that barrier walls and parapets on bridges are Class “AA” concrete unless otherwise specified on the Plans.

621.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

621.3 Construction Requirements

621.3.01 Personnel
General Provisions 101 through 150.

621.3.02 Equipment
General Provisions 101 through 150.
621.3.03 Preparation

A. Subgrade Preparation

Follow these guidelines for preparing the subgrade:

1. Finish the subgrade to the required lines, grade, and cross section shown on the Plans or directed by the Engineer.
2. Compact the subgrade to 100 percent of the maximum laboratory density for the depth shown on the Plans.
3. Determine the maximum laboratory dry density from representative samples of the material being compacted using GDT 7, GDT 24a, GDT 24b, or GDT 67, whichever is applicable.
4. Use GDT 20, GDT 21, or GDT 59 to determine the in-place density of the compacted subgrade.

B. Base Preparation

Follow these requirements for preparing the base:

1. Place the base as shown on the Plans, and compact it to 100 percent of the maximum laboratory dry density.
2. Use GDT 49 to determine the maximum laboratory dry density from representative samples of the material being compacted. Use GDT 21 or GDT 59 to test in-place density of the base.

621.3.04 Fabrication

General Provisions 101 through 150.

621.3.05 Construction

A. Formed or Slip Formed Barrier

Ensure that the barriers are Class A concrete as defined in Section 500, and are constructed according to Plan details.

1. Place the concrete using conventional forms or an approved self-propelled extrusion machine. When using forms, give the barrier a Type III finish, and cured according to Section 500.
2. Construct joints of the type and at the locations specified on the Plans.
 a. When emergencies interrupt placement, the Engineer will decide whether to allow a construction joint and will direct where and how to construct the joint.
 b. Joints may be sawed or formed. If the joint is sawed within 24 hours of placement to at least 3 in (75 mm) deep using a template, immediately remove the following material:
 - Material that may damage the adjacent concrete by blocking the sawed joint
 - Material that may prevent later operation or cleaning after the sawing operation is complete
 c. Saw the joints through the footing.
3. The outside vertical face of the side barrier or parapet may be battered as directed by the Engineer. Radii, as approved by the Engineer, may be used at intersecting surfaces of the barrier.
 Make approved requested changes at no cost to the Department.

B. Slip-Formed Barriers

When placing barriers using slip-form methods, follow these requirements:

1. To place barriers, use extrusion machines designed to place concrete barrier or parapet without using forms. Extrusion machines may be either crawler or rubber tired.
2. Conform the barrier or parapet to the established shape, line, grade, and dimensions shown on the Plans.
3. Obtain the proper density and cross section by forcing an approved concrete mix through a mold of the proper cross section.
4. Ensure that the extrusion machine consolidates the freshly placed concrete in one complete pass and that internal vibrators can consolidate the concrete along the faces of the forms and adjacent to joints.
 Perform this work to minimize hand finishing and to produce a dense and homogenous barrier free from voids and honeycomb.

C. Finish

Use a steel trowel to repair or correct the concrete surface. Do not overfinish the surface. Keep hand finishing to a minimum.

Correct the exposed surfaces that are not satisfactory to the Engineer in color, texture, smoothness, or patching.
D. Curing

Cure as specified in Subsection 500.3.05.Z, “Cure Concrete,” and as follows if an approved membrane-forming curing compound is used.

1. Use a Type 1, Class B curing compound.
2. Uniformly spray the concrete surface with curing compound immediately after obtaining the surface finish. Applying protective surface treatment to the barrier or parapet surfaces is not required.

621.3.06 Quality Acceptance
General Provisions 101 through 150.

621.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

621.4 Measurement
The barrier is measured for payment in linear feet (meters) of each accepted type shown on the Plans. The barrier is measured along the top of the various types.

Side barriers are measured for payment in linear feet (meters) of each accepted type shown on the Plans. The barrier is measured along the top of the various types.

Barriers on bridges are measured separately for payment, as defined in Subsection 500.4.01.C.

Barriers placed on approach slabs are measured for payment as defined in Section 433.

621.4.01 Limits
General Provisions 101 through 150.

621.5 Payment
This work, measured as specified above, will be paid for at the Contract Unit Price per linear foot (meter) for each barrier type. Payment is full compensation for providing materials, forms, and equipment; preparing subgrade and base; and providing labor, incidentals, and direction to complete the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 621</th>
<th>Concrete barrier, (“type”)</th>
<th>Per linear foot (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 621</td>
<td>Concrete side barrier, (“type”)</td>
<td>Per linear foot (meters)</td>
</tr>
</tbody>
</table>

621.5.01 Adjustments
General Provisions 101 through 150.

Section 622—Precast Concrete Barrier

622.1 General Description
This work provides for Method 3 precast concrete barriers according to Plan dimensions and locations.

622.1.01 Definitions
Method 3—Method of furnishing, placing, maintaining, moving, and reusing where required, and removing precast concrete barrier of the length and at the locations shown on the Plans.

622.1.02 Related References
A. Standard Specifications
 Section 500—Concrete Structures
B. Referenced Documents
 General Provisions 101 through 150.
622.1 Submittals
General Provisions 101 through 150.

622.2 Materials
Ensure that materials are according to the Standard Specifications and Plan details. Used barrier that meets the requirements of the Plans and Specifications may be used.

622.2.01 Delivery, Storage, and Handling
Do not lift barrier units with the end (connector) loops. Use a sling or fork system.
Repair damage to the connector loops and barrier unit during handling at no additional expense to the Department prior to acceptance for use by the Department.
Barrier units that are no longer required and removed become the property of the Contractor.

622.3 Construction Requirements

622.3.01 Personnel
General Provisions 101 through 150.

622.3.02 Equipment
General Provisions 101 through 150.

622.3.03 Preparation
General Provisions 101 through 150.

622.3.04 Fabrication
Perform barrier fabrication as detailed on the Plans.
Finish according to Subsection 500.3.05.AB.1, “Type I—Ordinary Formed Surface Finish.”

622.3.05 Construction
Handle and transport units to prevent damage. When required, use units at one or more sites on the same project.
Ensure that the units are complete and in acceptable condition and located where designated on the Plans or directed by the Engineer before acceptance by the Department.
Use the Plan quantity of barrier effectively to complete The Work within the Contract time. If scheduling The Work requires an additional barrier, furnish it at the Contractor’s expense.

622.3.06 Quality Acceptance
General Provisions 101 through 150.

622.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

622.4 Measurement
This work is measured in linear feet (meters) of accepted precast concrete barrier delivered and used, subject to the maximum amount specified in Subsection 622.3.05.

622.4.01 Limits
General Provisions 101 through 150.

622.5 Payment
This work will be paid for at the Contract Unit Price per linear foot (meter) of precast concrete barrier Method 3 as designated complete in place. Payment includes fabrication, use, reuse, and removal of the units.
No separate payment will be made for reusing units during the work or for using additional units beyond the Plan quantity to facilitate the construction schedule.
The first 75 percent of the Contract Unit Price bid will be paid on the first monthly estimate following initial delivery, installation, and acceptance.
The remaining 25 percent will be paid when the Project is complete or when the material is no longer needed and removed from the Project, whichever applies.

Payment will be made under:

| Item No. 622 | Precast concrete median barrier, method no.3 | Per linear foot (meter) |

622.5.01 Adjustment
General Provisions 101 through 150.

Section 623—Pneumatically Applied Concrete

623.1 General Description

This item includes manufacturing and pneumatically placing concrete at locations and to the dimensions shown on the Plans. Follow the requirements of Section 441 and Section 500 for this work.

623.1.01 Definitions

General Provisions 101 through 150.

623.1.02 Related References

A. Standard Specifications
 - Section 441—Miscellaneous Concrete
 - Section 500—Concrete Structures
 - Section 800—Coarse Aggregate
 - Section 801—Fine Aggregate
 - Section 830—Portland Cement
 - Section 832—Curing Agents
 - Section 833—Joint Fillers and Sealers
 - Section 853—Reinforcement and Tensioning Steel
 - Section 880—Water

B. Referenced Documents
 - General Provisions 101 through 150.
 - QPL 10

623.1.03 Submittals

General Provisions 101 through 150.

623.2 Materials

Use materials that meet the requirements of these Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Aggregate: Class A or B Stone</td>
<td>800</td>
</tr>
<tr>
<td>Portland cement</td>
<td>830</td>
</tr>
<tr>
<td>Fine Aggregate, Size No. 10</td>
<td>801</td>
</tr>
<tr>
<td>Water</td>
<td>880</td>
</tr>
<tr>
<td>Preformed Joint Filler</td>
<td>833.2.01</td>
</tr>
<tr>
<td>Hot Poured Joint Filler</td>
<td>833.2.02</td>
</tr>
<tr>
<td>Material</td>
<td>Section</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Elastomeric Polymer Type Joint Compound</td>
<td>833.2.03</td>
</tr>
<tr>
<td>Welded Steel Wire for Concrete Reinforcement</td>
<td>853.2.07</td>
</tr>
<tr>
<td>Curing Agents</td>
<td>832</td>
</tr>
<tr>
<td>Silicone Joint Sealer</td>
<td>833.2.06</td>
</tr>
</tbody>
</table>

623.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

623.3 Construction Requirements

623.3.01 Personnel
Have qualified machine, nozzle, and re-bound operators prepare and apply pneumatically applied concrete under the supervision of qualified superintendents.

Furnish documentation of personnel qualifications upon request.

623.3.02 Equipment
Use equipment in good operating condition to work on the Project. Have all necessary equipment on the Project prior to beginning application.

623.3.03 Preparation

A. Earth Foundation
Prepare earth foundations for application as follows:

1. Thoroughly compact and finish the area upon which the pneumatically applied concrete will be placed to the lines and grades shown on the Plans.
2. Ensure that the foundation contains enough moisture to provide maximum density and to avoid absorbing water from the concrete. Ensure that the foundation does not contain free surface water.

B. Bonding Foundation
When bonding pneumatically applied concrete to a previously placed structure, ensure that the surface is rough and clean.

1. Remove unsound or deteriorated concrete, loose particles, dust, and dirt.
2. Thoroughly clean steel members by sand blasting loose rust, scale, or other deleterious material that would prevent or lessen the bond between concrete and steel.
3. Keep the bonding surface wet for at least one hour before applying the concrete. Remove any free water immediately before placing.

623.3.04 Fabrication
General Provisions 101 through 150.

623.3.05 Construction

A. Earth Foundation
1. Use gauging wires to establish finish grade lines, surface planes, and the Plan thickness.
2. Place joints, side forms, shooting strips, weep holes, and reinforcement according to Plan details.

B. Bonding Foundation
1. Reinforce and form concrete according to Plan details.
2. When sloping, vertical, or overhanging work surfaces require successive layers or thicknesses, allow enough time between application of layers to permit an initial but not a final set.

When the initial set is developing, clean the surface to remove laitance and to ensure bonding.
C. Placing Reinforcement

Place reinforcement, if required, as shown on the Plans.

1. When dowels or anchor bolts are specified, securely fasten the reinforcing steel to them.
2. Lap the welded wire fabric at least 4 in (100 mm) and firmly tie the full area of mesh or fabric in position with wire ties.
3. Place welded wire fabric around the top of slab-carrying beams and girders before pouring the slab and extend at least 5 in (125 mm) below the slab. Locate the fabric to properly lap the web reinforcement.
4. Place the reinforcement at least 0.5 in (15 mm) from the surface on which the concrete is to be placed. Ensure that there is at least 0.75 in (20 mm) from the outside surface of the reinforcing to the finished surface of the concrete.

D. Composition

Use pneumatically applied concrete composed of one part Portland cement to three parts fine aggregate by volume. Thoroughly mix the dry ingredients before placing them into the applicator hopper. The Contractor may submit mix design proportions for approval from an approved producer (QPL 10) who has the capability of producing transit-mixed concrete.

1. Substitute a maximum of 30 percent by volume of No. 9 stone for an equivalent amount of fine aggregate when approved by the Engineer.
2. Discard material not used within one hour after combining cement and aggregates. Do not remix or temper the material.

E. Transporting and Placing

When premixing the materials and transporting them to the job site, follow the applicable requirements of Section 500 and these guidelines:

1. Do not place pneumatically applied concrete under these conditions:
 - The ambient temperature is below 40 °F (4 °C).
 - The subgrade is frozen.
 - Wind velocity prevents homogenous and uniform application.
2. Place the approved mix by pneumatic pressure through a machine with the proper amount of water for hydration applied at the mixing nozzle.
3. Maintain water pressure in the delivery pipe approximately 20 psi (140 kPa) above the air pressure in the machine.
4. Maintain a constant pressure of at least 45 psi (310 kPa) in the placing machine when the applicator hose length is 100 ft (30 m) or less.
 - Increase the pressure at least 5 psi (35 kPa) for each additional 50 ft (15 m) of hose length or fraction thereof, or for each 25 ft (7.5 m) vertically that the nozzle is above the machine.
5. When placing concrete on slopes pneumatically, limit the height to 8 ft (2.5 m) lifts measured along the slope.
6. Direct the applicator nozzle to minimize rebound. Maintain the nozzle velocity at a constant level and rate determined by the job conditions.

F. Finishing

After placing the concrete to the required depth and before the initial set, screed the surface and check it with a 10 ft (3 m) straightedge. Immediately correct irregularities in excess of 0.25 in. in 10 ft. (6 mm in 3 m).

Remove and replace loose areas of pneumatically applied concrete at the Contractor’s expense. Before application, protect the adjacent areas not to be covered and clean after application if necessary.

G. Curing

Cure pneumatically applied concrete according to the applicable requirements of Subsection 500.3.05.Z.1, “General Curing—Supplying Additional Moisture.”

H. Joints

Construct joints at locations indicated on the Plans and as specified in Section 441.

Slope construction joints to a clean edge of approximately 45 degrees. Before resuming the placing, clean and moisten the joint.
623.3.06 Quality Acceptance
General Provisions 101 through 150.

623.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

623.4 Measurement
Pneumatically applied concrete placed on slopes or plane areas are measured for payment by the square yard (meter) of accepted surface areas constructed to the neat lines indicated on the Plans or as directed.

Where pneumatically applied concrete is used for patching, grouting, plastering, or build-ups, it is measured by the ton (megagram) of cement actually used.

623.4.01 Limits
General Provisions 101 through 150.

623.5 Payment
Pneumatically applied concrete will be paid for at the Contract Price per square yard (meter) of paving or per ton (megagram) of cement as specified, complete in place. No separate payment will be made for reinforcing steel, joint-filling materials, clean-up, or disposal of rebound.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 623</th>
<th>Pneumatically applied concrete</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

623.5.01 Adjustments
General Provisions 101 through 150.

Section 624—Sound Barriers

624.1 General Description
This work includes furnishing and installing a sound barrier according to this Specification and conforming to the locations, dimensions, lines, and grades shown on the Plans.

Unless a specific type is required by the Contract documents, select one of the following barrier types. Identify in the Proposal the type upon which the bid is based.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>Concrete masonry units</td>
</tr>
<tr>
<td>Type B</td>
<td>Interlock steel panels</td>
</tr>
<tr>
<td>Type C</td>
<td>Precast concrete panels</td>
</tr>
<tr>
<td>Type D</td>
<td>Treated timber panels</td>
</tr>
<tr>
<td>Type E</td>
<td>Masonry-coated polystyrene reinforced panels</td>
</tr>
<tr>
<td>Type F</td>
<td>Glass reinforced thermoset composite structural panels</td>
</tr>
<tr>
<td>Type G</td>
<td>Precast autoclaved aerated concrete (PAAC) panels</td>
</tr>
</tbody>
</table>

Schedule construction as specified in the Special Provisions for sequence of operations, the Plans, or as directed by the Engineer.

624.1.01 Definitions
General Provisions 101 through 150.

624.1.02 Related References
A. Standard Specifications
 Section 106—Control of Materials
Section 201—Clearing and Grubbing Right-of-Way
Section 205—Roadway Excavation
Section 206—Borrow Excavation
Section 208—Embankments
Section 210—Grading Complete
Section 500—Concrete Structures
Section 520—Piling
Section 700—Grassing
Section 702—Vine, Shrub, and Tree Planting
Section 834—Masonry Materials
Section 865—Manufacturing of Prestressed Concrete Bridge Members
Section 885—Elastomeric Bearing Pads

B. Referenced Documents

GDT 7
GDT 20
GDT 21
GDT 24a
GDT 24b
GDT 59
GDT 67
QPL 42
Section 1717(a) of the Uniform Building Code
ASTM A 653/A 653M and ASTM A 924/A924M
ASTM C 90
ASTM D 2092, Method F
ASTM E 90

624.1.03 Submittals

Have the manufacturer certify to the Department that a specimen of the proposed barrier meets or exceeds a minimum weighted sound transmission loss of 22 dBA. Furnish test results for barrier material types (except Type A and Type C). The transmission or loss results must be based on the generalized truck spectrum when tested according to ASTM E 90 to compute the overall noise barrier transmission loss (TL) using the frequencies and sound levels according to the following table:

Panel Type:
Gage:
Finish:

<table>
<thead>
<tr>
<th>Frequency Hertz</th>
<th>Truck Spectrum</th>
<th>Receiver Side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dBA</td>
<td>dBA</td>
</tr>
<tr>
<td>31.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>40</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>50</td>
<td>72</td>
<td>41.8</td>
</tr>
<tr>
<td>63</td>
<td>69</td>
<td>42.8</td>
</tr>
<tr>
<td>80</td>
<td>79</td>
<td>56.5</td>
</tr>
<tr>
<td>100</td>
<td>86.6</td>
<td>67.5</td>
</tr>
<tr>
<td>125</td>
<td>81.1</td>
<td>65.0</td>
</tr>
<tr>
<td>160</td>
<td>77.9</td>
<td>64.5</td>
</tr>
<tr>
<td>200</td>
<td>83.9</td>
<td>73.0</td>
</tr>
<tr>
<td>Frequency Hertz</td>
<td>Truck Spectrum</td>
<td>Receiver Side</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>dB</td>
<td>dBA</td>
</tr>
<tr>
<td>250</td>
<td>82.6</td>
<td>74.0</td>
</tr>
<tr>
<td>315</td>
<td>79.6</td>
<td>71.0</td>
</tr>
<tr>
<td>400</td>
<td>82.3</td>
<td>77.5</td>
</tr>
<tr>
<td>500</td>
<td>81.2</td>
<td>78.0</td>
</tr>
<tr>
<td>630</td>
<td>79.4</td>
<td>77.5</td>
</tr>
<tr>
<td>800</td>
<td>80.8</td>
<td>80.0</td>
</tr>
<tr>
<td>1000</td>
<td>80.0</td>
<td>80.0</td>
</tr>
<tr>
<td>1250</td>
<td>80.4</td>
<td>81.0</td>
</tr>
<tr>
<td>1600</td>
<td>81.0</td>
<td>82.0</td>
</tr>
<tr>
<td>2000</td>
<td>78.3</td>
<td>79.5</td>
</tr>
<tr>
<td>2500</td>
<td>78.2</td>
<td>79.5</td>
</tr>
<tr>
<td>3150</td>
<td>74.8</td>
<td>76.0</td>
</tr>
<tr>
<td>4000</td>
<td>72.0</td>
<td>73.0</td>
</tr>
<tr>
<td>5000</td>
<td>69.5</td>
<td>70.0</td>
</tr>
<tr>
<td>6300</td>
<td>67.6</td>
<td>67.5</td>
</tr>
<tr>
<td>8000</td>
<td>62.1</td>
<td>61.0</td>
</tr>
<tr>
<td>10000</td>
<td>58.0</td>
<td>55.5</td>
</tr>
<tr>
<td>12500</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

\[A = 10 \log \frac{\sum_{i=1}^{n} (i/10)}{10} \text{ for the truck spectrum} \]

\[B = 10 \log \frac{\sum_{i=1}^{n} (i/10)}{10} \text{ for the receiver side} \]

Weighted Transmission Loss = A - B

Receiver Side Sound Level [dBA] = Truck Spectrum (dBA - TL in Decibels)

Ensure that certification is according to Subsection 106.05.

624.2 Materials

Ensure that other materials not listed herein meet the requirements of the appropriate Specification to which they pertain. For a list of sources, see QPL 42.

A. Type A

Concrete—Class A Hollow Load Bearing Concrete Masonry Units (Concrete Block) ASTM C 90, Grade N-I or N-II

<table>
<thead>
<tr>
<th>Mortar</th>
<th>Section 500</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>B. Type B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Interlocking Steel Panels</td>
</tr>
<tr>
<td>Use cold formed configured steel panels that meet these requirements:</td>
</tr>
<tr>
<td>□ Provides friction interlocking with adjacent panels</td>
</tr>
</tbody>
</table>
Use treated timber panels that meet these requirements:

<table>
<thead>
<tr>
<th>Type D.1</th>
<th>See Plan Detail D-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type D.2</td>
<td>See Plan Detail D-2</td>
</tr>
</tbody>
</table>

Use piling, bolts, and fittings that are hot-dip galvanized when the barrier rests on another concrete structure.
E. Type E
1. Wire. Use No. 14 gauge panel wire that conforms to ASTM A 82 and to ASTM A 185 as a welded steel wire fabric.
2. Clips. Use No. CL-15G Hartco clips formed from 7/16 in (11 mm) wide, No. 20 gauge cold rolled steel and are manufactured by Hartco Manufacturing Company.
3. Expanded Polystyrene. Use foam with a density of 1 to 1.5 lbs/ft³ (16 to 24 kg/m³). Use beads produced by BASF Wyandotte BF-Styropor (Research Report No. 3401) or American Hoechst Corporation Fostafom, Type 86 Series (Research Report No. 3504), and that comply with Section 1717(a) of the Uniform Building Code.
4. Polyurethane. Use foam assembled as filler that is 2.25 in (57 mm) thick with a density of at least 1 lb/ft³ (16 kg/m³).
5. Portland cement. Use cement that complies with AASHTO M 85.
6. Aggregate. Use natural plaster sand that complies with ASTM C 144.
7. Plaster. Use a mixture of Portland cement and aggregate that complies with Table No. 47-F of the Uniform Building Code.
 Ensure that the plaster has a minimum 28-day compressive strength of 1,000 psi (7 MPa) or greater, as required by design based on testing three 2 in (50 mm) cubes

F. Type F
1. Structural Plank. Use continuous glass fiber reinforced structural planks that meet these requirements:
 - Are constructed of a durable, UV resistant, flame retardant, thermosetting composite material
 - Are resistant to degradation from ozone, hydrocarbons, and freeze/thaw cycling
 - Match the Federal Standard Color Number indicated on the Plans
 - Meet the following minimum mechanical properties:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>MINIMUM VALUE</th>
<th>TEST METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural Modulus</td>
<td>2,200,000 psi (15 200 MPa)</td>
<td>ASTM D 790</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>70,000 psi (480 MPa)</td>
<td>ASTM D 790</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>65,000 psi (450 MPa)</td>
<td>ASTM D 638</td>
</tr>
<tr>
<td>Tensile Modulus</td>
<td>4,500,000 psi (31 000 MPa)</td>
<td>ASTM D 638</td>
</tr>
<tr>
<td>Elongation</td>
<td>1.5 %</td>
<td>ASTM D 638</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>60,000 psi (410 MPa)</td>
<td>ASTM D 695</td>
</tr>
<tr>
<td>Barcol Hardness</td>
<td>50</td>
<td>ASTM D 2583</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.86</td>
<td>ASTM D 792</td>
</tr>
</tbody>
</table>

2. Filler. Use either hollow structural planks or planks filled with a recycled tire rubber compound comprised of sorted and graded ground tire rubber (0.25 ± 0.025 inch (6.4 ± 0.6 mm)).
3. Flashing and Caps. Use flashing and caps of the same material and color as the panels.
4. Caulking. Use caulking that is color pigmented to match the wall color specified.
5. Posts. Use posts fabricated from hot rolled sheet conforming to ASTM A 36 (A 36 M), and hot dip galvanized in accordance with ASTM A 123/A123M, except coating weight shall be a minimum of 2.0 oz/ft² (600 g/m²) on all sides.
6. Other Materials. Use materials that meet the requirements of the appropriate Section in the Standard Specifications to which they pertain.
G. Type G
 1. Precast Autoclaved Aerated Concrete (PAAC) Wall Units. Use PAAC wall units cast from a mixture of
 Portland cement, fine aggregate, water, gypsum, lime, and an expansion agent. After setting, and before
 hardening, the PAAC is machine cut to the required size, then steam-cured under pressure in an
 autoclave. Use PAAC that meets the following physical requirements:
 □ Has a minimum average compressive strength of 725 psi (5000 kPa) when three specimens are tested in
 accordance with ASTM C 1386, with no single specimen having a compressive strength of less than 580 psi
 (4000 kPa).
 □ Has a maximum shrinkage of 0.02% when tested in accordance with ASTM C 1386
 □ Has a dry bulk density between 34 (544 kg/m³) and 41 lb/ft³ (656 kg/m³) when tested in accordance with
 ASTM C 1386
 2. Reinforcing. Use reinforcing that conforms to AASHTO M31 or M32.
 3. Galvanized Steel Supports. Use supports that conform to Drawing No. H2 as shown on the Plans, with
 the distance between wall supports no greater than 10 feet (3 meters) on center.
 5. Coatings. Use only approved coating systems on all exposed surfaces, including steel supports. Use the
 same topcoat color on both the PAAC panels and the steel supports. Submit independent laboratory test
 results for 1500 hours of accelerated weathering in accordance with ASTM G 53. Submit results that show
 ratings of at least 9 in the following categories: color change, chalking, checking, cracking, blistering,
 flaking and rusting. Submit a certification stating that the PAAC topcoat is graffiti resistant.

624.2.01 Delivery, Storage, and Handling
 General Provisions 101 through 150.

624.3 Construction Requirements

624.3.01 Personnel
 General Provisions 101 through 150.

624.3.02 Equipment
 General Provisions 101 through 150.

624.3.03 Preparation
 General Provisions 101 through 150.

624.3.04 Fabrication
 General Provisions 101 through 150.

624.3.05 Construction
 Perform the following work according to the Specifications:
 A. Clearing and Grubbing
 When necessary, clear and grub according to Section 201 as applicable.
 B. Excavation, Borrow, Embankment
 Perform excavation, borrow, and embankment according to Section 205, Section 206, Section 208, or Section 210. The scope and dimensions of the work are shown on the Plans.
 C. Grassing
 Perform grassing according to Section 700, as specified on the Plans.
 D. Vine, Shrub, and Tree Planting
 Plant vine, shrub, and trees according to Section 702 as specified on the Plans.
 E. Miscellaneous Construction Items
 When items are shown on the Plans but are not covered in this Specification, the Plans and Standard Specifications govern the work.
F. Walls

Follow these requirements to construct each type of wall:

1. Type A Wall
 When using hollow load bearing concrete masonry units (concrete block) to construct the walls, work according to the notes, details, and dimensions on the Plans, including footings, reinforcement, and plaster coat when required.

2. Type B Wall
 Install steel noise barrier walls according to the manufacturer’s recommendations and Plan details.
 Repair cut, scratched, or marred surfaces according to the manufacturer’s recommendations.

3. Type C Wall
 When using precast concrete panels:
 a. Cast them in a precasting facility approved by the Engineer.
 b. Have the Engineer determine panel acceptability from the compressive strength of cylinders made and cured the same as the panels, and from inspection during manufacture.
 Have the panel manufacturer furnish facilities and assistance to sample and test quickly and satisfactorily.
 c. Cast the panels on a steel surface with steel side forms.
 d. Place concrete in each panel without interruption. Consolidate the concrete using vibrators supplemented by hand tamping and rodding to force the concrete into the corners of the forms to eliminate stone pockets, cleavage planes, and air bubbles.
 e. Give the panels a Type III—Rubbed Finish on the upper surface (as cast) according to Subsection 500.3.05.AB, “Finish Concrete.”
 f. Cure the panels as specified in Subsection 500.3.05.Z.1, “General Curing—Supplying Additional Moisture,” (wet cure) long enough for the concrete to develop the specified compressive strength.
 1) Ensure that the curing period is at least 72 hours under normal summer temperature conditions. In colder weather extend the curing period, as directed by the Engineer
 2) Protect the panels from freezing from the time the concrete is placed until curing is complete.
 3) Instead of the wet cure method, steam cure the panels as specified in Subsection 865.2.01.B.2.g.(2) if desired.
 g. Mark each panel with the date cast and the Inspector’s approval stamp.

 NOTE: Even with the Inspector’s acceptance at the precast yard, panels can still be rejected at the erection point if they are damaged.

 h. Erect the panels according to Plan details and dimensions.
 Place bearing pads as shown in the Plans, and tighten the restraining bolts.
 i. After erection is complete and before Final Acceptance of the Project, clean the sound barrier to remove dirt or stains.

4. Type D Wall
 The Plans shall designate the correct type of D wall (Type D.1 or Type D.2.).
 a. Type D.1 Wall
 Construct this wall of tongue and groove panels placed in a horizontal configuration supported by vertical posts set on concrete piers. Follow the Plan details for information on sizes, timber treatment, and erection.
 b. Type D.2 Wall
 Construct this wall of double wood panels staggered to provide a 1/2-width overlap. The supports are posts set in a concrete footing. Follow the Plans for full details of materials and erection, sizes, and timber treatment.

5. Type E Wall
 See the Plan details.

6. Type F Wall
 Install in accordance with manufacturer’s recommendations and Plan details. Do not install walls with burns, discolorations, cracks, or other objectionable marks that would adversely affect the performance of the system.
7. **Type G Wall**
 a. Cast the PAAC panels in a precasting facility approved by the Engineer.
 b. Have the Engineer determine panel acceptability from the compressive strength of cylinders made and cured the same as the panels, and from inspection during manufacture.
 Have the panel manufacturer furnish facilities and assistance to sample and test quickly and satisfactorily.
 c. Cast the panels on a steel surface with steel side forms.
 d. Place concrete in each panel without interruption. Consolidate the concrete using vibrators supplemented by hand tamping and rodding to force the concrete into the corners of the forms to eliminate stone pockets, cleavage planes, and air bubbles.
 e. After machine cutting to the required size, cure the PAAC units by high-pressure steam autoclaving so that the units meet the physical requirements of Subsection 624.2.G.1.
 f. Mark each panel with the date cast and the Inspector’s approval stamp.

 NOTE: Even with the Inspector’s acceptance at the precast yard, panels can still be rejected at the erection point if they are damaged.

 g. Erect the panels according to Plan details and dimensions.
 h. After erection is complete and before Final Acceptance of the Project, clean the sound barrier to remove dirt or stains.
 i. Use coatings that are approved by the Laboratory.
 1) PAAC panels. Apply the coating with a sponge-textured roller in accordance with the manufacturer’s recommendations. Cover all exposed galvanized steel surfaces for protection from splattering. Apply the coating at a minimum thickness of 60 dry mils (1.5 mm). Apply the coating only when the ambient temperature is greater than 40 °F (4 °C) and rising. Do not apply any coating during rainfall or when rainfall is forecast overnight.
 2) Galvanized Steel Supports. Apply a corrosion resistant coating by brush, roller, or airless spray in accordance with the manufacturer’s recommendations. Protect the adjacent PAAC surfaces from overspray. Apply the coating at a minimum thickness of 2 dry mils (0.5 mm). Use a color that matches the PAAC final topcoat color. Apply the coating only when the ambient temperature and relative humidity fall within the limits stated by the manufacturer.

8. **All Walls**

 Before beginning earthwork on the Project, stake the noise barriers in the field and establish the final groundline elevations at the barrier walls.

 Furnish these elevations to the supplier who will develop the shop plans, including a complete elevation view of each barrier indicating top and bottom elevations and the roadway grade.
 a. Protect the final ground elevations established in the field for the duration of the Project. Do not adjust them without the Engineer’s approval.
 b. Install sound barriers according to the Plans and Shop Drawings approved by the Engineer.
 c. Secure joints and connections to be structurally sound with no visible openings for sound transmission. Ensure that vibration from metal barriers is not a secondary source of noise transmission.
 d. Repair marred, chipped, scratched, or spalled barrier areas according to the manufacturer’s recommendations and as directed by the Engineer at the Contractor’s expense.
 e. To substitute welded for fixed-bolt connections or vice versa on metal barriers, meet these conditions:
 - Submit load calculations for the specific connection to be modified.
 - Use a safety factor of at least 3.0.
 f. Place trench backfill for sound barrier construction according to Section 207. Use select material to backfill.
 If the Engineer believes the trench is too narrow for compaction, backfill the trench excavation with concrete grout to the Engineer’s satisfaction. No additional compensation will be made for the concrete grout.
 g. Dispose of excess excavation to the Engineer’s satisfaction.
 h. Keep right-of-way fence in place that is scheduled to be salvaged until the barrier is constructed, or as long as the Engineer deems practical.
i. After erecting the barrier, leave the disturbed area in a finished condition at the Engineer’s direction and plant grass or sod.

j. Payment for establishing grass is described in Subsection 624.4.C, “Grassing.”

k. Ensure that the barrier meets these tolerances:
 1) Vertical alignment for barriers and posts is:
 □ 0.5 in (15 mm) for barrier heights to 10 ft (3 m)
 □ 1 in (25 mm) for barrier heights to 20 ft (6 m)
 □ 1.5 in (40 mm) for barrier heights to 30 ft (9 m)
 2) Horizontal alignment for barriers is close to that shown on roadway Plans.
 3) Post spacings are within 0.5 in (15 mm) of their intended location.

l. For sound barriers built on top of earth berms, construct the berms of earthwork fill material and compact to 95% of the maximum density as determined by GDT 7, GDT 24a, GDT 24b or GDT 67, as applicable. Determine in-place density according to GDT 20, GDT 21, or GDT 59, as applicable.

G. Graffiti-Proof Coating

This work includes providing graffiti-proof coating on both faces of concrete and masonry barriers from the ground line to the top of the wall.

1. Materials. Use materials as noted on QPL 42.

2. Delivery and Storage. Ensure that the materials are delivered in manufacturer’s original containers with labels intact. Store the materials out of the weather, in a single location, and as specified by the manufacturer.

3. Job Conditions. Protect the coating from the weather and work conditions as follows:
 a. Apply the graffiti-proof coating in weather recommended by the manufacturer.
 b. Mask, cover, or otherwise protect finished adjacent surfaces from damage that work in this Section could cause.
 c. Protect finished coatings from staining, marring, and damages from other trades.

4. Quality Criteria. Use materials that are products of one manufacturer.

 Use application equipment recommended or approved by the coating manufacturer for use on this Project. Use equipment in good operating condition.

5. Application. Ensure that the moisture content of surfaces to receive coating are within the limits recommended by the coating manufacturer.
 a. Apply coating after applying a Type III finish of concrete, or after thoroughly cleaning the concrete block.
 b. Apply coating at rate of 1 gal per 250 to 300 ft² (1 L per 6 to 7 m²). Apply three coats using a low-pressure spray.
 c. Begin the coating application at the uppermost surfaces and work down.
 d. Remove loose particles, dirt, grease, oil, and other foreign materials following application.

624.3.06 Quality Acceptance

The panels are subject to rejection if they fail to meet the requirements specified above. The following defects are also cause for rejection:

□ Defects from imperfect mixing and casting
□ Honeycombed or open texture
□ Exposed reinforcement
□ Failure to meet the required 3,500 psi (25 MPa) compressive strength at 28 days

624.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

624.4 Measurement

A. Clearing and Grubbing

 Clearing and grubbing will not be measured separately for payment.

B. Excavation, Borrow, and Embankment

 Excavation, borrow, and embankment are measured according to Section 205, Section 206, Section 208, or Section 210, as applicable.
The scope and dimensions of the work are as shown on the Plans.

C. Grassing
Grassing is not measured separately for payment unless shown on the Plans as a payment item. In this case, the work is measured according to the requirements of Section 700 for the type of grassing required.

D. Vine, Shrub, and Tree Planting
Vine, shrub, and tree planting shown on the Plans is measured according to Section 702.

E. Items Not Covered in This Specification
Items shown on the Plans but not covered in this Specification are measured for payment according to the applicable portions of the Specifications.

F. Walls
1. Type A Wall
 Concrete masonry wall constructed of concrete masonry units (blocks), complete in place, is measured in square feet (meters) of area from end to end and from top of footing to top of wall, including solid top block or solid cap block.

2. Type B Wall
 Steel wall is measured in square feet (meters) of wall surface installed before backfilling complete in place according to Subsection 109.01, “Measurement and Quantities.” Posts, flashing, caps, concrete post embedment, or other incidental items required for construction are not measured separately.

3. Type C Wall
 Precast concrete sound barriers are measured in square feet (meters) of wall surface before backfilling, including pile flanges, complete in place and accepted.
 No separate measurement is made for pile, anchor bolts, plates, connections, neoprene bearing pads, connecting bolts, or other sound barrier components.

4. Type D Wall
 Treated timber walls are measured in square feet (meters) of wall surface installed before backfilling.
 No separate measurement is made for posts, caps, foundations, footings, hardware, timber treatment, pile, or cover boards.

5. Type E Wall
 Masonry-coated polystyrene reinforced panel walls are measured in square feet (meters) of wall surface installed before backfilling.
 No separate measurement is made for posts, flashing, concrete post embedment, or other incidental items required for construction.

6. Type F Wall
 Glass reinforced thermoset composite structural panel walls are measured in square feet (meters) of wall surface installed before backfilling.
 No separate measurement is made for posts, top caps, bottom caps, side caps, flashing, strip seals, mounting brackets and hardware, concrete post embedment, or other incidental items required for construction.

7. Type G Wall
 Precast autoclaved aerated concrete walls are measured in square feet (meters) of wall surface installed before backfilling.
 No separate measurement is made for steel supports or other incidental items required for construction.

8. All Walls
 The bottom of the barrier wall pay limit is the line located:
 - 6 in (150 mm) below the existing graded ground line when side barriers are not required
 - 6 in (150 mm) below the top of the side barriers when barriers are required
 - At the top of the retaining wall coping when the roadway is a cut section and the retaining wall is in place
 The top pay limit is the minimum profile elevation shown for each sound barrier profile.

624.4.01 Limits
General Provisions 101 through 150.
624.5 Payment

A. Clearing and Grubbing

The cost of clearing and grubbing is included in the Lump Sum Item for the Project. When clearing and grubbing is not shown as a payment Item, the cost is included in the overall Contract Price for the work covered in this Specification.

B. Unclassified Excavation and Borrow

Unclassified excavation and borrow will be paid for and included in the normal excavation and borrow for the Project unless shown on the Plans as a separate payment Item for sound barriers. In that case, payment will be made under Section 205, Section 206, Section 208, or Section 210, as applicable.

C. Grassing

Grassing will be paid for and is included in the normal grassing for the Project according to Section 700 unless shown on the Plans to be included in the price bid for sound barriers.

D. Vine, Shrub, and Tree Planting

When the Plans state that this Item will be paid for, payment will be made under Section 702.

E. Items Not Covered by This Specification

Items shown on the Plans to be paid for but are not covered by this Specification will be paid for according to the applicable portions of the Specifications.

F. Walls

Unless a specific wall type is specified in the Contract, identify in the Proposal which wall type will be used.

1. Type A Wall

Concrete block walls will be paid for at the Contract Unit Price bid per square foot (meter). Payment includes but is not limited to:

- Concrete blocks of the thickness shown on the Plans for the wall and pilasters
- Plaster coat when required
- Excavation for footings, concrete footings, and reinforcement when specified
- Incidents to complete the Item, including graffiti-proof coating

2. Type B Wall

Steel wall will be paid for at the Contract Unit Price bid per square foot (meter). Payment is full compensation for furnishing and installing materials, providing post and post embedment, and providing labor, equipment, and incidentals to complete the Work.

3. Type C Wall

Precast concrete sound barrier will be paid for at the Contract Unit Price bid per square foot (meter). Payment is full compensation for furnishing materials, including piling and attachments and for erecting the sound barrier, including graffiti-proof coating.

4. Type D Wall

Treated timber wall will be paid for at the Contract Unit Price bid per square foot (meter). Payment is full compensation for furnishing materials including concrete and steel and for erecting the sound barrier.

5. Type E Wall

Masonry-coated polystyrene reinforced panel walls will be paid for at the Contract Unit Price bid per square foot (meter). Payment is full compensation for furnishing and installing materials, including piling and attachments, and for erecting the sound barrier, including graffiti-proof coating.

6. Type F Wall

Glass reinforced thermoset panel walls will be paid for at the Contract Unit Price bid per square foot (meter). Payment is full compensation for furnishing and installing materials, including post and post embedment, and for erecting the sound barrier.

7. Type G Wall

Precast autoclaved aerated concrete sound barrier will be paid for at the Contract Unit Price bid per square foot (meter). Payment is full compensation for furnishing materials, including steel supports, and for erecting the sound barrier, including graffiti-proof coating.
Additional wall payment criteria:

- **Sound Barrier Type “A”**
 When the height of Sound Barrier Type “A”, as measured from the top footing to the top of the wall including the solid top block or solid cap is not greater than 10 ft (3 m), payment is made under the 0 – 10 ft (0 – 3 m) Ht pay item. When the height is greater than 10 ft (3 m) but less than 20 ft (6 m), the entire panel will be paid for under the 10 – 20 ft (3 – 6 m) Ht pay item. When the height is greater than 20 ft (6 m) but less than 30 ft (9 m), the entire panel will be paid for under the 20 – 30 ft (6 – 9 m) Ht pay item.

- **Sound Barrier Type “B”, “C”, “D”, “E”, “F”, and “G”**
 These sound barriers utilize post supports. When the design height of the post is not greater than 10 ft (3 m), the entire height of the barrier is paid for under the 0 – 10 ft (0 – 3 m) Ht pay item. When the design height is greater than 10 ft (3 m) but less than 20 ft (6 m), the entire panel is paid for under the 10 – 20 ft (3 – 6 m) Ht pay item. When the design height is greater than 20 ft (6 m) but less than 30 ft (9 m), the entire panel is paid for under the 20 – 30 ft (6 – 9 m) Ht pay item.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Sound barrier type</th>
<th>0–10 ft (0–3 m) Ht</th>
<th>Per square foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 624</td>
<td>Sound barrier type</td>
<td>0–10 ft (0–3 m) Ht</td>
<td>Per square foot (meter)</td>
</tr>
<tr>
<td>Item No. 624</td>
<td>Sound barrier type</td>
<td>10–20 ft (3–6 m) Ht</td>
<td>Per square foot (meter)</td>
</tr>
<tr>
<td>Item No. 624</td>
<td>Sound barrier type</td>
<td>20–30 ft (6–9 m) Ht</td>
<td>Per square foot (meter)</td>
</tr>
</tbody>
</table>

624.5.01 Adjustments
General Provisions 101 through 150.

Section 626—Mechanically Stabilized Embankment Retaining Walls

626.1 General Description
This Specification covers the required materials, fabrication, construction, measurement, and payment for mechanically stabilized embankment retaining walls.

The scope of work of wall erection includes:

- Grading for wall construction
- Compacting the wall foundation
- General and local dewatering as necessary
- Constructing leveling pads
- Erecting precast panels
- Placing soil reinforcing devices
- Placing and compacting special embankment backfill within the reinforced volume
- Furnishing and placing precast or cast-in-place concrete coping and cast-in-place or precast traffic barrier on top of the wall if shown on the Plans

The wall foundation includes areas underlying the leveling pad and the reinforced volume. Ensure that items used to construct the mechanically stabilized embankment retaining walls but not mentioned in this Specification conform to the applicable Sections of the Standard Specifications.

Ensure that the architectural treatment of the precast panels is according to the Plan details.

For patented mechanically stabilized embankment retaining walls, obtain panels, soil reinforcing devices, connecting devices, joint materials, attachments, and expertise to construct the walls.

626.1.01 Definitions
Wall foundation—the area underlying the leveling pad and the reinforced volume.
626.1.02 Related References

A. Standard Specifications
 Section 106—Control of Materials
 Section 208—Embankments
 Section 500—Concrete Structures
 Section 511—Reinforcement Steel
 Section 514—Epoxy Coated Steel Reinforcement
 Section 535—Painting Structures
 Section 645—Repair of Galvanized Coatings
 Section 809—Geogrid
 Section 812—Backfill Materials
 Section 848—Pipe Appurtenances
 Section 865—Manufacture of Prestressed Concrete Bridge Members
 Section 867—Epoxy Coated Reinforcement Strips
 Section 870—Paint

B. Referenced Documents
 AASHTO M 243
 AASHTO T 22
 ASTM A 82
 ASTM A 123/A 123M
 ASTM A 153/A 153M
 ASTM A 185
 ASTM A 307
 ASTM A 325 (ASTM A 325M)
 ASTM A 563
 ASTM A 570/A 570M
 ASTM A 709 (ASTM A 709M)
 ASTM B 695
 ASTM D 2240
 ASTM F 463 (ASTM F 463M)
 GDT 7
 GDT 24a
 GDT 24b
 GDT 35
 GDT 75
 QPL 9
 QPL 58

 Standard Operating Procedure 3, Precast/Prestressed Concrete Bridge Members
 1992 AASHTO Specifications for Highway Bridges, Section 18, Elastomeric Bearings
626.1.03 Submittals
General Provisions 101 through 150.

626.2 Materials
A. Soil Reinforcing Devices
 1. Reinforcing and Tie Strips
 Use tie strips shop-fabricated of hot rolled steel that conform to the minimum requirements of ASTM A 570 Grade 50 (ASTM A 570M Grade 345). Hot roll reinforcing strips from bars to the required shape and dimensions. Their physical and mechanical properties shall conform to ASTM A 709 Grade 36 (ASTM A 709M Grade 250).
 2. Soil Reinforcing Mesh
 Use soil reinforcing mesh shop-fabricated of cold drawn steel conforming to the minimum requirements of ASTM A 185.
 3. Backfill Stabilizing Geogrid:
 Use Backfill Stabilizing Geogrid that conforms to the requirements of Section 809.

B. Connecting Devices
 1. Fasteners
 Use high-strength bolts and nuts that are hexagonal cap screw and that conform to ASTM A 325(A 325M), galvanized. Ensure that they are of the diameter shown in the Plans—1-1/2 in (40 mm) long with 3/4 in (20 mm) thread length.
 Use galvanized washers with galvanizing fastener elements conforming to ASTM A 153/A 153M.
 2. Steel Strap Connectors
 Use materials that conform to the following standards:

Material	Conforms to the Requirements of:
Steel strap connection bar and plate	ASTM A 709 Grade 36 steel (ASTM A 709 Grade 250)
Bolts	ASTM A 307 (ASTM A 307M)
Nuts	ASTM A 563
Washers	ASTM F 436 (ASTM F 436M)
Coatings for connecting devices	As specified in the Subsection below

 3. Attachments
 a. Use clevis loops and mesh loops fabricated of cold drawn steel wire that conforms to ASTM A 82 and are welded according to ASTM A 185. Ensure that they develop a stress of at least 0.9 times the steel’s yield strength. Use loops galvanized according to ASTM A 153/A 153M, Class B 3, or ASTM A 123/A 123M.
 b. Use a connector bar that is fabricated of cold drawn steel wire that conforms to ASTM A 82 and is galvanized according to ASTM A 123/A123M.
 4. Geogrid Connection Bar: Use a connection bar 1 inch (25 mm) by 0.2 inches (5 mm) thick by roll width plus 3 inches meeting the same physical and chemical properties as the backfill stabilizing geogrid.

C. Concrete
 Use Class AA concrete for precast panels, except ensure that the 28-day strength is at least 4,000 psi (28 MPa). Except as indicated in the approved mix design, admixtures will not be allowed. Do not use admixtures containing chlorides.
 Use Class A concrete for leveling pads, traffic barriers, and coping.

D. Joint Fillers
 Treat joints between panels as listed in this Subsection.
In flood plains or other intermittently inundated areas, cover the different joint types as follows:

<table>
<thead>
<tr>
<th>Joint Type</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joints between panels from an elevation 3 ft (1 m) above the 100-year flood elevation to the bottom of the wall</td>
<td>Cover on the back side of the wall with a woven plastic filter fabric sheet.</td>
</tr>
<tr>
<td>Joints between panels from 3 ft (1 m) above the 100-year high water elevation to the top of the wall</td>
<td>Cover on the back side of the wall with a woven or nonwoven plastic filter fabric sheet.</td>
</tr>
<tr>
<td>All other locations</td>
<td>Cover joints between panels with a woven or nonwoven plastic filter fabric sheet</td>
</tr>
</tbody>
</table>

Place in horizontal joints between panels two 4 inch by 3 inch by ¾ inch (100 mm by 75 mm by 20 mm) ribbed bearing pads or elastomeric pads as specified on the Plans. Use ribbed bearing pads made of SBR rubber with a durometer hardness of 80 plus or minus 10 as determined by ASTM D 2240.

Use elastomeric pads that are 100% virgin chloroprene (neoprene) and meet the requirements of the 1992 AASHTO Specifications for Highway Bridges, Section 18, Elastomeric Bearings. Caulk the openings on either side of and between the pads with 2 inch by 2 inch (50 mm by 50 mm) open-cell urethane foam strips or equal as approved by the Engineer in addition to any other joint treatment that is required. Caulk vertical joints with 2 inch by 2 inch (50 mm by 50 mm) open-cell urethane foam strips. Piece the urethane foam strips together with a minimum overlap of 4 inches (100 mm).

Use plastic filter fabric sheets with a minimum width as follows:

<table>
<thead>
<tr>
<th>For Vertical Joints</th>
<th>18 inches (450 mm) wide</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Horizontal Joints</td>
<td>12 inches (300 mm) wide</td>
</tr>
</tbody>
</table>

Overlap the joint with the filter fabric by at least 4 inches (100 mm). When piecing together the filter fabric, overlap by at least 4 inches (100 mm). Glue the filter fabric to the panels using any adhesive on the Qualified Products List (QPL).

Use any woven and nonwoven plastic filter fabric listed on the QPL for work in this Specification, subject to the above requirements.

E. MSE Wall Backfill Material

Use material in the MSE Wall Backfill volume that conforms to the requirements of Subsection 812.2.04. In addition, obtain approval for use of the material by the Office of Materials and Research.

F. Coatings For Steel Soil Reinforcing Devices

Apply coatings to the soil reinforcing devices as follows:

1. Galvanize the entire surface of reinforcing and tie strips, mesh, and connecting devices according to ASTM A 123/A 123M. Or galvanize it mechanically according to ASTM B 695, Class 110, unless otherwise specified on the Plans. Also galvanize the surfaces created by punching holes for bolts.

2. Repair damage sustained by the connecting devices, bolts, or reinforcing devices during phases of fabrication, storage, or erection according to Section 645.

 Repair by brush coating with an approved galvanizing repair compound as specified in Subsection 870.2.05.A.2 to the Engineer’s satisfaction at no increase in Contract cost.

3. Galvanize the parts of the connecting devices that are threaded according to ASTM A 153/A 153M, Class C. Hot dip galvanize alignment pins.

4. When the Type 2P coating is required on the Plans:

 a. After manufacturer galvanizing is complete, shop-coat the entire surface for the length indicated on the Plans with a two-component coal tar epoxy system indicated in Subsection 535.3.03.D, “Prepare Steel Piling, Swaybracing, and Concrete Piling Surfaces for Special Protective Coatings,” for a Type 2P coating according to Subsection 870.2.05.A.1.

 b. Use Type 2P coating to field-coat galvanized nuts, bolts, and washers used to connect reinforcing and tie strips. Repair damage to the coating on connecting devices or reinforcing devices from shipping, storage, or erection to the Engineer’s satisfaction at no additional cost.

 c. Use Type 2P coating to field-coat the parts of the connecting devices exposed after installing the soil reinforcing devices.
5. Epoxy coat the entire surface according Section 514 and Section 867, when required on the Plans.
 a. Do not galvanize the soil reinforcing devices if this coating method is used.
 b. Use Type 2P coating to field-coat galvanized nuts, bolts, and washers used to connect reinforcing and tie strips.
 c. Use Type 2P coating to field-coat the parts of the connecting devices exposed after installing the soil reinforcing devices.
6. Repair damage to the coating on the connecting devices or soil reinforcing devices from shipping, storage, or erection to the Engineer’s satisfaction at no additional cost.

G. Reinforcing Steel
 Use reinforcing steel that conforms to the requirements of Section 511.

H. Welded Wire Fabric for Precast Panels
 Use welded wire fabric that conforms to the requirements of ASTM A 82.

I. Certification
 The Department will use certified test report as specified in Subsection 106.05, “Materials Certification” and perform routine tests as a basis for material acceptance furnished for The Work.

J. Corrosion Inhibiting Material
 For the corrosion inhibiting material, use a bituminous plastic cement material that conforms to the requirements of Section 848, AASHTO M 243 Trowel Grade Asphalt Mastic, or use an approved corrosion-inhibiting grease.

626.2.01 Delivery, Storage, and Handling
Handle, store, and ship panels to eliminate the danger of chipping, cracking, discoloring, fracturing, and excessive bending stresses.

Repair at the plant the panels damaged during handling or storage at the casting plant as directed by the Engineer. Panels damaged during handling, storing, or shipping may be rejected upon delivery at the Engineer’s discretion.

Support panels in storage on firm blocking located immediately adjacent to embedded connecting devices to avoid bending the connecting devices. Repair the coating on ties or soil-reinforcing devices damaged during handling or placing to the Engineer’s satisfaction.

626.3 Construction Requirements

626.3.01 Personnel
A. Wall Crew Supervisor
 Ensure that the wall crew supervisor has previous satisfactory experience in erecting mechanically stabilized walls.

626.3.02 Equipment
General Provisions 101 through 150.

626.3.03 Preparation
A. Prepare the Foundation
 Before beginning construction, prepare the foundation as follows:
 1. Grade the foundation for the mechanically stabilized embankment retaining wall level to a width equal to or exceeding the width of the reinforced volume and leveling pad.
 Use the top of the leveling pad as the grade elevation.
 2. Before beginning the wall and leveling pad construction, compact the foundation to at least 95 percent of maximum laboratory dry density as determined by GDT 7.
 3. Where walls are used as a bridge abutment, compact the foundation material as follows:
 a. When a portion of the wall is a bridge abutment, ensure that portions of the wall within 100 ft (30 m) of the lateral limits of the bridge have foundation material compacted to at least 100 percent of maximum laboratory dry density as determined by GDT 7.
 b. When walls are used solely as bridge abutments, compact the foundation material for the entire wall to at least 100 percent of maximum laboratory dry density as determined by GDT 7.
Place and compact the embankment beneath the wall according to Section 208.

4. If excavating below the leveling pad elevation, reconstruct the area as embankment.

5. Remove and replace foundation soils that are incapable of sustaining the required compaction as directed by the Office of Materials and Research.

6. At each panel foundation level, provide a non-reinforced concrete leveling pad as shown on the Plans.
 a. Place leveling pads so they are level within 1/8 in (3 mm) per pad or per 10 ft (3 m), whichever length is greater.
 b. Repair or replace leveling pads that do not meet this requirement as directed by the Engineer at the Contractor’s expense.
 c. If using bearing pads on the leveling pad on the initial row of panels, also use them on all the leveling pads of that wall.
 d. Fill the horizontal joint between the leveling pad and panels with 2 in by 2 in (50 mm by 50 mm) polyether foam strips and cover with filter cloth.
 e. Use neoprene strips 3/16 in (5 mm) thick as necessary to level panels. Do not use more than 3/8 in (10 mm) of neoprene strips.
 f. If more leveling is required, take other corrective action, such as replacing the leveling pad or replacing panels.

7. Embed the wall at least 5 ft (1.5 m) into an embankment, when shown on the Plans. Construct the embankment before constructing the leveling pad and placing backfill for the wall.

For step details on leveling pads, see plans and construction details.

626.3.04 Fabrication

A. Soil-Reinforcing Devices

 Have steel soil-reinforcing devices shop fabricated. Use shop fabricated steel mesh of cold drawn steel welded into the finished mesh fabric according to ASTM A 185.

 Cut soil-reinforcing devices to lengths and tolerances shown on the Plans. Punch holes for bolts in the location shown. Ensure that soil-reinforcing devices are true to size and free of defects that may impair the strength or durability.

B. Connecting Devices

 Use connecting devices of the dimensions shown on the Plans. Assemble connecting members and soil-reinforcing devices before galvanizing the connecting devices. Ensure that the connecting devices are true to size and are free of defects that may impair the strength or durability.

 Tie strips may be partially bent to no more than a 1 in (25 mm) radius before they are shipped to the precast yard. Perform final bending at the precast yard.

 Do not allow connecting devices, reinforcing steel, or welded wire fabric used in the panels to contact each other.

C. Bolts and Nuts

 Ensure that the nominal diameter is as defined in Subsection 626.2.B, “Connecting Devices.”

D. Precast Panels

 Use precast panel materials as specified in Subsection 626.2, “Materials.” Before casting, set the following in place to the dimensions and tolerances shown on the drawings:
 - Tie strips
 - Mesh attachment straps
 - Coil embeds
 - Coil bolts
 - Reinforcing steel
 - Welded wire fabric
 - Connecting pins
 - Handling devices

 Do not allow the metal connecting devices and reinforcing steel to contact each other when in their final position in the panel.
1. Testing and Inspection
 Use precast concrete panels that are cast at a Class A or B plant that conforms to Standard Operating Procedure 3, Precast/Prestressed Concrete Bridge Members. See QPL 9 for a list of approved plants.

2. Casting
 Cast the panels using steel forms.
 a. Cast the front face of the panel (the face exposed to view when installed in the wall) against a steel form or architectural form liner. Float finish the back face.
 b. Place the concrete in each panel without interruption and consolidate it using an approved vibrator. Supplement vibration with hand tamping as necessary to force the concrete into the corners of the forms and prevent the formation of stone pockets or cleavage planes from forming.
 c. Use clear form oil from only one manufacturer throughout the casting operation.

3. Curing
 Cure the panels as specified in Subsection 500.3.05.Z, “Cure Concrete,” or Subsection 865.2.01.B.10, “Concrete Curing.” Cure for at least 12 hours or until the concrete develops the specified compressive strength. The Engineer will reject panels that do not reach specified strength within 28 days.

4. Removing Forms
 Keep forms in place until they can be removed without damaging the panel.

5. Concrete Finishing and Tolerances
 Finish the concrete surface for the front face as designated on the Plans. Float-finish the rear face enough to eliminate open aggregate pockets and distortions greater than 1/4 in. (6 mm).
 Only use panels manufactured within the following tolerances:
 - All dimensions are within 3/16 in. (5 mm).
 - Angular distortion in the panel’s height does not exceed 3/16 in. (5 mm) in 5 ft. (1.5 m).
 - Diagonal tolerance from Plan dimensions is no more than 3/8 in. (10 mm).
 For textured finishes, surface defects greater than 5/16 in. (8 mm) in 5 ft (1.5 m) will be rejected.

6. Determining Compressive Strength
 Perform compression tests to determine the minimum strength requirements on cylinders.
 a. Make at least three cylinders to determine when the units may be put into service from each day’s production and cure according to GDT 35.D.B.6.
 Make two additional cylinders from each day’s production or from each 10 cubic yards of concrete placed, whichever is the lesser amount of concrete, to determine the 28-day strength.
 b. Ensure that the shipping strength is equal to the required 28-day strength for each day’s production or for each 10 yd³ (7.5 m³) of concrete placed, whichever amount of concrete is less.
 c. Cure according to GDT 35.D.B.6. Ensure that the 28-day compressive strength is at least 4,000 psi (28 MPa). Perform compressive strength tests according to AASHTO T 22.

7. Rejection
 Panels will be rejected if they do not meet the requirements above. The following defects are also cause for rejection:
 - Indications of imperfect molding that result in tolerances being exceeded
 - Honeycombed or open texture concrete

8. Marking
 Clearly and permanently mark on the rear face of each panel the date of manufacture, lot number, and type of panel.

E. Precast Coping and Precast Traffic Barrier
 To construct the precast portion of the coping or precast traffic barrier, use materials that conform to Subsection 626.2.C, “Concrete.” Use the same procedures for precasting, testing, and inspection as those for precast panels.
626.3.05 Construction

A. Wall Erection

Place precast panels so that their final position at the completion of the wall is vertical.

1. Adjust the batter to allow for the effect of backfill type, equipment, and construction method on panel movement.
2. In general, batter the panels 1/2 in. (10 mm) in 4 ft (1 m) into the reinforced volume to allow the panel to move during backfill placement and compaction.
3. Place panels in successive horizontal lifts as backfill is placed.
 a. When placing backfill behind a panel, maintain the panel in a vertical position by placing clamps and temporary wooden wedges in the joints at the junction of two adjacent panels on the external side of the wall.
 b. Use external bracing for the initial lift. Keep the wedges in place until the fourth layer of panels is placed, then remove the bottom layer of wedges.
 c. Remove each succeeding layer of wedges when placing the succeeding panel layers.
 d. When the wall is completed, remove the wedges. Do not use the wedges to level the panels on leveling pads.
 e. Remove the wedges placed below the groundline on the front face of the wall before backfilling this area.
4. Alignment and tolerance are as follows:
 a. Ensure that the horizontal and vertical joint openings between panels are uniform. Ensure that the opening is 7/8 in ± 3/8 in. (22 mm ± 10 mm).
 b. Ensure that the vertical tolerance (plumbness) and horizontal alignment tolerance as the wall is constructed does not exceed 3/4 in (20 mm) when measured along a 10 ft (3 m) straightedge.
 c. Ensure that the overall vertical tolerance of the wall (plumbness from top to bottom) in its final position does not exceed 1/2 in per 10 ft (13 mm per 3 m) of wall height.
 d. Place cast-in-place concrete on top of the wall panel to bring the precast coping elements on top of the wall to proper grade. See the plans or construction details.

Before placing special backfill material on a soil-reinforcing device, complete the connections to the panels.

B. Joint Fillers

Treat joints between the panels as follows:

1. In flood plains or other intermittently inundated areas, cover the joints as follows:
 - Use a woven plastic filter fabric sheet to cover the joint on the back side of the wall between panels from 3 ft (1 m) above the 100-year flood elevation to the bottom of the wall.
 - Use a woven or nonwoven plastic filter fabric sheet to cover the joint on the back side of the wall between panels from 3 ft (1 m) above the 100-year high-water elevation to the top of the wall.
2. At other locations, cover joints between panels with a woven or nonwoven plastic filter fabric sheet.
3. Ensure that horizontal joints between panels contain two 4 by 3 by 3/4 in (100 by 75 by 20 mm) ribbed bearing pads or elastomeric pads as specified on the Plans. Use ribbed bearing pads that are SBR rubber with a durometer hardness of 80 plus or minus 10 as required in ASTM D 2240.
4. Use elastomeric pads that are 100 percent virgin chloroprene (neoprene) meeting the requirements of the 1992 AASHTO Specifications for Highway Bridges, Section 18, Elastomeric Bearings.
5. Caulk the openings on either side of and between the pads with 2 by 2 in (50 by 50 mm) open cell urethane foam strips, or equal as approved by the Engineer in addition to other required joint treatments.
6. Caulk vertical joints with 2 by 2 in (50 by 50 mm) or open cell urethane foam strips. When piecing the urethane foam strips together, overlap them at least 4 in. (100 mm).
7. Ensure that the minimum width of the plastic filter fabric sheets are as follows:

<table>
<thead>
<tr>
<th>Joint Type</th>
<th>Minimum Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>For vertical</td>
<td>18 in (450 mm) wide</td>
</tr>
<tr>
<td>For horizontal</td>
<td>12 in (300 mm) wide</td>
</tr>
</tbody>
</table>

8. Overlap the filter fabric with the joint at least 4 in. (100 mm).
9. When piecing the filter fabric together, overlap at least 4 in. (100 mm).
10. Glue the filter fabric to the panels. Use an adhesive on QPL 58.
C. MSE Wall Backfill

Place backfill shortly after erecting each lift panel. Follow these guidelines:

1. Place backfill lift to a uniform thickness and place it from the back face of the wall to 1 ft (300 mm) beyond the end of the soil-reinforcing devices.
2. At each soil-reinforcing device level, compact the backfill to the full length of reinforcing devices and slope it to drain away from the wall before placing and attaching the next layer of reinforcing devices.
3. Level the compacted backfill with the connecting device before connecting the reinforcing device.
4. Repair damaged soil reinforcing devices or panels before attaching and backfilling the reinforcing devices.
5. Place soil reinforcing devices at 90 degrees to the face of the wall, unless otherwise indicated on the Plans or by the Engineer.
6. Ensure that the maximum lift thickness is 8 in (200 mm) (loose) and closely follows panel erection. Decrease this lift thickness to obtain the specified density, if required.
7. Compact the embankment backfill material to at least 100 percent of maximum laboratory dry density as determined by GDT 7 or GDT 24a, GDT 24b Method A or B, for full depth of the material.
8. Compact the embankment backfill material without disturbing or displacing the reinforcing devices and panels.
9. Compact from the area nearest the wall face to the back of the reinforcing devices except for a strip 3 ft (1 m) wide adjacent to the backside of the wall.
 After compacting the remainder of the layer, compact this 3 ft (1 m) strip with light mechanical tampers without causing the panels to move outward.
10. Whenever a compaction test fails on a special embankment backfill lift, do not place additional material over that area until the lift is re-compacted and obtains a passing compaction test.
11. Ensure that the stabilizing geogrid at any layer is held taut, by mechanical means, free of wrinkles, bends or undulations until the special backfill material has been placed and compacted above the restrained layer to the level of the next layer of stabilizing geogrid. Release the uppermost layer of stabilizing geogrid after the final layer of special backfill is placed and compacted.

D. Storm Drains

Provide precast panels that have the appropriate storm drain openings into panels at the elevation and locations indicated on drainage profiles.

Place catch basins so that pipes will enter perpendicular (plan view) to the panels or below the leveling pads as shown on the Plans. Coordinate the catch basin construction and the storm drain placement with the wall construction.

E. Dewatering

Furnish, install, operate, and maintain satisfactory dewatering systems to maintain the site in a dry and workable condition to permit grading, compacting the wall foundation, and erecting and backfilling the wall. Furnish dewatering system equipment and materials and continue the system as long as necessary.

F. Catch Basins and Longitudinal Pipes

When catch basins are located behind the wall and the Wall Plans do not indicate a specific construction method, use the method outlined in the construction details.

When longitudinal pipes are located behind the wall, follow this procedure if specific details are not shown on the Wall Plans:

1. Bend the soil-reinforcing device around the pipe without damaging the device, its coating, or its attachment to the precast panel. See the construction details.
2. If the pipe is too close to the wall to bend the soil-reinforcing device without damaging it, the Engineer will investigate relocating the pipe. The Engineer will contact the design office that designed the drainage system or the office responsible for the pipe and will investigate the pipe relocation.
3. If the pipe cannot be relocated or if the pipe is too large for relocation to be feasible, use the back-up panel procedure indicated on the construction details.
Use precast concrete or cast-in-place concrete for:

- Drainage structures that are within the special embankment backfill
- Drainage structures that are outside the special embankment backfill but that are within 5 ft (1.5 m) of the front face of the wall

626.3.06 Quality Acceptance
General Provisions 101 through 150.

626.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

626.4 Measurement
When a mechanically stabilized embankment retaining wall is built to Plan dimensions, the Plan quantities are the pay quantities. When the Engineer changes Plan dimensions during construction, or when original Plans are in error, the revised Plan quantities are the pay quantities.

A. Excavation and Shoring

Excavation, including removing unstable material and shoring for construction of the mechanically stabilized embankment retaining wall, will not be measured and paid for separately.

B. Precast Concrete Panels

The panels complete in place and accepted are measured for payment by the square foot (meter). The area of drains through the wall are not deducted.

C. Soil Reinforcing Devices

The reinforcing strips, backfill stabilizing mesh, or backfill stabilizing geogrid is measured for payment by the linear foot (meter) of strip, mesh or geogrid.

D. Backfill

The special embankment backfill used in the mechanically stabilized embankment retaining wall volume is measured for payment by the cubic yard (meter) and as shown on the Plans. The limits of the mechanically stabilized embankment retaining wall volume are as follows:

1. The width shall be the length of the reinforcing devices plus 12 in (300 mm). Where reinforcing device length changes, the volume width change will occur midway between reinforcing device layers.
2. The height shall extend from the top of the leveling pad to at least 6 in (150 mm) or to a maximum of 3 ft (1 m) above the uppermost reinforcing device layer. The uppermost reinforcing device layer may be attached to the wall, traffic barrier, or bridge cap.
3. The length shall extend for the entire length of the wall.
4. Backfill material required by construction procedures to extend beyond the mechanically stabilized embankment retaining wall volume is incidental and is included in the price bid for Contract items.
5. If the mechanically stabilized embankment retaining wall volume increases from undercut ordered by the Engineer and requires special embankment backfill to provide stability, as determined by the Engineer, this will be measured and paid for at the Contract Unit Price bid per cubic yard (meter) for special embankment backfill.

If undercuts are not provided for on the Plans and the Engineer determines that special embankment backfill is not appropriate, backfill with foundation material conforming to Subsection 812.2.02, “Foundation Backfill, Type II.” Payment for foundation backfill material used in this application is at the Contract Price bid per cubic yard (meter) for special embankment backfill.

Backfill for undercut areas that do not require materials of grades higher than common excavation soils will not be measured or paid for separately.

E. Concrete Leveling Pads

Concrete leveling pads are measured for payment by the linear foot (meter). This includes steps shown on the Plans.

F. Dewatering

No separate measurement or payment will be made for dewatering. Include the cost of dewatering in the price bid for special embankment backfill.
G. Units Mounted on the Mechanically Stabilized Embankment Retaining Wall

Units on the mechanically stabilized embankment retaining wall, complete in place and accepted, will be designated on the Plans and paid for at the Contract Unit Price bid per linear foot (meter) for each of the following unit types:

- Cast-in-place coping A
- Cast-in-place coping B
- Precast coping
- Traffic barrier V
- Traffic barrier H

Use traffic barrier H and cast-in-place coping B whenever noise walls, light standards, or other appurtenances are mounted on top of the barrier or coping. Use traffic barrier V and cast-in-place coping A when no appurtenance is used on top of the barrier or coping. Cast all traffic barriers in place except traffic barrier H, which is precast when detailed as precast on the Plans.

626.4.01 Limits
General Provisions 101 through 150.

626.5 Payment

When mechanically stabilized embankment retaining walls are built to Plan dimensions, the Plan quantity will be the pay quantity. When Plan dimensions are revised at the Engineer’s direction, mechanically stabilized embankment retaining wall will be paid for using the revised Plan quantities. Payment is full compensation for fabricating, transporting, and erecting material according to the Plans and Specifications.

Separate measurement or payment is not made for tools, superintendence, labor, fasteners, coatings, joint materials (including but not limited to SBR or elastomeric pads, polyether foam, and filter fabric), site preparation, filler concrete, or other incidentals for performing the work. Soil-reinforcing devices attached to the traffic barrier or coping are not measured separately for payment but are included in the price bid for traffic barrier or coping.

Concrete side barrier, noise walls, light standards, V-gutters, guard rail, fencing, and handrail, when shown on the Plans, will be paid for according to the applicable sections of the Project Specifications. Anchor bolts for sleeves for mounting fencing and light standards or noise walls on the wall are included in the price bid for wall items.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 626</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 626</td>
<td>Concrete facia panels</td>
<td>Per square foot (meter)</td>
</tr>
<tr>
<td>Item No. 626</td>
<td>Backfill stabilizing devices</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 626</td>
<td>MSE wall backfill material</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 626</td>
<td>Concrete leveling pad</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 626</td>
<td>Cast-in-place coping A</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 626</td>
<td>Cast-in-place coping B</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 626</td>
<td>Traffic barrier V</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 626</td>
<td>Traffic barrier H</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 626</td>
<td>Precast coping</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

626.5.01 Adjustments
General Provisions 101 through 150.
Section 627—Mechanically Stabilized Embankment Retaining Wall—

Contractor Design

627.1 General Description

This Specification covers the required materials, fabrication, construction, measurement, and payment for Contractor designed Mechanically Stabilized Embankment (MSE) retaining walls.

The scope of work of wall erection includes:

- Grading for wall construction
- Compacting the wall foundation
- General and local dewatering as required
- Constructing leveling pads
- Erecting precast panels
- Placing soil reinforcing devices
- Placing and compacting special embankment backfill within the reinforced volume
- Furnishing and placing precast or cast-in-place concrete coping and cast-in-place or precast traffic barrier on top of the wall if shown on the Plans
- Providing downdrag protection for piles
- Furnishing and placing precast or cast-in-place concrete coping and precast or cast-in-place traffic barrier on the top of the wall if these items are shown in the Plans.

The wall foundation includes areas underlying the leveling pad and the reinforced volume. Ensure that items used to construct the mechanically stabilized embankment retaining walls but not mentioned in this Specification conform to the applicable sections of the Standard Specifications.

For patented mechanically stabilized embankment retaining walls, obtain panels, soil reinforcing devices, connecting devices, joint materials, attachments, and expertise to construct the walls.

627.1.01 Definitions

Wall foundation—the area underlying the leveling pad and the reinforced volume.

627.1.02 Related References

A. Standard Specifications

- Section 106—Control of Materials
- Section 208—Embankments
- Section 500—Concrete Structures
- Section 511—Reinforcement Steel
- Section 514—Epoxy Coated Steel Reinforcement
- Section 535—Painting Structures
- Section 645—Repair of Galvanized Coatings
- Section 812—Backfill Materials
- Section 848—Pipe Appurtenances
- Section 865—Manufacture of Prestressed Concrete Bridge Members
- Section 870—Paint

B. Referenced Documents

- GDT 75
- 1992 AASHTO Specifications for Highway Bridges, Section 18, Elastomeric Bearings

627.1.03 Submittals

Submit construction drawings and design notes to the Engineer for review and approval. The submission shall be prepared and stamped by the Design Engineer who shall be registered as a Professional Engineer in the State of Georgia.
Include in the submission, design notes and reproducible drawings concerning the following:

A. Details, dimensions, and schedules of all reinforcing steel, including dowels and/or studs for attaching the facing to the backfill reinforcement.

B. Details of backfill stabilizing devices including the length, spacing and size and type material.

C. For MSE Walls at Bridge Ends:
 - Ensure that MSE wall backfill extends vertically to the bottom of the approach slab.
 - Ensure that the MSE wall backfill extends horizontally to the back of the MSE backfill for the wall below the approach slab or 12 inches (300 mm) beyond the end of the stabilizing devices attached to the bridge, whichever is greater.
 - Show details of attachments to be cast into the bridge end bent, end wall and back wall.
 - Do not make attachments to bridge end walls that are integral to the bridge superstructure and are subject to movement due to superstructure expansion and contraction.

D. Use Traffic barrier H, and Cast-in-place Coping B whenever noise walls, light standards, or any other appurtenance is mounted on top of the barrier or coping.

Use Traffic barrier V and Cast-in-place Coping A when no appurtenance is used on top of the barrier or coping.

Traffic barriers shall be cast in place, except that traffic barrier H shall be precast when detailed as precast on the Plans.

E. Ensure that Plans match GDOT plans in size, format, borders, title block, etc.

F. Prepare the Plans in “microstation.dgn” format.

G. Itemize the wall quantities as follows:
 1. Wall Envelope quantities in the Plans.
 2. Changed quantities based on the survey verification of the Wall Envelope (Adjusted Wall Envelope).

The time required for preparation and review of plans and calculations will be charged to the allowable contract time. The final plans and calculations for a wall shall be approved prior to beginning construction on the wall.

The Department will be allowed 45 days to review the plans and calculations and provide either approval or review comments to the contractor. The 45-day review time will begin when the Department has received all of the calculations and drawings concerning the structure. Each new submittal from the Contractor as a result of corrections resulting from the Department's review or changes that are made by the contractor to expedite construction or to correct for field errors will have a 45 day review time.

The Department will be the sole judge of the adequacy of the information submitted. The review and acceptance of the final plans and methods of construction by the Department will not in any way relieve the Contractor of responsibility for the successful completion of the work. Contractor delays due to untimely submissions and insufficient information will not be considered as justification for time extensions.

Within 30 days of receiving Department approval of the plans, submit “stamped” reproducible mylar originals for inclusion in the project plans. Also, submit Electronic files of the final plans. For any changes made during construction of the wall, submit “as built” reproducible mylar originals and “as built” electronic files.

627.2 Materials
For Tensar walls see Section 626.2, “Materials” and Section 809 of the Specifications.

For Reinforced Earth, Retained Earth and GASE walls see Subsection 626.2, “Materials” of the Specifications.

627.3 Construction Requirements
627.3.01 Personnel
Meet the following personnel requirements:

A. Design
 - Use a Design Engineer with the following qualifications to design the wall and prepare and submit plans for approval:
 - Is a registered as a Professional Engineer in the State of Georgia.
Has knowledge and experience with the design and construction of MSE walls.
Is available at any time during the life of the Contract to discuss the design of the walls directly with the Department.

B. Construction
The Contractor or Subcontractor shall meet the following requirements:
- Be experienced in the construction of Mechanically Stabilized Embankment Walls.
- Include on staff, a supervising engineer for the Project with at least five years of experience in the construction of Mechanically Stabilized Embankment Walls.
Submit the following proof, whenever requested by the Department, of the ability to design and/or construct Mechanically Stabilized Embankment Walls.
- Evidence of the successful completion of at least five Projects similar in concept and scope to the proposed wall.
- Resumes of the supervising engineer and foremen to be employed on this Project showing the type and number of Mechanically Stabilized Embankment Walls each worked on within the past five (5) years.
The Department will be the sole judge of the acceptability of the qualifications of the design engineer, supervising engineer and foreman.

627.3.02 Equipment
General Provisions 101 through 150.
627.3.03 Preparation
A. General Requirements – Designing and Detailing
The Department’s plans will include a Wall Envelope. The Wall Envelope will show:
- The existing and proposed ground line,
- The maximum elevation of the top of the leveling pad
- The proposed top of coping or the proposed gutterline elevations where the barrier is attached to the wall
- The soil parameters for the wall design
- The location of any internal walls required
- The location of other appurtenances including but not limited to:
 -- Light standards
 -- Sound barriers
 -- Sign supports
- Other obstructions in the wall backfill including but not limited to:
 -- Drainage structures and pipes
 -- Bridge columns, caps, wingwalls
 -- Bridge piles
- Details of any proposed ditches at the top of the wall
- Proposed pay quantities
Ensure that the wall design is compatible with all horizontal and vertical criteria and backfill loading conditions.
Verify the wall location according to Subsection 149.1.03.E and Subsection 149.3.03.D before the final wall design is submitted. Include in the verification:
- The top and bottom of the wall envelope
- Backfill design conditions
- Depth of wall embedment
- Location of drainage structures and other obstructions in the wall backfill
- Other appurtenances located on the wall.
If any changes to the wall envelope are required by the field survey, submit plan sheets to the Engineer for approval showing the wall envelope as detailed in the plans with the required changes noted.

B. Wall Design

Use the following design criteria for a Contractor designed wall:

1. Provide one of the following wall systems:
 - Georgia Stabilized Embankment (GASE)
 - Reinforced Earth Wall* (The Reinforced Earth Company)
 - Retained Earth Wall* (Foster Geotechnical)
 - ARES* (Tensar Earth Technologies)

2. Design the MSE Wall according to the current AASHTO Standard Specifications for Highway Bridges including interims. (Mechanically Stabilized Earth Wall Design – Section 5.8)

3. Design the GASE wall system using the Mechanically Stabilized Embankment Wall program that is available from FHWA. Upon request, the Department’s Office of Bridge Design will provide GASE wall detail sheets to prospective bidders for use in preparing the wall plans.

4. Design the MSE wall to account for all live load, dead load and wind load from all traffic barrier, lights, overhead signs, sound barriers and other appurtenance located on top and adjacent to the wall. Design MSE walls to account for all external forces. Also, design abutment walls for all horizontal and vertical loads applied by the bridge.

5. Assume responsibility for all temporary shoring that may be necessary for wall construction. Design the shoring using sound engineering principles.

6. Use permanent concrete wall facing panels that are at least 7 in (175 mm) thick.

7. Provide a minimum length of soil reinforcement of 10 feet (3 m) or seven-tenths (0.7) of the wall height, whichever is greater.

8. Ensure that the special wall backfill extends a minimum of 12 in (300 mm) past the end of the soil reinforcement.

9. Use the Architectural treatment of facing panels as indicated on the Department’s drawings.

10. Provide internal walls to allow for future widening if shown on the wall envelope. Ensure the internal walls have galvanized wire or concrete facing. Ensure as a minimum, that the facing of the internal walls extend to the back limit of the MSE Wall Backfill for the permanent wall.

11. Ensure the maximum panel area does not exceed 35 square feet (3.25 square meters).

12. Design the barrier for a 500 lbs. per linear foot (744 kilograms per linear meter) loading applied horizontally along the top of the barrier. The barrier shall be continuous or have counterweight slab continuous over not less than four panels.

13. A Foundation Investigation Report may be available from the Geotechnical Engineering Bureau of the Department. The information contained in this report may be used by the Contractor to assist in evaluating existing conditions for design as well as construction. However, the accuracy of the information is not guaranteed and no requests for additional monies or time extensions will be considered as a result of the Contractor relying on the information in this report.

14. Ensure the following requirements are met:
 - The gutterline grade on the proposed top of wall submitted matches the gutter elevations required by the plans.
 - The top of coping is at or above the top of coping shown on the envelope.
 - The leveling pad is at or below the elevation shown on the wall envelope.
 - Any changes in wall pay quantities due to changes in the wall envelope are noted in the contractor’s plans.
 - All changes in quantities due to the proposed walls being outside the wall envelope (step locations, ending wall at full panel, etc.) are shown as separate quantities.

15. Ensure the minimum embedment of the wall (top of leveling pad) is at least 2 feet (600 mm). If the soil slopes away from the bottom of the wall, lower the bottom of the wall to provide a minimum horizontal distance of 10 ft (3 m) to the slope. [i.e. a 2:1 slope in front of the wall requires 5 ft (1.5 m) of embedment; a 4:1 slope in front of the wall requires 2.5 ft (750 mm) of embedment]

16. If the Department's review of the submitted plans and calculations results in more than two submittals to the Department by the Contractor, the Contractor will be assessed for all reviews in excess of two submittals. The assessment for these additional reviews will be at the rate of $60.00 per hour of engineering time expended.
627.3.04 Fabrication
For Tensar, Reinforced Earth, retained Earth and GASE walls see Subsection 626.3.04 of the Specifications.

627.3.05 Construction
For Tensar, Reinforced Earth, Retained Earth and GASE walls see Subsection 626.3.05 of the Specifications.

627.3.06 Quality Acceptance
General Provisions 101 through 150.

627.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

627.4 Measurement
A. Excavation and Shoring
Excavation, including any required removal of unstable material, and shoring necessary for construction of the MSE Wall will not be measured for payment.

B. MSE Wall Face
The area of wall face, complete in place and accepted, will be designated for payment by the square foot (meter) for each height. The area of drains through the Wall will not be deducted.

The wall area measured for payment will be the area from the proposed top of coping or the proposed gutterline or top of sidewalk elevations to the maximum elevation of the top of the leveling pad for each height wall.

Any area of cast-in-place facing around drainage structures within the approved wall envelope will be measured as MSE Wall Face. “Dummy” panels will not be measured for payment.

No separate measurement will be made for internal wall facing.

The entire vertical section of wall will be measured for the greatest height within each section. (i.e. The entire envelope area of a 25 ft (7.62 m) long section of wall that measured from 12 ft (3.66 m) high to 18 ft (5.5 m) high will be measured for payment as MSE Wall Face, Wall No. __ [>10'-20' (3 – 6 m) ht].

The height will be measured from the maximum elevation of the top of the leveling pad to the:

1. Top of Coping or,
2. Gutterline Elevation at the Barrier or,
3. Top of Sidewalk at Parapet

C. Backfill Stabilizing Devices
The backfill stabilizing devices will not be measured separately.

D. Backfill
The MSE backfill material used in the MSE wall volume will not be measured separately except as noted below.

☐ The MSE Backfill required behind bridge endwalls or backwalls and above the top of coping will be measured as additional MSE wall backfill.

☐ Any additional MSE backfill required as a result of an undercut ordered by the Engineer and requiring the MSE backfill material to provide stability, as determined by the Engineer, will be measured and paid for as additional MSE wall backfill.

Backfill of undercut areas not requiring classes of soils higher than common excavation soils will not be measured separately.

Backfill material required by construction procedures to extend outside the MSE wall volume shall be considered incidental and will not be measured separately.

E. Concrete Leveling Pads
Concrete Leveling Pads will not be measured separately.
F. Cast-in-place Coping A, Cast-in-place Coping B, Precast Coping, Traffic Barrier V, Traffic Barrier H, mounted atop the MSE Wall

These units complete in place and accepted, will be designated on the Plans and measured per linear foot (meter) for each type unit.

The quantities of coping and barrier will be measured as horizontal lengths in linear feet (meters).

627.4.01 Limits
General Provisions 101 through 150.

627.5 Payment
The pay quantities will be the Wall Envelope quantities shown in the Plans unless the Engineer approves an adjusted wall envelope. In this case, the pay quantities will be the adjusted wall envelope quantities.

No additional compensation will be made for any additional material, equipment, design, or other items found necessary to comply with the project Specifications as a result of the Department's review except for changes made necessary by the survey verification required by Subsection 149.1.03.E and Subsection 149.3.03.D, or other changes approved by the Engineer.

Include in the unit bid prices all costs necessary to comply with the requirements of this specification. No payment will be made for wall area outside of the adjusted wall envelope.

A. Excavation and Shoring
Excavation, including removing unstable material and shoring for construction of the mechanically stabilized embankment retaining wall, will not be paid for separately.

B. MSE Wall Face
The area of wall face, complete in place and accepted, will be paid for by the square foot (meter) for each height. The area of drains through the wall will not be deducted.

Any area of cast-in-place facing around drainage structures within the approved wall envelope will be paid as wall face. Payment will include all costs for concrete, reinforcing steel in the cast-in-place areas. No additional payment will be made for any “dummy” panels required.

If the wall height changes to a height greater than the maximum included in the pay items, the area of wall with a height greater than the maximum will be paid at 120% of the bid price of the maximum height pay item included in the plans.

The entire vertical section of wall will be paid at the unit price for the greatest height within each section. (i.e. The entire envelope area of a 25 foot (7.62 m) section of wall that measured from 12 ft (3.66 m) high to 18 ft (5.5 m) high will be paid as MSE Wall Face, Wall No. _ [>10’-20’ (3 – 6 m) ht]

No separate payment will be made for architectural treatment.

No separate payment will be made for internal wall facing, internal wall backfill stabilizing devices or additional MSE backfill necessitated by the internal wall.

C. Backfill Stabilizing Devices
The backfill stabilizing devices will not be paid for separately. Include this cost in the unit price bid for MSE wall face.

D. Backfill
The MSE backfill material used in the MSE wall volume will not be paid for separately except as noted below. When not paid for separately, include the cost in the unit price bid for MSE wall face.

Exceptions:
- The cost of MSE Backfill required behind bridge endwalls or backwalls and above the top coping will be paid for as Additional MSE Wall Backfill.
- Any additional MSE backfill required as a result of an undercut ordered by the Engineer and requiring the MSE backfill material to provide stability, as determined by the Engineer, will be paid as additional MSE wall backfill.
- If no quantities for this item are included in the proposal, a price of $25 per cubic yard ($33.00 per cubic meter) will be paid.

Backfill of undercut areas not requiring materials of grades higher than common excavation soils will not be paid for separately. Include the cost in the overall bid price submitted.
Any backfill material required by construction procedures to extend outside the MSE Wall volume is considered incidental. Include this cost in the price bid for contract items.

E. Concrete Leveling Pads
Concrete leveling pads, including steps shown in the Plans will not be paid for separately.

F. Cast-in-place Coping A, Cast-in-place Coping B, Precast Coping, Traffic Barrier V, Traffic Barrier H, mounted atop the MSE Wall
These units, complete in place and accepted, will be designated on the Plans and paid for at the Contract Unit Price bid per linear foot (meter) for each type unit.

G. Dewatering
No separate payment will be made for dewatering. Include the cost of dewatering in the price bid for special embankment backfill.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 627</th>
<th>MSE wall face, wall No. ___0 -10 ft (0 -3 m)</th>
<th>Per square foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 627</td>
<td>MSE wall face, wall No. ___>10 -20 ft (3 -6 m)</td>
<td>Per square foot (meter)</td>
</tr>
<tr>
<td>Item No. 627</td>
<td>MSE wall face, wall No. ___>20- 30 ft (6 -9 m)</td>
<td>Per square foot (meter)</td>
</tr>
<tr>
<td>Item No. 627</td>
<td>MSE wall face, wall No. ___>30 ft (6 -9 m)</td>
<td>Per square foot (meter)</td>
</tr>
<tr>
<td>Item No. 627</td>
<td>Coping, A, wall No. ___</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 627</td>
<td>Coping, B, wall No. ___</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 627</td>
<td>Traffic barrier, H, wall No. ___</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 627</td>
<td>Traffic barrier, V, wall No. ___</td>
<td>Per cubic yard (meter)</td>
</tr>
<tr>
<td>Item No. 627</td>
<td>Additional MSE backfill</td>
<td>Per cubic yard (meter)</td>
</tr>
</tbody>
</table>

627.5.01 Adjustments
General Provisions 101 through 150.

Section 631—Permanent Changeable Message Signs

631.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 632—Portable Changeable Message Signs

632.1 General Description
This work includes furnishing, maintaining, transporting, and using Portable Changeable Message Signs according to these Specifications at locations shown on the Plans, in the Special Provisions, or as directed by the Engineer.

632.1.01 Definitions
General Provisions 101 through 150.

632.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 MUTCD
 NCHRP 350
 QPL 82

632.1.03 Submittals
General Provisions 101 through 150.

632.2 Materials
General Provisions 101 through 150.

632.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

632.3 Construction Requirements

632.3.01 Personnel
General Provisions 101 through 150.

632.3.02 Equipment
Ensure Portable Changeable Message Sign (PCMS) equipment meets the following requirements:

 A. PCMS meet the minimum requirements of the MUTCD.
 B. PCMS are listed on QPL 82 as maintained by the Office of Materials and Research or have a letter of approval from the Office of Materials and Research before the sign is used on any portion of the work.
 C. PCMS that remain the property of the Contractor may be either new or used provided the PCMS meets the requirements of this Subsection.
 D. The message displayed on the sign is visible for one-half mile (800 m) and legible for not less than 650 ft (198 m) during both daytime and nighttime operation.
 E. The sign is capable of presenting three lines of message copy.
 F. Each line is capable of displaying eight (8) characters in various alpha, numeric, and alphanumeric combinations.
 G. In addition to the alphanumeric combinations, the signs include the capability to display directional arrow messages. A PCMS may be used as an arrow board display panel provided the PCMS meets the size and display requirement of a Type C panel as defined by the MUTCD.
 H. The sign is capable of displaying at least three messages sequentially.
 I. The entire message cycle is readable at least twice by the motorists when traveling at the posted speed limit.
 J. Messages are displayed in preferably one phase but no more than two phases. The use of a message that requires more than two phases to convey the message shall have the prior approval of the Engineer.
 K. The legend for each line of the message board is a minimum of 17 in. (430 mm) in height, single stroke, and proportionally spaced.
 L. The bottom of the sign face is 7 ft. (2.1 m) from the ground when operating.
 M. The complete message sign unit is designed and certified to operate in ambient air temperatures ranging from −20 °F (-29 °C) to 140 °F (60 °C). The sign unit and its operation is not affected by adverse weather conditions.
 N. The sign is capable of operating for twenty-four (24) hours a day for two weeks continuously without interruption of service and without the need for auxiliary power sources. Power sources requiring the use of fuel have sufficient storage capacity for forty-eight (48) hours of continuous operation without refueling.
 O. The message board has a dark background with lamps, discs, light emitting diodes (LED’s), or other approved illumination for displaying the message.
 1. The light source does not alter the yellow color for flip-disc type signs or change the appearance of the background.
2. The message board is shielded or shaded from direct sunlight to insure readability of the message.
3. The sign has both automatic and manual dimming capabilities for the light sources to maintain proper intensity for day and night operation.

P. The controller is mounted in a lockable, weatherproof cabinet secured to the trailer and easily removed for service via plug-in connections.

Q. The entire sign is shielded from interference from mobile radio and cell phone transmissions

R. The PCMS has the following programmed as permanent messages:
 1) /KEEP/RIGHT/ /
 2) /KEEP/LEFT/ /
 3) /TWO WAY/ TRAFFIC/AHEAD/
 4) /ONE LANE/BRIDGE/AHEAD/
 5) /MERGING/TRAFFIC/AHEAD/
 6) /HEAVY/TRAFFIC/AHEAD/
 7) /BUMP/AHEAD/ /
 8) /PAINT/CREW/AHEAD/
 9) /LOOSE/GRAVEL/AHEAD/
 10) /SURVEY/PARTY/AHEAD/
 11) /ICY/BRIDGE/AHEAD/
 12) /ROUGH/ROAD/AHEAD/
 13) /DO/NOT/PASS/
 14) /LOW/SOFT/SHOULDER/ /
 15) /SHOULDER/DROPOFF/ /
 16) VEHICLES/CROSSING/ROADWAY/
 17) /DETOUR/AHEAD/ /
 18) /MERGE/RIGHT/AHEAD/
 19) /MERGE/LEFT/AHEAD/
 20) /TRAFFIC/ACCIDENT/AHEAD/
 21) /TRAFFIC/SLOWS/AHEAD/
 22) /ROAD/NARROWS/AHEAD/
 23) /LEFT/LANE/NARROWS/
 24) /RIGHT/LANE/NARROWS/
 25) /LANE/NARROWS/AHEAD/
 26) /LEFT/LANE/ /
 27) /RIGHT/LANE/ /
 28) /LEFT/SHOULDER/ /
 29) /RIGHT/SHOULDER/ /
 30) /CLOSED/AHEAD/ /

S. The PCMS is capable of having at least eighty (80) additional messages added to the above list of permanent messages and has the capacity to create at least one-hundred (100) additional messages in the field by use of the controller.

T. The PCMS is capable of being pre-programmed to automatically change to any pre-selected default message should any component on the sign fail.

U. The PCMS is entirely mounted on a trailer that meets all of the requirements of the Georgia Vehicle Code. Additional trailer requirements:
 1. The trailer and the components of the sign is designed to allow one person to perform all transporting and operating functions without assistance.
 2. The trailer is designed for unlimited on-highway travel at 70 mph (110 kph).
3. The trailer has a minimum of four outrigger type leveling jacks, one at each corner of the trailer deck.
4. The jacks are mounted to allow them to swivel into a locked position for secure storage during travel.
5. The trailer and all mounted equipment are structurally adequate for unlimited normal operation in wind velocities up to 80 mph (130 kph).

632.3.03 Preparation
General Provisions 101 through 150.

632.3.04 Fabrication
General Provisions 101 through 150.

632.3.05 Construction

A. Utilization Requirements
1. When set up as a Pay Item in the Contract, utilize PCMS whenever any condition(s) exists that would require extra emphasis in warning motorists of a situation or at any location as directed by the Engineer. Furnish PCMS and have them available on a continuous basis.
2. Use PCMS on Interstate and multi-lane highways when any of these conditions exist:
 a. Workers or equipment operating with in 2 ft. (600 mm) of a travel lane without appropriate traffic control devices for positive barrier protection.
 b. Excavation or other construction creates drop-offs adjacent to the edge of a travel lane and channelization devices are placed within the travel lane that is adjacent to the drop-off.
 c. Material hauling in or out of a travel lane by hauling vehicles requires traffic to slow in the temporary traffic control zone.
 d. Traffic is delayed by pacing all lanes for short periods of time for placing bridge beams, overhead sign structures, blasting, etc.
 e. Any time that divided highway traffic is required to operate as two-way traffic condition and traffic is not separated by a positive barrier system.
3. Use PCMS on all other types of roadways according to the traffic control plan or as directed by the Engineer.
4. Locate the PCMS near the construction activity and display a message that is both concise and meaningful. Obtain the Engineer’s approval for messages used on the PCMS.
5. Include the location of the PCMS and any message to be displayed on the PCMS in the approved traffic control plan required in Section 150-Traffic Control.
6. For emergency situations, PCMS that are smaller in size and do not have all of the capabilities outlined in this Specification, may be used until a PCMS that meets these requirements can be located and placed in operation at the site.
 The Engineer will determine when conditions and situations are to be considered emergencies and will regulate the length of time that non-specification PCMS may be used.
 Provide the Engineer written notification when non-specification PCMS signs are in use on the work.

B. PCMS Phase Messages
1. The first phase directs the motorist to take a specific action, such as MERGE/RIGHT, KEEP/RIGHT, OR REDUCE / SPEED.
2. The second phase, if necessary, is used to inform the motorist of road conditions such as LEFT/LANE/CLOSED; LANE/NARROWS/AHEAD; WATER/IN/ROAD; SHOULDER/DROP OFF; TRUCKS/IN AND/OUT.
3. Do not use messages such as USE/CAUTION; HAZARD/AHEAD; or DANGER which are confusing and give no guidance to the motorist. Also, do not use messages such as BUCKLE/UP or DRIVE/SAFELY which diminish the impact of important and relevant messages.

C. Protection
1. Unless a PCMS is protected by positive barrier such as guardrail or temporary concrete median barrier, place a minimum of three (3) drums on the approaching traffic side of the PCMS to delineate the base of the sign.
2. Remove PCMS from the roadway when not in use unless the sign is located a minimum of 34 ft. (10.4 m) from the edge of the travelway or protected by positive barrier. When a PCMS is not displaying a message, turn the message panel away from the approaching traffic.

632.3.06 Quality Acceptance
General Provisions 101 through 150.
632.3.07 Contractor Warranty and Maintenance
Keep the units in good repair and neat and clean in appearance. If the unit fails, malfunctions, or is damaged, immediately repair the unit and furnish flaggers or other approved means to safely control the traffic until the units are back in service. Make repairs or replace the unit within 24 hours. Maintenance also includes periodically cleaning the units.

632.4 Measurement
Changeable message signs, complete with trailer and generating equipment are measured by the unit.

632.4.01 Limits
General Provisions 101 through 150.

632.5 Payment
Changeable message signs, complete with appurtenances, will be paid for at the Contract Unit Price Per Each. Payment is full compensation for furnishing, using, and maintaining the signs for the duration of The Work. Each PCMS will be paid for only one time. The PCMS will remain the property of the Contractor.

Payment will be made under:

| Item No. 632 | Changeable message sign, portable, type3 | Per each |

632.5.01 Adjustments
General Provisions 101 through 150.

Section 633—Modification of Existing Signs

633.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 634—Monuments and Road Markers

634.1 General Description
This work includes furnishing and erecting monuments, name plaques—special design, county line markers, and right-of-way markers.

634.1.01 Definitions
General Provisions 101 through 150.

634.1.02 Related References
A. Standard Specifications
 Section 500—Concrete Structures
B. Referenced Documents
 General Provisions 101 through 150.

634.1.03 Submittals
General Provisions 101 through 150.

634.2 Materials
Ensure that concrete is Class A or a mix approved by the Engineer that provides a cement factor of at least 5.85 CWT/yd³ (347 kg/m³) of concrete. Use a test specimen cut from a monument or marker using the proposed concrete design and manufacturing method to prove the concrete meets a compressive strength of at least 2,000 psi (14 MPa) at 7 days.

Ensure that concrete is reinforced, free of honeycomb, has uniform surfaces, and meets the applicable requirements of Section 500.

All other materials used will be those specified on the Plans or in the Proposal.
634.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

634.3 Construction Requirements

634.3.01 Personnel
General Provisions 101 through 150.

634.3.02 Equipment
General Provisions 101 through 150.

634.3.03 Preparation
General Provisions 101 through 150.

634.3.04 Fabrication
General Provisions 101 through 150.

634.3.05 Construction
Set the monuments and road markers in the ground to the depth shown on the Plans.

Use backfilling material of selected earth or gravel. Carefully tamp it in place so that the monument is stable and secure, when completed. Use a level to set it plumb in all directions.

Attach Name Plaques—Special Design to bridge end posts as shown on the Plans.

634.3.06 Quality Acceptance
General Provisions 101 through 150.

634.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

634.4 Measurement
The quantity to be paid for under this Item is the actual number of monuments, name plaques—special designs, road markers, Right-of-Way markers, and county line markers placed, completed, and accepted.

634.4.01 Limits
General Provisions 101 through 150.

634.5 Payment
These Items will be paid for at the price bid for each, complete in place.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 634</th>
<th>Description</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monuments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right-of-Way markers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>County line markers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name plaques—special design</td>
<td></td>
</tr>
</tbody>
</table>

634.5.01 Adjustments
General Provisions 101 through 150.

Section 635—Barricades

635.1 General Description
This work includes furnishing, installing, and maintaining timber barricade panels of the types called for on the Plans.
635.1.01 Definitions
General Provisions 101 through 150.

635.1.02 Related References
A. Standard Specifications
 Section 860—Lumber and Timber
 Section 862—Wood Posts and Bracing
 Section 863—Preservative Treatment of Timber Products
 Section 870—Paint
 Section 913—Reflectorizing Materials
MUTCD

B. Referenced Documents
 General Provisions 101 through 150.

635.1.03 Submittals
General Provisions 101 through 150.

635.2 Materials
Ensure that the materials conform to these Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumber</td>
<td>860.2.01</td>
</tr>
<tr>
<td>Posts</td>
<td>862.2.02</td>
</tr>
<tr>
<td>Preservative Treatment of Timber Products</td>
<td>863</td>
</tr>
<tr>
<td>Paint for Timber</td>
<td>870.2.04</td>
</tr>
<tr>
<td>Reflective Sheeting</td>
<td>913.2.01</td>
</tr>
</tbody>
</table>

635.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

635.3 Construction Requirements

635.3.01 Personnel
General Provisions 101 through 150.

635.3.02 Equipment
General Provisions 101 through 150. Ensure that barricades meet the requirements of Section 3F.01 of the MUTCD.

635.3.03 Preparation
General Provisions 101 through 150.

635.3.04 Fabrication
General Provisions 101 through 150.

635.3.05 Construction
Use timber barricades to warn and alert drivers of the terminus of a road, street, or highway in a nonconstruction or nonmaintenance area. Install timber barricades where called for on the Plans or directed by the Engineer.

Ensure that the barricade rails are marked with alternate red and white stripes sloping downward at an angle of 45 degrees in the direction traffic is to pass. If the traffic may turn right or left, have the stripes slope downward in both directions from the center of the barricade.

Make the entire red-and-white striped area of retroreflectorized sheeting meeting Subsection 913.2.01. Other barricade components shall be white.
635.3.06

Ensure that the barricade has three rails as long as specified on the Plans.
Promptly clean, repair, or replace barricades that are damaged, defaced, or otherwise unfit at the Contractor’s expense.

635.3.06 Quality Acceptance
General Provisions 101 through 150.

635.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

635.4 Measurement
Barricades are measured for payment by the overall length of the barricade, complete in place and accepted.

635.4.01 Limits
General Provisions 101 through 150.

635.5 Payment
Barricades as measured above will be paid for at the Contract Unit Price per linear foot (meter) of barricade. Payment is full compensation for furnishing materials, erecting the barricades, and maintaining them until Final Acceptance.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 635</th>
<th>Barricades</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
</table>

635.5.01 Adjustments
General Provisions 101 through 150.

Section 636—Highway Signs

636.1 General Description
This work includes fabricating and installing highway signs according to the details on the Plans and the Manual on Uniform Traffic Control Devices.

636.1.01 Definitions
General Provisions 101 through 150.

636.1.02 Related References
A. Standard Specifications
 Section 500—Concrete Structures
 Section 830—Portland Cement
 Section 855—Steel Pile
 Section 870—Paint
 Section 910—Sign Fabrication
 Section 911—Sign Posts
 Section 912—Sign Blanks and Panels
 Section 913—Reflectorizing Materials
 Section 914—Sign Paint
 Section 915—Mast Arm Assemblies
 Section 916—Delineators
 Section 917—Reflective and Nonreflective Characters
B. Referenced Documents
 Manual on Uniform Traffic Control Devices

636.1.03 Submittals
Before fabricating overhead panel type signs, submit to the Engineer the Shop Drawings to approve the sign bracing and method of attaching to sign supports.

Before driving piles, furnish a list of proposed pile lengths to the Engineer.

636.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign Fabrication and Accessories</td>
<td>910</td>
</tr>
<tr>
<td>Steel Sign Posts and Bolts (Drive Type)</td>
<td>911.2.01</td>
</tr>
<tr>
<td>Galvanized Steel Structural Shape Posts</td>
<td>911.2.02</td>
</tr>
<tr>
<td>Delineator Posts</td>
<td></td>
</tr>
<tr>
<td>Galvanized Steel</td>
<td>911.2.04.A.4</td>
</tr>
<tr>
<td>Aluminum "U" Flange</td>
<td>911.2.04.A.5</td>
</tr>
<tr>
<td>Wood</td>
<td>911.2.04.A.6</td>
</tr>
<tr>
<td>Flexible</td>
<td>911.2.04.A.7</td>
</tr>
<tr>
<td>Aluminum Sign Blanks</td>
<td>912.2.01</td>
</tr>
<tr>
<td>Extruded Aluminum Sign Panels</td>
<td>912.2.02</td>
</tr>
<tr>
<td>Reflective Sheeting</td>
<td>913.2.01</td>
</tr>
<tr>
<td>Silk Screen Lettering Paint</td>
<td>914.2.01</td>
</tr>
<tr>
<td>Steel Posts and Arms for Mast Arm Assembly</td>
<td>915.2.01</td>
</tr>
<tr>
<td>Guy Wires for Mast Arm Assembly</td>
<td>915.2.02</td>
</tr>
<tr>
<td>Center Mount Reflector</td>
<td>916.2.01</td>
</tr>
<tr>
<td>Demountable Characters with Reflective Sheeting</td>
<td>917.2.01</td>
</tr>
<tr>
<td>Fittings, bolts, nuts, washers, clips, molding, etc., for panel signs shall conform to the requirements shown on the Plans.</td>
<td></td>
</tr>
</tbody>
</table>

Class A Concrete Footings for Signs | 500 |

Piling | 855.2.03 |

Portland Cement | 830.2.01 |

Sign Paint, Enamel | 870.2.03 |

636.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

636.3 Construction Requirements

636.3.01 Personnel
General Provisions 101 through 150.

636.3.02 Equipment
General Provisions 101 through 150.

636.3.03 Preparation
General Provisions 101 through 150.
636.3.04 Fabrication
General Provisions 101 through 150.

636.3.05 Construction
A. Finished Signs
 Ensure that the finished signs are clear cut and that the lines of letters and details are true, regular, and free of waviness, unevenness, furry edges or lines, scaling, cracking, blistering, pitting, dents, or blemishes.
 Only one type of demountable characters (letters, numerals, symbols, and borders) is permitted on special roadside signs on each Project.

B. Erecting the Signs
 1. Drive Type Posts
 Drive type posts may be driven in place or placed in prepared holes.
 a. Use driven posts only in firm and stable soil. If the soil is sandy or unstable, place each drive type post in a prepared dry hole of at least a 4 in (100 mm) diameter.
 b. When placing posts in prepared holes:
 1) Backfill the holes with a mixture of damp, clean friable soil and 8 percent by volume Portland cement.
 2) Thoroughly tamp the mixture in place around the posts.
 c. Erect posts vertically as deep and at an angle to the roadway as shown on the Plans or as directed.
 d. Do not penetrate posts in the coastal plain region less than 4 ft (1.2 m) or 3 ft (1 m) for posts in the Piedmont and the Valley and Ridge Regions when no guard rail is present.
 When erecting signs behind a guard rail, penetrate at least 3 ft (1 m) for posts 14 ft (4.2 m) or less long, or 4 ft (1.2 m) for posts over 14 ft (4.2 m) long.
 2. Single-Plate Signs
 Erect single-plate signs 9 ft² (0.84 m²) or less on one drive-type post unless otherwise specified on the Plans.
 Erect single-plate signs greater than 9 ft² (0.84 m²) on two drive-type posts.
 Leave enough distance between the two posts to fit the mounting holes in the sign plate.
 3. Steel Posts for Mast Arm Assemblies
 a. Erect steel posts for mast arm assemblies in a concrete foundation according to the Plans. Erect at the place, height, and angle to the roadway specified.
 b. After curing the concrete foundation for at least 24 hours, securely fasten the specified signs into place on the mast arm.
 4. Ground-Mounted Panel-Type Signs
 a. Erect the supporting members of ground-mounted panel-type signs where shown on the Plans or as directed by the Engineer at the specified angle to the roadway.
 b. Securely fasten the panels into place.
 5. Milepost Signs
 Erect milepost signs including posts as specified on the Plans.
 6. Delineator Posts
 Use delineator posts made of galvanized steel, aluminum, or an alloy that conforms to the requirements of Subsection 911.2.04.A.4 or 911.2.04.A.5.
 a. Erect the posts where shown on the Plans.
 b. Mount reflectors for galvanized steel or aluminum posts on the flange side of the post.
 c. When signs are attached to supports, torque the bolts to at least 20 ft-lbs (27 N•m).
7. Overhead Panel-Type Signs
 Erect overhead panel type signs on sign supports where shown on the Plans or as directed by the Engineer.
 a. Ensure that the bottom of the sign is 18 in (450 mm) above the top of the lighting fixture.
 b. Ensure that the sign has ample bracing for mounting the sign support so that each sign can withstand 1 in (25 mm) of ice accumulated on the entire sign and wind pressures shown on the Plans.
 c. Ensure that the top of each sign is three degrees off perpendicular from the bottom of the sign. Use the three-degree slant to lean the sign toward the approaching traffic.

C. Foundations (for Special Roadside Signs)
 Do not disturb the natural ground adjacent to a foundation more than necessary to construct the footing.
 1. Excavate for the footings to the lines and elevations shown on the Plans or established by the Engineer. Do not disturb or loosen the foundation below these elevations.
 2. Use forms of the necessary shape and dimensions to construct the footings to the lines and elevations shown on the Plans.
 3. Cure the concrete foundations, constructed in conformance with Section 500 and the Plan details, at least 7 days before erecting the sign.
 4. Ensure that the minimum lengths of steel H piling used in the foundations of ground-mounting signs are accepted and meet the Plan penetration requirements.
 The Plan quantity of steel H piling is shown for estimating purposes only; determine and provide the necessary lengths of piles.
 5. Before driving the piles, furnish a list of proposed pile lengths to the Engineer.
 a. Use full-length piles or built-up piles with a maximum of two splices that are made in the presence of the Engineer.
 b. Furnish satisfactory identification for all piles or portions thereof.
 6. When rock prevents the penetration required on the Plans, construct according to the notes and details shown on the Plans.
 7. The minimum energy ratings required by Section 520 for pile hammers will be waived for constructing ground-mounted sign supports. Jetting is not permitted.
 8. Place required backfilling in layers no greater than 6 in (150 mm) thick and thoroughly compact it to the approximate density of the undisturbed soil in the area.

D. Sign Panels
 Use extruded, panel-type aluminum. Ensure that the sign type used meets the requirements of Subsection 912.2.02.

E. Legends and Borders
 Place legends and borders according to Subsection 917.2.01, “Demountable Characters”, with Type VI reflective sheeting.

636.3.06 Quality Acceptance
General Provisions 101 through 150.

636.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

636.4 Measurement
A. Type-1 or Type-2 Highway Signs
 Type 1 or Type 2 highway signs with reflective sheeting of Type III, IV, or VI as specified on the Plans to be paid for are measured for payment by the actual number of square feet (meters) and fraction thereof of sign type and sheeting specified. The measurement includes providing the message and furnishing and placing signs complete and accepted. The Plan quantity will be the pay quantity.

B. Extruded Aluminum Panels
 Extruded aluminum panels to be paid for are the number of square feet (meters) or portion of square feet (meters) furnished, including legend components, border material, fittings, nuts, washers, clamps, molding, etc., furnished, erected, completed, and accepted.
C. Galvanized Steel Posts

Galvanized steel posts, types 1, 2, 3, 4, 5, 6, 7, or 8 to be paid for are the actual number of linear feet (meters) and fraction thereof of the type specified, furnished, erected, completed, and accepted.

Galvanized steel to be paid for is the number of pounds (kilograms) furnished, erected, and accepted. Weights are computed from theoretical weights listed in the Plans for each post size. Base plates, connections, anchors, stub post, etc., are not measured for payment but are considered incidental to the Item.

D. Delineators

Delineators (reflectorized guide markers) to be paid for are the number of the type specified, including posts, rivets, and spacers, that are furnished, placed, and completed and accepted.

E. Mast Arm Assemblies

Mast arm assemblies to be paid for are the actual number furnished and erected, including concrete footing, sign, and post, completed and accepted.

F. Special Roadside Signs

Class A concrete for special roadside signs to be paid for are measured by the cubic yard (meter), neat measurement according to Section 500.5 “Payment.” No deductions are made for the volume of concrete displaced by steel piling, anchor bolts, or posts.

G. Portland Cement

Portland cement stabilized material used for backfilling holes is not measured for payment.

H. Steel H—Piling

Steel H—piling is measured for payment by the linear foot (meter) of accepted piling in place (signs), remaining in the completed work.

636.4.01 Limits

General Provisions 101 through 150.

636.5 Payment

Highway signs, galvanized steel posts, I-beam posts, delineators, mast arm assemblies, Class A concrete, and piling for signs are paid for at the Contract Unit Price for the various items. Payment is full compensation for furnishing and erecting the Item complete in place according to this Specification.

Separate payment will not be made for piling splices, the cost of cutting, or the cutoff portions. Pile cutoffs remain the Contractor’s property.

Piles eliminated due to authorized revisions will be paid for according to Subsection 109.06, “Eliminated Items.” These piles become Departmental property. Except for the above provision, no payment will be made for piles delivered to the Project that are not used in the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 636</th>
<th>Description</th>
<th>Unit of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 636</td>
<td>Highway signs, type 1 material, reflective sheeting type ___</td>
<td>Per square foot (meter)</td>
</tr>
<tr>
<td>Item No. 636</td>
<td>Highway signs, type 2 material, reflective sheeting type ___</td>
<td>Per square foot (meter)</td>
</tr>
<tr>
<td>Item No. 636</td>
<td>Galvanized steel posts, type ___</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 636</td>
<td>Galvanized steel structural shape posts</td>
<td>Per pound (kilogram)</td>
</tr>
<tr>
<td>Item No. 636</td>
<td>Highway signs, aluminum extruded panels, reflective sheeting type ___</td>
<td>Per square foot (meter)</td>
</tr>
<tr>
<td>Item No. 636</td>
<td>Plastic Flexible Delineator, type ___</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 636</td>
<td>Delineator, Type ___</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 636</td>
<td>Piling in place, signs, steel H, HP 12×53 (HP 310×79)</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

636.5.01 Adjustments

General Provisions 101 through 150.
Section 637—Illuminated Sign System

637.1 General Description
This Specification describes the complete sign illumination system. Complete a secure installation according to the recommendations of the American Association of State Highway and Transportation Officials (AASHTO), the Illuminating Engineering Society, the standards of the National Electrical Code, and the applicable local ordinances.

For temporary overhead guide sign structures, except wire-supported signs, light the signs as soon as they are erected. Keep them lit during darkness until the temporary sign is no longer required.

The cost of temporary signs and electrical energy are included in the price bid for Section 150 when shown in the Proposal as a Pay Item. Otherwise, payment is as shown in Section 150. Ensure that illumination complies with Subsection 637.3.05.H, “Externally Illuminated Signs.”

637.1.01 Definitions
The terms “cable” and “wire” are used synonymously in this Specification.

637.1.02 Related References
A. Standard Specifications Section
 150—Traffic Control Section
 500—Concrete Structures Section
 636—Highway Signs
 Section 638—Structural Supports for Overhead Signs
 Section 863—Preservative Treatment of Timber Products
 Section 911—Sign Posts
 Section 923—Electrical Conduit
B. Referenced Documents
 NEC Section 370-18(c) in conjunction with NEC Section 250-42
 ANSI C 80.1
 EEI/NEMA publications

637.1.03 Submittals
Before purchasing materials or equipment, submit to the Engineer for approval a complete list of the products proposed for use. On the list, show the manufacturer’s name and catalog number of each item to ensure compliance with the requirements of these Specifications. Include in this submittal the calculations or computer printouts for sign illumination and uniformity values.

Submit voltage drop calculations for each circuit to verify that proper voltage is furnished to the sign luminaires. Provide alternate equipment or a sample board to be activated for in-service evaluation, when the Engineer requires.

637.2 Materials
A. General Requirements
 Have electrical material approved by the Underwriter’s Laboratory or other acceptable testing agency. Provide the fittings, devices, materials, and Work to install the complete functional system. Use methods that comply with local ordinances, rules, and regulations. See Section 636 and Section 638.

B. Power Supply and Wiring
 Use cable and wire of sufficient size to safely carry the capacity intended and to prevent the voltage from dropping more than 5 percent from the service point to the farthest light.
 1. Determine Cable and Wire Sizes
 If the cable size is not specified on the Plans, determine the safe size after studying the Plans and Specifications.
Wire and cable sizes as indicated below are for copper. Do not use aluminum wire unless otherwise noted on the Plans.

Acceptable copper cable and wire sizes (commercial) are as follows:

<table>
<thead>
<tr>
<th>Wire Size</th>
<th>Number of Strands</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 2/0 AWG</td>
<td>19 strand</td>
</tr>
<tr>
<td>No. 1/0 AWG</td>
<td>19 strand</td>
</tr>
<tr>
<td>No. 2 AWG</td>
<td>7 strand</td>
</tr>
<tr>
<td>No. 4 AWG</td>
<td>7 strand</td>
</tr>
<tr>
<td>No. 6 AWG</td>
<td>7 strand</td>
</tr>
</tbody>
</table>

Use smaller wire sizes (No. 10 AWG minimum) on the sign structure only if it is adequately protected with fuses inside the handhole of the structural support. Ensure that the fuse rating is the same as the ampere rating of the wire, such as 30 A for No. 10 AWG wire.

Do not reduce the wire size to a size that carries more than 80 percent of its rated amperage. If the number of luminaires on the sign structure is too many for No. 10 AWG wire, run two separate circuits from the base of the structural support to the luminaires. Fuse each of these separate circuits at the handhole of the sign structure.

2. Insulate Wire and Cable

The neutral/ground wire shall have white insulation or mark it with strips of white tape at each access point. On the cable installed underground, use 600 V, type RHH/RHW/USE, 75 °C insulation. On the cable installed on the sign structure and connected to the luminaires, use 600 V, type RHH, XHHW, or THHN, 90 °C insulation. Install a waterproof boot, furnished by the fuseholder manufacturer, over each end of the fuseholder.

C. Power Control

When noted on the Plans, furnish and install a lighting contactor and a photoelectric control, complete with receptacle and accessories. Mount the photoelectric control near the top of the service pole so that it is exposed to the north sky. The control shall provide ON operation as shown in Subsection 637.2.I. “Photoelectric Controls.”

D. Grounding Rods

Use ground rods 5/8 in (16 mm) in diameter (± 1/16 in [± 1.6 mm]) and 8 ft (2.4 m) long unless otherwise specified on the Plans. Use ground rods that are galvanized steel. Ensure that the galvanization coating is at least 2 ounces/ft² (610 g/m²) according to the requirements of ASTM A 153/A 153 M.

E. Conduit

Use conduit approved by the Underwriters’ Laboratories, Inc.

1. Rigid Steel Conduit

Use rigid steel conduit, including elbows and couplings, that conforms to American National Standards Institute Specification C 80.1.

 a. Protect rigid steel conduit by a uniform metallic zinc coating on the exterior and interior surfaces.
 b. Ensure that the conduit and coupling are galvanized at least 1.24 ounces/ft² (380 g/m²) (total of both surfaces).
 c. Determine the weight of the zinc coating according to ASTM A 90. If the Engineer elects, determine the thickness of the zinc coating by using a magnetic or electromagnetic thickness gage.

2. Nonmetallic Conduit

Unless otherwise noted, use Type II, schedule 40 (heavy wall) polyvinyl chloride (unplasticized) nonmetallic conduit that conforms to Subsection 923.2.02.

3. Flexible Conduit

Ensure that the flexible conduit consists of a galvanized steel core and a polyvinyl chloride cover. Ensure that it contains a continuous copper ground and is liquid tight.

F. Circuit Breakers

Use quick-make and quick-break circuit breakers with a thermal magnetic molded case.

Use circuit breakers with the following characteristics:

 - Over-the-center, toggle operating type with the handle positioned between ON and OFF to indicate automatic tripping
• Single handle and common trip multi-pole breakers
• Multi-pole breakers with a voltage rating 240 V or more from line to ground
• Bolt-on type with industrial rating and a minimum interrupting capacity of 10,000 RMS symmetrical amperes
• Lugs large enough to accommodate the cable used
• Lockable, weatherproof enclosure

G. Fuses and Fuseholders

Use fuses with the appropriate ampere rating and voltage rating for the operating voltage.
Use in-the-line and waterproof fuseholders.

H. Lightning Arresters

Use metal oxide varistor lightning arresters rated 650 V with the number of required poles unless otherwise specified.
Provide a pole for each ungrounded leg of the service voltage.

I. Photoelectric Controls

Ensure that the photoelectric controls have a factory setting for turn-on at 1.5 foot-candles (16.1 lx) ambient light level.
Provide controls with a differential between turn-on and turn-off levels to prevent cycling at critical levels.

Use controls that meet these requirements:
• Operates on a supply voltage of 105 V to 130 V, 50/60 Hz, AC with an in rush rating of 120 A at 120 V and a lamp load rating of 1,000 W for incandescent and 1,800 V amperes for mercury vapor and fluorescent
• Contains built-in surge and lightning protection
• Has a rated life at full load of at least 5,000 on-off operations
• Withstands an ambient temperature range of -65 °F to 158 °F (-54 °C to 70 °C) and is moisture proof

Provide single-pole, single-throw (SPST), normally closed (NC) relay contacts. Ensure that the dielectric strength is at least 5,000 V between a current carrying part and the metal mounting surface.
The housing shall be approximately 2.25 in (57 mm) high with a base diameter of no more than 3.25 in. (83 mm).
The chassis shall be molded phenolic with three locking type blades and a neoprene gasket that conforms to EEI/NEMA publications. Mount the photoelectric control on an approved receptacle.

J. Lighting Control

Use lighting contactors specifically designed for use on tungsten and ballast (fluorescent and high-intensity discharge) lamp loads without derating. Use a contactor with these characteristics:
• The number of poles required to open each ungrounded conductor
• Lugs large enough to accommodate the cable used
• Lockable, weatherproof enclosure

K. Luminaires and Lamps

Use 400 W mercury luminaires with H 33-GL-400/DX lamps and a box-type configuration, unless otherwise specified.
Mount on horizontal luminaire support channels.

Ensure that the luminaire contains:
• Integral regulator ballast and a prewired terminal board to connect the supply voltage
• Conduit openings on each side for through wiring
• Rain-tight housing made of aluminum with baked-on enamel finish
• Noncorrosive hardware
• Seals or gaskets at critical points to form a weathertight, breathing seal.
• Porcelain enclosed mogul socket, with spring loaded center contact and lamp grips, attached to ensure proper lamp positioning
• Lamp support on the end opposite from the socket to prevent the lamp from breaking from vibration
Highly polished anodic-surfaced aluminum reflector and a removable, stippled, heat and shock tempered glass refractor

- Integral hinge system for the door that must be in a specified position to remove the door
- Detachable locking brace to hold the door open during maintenance
- Heavy-duty spring loaded latch on the front of the luminaire that produces a watertight seal between the door and housing when closed

Ensure that the luminaire support framework is designed to withstand wind and 1 in (25 mm) of ice accumulated on the entire framework as shown on the Plans.

Ensure that lamps are 400 W deluxe white mercury vapor and have 24,000 hours rated life at 10 hours per start.

L. Ballasts

- Use regulator-type ballast that provides rated lamp watts to the lamp through a range in primary voltage of plus or minus 10 percent.
- Use high-power ballasts with a power factor of at least 0.90 and enough open circuit voltage to start lamps at a temperature as low as -20 °F (-29 °C). Enclose ballasts for external or cabinet mounting in an epoxy-encapsulated covering.

637.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

637.3 Construction Requirements

637.3.01 Personnel
A. Contractor Requirements

- The person performing this work must be on the Department list of approved electrical contractors or electrical subcontractors.

B. Qualified Electrician

- A qualified electrician has a Class II license issued by the Georgia State Construction Industry Licensing Board, has completed an approved four-year apprenticeship training program, and is classified as a Journeyman Electrician. The qualified electrician shall show evidence of this classification to the Department Engineer in charge of the Construction. For further definition, see Subsection 755.1.01.

- Always have a qualified electrician on the job site when pulling electrical wiring or making electrical connections.

637.3.02 Equipment
General Provisions 101 through 150.

637.3.03 Preparation
General Provisions 101 through 150.

637.3.04 Fabrication
A. Pull and Junction Boxes

- Construct pull and junction boxes installed in the ground according to the design and dimensions, and at the locations shown on the Plans. Use a type approved by the Engineer.
 1. Construct concrete boxes of Class A concrete meeting the requirements of Section 500, including precast concrete boxes.
 - Manufactured units are permitted when the Engineer determines that they are equal in design, quality, and structural strength.
 2. Provide cast iron, steel, or reinforced concrete covers as shown on the Plans for each pull or junction box.
 3. Provide a drainage system for each ground-mounted box to keep water from accumulating inside the box.
 4. Ground cast iron or steel covers used on electrical junction boxes or pull boxes as required by NEC Section 370-18(c) in conjunction with NEC Section 250-42.
 5. Ensure that the pull and junction boxes mounted on bridges and the sign structure are waterproof, galvanized steel, stainless steel, or cast aluminum and conform to NEC requirements.
6. Seal conduit entrance holes in pull or junction boxes around the conduit to the Engineer’s satisfaction.
7. Blank off unused entrance holes and openings for conduit to be extended by other Contractors with suitable plugs of plastic, bituminous fiber, or other approved material to prevent foreign matter from entering.

637.3.05 Construction

A. Fees and Permits

Pay the fees and permits required by power companies or governmental agencies.
Notify the power company at least 30 days before the power source connection is needed.

B. Power Supply and Wiring

Use a power supply of 120/240 V, 3-wire, single phase, with a supply point where the Department and the serving electric utility determine, unless otherwise noted. The supply point is usually near the right-of-way line near the sign location.

The sign lighting pay Unit includes setting a wooden service pole that meets the requirements of Section 863 near the edge of the right-of-way to receive the service from the utility company, unless otherwise indicated. Use at least a 30 ft (9 m) Class 5 pole or as shown on the Plans.

1. Install the metallic service riser with a weatherhead on the service pole and a weatherproof housing containing circuit breakers of the appropriate voltage and ampere rating.
2. When specified on the Plans, install a photoelectric control with the mounting hardware near the top of the service pole and a lighting contactor in a weatherproof housing on the service pole.
3. Ensure that the circuit breaker and lighting contactor have the number of poles required to open each ungrounded conductor.
 Ensure that the circuit breakers and lighting contactors have proper lugs, sized for the cable to be used. Do not cut the cable strands to attach to the circuit breakers or lighting contactors.
4. Install an approved meter base in the service riser when required by the power company or indicated on the Plans.
5. Furnish and install an approved 650 V lightning arrester at the weatherproof enclosure and connect the arrester to the grounding system.
6. Furnish an approved padlock with two keys each for locking the weatherproof housings. Key the padlocks alike if more than one padlock is required on a Project.
7. Enclose the wiring on the sign framework in rigid galvanized steel conduit. Use liquid-tight flexible conduit in transition areas between rigid members. Do not splice cable or wire except in junction boxes.
8. Splice the conductors according to the National Electric Code and the splice manufacturer’s recommendations. Splicing is subject to the Engineer’s approval.
 a. Make splices only in junction boxes and pole bases unless otherwise shown on the Plans.
 b. Make the straight or line splices of conductors the same size with tin-plated copper compression tubular splices.
 c. Splice conductors of different sizes or different terminating directions by using tin-plated copper compression ring tongue terminals on each conductor. Bolt the terminals together with stainless steel or high-strength silicone bronze hardware.
9. Use lock nuts, flange nuts, or lock washers to keep the connection tight. Do not use split bolt connectors.
10. After splicing the conductor, insulate the splice with heat shrinkable tubing coated with adhesive on the inner wall supplied by the manufacturer.
 Select the shrink tube so that when it is applied over the connector it has an insulation thickness equal to or greater than the insulation thickness of the conductor used.
 Ensure that the heat shrinkable tubing is UL listed and meets ANSI C 119.1 (latest edition) requirements for submersible and direct buried splices.
11. When bolting connectors together:
 a. Wrap the bolted connection with cloth tape before applying the heat shrinkable tubing.
 b. Pad the sharp points and edges on splices to prevent the heat shrinkable tubing from splitting during shrinking.
 c. Position the shrink tubing so that at least 3 in (75 mm) of seal length ± 0.05 in (± 13 mm) is established on each side of the splice after the tube is fully recovered.
 d. Ensure that the spliced joints are watertight.
12. Include an approved 650 V lightning arrester inside the handhole of each structural support for illuminated signs.
13. Install in-the-line fuses in each ungrounded conductor inside the handhole of each structural support for illuminated signs.
14. Notify the power company at least 30 days before the connection to the power source is needed.

C. Power Control

The photoelectric control operates the lighting contactor that supplies power to the lighting circuit. If the supply voltage is other than 120/240 V, furnish and install a transformer in a weatherproof enclosure to provide 120 V control voltage.

1. Mount the circuit breaker, lighting contactor, and transformer, if required, in NEMA-3R lockable weatherproof cabinet(s) located on the service pole accessible from the ground.
2. Enclose the wiring to and from the photoelectric control in rigid galvanized conduit.

D. Grounding Rods

Install the grounding rods adjacent to each structural support foundation where the supply voltage enters and adjacent to the service pole.

1. Solidly connect to the grounding conductor the sign framework and metallic, noncurrent carrying materials in the lighting system.
2. Ensure that the neutral/grounding conductor is continuous and is connected to the luminaire housing, the ground rod at each structural support, and the ground rod at the service pole.
3. Drive the single ground rods vertically until the top of the rod is at least 12 in (300 mm) below the finished ground.
4. Use round rod clamps to attach a length of No. 6 AWG, bare solid, soft drawn or medium hard drawn copper ground wire to the ground rod. Connect it to the grounding point on the structural support.

If penetration cannot be obtained in the above manner:

a. Place a ground rod system consisting of 3 parallel ground rods at least 6 ft (1.8 m) center to center in a horizontal pattern and at least 12 in (300 mm) below the finished ground.

b. Join these rods and connect them to the grounding point on the structural support with No. 6 AWG, bare solid, soft drawn, or medium-hard drawn copper ground wire and ground rod clamps.

E. Conduit, Boxes, Fittings, Circuit Breakers, Fuses, Wiring, and Supports

Furnish and install the conduit, boxes, fittings, circuit breakers, fuses, wiring supports, and accessories to complete the work for each circuit as required by the National Electrical Code.

F. Fuses and Fuseholders

Construct and install the fuseholder to retain the fuse on the load side if disconnected or broken apart. Install a waterproof boot, furnished by the fuseholder manufacturer, over each end of the fuseholder.

G. Lightning Arresters

House the lightning arrester in a watertight housing. Encapsulate or seal the lead entrance into the housing.

For units that are not factory sealed, apply silicone caulk to the lead entrance and install heat shrinkable tubing with precoated sealant on the interior surface over the lead entrance.

H. Externally Illuminated Signs

Ensure that the lighting system provides on the face of the signs at least 30 foot-candles (320 lx), average maintained, at 60 °F (15 °C) ambient temperature with a uniformity ratio (average/minimum) of no more than 3.5:1. Tilt the sign 3 degrees off perpendicular toward the pavement.

1. Luminaires and Lamps

a. Mount luminaires so that the top of the luminaire is at least 18 in (450 mm) below the bottom edge of the sign and at a horizontal distance to provide uniform illumination.

b. Extend the luminaires within 2 ft (600 mm) of the outside edge of the sign in each direction. The luminaire design will direct the longitudinal separation of luminaires.

c. Support the luminaires and conduit runs with a framework of aluminum or hot dip galvanized steel channel solidly fastened to the structural support with galvanized steel or aluminum clamps. Do not drive holes into the structure.

d. Ensure that luminaires are accessible from the maintenance walkway for maintenance and lamp replacement.
2. Ballasts

Ensure that the ballasts for high intensity discharge (HID) or fluorescent lamps are integral with the luminaire housing or are in a separate weatherproof housing attached to the luminaire housing, unless otherwise specified. Use ballasts when using multiple circuits, unless otherwise specified, and when operating at voltages shown on the Plans.

3. Light Shield

Provide a light shield plate made of 0.10 in (2.54 mm) thick, B-209 alloy 6061-T6 aluminum sheet 12 in (300 mm) wide and the combined length of the signs.

Erect the shield below the signs at an elevation that will eliminate glare from the luminaires to motorists traveling in the opposite direction from the face of the sign. Mount the shield to the catwalk supports with U-clamps according to Section 911.

637.3.06 Quality Acceptance

The Department will accept luminous intensity using a color and cosine corrected lux meter. The Department will measure at random points by placing the meter flat against the surface of the sign with the light cell parallel to the face of the sign.

The maintained luxfoot-candle values will be calculated using depreciation factors of 0.75 for the luminaire and 0.70 for the lamp (combined value = 0.525) to provide a minimum of 30 foot-candles (320 lx) average maintained during the service life of the system.

A. Before Testing Period

Complete and energize each lighting circuit as early as possible. Before beginning the testing period, have an electrician with a megger, voltmeter, and ammeter perform the following tests in the presence of the Department Inspectors for each lighting circuit.

1. Before connecting the phase conductors to the source breaker, the sign structure, or the lighting standard wiring and lightning arresters, megger the circuit conductors to ensure that the phase conductors are free of grounds.

2. Test systems of 480 V at 1,000 V dc. Test systems less than 480 V at 500 V dc. The minimum acceptable reading is one megohm after the test voltage has been applied for 10 minutes. Test the system as follows:
 a. Before turning the circuit breaker on at the service point, measure the service voltage between the phase conductors and between each phase conductor and the neutral or ground.
 b. If the proper voltage is observed, turn the circuit breaker on. Wait 10 minutes for the luminaires to warm up and repeat the above voltage measurements.
 c. After energizing the circuit for at least 10 minutes, measure the load current in each phase conductor and the neutral at the service point. Ensure that the current in the phase conductors is balanced and no current is in the neutral.
 d. Record the test data in the Project records.

Final acceptance of the lighting system will be withheld for a 30-day testing period of continuous nightly automatic operation after the lighting work is complete or until other items in the Contract (except grassing) have been accepted, whichever occurs later. If a portion of this testing period occurs after Final Acceptance, other Work will not be charged against the Contract Time.

Correct defects in material or workmanship that occur during this 30-day period of continuous nightly automatic operation and until the Project is accepted, whichever occurs later. If defects are found during the 30-day test, continue testing it until achieving 30 days of continuous nightly automatic operation.

Assume the energy cost of each circuit or part of the circuit during this test period. Others will assume the energy costs after the successful 30-day test period.

B. After Testing Period

After the testing period and at the time of Final Acceptance, have an electrician with a voltmeter and ammeter perform the following tests in the presence of the Department Inspector for each lighting circuit.

1. Energize the circuit for at least 10 minutes and measure the service voltage between the phase conductors and between each phase conductor and the neutral or ground at the service point.

2. If the proper voltage is observed, measure the load current in each phase conductor and the neutral. Ensure that the current in the phase conductors is balanced and there is no current in the neutral.

3. Record this test data in the Project records.
637.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

637.4 Measurement
Each illuminated sign system completed and accepted at the location specified is measured for payment per Lump Sum.

637.4.01 Limits
General Provisions 101 through 150.

637.5 Payment
Each illuminated sign system measured for payment will be paid for at the Lump Sum price bid for each system. Price and payment is full compensation for furnishing and installing each complete and functional system, including designs when furnished by the Contractor, drawings, electrical apparatus and wiring specified, required excavation, backfill, concrete for conduits, and other materials, labor, equipment, and incidentals to complete the Item.

Structural supports for overhead highway signs will be erected and paid for separately according to Section 638. Signs will be paid for according to Section 636.

Payment will be made under:

| Item No. 637 | Illuminated sign system—sta. ___ | Per lump sum |

637.5.01 Adjustments
General Provisions 101 through 150.

Section 638—Structural Supports for Overhead Signs

638.1 General Description
This item includes the materials, design requirements, fabrication, and erection of structural supports for overhead signs, including excavation, foundations, anchor bolt assemblies, backfill, redressing, and regrassing but exclusive of signs.

638.1.01 Definitions
Structural supports for overhead signs are defined generally as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A SIGN BRIDGE type structure that spans the roadway with more than two horizontal chords supported by two columns, one at each end. Each column shall have at least two braced vertical members. A walkway is required.</td>
</tr>
<tr>
<td>II</td>
<td>A CANTILEVER type structure with two or more horizontal chords supported by a single column at one end. A walkway is required.</td>
</tr>
<tr>
<td>III</td>
<td>A BUTTERFLY type structure with two or more horizontal chords extending an equal distance in opposite directions from a single column. Walkways are required.</td>
</tr>
<tr>
<td>IV</td>
<td>A COMBINATION (Bridge-Cantilever) type structure with more than two horizontal chords supported by two columns, only one at one end and one at an intermediate point. Each column shall have at least two braced vertical members. Walkways are required.</td>
</tr>
<tr>
<td>V</td>
<td>A CANTILEVER type structure with a maximum of two horizontal chords supported by a single column at one end. A walkway is not required.</td>
</tr>
<tr>
<td>VI</td>
<td>A SIGN BRIDGE type structure that spans the roadway with a maximum of two horizontal chords supported by two columns, one at each end. A walkway is not required.</td>
</tr>
<tr>
<td>VII</td>
<td>A BRIDGE MOUNTED (attached to a highway bridge) structural frame with a walkway.</td>
</tr>
<tr>
<td>VIII</td>
<td>A BUTTERFLY type structure with a maximum of two horizontal chords extending an equal distance in opposite directions from a single column. Walkways are not required.</td>
</tr>
</tbody>
</table>

Type II and V structures' maximum horizontal dimension shall be 32 ft (9.75 m). The horizontal dimension is measured from the column's centerline to the furthest point of the structure or sign.
Type III and VIII structures’ maximum horizontal dimension shall be 25 ft (7.6 m). The horizontal dimension is measured from the furthest point of the structure or sign on one side to the furthest point of the structure or sign on the other side. Place the sign(s) on the structure to create a slightly unbalanced condition about the column’s centerline during wind loads.

Types V, VI, and VIII structural supports shall be used with flat sheet aluminum signs. If the vertical dimension of the largest sign is 42 in (1050 mm) or less, one horizontal chord may be used.

638.1.02 Related References

A. Standard Specifications
 - Section 207—Excavation and Backfill for Minor Structures
 - Section 500—Concrete Structures
 - Section 501—Steel Structures
 - Section 511—Reinforcement Steel
 - Section 645—Repair of Galvanized Coatings
 - Section 700—Grassing
 - Section 833—Joint Fillers and Sealers
 - Section 852—Miscellaneous Steel Materials

B. Referenced Documents
 - AASHTO Standard Specifications for Highway Bridges
 - Current edition of the Manual on Uniform Traffic control Devices for Streets and Highways (MUTCD)
 - Current issue of ASTM Standards of the American Society for Testing and Materials
 - American National Standards Institute (ANSI)
 - American Petroleum Institute (API)
 - Current issue of AASHTO Standard Specification for Transportation Materials and Methods of Sampling and Testing

638.1.03 Submittals

Submit to the Engineer 6 sets of shop drawings [(12 in x 18 in (305 x 457 mm)] half size plan sheets) and 2 sets of design calculations [8.5 in x 11 in (216 x 297 mm)] sheets, neatly bound and indexed] for the Structural Supports, anchor bolt assemblies, and foundations for review and approval. Also send a copy of your transmittal letter to the State Traffic Detail the shop drawings to permit replacement of all members and include all dimensions, construction tolerances, elevations at top and bottom of foundations, and sizes of members. The shop drawings shall include the material designations of the structure and of the hardware for attaching the sign, the lane delineation of the roadway under the structure, and the walkway. See Figure 1, Figure 2, and Figure 3.
PLAN

WASHERS, TYP.
ANCHOR BOLT, TYP.
LEVELING NUT, TYP.

ELEVATION

REINFORCEMENT STEEL NOT SHOWN IN STEM AND FOOTING.

SECTION A-A

FIGURE 1

PERMANENT TEMPLATE

L = \text{1/2" MIN. (10 mm MIN.)}

** - #4 STIRRUPS AT 12" MIN. TIED, TYP.
(#13 STIRRUPS AT 300 mm MIN. TIED, TYP.)

BOIL CIRCLE
ANCHOR BOLT, TYP.

W = 5" MAX.
(W = 125 mm MAX.)

PERMANENT TEMPLATE

FIGURE 2

LEGEND
C STEM
QI FOOTING

FINISHED GROUND

FIGURE 3

REINFORCEMENT STEEL NOT SHOWN IN STEM, CAP AND DRILLED SHAFT.

SEE FIGURE 1 AND FIGURE 2 FOR ADDITIONAL DETAILS.
A. Structural Supports

Design structural supports to use interchangeable components whenever feasible.

Design Type I, IV, and VI supports for 100% of the design sign area shown on the Plans and 100% of the wind pressure as calculated by the AASHTO Specifications for Structural Supports for Highway Signs, Luminaries and Traffic Signals.

Design bases for a minimum of four anchor bolts per column.

Design Type II, III, V, and VIII supports for 100% of the design area shown on the Plans and 150% of the wind pressure as calculated by the AASHTO Specifications for Structural Supports for Highway Signs, Luminaries and Traffic Signals.

Design bases for a minimum of 8 anchor bolts per column.

Design Type VII supports for 100% of the design sign area shown on the Plans and 100% of the wind pressure as calculated by the AASHTO Specifications for Structural Supports for Highway Signs, Luminaries and Traffic Signals.

Type VII bridge mounted structural frames may be attached to concrete barrier, parapet, or deck or steel beams. Structural Supports shall not be attached to prestressed, post-tensioned, or reinforced concrete beams unless inserts were placed in beams during fabrication or construction. Make attachments to the concrete by bolting through the concrete or using chemical anchors. Mechanical anchors will not be allowed.

Attachments shall be flush on the traffic side of the concrete barrier, parapet, or deck. No attachments shall be welded to beams. When bolting to ASTM A 709 Grade 50W (A 709 M Grade 345 W) steel; bolts, nuts and washers shall be made from a steel that meets mechanical properties of ASTM A 325 (A 325M) and has weathering characteristics comparable and compatible to ASTM A 709 Grade 50W (A 709 M Grade 345W) steel. If the Structural Support is attached to a bridge beam, additional bracing will be required between the exterior beam and the first interior beam.

B. Walkways

When required by the sign type, place walkways in front of the signs and extend them at least 1 ft (300 mm) outside of the edge of all overhead signs and at least 2 ft (600 mm) outside of the right edge of paving, or as directed by the Engineer. Provide walkways in front of the lower front chord, and do not locate a portion higher than the lowest part of any sign. Make the walkway continuous from end to end with a railing along the front side that can be folded down flush with the walkway when not in use.

C. Anchor Bolt Assemblies

Anchor bolt assemblies shall be of the proper length, area, and perimeter to transfer loads from the base plates to the foundations. The permanent template may be used in developing anchor bolts. Anchor bolts shall be at least 1-1/2 in. (38 mm) in diameter. Anchor bolt assemblies shall consist of a permanent template at the base, anchor bolts, leveling nuts, washers, temporary template, securing nuts, and #4 (#13) reinforcing bars.

The distance between the base plate and the top of the stem shall not exceed 4 in. (100 mm). Do not use grout between the base plate and the top of the stem. The anchor bolt shall project 1/4 to 1 in. (6 to 25 mm) above the securing nut. See Figure 1, Figure 2, and Figure 3.

D. Foundations

Unless otherwise required on the Plans, design foundations as spread footings with an allowable soil bearing pressure of 3 KSF (140 kPa). Do not allow calculated bearing pressure to exceed the allowable soil bearing pressure. No overstressing will be permitted. Drilled shaft foundation shall be used when called for on the Plans and will require a soil investigation report that shall be included with your submittal. Drilled shafts shall not be used with Type II and V structures.

Unless otherwise shown on the Plans:

- The top of the footing shall be at least 2 ft (600 mm) below the finished ground surface.
- The bottom of the foundation shall be placed on or below the original ground or on fill compacted to at least 95 percent of the maximum laboratory dry density according to Section 208.
- The clearance between the anchor bolt assembly and the stem reinforcement shall be 2-1/2 in (65 mm) minimum.
- One foundation per structure shall have a minimum of 2 in (50 mm) rigid, galvanized steel conduits stubbed up 6 in (150 mm) above the stem and capped a minimum of 3 ft (1 m) outside the footing and a minimum of 18 in (450 mm) below the finished ground surface for connecting to the underground power source or for future use.
638.2 Materials

Except for the Type VII structure, all structural members shall be tubular shapes. All materials shall meet the requirements of the applicable Specification. Do not use a material until the Office of Materials and Research approves it.

Furnish one legible, reproducible copy of certified mill test reports including chemical analysis and physical test results covering steel and aluminum.

A. Aluminum Structures

B. Steel Structures

All components of steel structures shall be galvanized in accordance with ASTM A 123/A 123 M or ASTM A 153/A 153 M, whichever is applicable. All components galvanized in accordance with ASTM A 123/A 123 M shall be quenched immediately upon removal from the zinc bath. If the contract plans require painting of the structural supports, the structural supports shall be painted with an approved paint system after galvanization.

- Structural steel, including base plates—Shall meet the requirements of the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries, and Traffic Signals.
- Steel pipe—Shall meet the requirements of ASTM A 53 Types E or S, Grade B; ASTM A 139 Grade B; ASTM A 252 Grade 2; API 5L-X42; or API 5L-X52. The hydrostatic requirements are waived. Other alloys of steel may be accepted if minimum yield strength of the material is less than or equal to 60,000 psi.
- Walkway and sign connection bolts including U-bolts—Shall meet the requirements of Subsection 852.2.

All other connections shall be made with high strength ASTM A 325 (A 325 M) bolts with washers and nuts meeting all the requirements of Subsection 852.2.

C. Anchor Bolts

Anchor bolts, nuts and washers shall meet the requirements of Subsection 852.2, or ASTM F 1554 (F 1554 M), A 563 (A 563 M) and F 436 (F 436 M), except that threads shall be rolled and shall be 8 UN/8 UNR thread profile according to ANSI B1.1). Bolts shall have Class 2A threads, and nuts shall have Class 2B threads.

The permanent template shall meet the requirements of ASTM A 709 Grade 36 or 50 (A 709 M Grade 250 or 345) or shall be an approved equal. Construct temporary templates from a material rigid enough to prevent any movement and misalignment of the anchor bolts.

D. Concrete Foundations

Class AA concrete shall comply with Section 500.

Reinforcement steel shall comply with Section 853, Grade 60 (420).

E. Silicone Caulking Compound

Silicone caulking sealant shall comply with Subsection 833.2.06.A.1.a.1), “Type A.”

F. Neoprene

Neoprene, or its approved equal, shall be approved by the Office of Materials and Research.

G. Ground Rods

Ground rods shall comply with Subsection 894.2.04.

H. Ground Wire

Ground wire shall comply with Section 922.

I. Threadlocker Adhesive

Threadlocker adhesive shall be an anaerobic threadlocking and sealing compound approved by the Office of Materials and Research.

J. Rigid Steel Conduit

Rigid steel conduit shall be a 2 in (50 mm) rigid steel conduit meeting the requirements of Subsection 923.2.01.A.2
638.2.01 Delivery, Storage, and Handling
During shipment and handling, protect the metal components to prevent bending the components and damaging the galvanized coating.

Handle galvanized steel components with rope slings or other methods approved by the Office of Materials and Research.

Do not use metal slings, chains, or hooks on galvanized surfaces.

Repair minor damage to galvanizing, as determined by the Engineer, according to Section 645. Extensive galvanizing damage is cause for rejection.

638.3 Construction Requirements

638.3.01 Personnel
General Provisions 101 through 150.

638.3.02 Equipment
General Provisions 101 through 150.

638.3.03 Preparation
A. Footings

Footings may be designed as spread footings with an allowable soil bearing pressure of 3 KSF (144 kPa). Include a soil investigation and report for other footings in the submittal.

1. Increase the allowable stress for group loading as given in Subsection 638.2.01. Disregard the gust factor.
2. The factor of safety in overturning shall be 1.15.
3. Unless shown otherwise on the Plans, extend the top of each footing at least 4 in (100 mm) above the ground. Place the footings to miss present and known future underground installations.
4. Stub at least two 2 in (50 mm) rigid, galvanized steel conduits up 6 in (150 mm) into the riser of one footing and cap at a distance of 3 ft (1 m) outside the foundation. Place the conduit at least 18 in (450 mm) below the ground level to connect to the underground power feed or for future use.

638.3.04 Fabrication
Fabrication of structural supports and anchor bolt assemblies shall be according to the approved shop drawings and the Plans. Only use fabricators of structural supports and anchor bolt assemblies that are listed on the Department’s Qualified Products List as a qualified fabricator of structural supports and anchor bolt assemblies.

A. General

Use aluminum or steel supports for signs. Steel supports shall be galvanized after fabrication. Connections may be welded, bolted, riveted, or fastened by other means if the connecting method ensures adequate strength and does not distract from the aesthetics of the structure. Do not weld splice structural members.

Fabricate columns, chords, and struts from one piece of material by using one longitudinal seam weld. Bolted splicing of truss chords may be allowed if shown on approved shop drawings. Use struts to brace all truss chords.

Provide an electrical outlet on the front horizontal chord with a cover for connecting to the power source or for future use. Weld into the column near the base the column with the conduit in the foundation, a handhole assembly, curved on the front to follow the contour of the column. Ensure that the handhole reinforcing frame has a tapped hole to accommodate the grounding lug and secure a cover to the frame with at least two screws. The column shall have a J-hook wire support welded inside near the top.

Provide brackets for mounting signs. These brackets shall be adjustable to permit mounting the sign faces at any angle between a truly vertical position and three degrees from vertical. Obtain this three-degree angle by rotating the top edge of the sign downward toward approaching traffic. All brackets shall be equal in length to the vertical dimension of the signs being supported.

B. Welding

All welding shall be done in the shop by current GDOT certified welders. The welders will weld the steel structures according to the latest AWS Structural Welding Code as modified by the GDOT Specifications and will weld aluminum structures according to Subsection 638.1.02.
C. Fabrication and Testing

Fabricate components in a jig or fixture to prevent distortion during and after welding and to ensure exact alignment at the time of erection.

Carefully check welds by visual and non-destructive inspection, by destructive testing of weld samples fabricated during welding, or by other methods approved by the Engineer. Sufficiently test weld samples to verify the reliability of production welding.

D. Galvanizing

After fabrication, thoroughly clean and galvanize all components of steel structures, including clamps and brackets, using the hot-dip process according to ASTM A 123/A123 M or ASTM A 153/A153 M, whichever is applicable.

Clean and galvanize interior and exterior surfaces of hollow sections. All components galvanized according to ASTM A 123/A 123 M shall be immediately quenched when removed from the zinc bath.

Galvanize Type VII bridge mounted structural frames except where the support is attached to weathering steel. When attached to weathering steel, fabricate the support of ASTM A 709 Grade 50W (A 709 M Grade 345W) steel or paint with an approved paint system to match the color of the weathering steel after galvanization.

638.3.05 Construction

A. Protection of Metal

During shipment and handling, protect all metal components to prevent damage to galvanized coatings. Handle galvanized steel components with rope slings or alternate methods approved by the Office of Materials and Research before use. Do not use metal slings, chains, or hooks on galvanized surfaces.

Repair minor damage to galvanizing, as determined by the Engineer, according to Sections 645. Metal components will be rejected if they have extensive damage to galvanizing.

B. Foundations

For construction methods, see Sections 207, 500, and 511.

Chamfer the edges of the stems 3/4 in (19 mm). Stems shall have a Type III finish to at least 6 in (150 mm) below the finished ground surface unless otherwise noted on the Plans. The Engineer shall inspect the anchor bolt assembly installation before the placement of concrete. Complete the anchor bolt assembly installations so as to prevent movement during the concrete placement. Tolerance for the placement of anchor bolt assemblies shall be 3/8 in. (10 mm) horizontally and 1:20 (3 degrees) vertically. Do not remove the temporary template until the footing and stem concrete have been in place at least 24 hours.

The Office of Materials and Research shall inspect the Type II and V sign structure footings before the column is erected. The OMR will perform a second inspection after the column is erected, and will also perform ultrasonic testing of the anchor bolts at this time. Type II and V sign structures will not be accepted until the footing inspections have been performed and approved.

C. Erection

Erecting the structure shall include placing and leveling a leveling nut on each anchor bolt. Use a washer with each leveling nut. Set the column on the washers without the horizontal structure, and place and tighten a washer and securing nut on each anchor bolt. Tightening is turning the nut an eighth of a turn after the nut is snug tight, and then applying the threadlocker adhesive.

After tightening, inspect the connections to ensure full bearing of the top and bottom washers on the base plate and to ensure that the distance between the top of the stem and the bottom of the base plate does not exceed 4 in. (100 mm). No structure will be accepted if this dimension is greater than 4 in. (100 mm).

Attach the horizontal structure to the column with ASTM A 325 (A 325 M) bolts. Install ASTM A 325 (A 325 M) bolts according to Subsection 501.3.04.F, “High-Tensile Strength Bolt Connections.” Do not reuse bolts and nuts after tightening them.

D. Type VII Bridge Mounted

Coat with silicone sealant all surfaces that are in contact with concrete. Separate with neoprene or an approved equal material all surfaces that are in contact with dissimilar metals.
E. Grounding
Install ground rods for each structural support adjacent to the foundation with the conduit as indicated below:

1. Vertically drive single, 8 ft (2.4 m) long ground rods until the top of the rod is at least 12 in. (300 mm) below the finished ground.
2. Attach a length of #6 bare copper, 7-strand wire to the ground with suitable ground rod clamps and connect it to the grounding nut of the column.
3. If sufficient penetration cannot be obtained in the above manner, place a ground rod system consisting of 3 parallel ground rods a minimum of 6 ft (1.8 m) center-to-center in a horizontal pattern and at least 12 in. (300 mm) below the finished ground. Join these rods and connect them to the grounding nut of the column with #6 bare copper, 7-strand wire and suitable ground rod clamps.

F. Finished Ground Surface
Ensure that the finished ground surface matches the typical section adjacent to the structural support. Do not adjust the ground surface around the stem to obtain 12 in (300 mm) minimum projection above finished ground surface.

638.3.06 Quality Acceptance
General Provisions 101 through 150.

638.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

638.4 Measurement
The quantity measured for payment shall be each structure type at the specified location completed and accepted. This shall include design, fabrication, and construction of structural supports including anchor bolt assemblies, foundations, excavation, backfill, redressing, and regrassing; but exclusive of signs.

638.4.01 Limits
General Provisions 101 through 150.

638.5 Payment
This item, measured according to Subsection 638.4, “Measurement,” for each structural support for overhead highway signs, is paid for at the Lump Sum Contract Unit Price bid for the complete structure.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 638</th>
<th>Structural support for overhead highway sign, type I–sta.</th>
<th>Per lump sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 638</td>
<td>Structural support for overhead highway sign, type II–sta.</td>
<td>Per lump sum</td>
</tr>
<tr>
<td>Item No. 638</td>
<td>Structural support for overhead highway sign, type III–sta.</td>
<td>Per lump sum</td>
</tr>
<tr>
<td>Item No. 638</td>
<td>Structural support for overhead highway sign, type IV–sta.</td>
<td>Per lump sum</td>
</tr>
<tr>
<td>Item No. 638</td>
<td>Structural support for overhead highway sign, type V–sta.</td>
<td>Per lump sum</td>
</tr>
<tr>
<td>Item No. 638</td>
<td>Structural support for overhead highway sign, type VI–sta.</td>
<td>Per lump sum</td>
</tr>
<tr>
<td>Item No. 638</td>
<td>Structural support for overhead highway sign, type VII–sta.</td>
<td>Per lump sum</td>
</tr>
<tr>
<td>Item No. 638</td>
<td>Structural support for overhead highway sign, type VIII–sta.</td>
<td>Per lump sum</td>
</tr>
</tbody>
</table>

638.5.01 Adjustments
General Provisions 101 through 150.

Section 639—Strain Poles for Overhead Sign and Signal Assemblies

639.1 General Description
This work includes furnishing and erecting overhead sign and signal support strain poles and steel wire strand cable according to this Specification and the Plans.
Make concrete or steel strain poles at any one location within the Project from the same material unless the Plans designate a particular type for that location.

Use timber strain poles only where designated on the Plans.

639.1.01 Definitions
General Provisions 101 through 150.

639.1.02 Related References
A. Standard Specifications
 Section 500—Concrete Structures
 Section 636—Highway Signs
 Section 852—Miscellaneous Steel Materials
 Section 861—Piling and Round Timber
 Section 863—Preservative Treatment of Timber Products
 Section 865—Manufacture of Prestressed Concrete Bridge Members
 Section 915—Mast Arm Assemblies

B. Referenced Documents
 ASTM A 27 / A 27 M
 ATSM A 36 / A 36 M
 ASTM A 123 / A 123 M
 ASTM A 153 / A 153 M
 ASTM A 242 M
 ASTM A 595
 ASTM A 709(A 709 M)

639.1.03 Submittals
For steel and prestressed concrete strain poles, prepare drawings and other data that give the pole dimensions and design. Submit them to the Bridge Engineer for approval before beginning construction.

Ensure that the total deflection of strain poles resulting from the dead load plus the live load is equal to or less than 2.5 percent of the pole height measured from the ground line to the point at which the load is applied.

639.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A Concrete</td>
<td>500</td>
</tr>
<tr>
<td>Class B Concrete</td>
<td>500</td>
</tr>
<tr>
<td>Class AAA Concrete</td>
<td>500</td>
</tr>
<tr>
<td>Timber Poles</td>
<td>861.2.02</td>
</tr>
<tr>
<td>Seasoning and Preservative Treatment</td>
<td>863.2.01</td>
</tr>
<tr>
<td>Steel Wire Strand Cable</td>
<td>915.2.02</td>
</tr>
<tr>
<td>Guys and Anchors</td>
<td>Per Plans</td>
</tr>
</tbody>
</table>
A. Steel Strain Poles

Use shafts for steel strain poles fabricated of steel that conforms to one or more of the following:

- ASTM A 242/A 242 M
- ASTM A 709 Grade 50W (A 709 M Grade 345W)
- ASTM A 595
- AISI 1015
- AISI 1020
- SAE: 1015

Ensure that the steel characteristics or strength do not change significantly from welding.

1. Shaft
 Use the appropriate shape of shaft which is a continuous taper and is constructed of corrosion resistant steel, unless otherwise specified, to the dimensions required for the specified classification type.
 Form the shaft from one piece with one electrically welded longitudinal joint and no intermediate horizontal joints.

2. Pole
 Use a pole with a mill certified yield strength of at least 48,000 psi (331 MPa). After forming and welding the pole, the shaft may be longitudinally cold rolled under enough pressure to flatten the shaft to conform to the required yield strength. For Type IV steel strain poles, ensure that the wall thickness is at least 3 gauge or 0.25 in. (6 mm).

3. Traffic Signal Strain Poles
 Assemble traffic signal strain poles as follows:
 a. Weld a handhole assembly, curved on the front to follow the contour of the pole, into the shaft near the base.
 b. Include a tapped hole on the handhole reinforcing frame to accommodate the grounding lug.
 c. Secure the cover to the frame using at least two screws.
 d. Weld a J-hook wire support inside near the top of the shaft for the poles.
 e. If an overhead power source is shown, use a clamp and clevis device to connect the wire to the pole and provide a weatherproof wire inlet close to the attachment. Conceal the other wiring to and from the controllers within the pole.
 For traffic signal strain poles with monted controller cabinets, provide a 2 in. (50 mm) half coupling wire inlet to mount the controller cabinet on the designated pole. Ensure that the location where cable enters the wire inlets at the top of the traffic signal strain poles has a neat design and appearance. Do not use junction boxes at the top of poles to facilitate cable entrances.

4. Grounding
 Provide a 0.5 in (13 mm) approved grounding connector in the shaft. Equip the top of the shaft with a removable cap held securely in place.
 Hot-dip galvanize the shaft according to ASTM A 123/A 123 M unless otherwise specified.

5. Base
 Secure to the lower end of the shaft a one-piece cast steel base or a one-piece flat plate base that meets the requirements of ASTM A 27, Grade 65-35/A27 M Grade 450-240, or A 36/ A 36 M, as required.
 a. Ensure that the base, after welding, develops the full strength of the adjacent shaft section to resist bending.
 b. Attach the base to the concrete foundation with four bolts according to this subsection.
 c. Provide four removable cast or pressed steel ornamental covers with each base, and attach it to the base.

6. Anchor Bolts
 Furnish each pole with four anchor bolts of the size required in the manufacturer’s Shop Drawings. Ensure that the anchor bolts meet the requirements of Subsection 852.2.02.
 Galvanize the threaded portions according to ASTM A 153/A 153 M and the Plan details.

B. Prestressed Concrete Strain Poles

Use shafts for these poles that comply with Subsection 865.2.01.B, except give the poles a steel trowel finish on the uniformed side and any required pointing to eliminate air and water holes left by the steel forms. Use Class AAA concrete.
Use a marking tool to identify the pole class and height, or cast it with a die in the front face of the pole to produce letters and numbers at least 2 in (50 mm) high and wide.

C. Miscellaneous Hardware

Use hardware for steel and concrete strain poles with these features:

1. The steel required to fabricate other structural components is weldable and conforms physically and chemically to applicable ASTM specifications.
2. Nuts, bolts, and screws conform to these diameter requirements:
 - If diameters are less than 0.5 in (13 mm), the hardware is passivated stainless steel that meets the requirements of AISI 300, commercial grade.
 - If diameters are 0.5 in (13 mm) and larger, the hardware conforms to ASTM physical and chemical qualifications that ensure strength commensurate with the parts being connected. Galvanize the hardware according to ASTM A 153/A 153 M.
3. Use galvanized steel ground rods 5/8 in (16 mm) diameter, ± 1/16 in, (± 1.6 mm) and 8 ft (2.4 m) long unless otherwise specified.
 Ensure that galvanizing has a coating of at least 2 oz/ft² (610 g/m²) according to ASTM A 153/A 153 M.

639.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

639.3 Construction Requirements

639.3.01 Personnel
General Provisions 101 through 150.

639.3.02 Equipment
General Provisions 101 through 150.

639.3.03 Preparation
General Provisions 101 through 150.

639.3.04 Fabrication
General Provisions 101 through 150.

639.3.05 Construction

A. Timber Poles

Construct the following according to the Plan:

1. Excavate the hole to the proper diameter and depth.
2. Erect the pole to an out-of-plumb position with its base resting on the bottom of the hole.
 Hold the pole in its out-of-plumb position until the cavity around the pole is filled with Class B or better concrete and is set and cured for at least 7 days. Then, apply tension to the pole.

B. Steel Poles

Construct the steel poles the same as the timber poles as described in Subsection 639.3.05.A. “Timber Poles.”

C. Prestressed Concrete Poles

Drill round holes or dig square holes for prestressed concrete poles.

1. Do not disturb the natural ground adjacent to the foundation more than necessary to construct the foundation.
2. Excavate to the lines and elevations shown on the Plans or established by the Engineer.
 a. Dispose of the excavated materials as directed.
 b. Regrade and grass the disturbed areas to match the contiguous area.
3. Backfill according to the Plans. Furnish and place Class A concrete, as required, according to the applicable portions of Section 500 and Plan details.
4. When leaving lifting eyes or loops on the pole to facilitate handling and erecting, burn them off and patch them after erecting.
D. Ground Rods

Install ground rods for steel and prestressed concrete strain poles adjacent to the strain pole base as follows:

1. Vertically drive the single ground rods 8 ft (2.4 m) long until the top of the rod is at least 12 in (300 mm) below the finished ground.
2. Use ground rod clamps to attach a length of No. 6 AWG bare copper, 7-strand wire to the ground rod. Connect the wire to the grounding nut of the strain pole base.
3. When penetration cannot be obtained in the above steps, place three parallel ground rods at least 6 ft (1.8 m) center-to-center in a horizontal pattern and at least 12 in (300 mm) below the finished ground.

Join the rods and connect them to the grounding nut of the pole base with No. 6 AWG bare copper, 7-strand wire and ground rod clamps.

E. Rake

Use the proper rake to erect the pole so that the pole will be plumb after the load is applied.

F. Erecting Cable

Follow these steps to erect the cable:

1. Install the top cable 6 in (150 mm) from the top of the pole, unless otherwise indicated on the Plans.
2. Install the bottom cable no more than 5 ft (1.5 m) from the top of the pole according to Plan details.
3. Secure the cable to each pole as shown on the Plans. Use preformed cable grips instead of cable clamps, if necessary.
4. Apply enough tension to pull timber poles toward each other past the plumb position by one degree.

639.3.06 Quality Acceptance

General Provisions 101 through 150.

639.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

639.4 Measurement

Highway signs are measured and paid for under Section 636.

A. Treated Timber Poles

Treated timber poles of the class and length specified are measured by the number of units installed, including guys, anchors, and hardware.

B. Steel Cable

Steel cable of the specified size are measured by the linear foot (meter), complete in place.

C. Steel Strain Poles

Steel strain poles are classified and measured for payment by each unit and by type according to the following table:

<table>
<thead>
<tr>
<th>Type</th>
<th>Span Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Less than 60 ft (18 m)</td>
</tr>
<tr>
<td>II</td>
<td>60 to 95 ft (18 m to 29 m)</td>
</tr>
<tr>
<td>III</td>
<td>Greater than 95 ft (29 m)</td>
</tr>
<tr>
<td>IV</td>
<td>Traffic signal strain pole</td>
</tr>
</tbody>
</table>

D. Prestressed Concrete Strain Poles

Prestressed concrete strain poles are measured for payment by each unit and pole type as specified in the above table.

639.4.01 Limits

General Provisions 101 through 150.
639.5 Payment

A. Treated Timber Poles

Treated timber poles of the class and length specified will be paid for at the Contract Price bid per each. Payment is full compensation for poles, concrete encasements, excavation for pole and anchor holes, temporary pole alignment, bracing, guys, and items to complete the Work.

B. Steel Strain Poles

Steel strain poles of the type specified, complete in place and accepted, including backfill, erection, and necessary regrassing will be paid for at the Contract Unit price bid for each pole of each type.

C. Prestressed Concrete Strain Poles

Prestressed concrete strain poles of the type specified, complete in place and accepted, including backfill, erection, and necessary regrassing will be paid for at the Contract Unit Price bid for each pole of each type.

When neither concrete nor steel strain poles are specified, either type is acceptable. Measurement is specified in Subsections 639.4.C. or 639.4.D. The payment item is Strain Poles, Type__.

D. Steel Cable

Steel cable complete in place and accepted will be paid for at the Contract Unit Price bid per linear foot (meter) of each specified diameter. Payment is full compensation for furnishing and erecting the cable and for providing hardware including thimbles, but not hardware that is a part of the pole.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 639</td>
<td>Treated timber pole class__, __ ft (m)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 639</td>
<td>Steel strain pole, type___</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 639</td>
<td>Prestressed concrete strain pole, type___</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 639</td>
<td>Strain Poles, Type___</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 639</td>
<td>Steel strand wire cable __ in. (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

639.5.01 Adjustments

General Provisions 101 through 150.

Section 640—Retroreflectorized Railroad Cross Buck Sign

640.1 General Description

This work includes furnishing and erecting retroreflectorized railroad cross buck signs, including wood or steel posts and concrete bases for steel posts at locations shown on the Plans or as directed by the Engineer.

640.1.01 Definitions

General Provisions 101 through 150.

640.1.02 Related References

A. Standard Specifications

Section 500—Concrete Structures

B. Referenced Documents

Specifications of the Association of American Railroads

MUTCD

640.1.03 Submittals

General Provisions 101 through 150.
640.2 Materials
Use Class B or better concrete for steel posts that conforms to the dimensions and details shown on the Plans, and meets the requirements of Section 500. Ensure that the concrete surface is uniform and free of honeycomb.

Ensure that other elements of the sign conform to the requirements of the Specifications, or to the Specifications of the Association of American Railroads, whichever is indicated on the Plans.

640.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

640.3 Construction Requirements

640.3.01 Personnel
General Provisions 101 through 150.

640.3.02 Equipment
General Provisions 101 through 150.

640.3.03 Preparation
General Provisions 101 through 150.

640.3.04 Fabrication
General Provisions 101 through 150.

640.3.05 Construction
A. Steel Post
 Place a steel post as follows:
 1. Set each steel post for a sign assembly in a concrete foundation according to the Plans.
 2. Securely hold each post vertically until the concrete is strong enough to hold the post and sign without support.
 3. Replace cracked bases.
 4. Backfill around the bases with satisfactory materials.
 5. Carefully tamp the backfill in place.
 After setting the steel post, curing the concrete, and backfilling, fasten the cross buck sign to the post according to the details shown in the Plans.

B. Wood Post
 Place a wood post as follows:
 1. Place each post in a prepared dry hole at least 6 in (150 mm) diameter.
 2. Backfill the hole with a mixture of Portland cement and damp clean friable soil using 8 percent cement by volume.
 3. Thoroughly tamp the resultant mixture in place around the post.
 4. Erect the posts vertically to the depth and at an angle to the roadway as shown on the Plans or directed by the engineer. The post shall penetrate the ground at least 4 ft. (1.2 m).

640.3.06 Quality Acceptance
General Provisions 101 through 150.

640.3.07 Contractor Quality and Maintenance
General Provisions 101 through 150.

640.4 Measurement
Retroreflectorized railroad cross buck signs are measured for payment by the number in place completed and accepted.

640.4.01 Limits
General Provisions 101 through 150.
640.5 Payment
Cross buck signs measured for payment will be paid for per each. Payment is full compensation for furnishing and erecting the Item complete in place according to the Plans and Specifications, and for providing materials and concrete, excavating, backfilling, and disposing of the surplus materials.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 640</th>
<th>Retroreflectorized railroad cross buck signs, steel post</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 640</td>
<td>Retroreflectorized railroad cross buck signs, wood post</td>
<td>Per each</td>
</tr>
</tbody>
</table>

640.5.01 Adjustments
General Provisions 101 through 150.

Section 641—Guardrail

641.1 General Description
This work includes furnishing and erecting guardrail and appurtenances according to the Specifications. Conform with the lines, grades, and locations shown on the Plans or as directed.

Place W-beam, T-beam, or “T” beam with modified offset block as shown on the Plans and in the Proposal. Unless designated otherwise, references to guardrail shall mean W-beam.

Unless provided for in the Plans, this work also includes:

- Grading to provide the “T” distance shown on the standard behind the guardrail
- Grading to construct shoulder flares for approved guardrail anchorage systems and widened shoulders along guard rail runs according to Section 205 and Section 208
- Furnishing and setting additional posts (all lengths) together with the necessary offset blocks and hardware (when specified in the Plans or in the Proposal)

641.1.01 Definitions
General Provisions 101 through 150.

641.1.02 Related References
A. Standard Specifications
 - Section 205—Roadway Excavation
 - Section 208—Embankments
 - Section 645—Repair of Galvanized Coatings
 - Section 700—Grassing
 - Section 859—Guard Rail Components
 - Section 870—Paint
B. Referenced Documents
 - General Provisions 101 through 150.
 - NCHRP 350

641.1.03 Submittals
General Provisions 101 through 150.

641.2 Materials
A. Steel Guardrail
 Use steel guard rail and steel posts unless specified otherwise on the Plans or in the Proposal.
B. Guardrail Auxiliary Items

Ensure that the guardrail includes auxiliary materials and Work to make connections and other guardrail or structures required to complete the construction indicated on the Plans.

C. Offset Blocks

Except at locations approved by the Engineer, use plastic offset blocks according to Subsection 859.2.05 “Plastic Offset Blocks” for “W” beam guardrail installation. Offset blocks for “T” beam guardrail installations shall be plastic, or modified steel offset blocks per the Standard Plans including Construction Details and Section 859. When approved by the Engineer, use treated wood offset blocks according to Subsection 859.2.04, “Wood Guard Rail Posts and Offset Blocks.” only in isolated areas of “W” beam or “T” beam guardrail installations, where standard size blocks would not provide a satisfactory fit.

Wood offset blocks and/or wood posts may be specified within the limits of an approved anchorage terminal. Use only one type of offset block within continuous runs of guardrail except in transitions or where specified in the Plan details.

Ensure that materials meet the requirements of these Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guardrail Elements and Fittings</td>
<td>859.2.01</td>
</tr>
<tr>
<td>Cable End Anchor Assembly</td>
<td>859.2.02</td>
</tr>
<tr>
<td>Steel Post and Offset Blocks</td>
<td>859.2.03</td>
</tr>
<tr>
<td>Wood Post and Offset Blocks</td>
<td>859.2.04</td>
</tr>
<tr>
<td>Plastic Offset Blocks</td>
<td>859.2.05</td>
</tr>
<tr>
<td>Galvanized Repair Compound</td>
<td>870.2.05</td>
</tr>
</tbody>
</table>

641.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

641.3 Construction Requirements

641.3.01 Personnel
General Provisions 101 through 150.

641.3.02 Equipment
General Provisions 101 through 150.

641.3.03 Preparation
General Provisions 101 through 150.

641.3.04 Fabrication
A. Guard Rail Anchorages, Mounting Devices, and Brackets

Fabricate and install guardrail anchorages, mounting devices, brackets, and other appurtenances according to the Plan details or as approved by the Engineer.

641.3.05 Construction
A. Erection of Posts

1. Wood guardrail posts shall not be used at any location except as required for guardrail anchorage.

2. Set the posts in post holes or drive them vertically at the positions, depth, spacing, and alignment shown on the Plans.

3. Install posts for guard rail on bridges or other structures as detailed on the Plans.

4. Backfill post holes to the ground line with approved material tamped in place in layers of not more than 4 in (100 mm) thick.
5. If posts are driven, protect the tops of the posts with a suitable driving mat or cap. Remove and replace posts damaged during driving, at no additional cost.

6. Backfill the post holes that are drilled in rock as indicated on the Plans or directed by the Engineer.

7. Remove and reset posts that are out of alignment or too low in grade. Do not cut off posts that are too high; drive them to the proper elevation. Do not deviate more than 1/4 in (6 mm) vertical and horizontal post alignment.

8. Fit the posts with an offset block according to this Specification and Plan details.

9. Set additional posts and appurtenances, when required, according to the requirements of this Section and the Plan details.

10. When necessary to place posts in existing pavement, slope paving, etc., exercise extreme care in the cutting process, protect the adjacent areas, and remove all loose material. Cut holes in the existing paved area by drilling or sawing. Replace the pavement material in kind to the full depth of the original pavement, as directed, after the post is installed.

B. Erection of Rail

Erect the rails to attain a smooth, continuous rail line that conforms to the line and grade of the highway.

Determine the height of the rail from the dimensions shown on the Plans. Use bolts long enough to extend at least 1/4 in (6 mm) beyond the nuts after they are firmly tightened.

Install reflectorized washers on guardrail and anchorages. Where double faced guardrail is located on the inside shoulder of medians, install reflectorized washers only on the side which is nearest to traffic. In stall reflectorized washers according to this Specification and Plan details.

C. Damaged Spelter Coating

Repair damaged spelter coating according to the requirements of Section 645.

D. Guardrail Anchorages

Guardrail Anchorage Type 12 shall be any guardrail terminal, designed for use with “W” beam guardrail installations, which is approved by the FHWA as meeting the requirements of the National Cooperative Highway Research Report 350, Test Level 3 (NCHRP-350, TL-3). Where the anchorage is connected to “T” beam guardrail installations, a transition is required as shown in the Standard details.

Construct Type 12 anchorages according to the manufacturer’s requirements except for the grading which will be as shown in the Plans and as directed by the Engineer. Obtain copies of the manufacturer’s details and installation instructions and provide copies of the same to the Engineer prior to the installation of the unit. Provide a FHWA letter of approval for NCHRP-350, TL-3 compliance of the terminal to be used as Type 12 anchorage.

Yellow and black nose striping, as shown on the Plans will be required on all Type 12 anchorages.

641.3.06 Quality Acceptance

General Provisions 101 through 150.

641.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

641.4 Measurement

A. Guardrail

Guardrail of the type specified is measured in linear feet (meters), including terminal sections when installed. Measurement does not include guardrail anchorage assembly.

When double faced guardrail of the type specified is installed, the single guardrail on each side of the posts is not measured separately. Each single rail is a component part of the double faced guardrail installation.

B. Guardrail Anchorage Assembly

This Item is measured by the number of each type installed according to the details shown on the Plans.

C. Guardrail Posts

All lengths of guardrail posts when shown in the Plans or Proposal as a separate payment Item are measured by the Unit.
641.4.01 Limits
General Provisions 101 through 150.

641.5 Payment
Guardrail, of the type specified, complete in place including posts, offset blocks, and hardware will be paid for at the Contract Price per linear foot (meter).

Guardrail anchorage assembly will be paid for at the Contract Price per each assembly, complete in place.

All lengths of guardrail posts when shown in the Contract documents as a separate Pay Item will be paid for at the Contract Unit Price. Payment is full compensation for furnishing the posts, offset block, hardware, and Work to complete the Item.

For Projects that do not include grading as a Pay Item, payment for guardrail and guardrail anchorage systems on shoulders includes:

- Embankment material for shoulders as shown on the Standard Details or Plans
- Compacting embankment material for shoulders to the approximate density of the surrounding soils
- Removing existing vegetation and obstructions before placing the embankment
- Grassing the reconstructed area according to Section 700

Payment will not be increased or decreased when wood offset blocks are added to or substituted for steel or plastic offset blocks.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 641</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Guardrail, type____</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 641</td>
<td>Double faced guardrail, type____</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 641</td>
<td>Guardrail for bridges, type____</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 641</td>
<td>Double guardrail for bridges, type____</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 641</td>
<td>Guardrail, Type T, Modified offset block</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 641</td>
<td>Guardrail anchorage, type__</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 641</td>
<td>Guardrail posts (all lengths)</td>
<td>Per each</td>
</tr>
</tbody>
</table>

641.5.01 Adjustments
General Provisions 101 through 150.

Section 643—Fence

643.1 General Description
This work includes constructing fence and gates according to these Specifications where shown on the Plans or designated by the Engineer. Ensure that this work conforms with the lines and grades shown on the Plans. The fence types covered by these Specifications are:

- Chain-link
- Woven wire
- Barbed wire
- Field fence
- Barrier fence

643.1.01 Definitions
General Provisions 101 through 150.
643.1.02 Related References

A. Standard Specifications
 Section 500—Concrete Structures
 Section 645—Repair of Galvanized Coatings
 Section 862—Wood Posts and Bracing
 Section 863—Preservative Treatment of Timber Products
 Section 894—Fencing

B. Referenced Documents
 General Provisions 101 through 150.

643.1.03 Submittals

Furnish the Engineer, in duplicate, a materials certification for temporary barrier fence physical properties according to Section 106 of the Specifications.

643.2 Materials

Ensure that materials conform to the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete (Class A or B)</td>
<td>500</td>
</tr>
<tr>
<td>Wood Fence Posts and Bracing</td>
<td>862.2.01</td>
</tr>
<tr>
<td>Metal Caps</td>
<td>862.2.01.A.5.</td>
</tr>
<tr>
<td>Preservative Treatment</td>
<td>863.2.01</td>
</tr>
<tr>
<td>Chain Link Fence (Fabric, Posts, Gates, and Accessories)</td>
<td>894.2.01</td>
</tr>
<tr>
<td>Woven Wire Fence (Fabric, Gates, and Posts)</td>
<td>894.2.02</td>
</tr>
<tr>
<td>Barbed Wire (including Posts)</td>
<td>894.2.03</td>
</tr>
<tr>
<td>Ground Rods and Connections</td>
<td>894.2.04</td>
</tr>
<tr>
<td>Field Fence</td>
<td>894.2.05</td>
</tr>
</tbody>
</table>

A. Chain-Link Fence

Use the fencing material shown in Subsection 894.2.01. Ensure that posts, fabric, wire, appurtenances, and gates when required, are the same or matching type for each Project, unless otherwise directed.

B. Woven-Wire or Barbed-Wire Fences

Use wood or steel post types as shown on the Plans. Ensure that each Project fence and post is the same type and shape, unless otherwise specified.

C. Temporary Barrier Fence

1. Use barrier fence fabricated from high-density polyethylene or polypropylene containing U.V. stabilizers
2. Ensure the barrier fence meets the following:
 a) Is free of manufacturing flaws
b) Meets the following physical properties

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Mesh Opening Size</td>
<td>1 ¾” (45 mm) x 2 1/8 “ (54 mm)</td>
</tr>
<tr>
<td>Roll Width</td>
<td>4 ft. (1.2 m)</td>
</tr>
<tr>
<td>Color</td>
<td>International Orange</td>
</tr>
<tr>
<td>Maximum Porosity</td>
<td>80%</td>
</tr>
<tr>
<td>Minimum Yield Strength (MD)</td>
<td>750 lb/ft (11 kN/m)</td>
</tr>
</tbody>
</table>

643.2.01 Delivery, Storage, and Handling
Do not store barbed-wire, woven-wire fence fabric, steel posts, hardware, and other materials on the ground. Place them in floored buildings, on platforms, or on wooden timbers or poles. Ensure that the floors, platforms, or props are high enough to prevent the wire and steel posts from touching ground or surface water.

Wire or steel posts that are damaged from improper storage between fabrication and final erection will be rejected.

643.3 Construction Requirements

643.3.01 Personnel
General Provisions 101 through 150.

643.3.02 Equipment
General Provisions 101 through 150.

643.3.03 Preparation
General Provisions 101 through 150.

643.3.04 Fabrication
General Provisions 101 through 150.

643.3.05 Construction
Construct fence (except for field fence) within the right-of-way line. Do not allow the permanent installation to encroach on adjacent property.

A. General Fencing Requirements

Follow these general requirements when placing the fence:

1. Construct the fence to follow the contour of the ground. Place the bottom of the fence fabric at least 1 in (25 mm) from the ground surface, but no more than 6 in. (150 mm).
2. Clear the fence line a maximum of 8 ft (2.4 m) wide and grade where necessary to provide a neat appearance.
3. When the ground profile in low areas changes abruptly, use longer posts to maintain the ground clearance. Stretch multiple strands of barbed wire on the posts with 6 in (150 mm) or less vertical clearances between strands of barbed wire.
4. Connect the existing cross fences to new fencing, except for obviously unserviceable fences.
5. Place corner or end posts, whichever is appropriate, at the junction with existing fences and fasten the wires in the new and existing fences to the posts.
6. Install corner or pull posts for new fencing without placing tension on existing fence posts. At structures, fasten new fencing to end posts to permit livestock to pass through or under the structure freely, unless otherwise directed or shown on the Plans.

B. Posts and Appurtenances

Follow these steps to install posts and appurtenances:

1. Place and install the posts as shown on the Plans. If the soil is Class I, II, III, or V, drive “C” and 2-3/8 in (60 mm) tube-type line posts for all fence types at least 3 ft (900 mm) deep instead of using concrete encasement.
2. Encase in concrete line posts installed in marshy or swampy areas (Class IV soils). Install posts in rock according to this subsection.
3. Encase the corner, end, and pull posts in concrete as shown on the Plans.
4. Replace posts damaged by driving. When posts are set in concrete, fill the entire hole around the post with Class A or B concrete.
5. Hand mix concrete for batches of \(1/2\) yd\(^3\) (0.5 m\(^3\)) or less. Firmly brace the posts and hold them in place until the concrete has set.
6. Ensure that the distance between the end, pull, and corner or angle post assemblies does not exceed the following:

<table>
<thead>
<tr>
<th>Fence Type</th>
<th>Distance (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For chain-link fence, straight</td>
<td>500 ft (150 m)</td>
</tr>
<tr>
<td>For chain-link fence, curved</td>
<td>250 ft *(75 m)</td>
</tr>
<tr>
<td>For woven-wire fabric</td>
<td>330 ft (100 m)</td>
</tr>
<tr>
<td>Field fence</td>
<td>330 ft (100 m)</td>
</tr>
</tbody>
</table>

7. On end, pull, and corner or angle post assemblies for woven-wire fence, add additional approach posts for greater stability when necessary or as directed by the Engineer.
8. Set posts placed on concrete walls, slabs, or solid rock in round holes 6 in (150 mm) deep or as indicated on the Plans.
9. Fill the space around the post with molten lead or a cement filler approved by the laboratory.
10. Repair the posts after cutting or drilling. Repair galvanized steel posts according to Section 645. Repair other metal posts according to the manufacturer’s recommendations.
11. Treat timber posts and braces with a preservative coating of the type specified in Subsection 863.2.01.

C. Fence Erection

Install fence fabric or barbed wire when posts are set and braced, except when posts are set in concrete footings.

When posts are set in concrete footings, delay installing the fabric or wire to allow the concrete to cure at least 5 days. When barbed wire fence is required, install three strands unless otherwise indicated on the Plans.

D. Gates

Ensure that the gate assemblies are the length, height, and type designated on the Plans. Install the gate to provide a 180-degree swing.

Weld the gate frames into units. Properly coat them after welding according to Section 894.

Stretch fabric that matches the fence fabric taut over the gate frame. Provide gate assemblies with a positive-type locking device, padlock, and keys.

E. Electrical Ground

Wherever a power line carrying more than 600 volts passes over the fence, install a ground rod.

1. Install the ground rod at the nearest point directly below the point of crossing.
2. Where possible, drive the rod into the ground for a full 8 ft (2.4 m) of penetration.
 a. In rocky soil, drive the rod slanted to provide 18 in (450 mm) of cover at the tip.
 b. In solid rock, install two ground rods at the nearest post on each side of the power line crossing where soil conditions will permit.
3. Use clamps to attach a length of No. 6 AWG bare copper, 7-strand wire between the fence and the ground rod.

F. Trespassing on Private Property

To trespass on private property outside the right-of-way or easements provided on the Plans, obtain permission from the property owner for the intrusion.

Use field fence for replacing fence outside the right-of-way or for providing temporary fence at locations shown on the Plans or directed by the Engineer. Field fence is considered permanent unless it is specified as temporary.

G. Maintaining Livestock

Construct the fence to prevent livestock from escaping. Schedule fence removal and new fence installation to provide continuous security of the livestock. If security is not maintained and animals or property are damaged or lost, compensate the owner or make repairs at no cost to the Department. Replace or repair damaged existing fences.
H. Temporary Barrier Fence

Install the barrier fence according to the manufacturer's instruction. Use suitable strength metal, wood, or composite posts. Ensure the posts are long enough to be embedded to a depth that will provide stability to the fence have sufficient rigidity to hold the fence in a vertical position.

The maximum post spacing is 10 ft (3 m). Attach the fence to the posts with nails, staples, or wire ties spaced every 6 in. (150 mm) along the posts. Do not allow the method of attachment to create a safety hazard.

At the completion of the project, or as directed by the Engineer, remove all barrier fence including posts and incidentals.

643.3.06 Quality Acceptance

Repair rusted wire or posts before Final Acceptance, or remove and replace with new material at the Contractor’s expense. Do not replace the fence if rusting occurs as a result of ponding water after the fence is erected.

643.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

643.4 Measurement

Fence will be measured by the linear foot (meter) along the bottom of the fence, from the outside of end posts for each continuous run of fence. Measurement for payment includes posts, post assemblies, pull, corner, and gate posts, and gates unless gates are a separate Pay Item.

When gates are paid for separately they will be measured as complete Units of the type and size specified and installed. Temporary barrier fence will be measured by the linear foot (meter) along the bottom of the fence outside of end posts for each continuous run of fence.

643.4.01 Limits

General Provisions 101 through 150.

643.5 Payment

The accepted quantities of fence, measured as indicated above, will be paid for at the Contract Unit Price per linear foot (meter) of the specified type and height of fence. Payment includes gates unless the gates are paid for separately.

The accepted quantity of gates, when listed as a separate Pay Item, will be paid for at the Contract Unit Price for each type and size of gate specified, complete in place, including posts and hardware, locks, keys, and other incidentals shown on the Plans.

Payment includes clearing and grubbing, grading, excavating, backfilling, disposing of surplus materials, and furnishing materials and incidentals such as molten lead or cement filler on concrete walls, slabs, or solid rock to complete the work.

When field fencing is temporary, payment includes removal. Materials salvaged from temporary field fence remain the Contractor’s property.

The accepted quantities of temporary barrier fence measured as indicated above will be paid for at the Contract unit price per linear foot (meter) of fence. Payment to complete the item includes all necessary clearing, installation of fence including hardware and other incidentals, and removal of the fence. The barrier fence, posts, and all incidentals become the property of the Contractor upon removal.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 643</th>
<th>Field fence, woven wire</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 643</td>
<td>Field fence, barbed wire (strand)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 643</td>
<td>Field fence, special design</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 643</td>
<td>Chain-link fence (type__), (height__) in (mm), wire gauge__</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 643</td>
<td>Chain-link fence (type__), (height__) in (mm), wire gauge__, with extension arms and barbed wire</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>
Section 645—Repair of Galvanized Coatings

645.1 General Description
This work includes field repairing damaged galvanized coatings, except coatings on wire and chain-link wire fence.
When galvanized materials are welded, the work applies to the welded area and to the damaged areas adjacent to the weld. It does not apply to new materials deficient in coating.

645.1.01 Definitions
General Provisions 101 through 150.

645.1.02 Related References
A. Standard Specifications
 Section 870—Paint
B. Referenced Documents
 General Provisions 101 through 150.

645.1.03 Submittals
General Provisions 101 through 150.

645.2 Materials
Use material for repairing galvanized coatings that conforms to the following:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galvanizing Repair Compound</td>
<td>870.2.05</td>
</tr>
</tbody>
</table>

645.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

645.3 Construction Requirements

645.3.01 Personnel
General Provisions 101 through 150.

645.3.02 Equipment
General Provisions 101 through 150.

645.3.03 Preparation
Before applying repair compounds:

1. Clean the area of grease using an approved solvent recommended by the producer of the galvanizing repair compound.
2. Thoroughly brush the area with a stiff wire brush to remove dirt, loose galvanizing, welding slag, or other foreign material.
645.3.04 Fabrication
General Provisions 101 through 150.

645.3.05 Construction
Apply the repair compound smoothly and evenly with a moderately filled paint brush when the temperature of the steel, compound, and surrounding air is above 45 °F (7 °C). On smooth surfaces, ensure that the minimum dry film thickness is 2 mils (0.05 mm).

On rough and pitted surfaces, the Engineer may require more than one coat. When additional coats are required, allow a drying time of at least four hours between coats. Do not brush over partly dried applications.

645.3.06 Quality Acceptance
General Provisions 101 through 150.

645.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

645.4 Measurement
This work will not be measured separately for payment.

645.4.01 Adjustments
General Provisions 101 through 150.

645.5 Payment
This work shall be performed at the Contractor’s expense.

645.5.01 Adjustments
General Provisions 101 through 150.

Section 647—Traffic Signal Installation

647.1 General Description
This work consists of furnishing materials and erecting a traffic signal installation including all traffic signal equipment, poles, bases, wires and miscellaneous materials required for completion of the installation.

It also includes all test periods, warranties and guarantees as designated in subsequent sections, and response to maintenance and operational issues as described in subsequent sections.

Apply for, obtain and pay for all utility services, communications services to, and pole attachment permits that are necessary for the signal installation and operation required in the Plans. Maintain these utility services until final acceptance of the signal.

Upon final acceptance, make an orderly and uninterrupted transfer of these services and permits to the local government or other jurisdiction that will be responsible for subsequent maintenance and operation.

647.1.01 Definitions
General Provisions 101 through 150.

647.1.02 Related References
A. Standard Specifications
 Section 106—Control of Materials
 Section 500—Concrete Structures
 Section 501—Steel Structures
 Section 631—Changeable Message Signs
 Section 636—Highway Signs
Section 639—Strain Poles for Overhead Sign and Signal Assemblies
Section 645—Repair of Galvanized Coatings
Section 680—Highway Lighting
Section 681—Lighting Standards and Luminaires
Section 682—Electrical Wire, Cable, and Conduit
Section 700—Grassing
Section 800—Coarse Aggregate
Section 801—Fine Aggregate
Section 832—Curing Agents
Section 833—Joint Fillers and Sealers
Section 850 Aluminum Alloy Materials
Section 853—Reinforcement and Tensioning Steel
Section 854—Castings and Forgings
Section 861—Piling and Round Timber
Section 870—Paint
Section 886—Epoxy Resin Adhesives
Section 910—Sign Fabrication
Section 911—Steel Sign Posts
Section 912—Sign Blanks and Panels
Section 913—Reflectorizing Materials
Section 915—Mast Arm Assemblies
Section 923—Electrical Conduit
Section 925—Traffic Signal Equipment
Section 935—Fiber Optic System
Section 936—CCTV System
Section 937—Video Detection System
Section 938—Radar Detection System
Section 939—Communications & Electronic Equipment
Section 940—Navigator Integration

B. Referenced Documents

National Electrical Manufacturers Association (NEMA) Traffic Control Systems Standards No. TS 1
NEMA Traffic Control Systems Standards No. TS 2
AASHTO Roadside Design Guide
The Manual on Uniform Traffic Control Devices (MUTCD), current edition
National Electrical Code (NEC)
GDT 7
GDT 24a
GDT 24b
GDT 67
647.1.03 Submittals

Submit to the Engineer, signal material specifications information on all materials proposed for use on the project. The Engineer will forward the materials submissions to the District Traffic Operations offices, which will forward the information onto the Traffic Operations offices at the TMC building.

Written approval is required from the State Traffic Signal Design Engineer prior to beginning any work on the project.

A. Review

For all submittals, the State Traffic Signal Design Engineer’s review of the material should be completed within thirty (30) days from the date of receipt of the submission unless otherwise specified. The State traffic Signal Design Engineer will advise in writing, as to the acceptability of the material submitted.

All material submittals for fiber optic communications equipment and materials used on the project will be reviewed by the Department’s Traffic Signal Electrical Facility (TSEF). The material review should be completed within thirty (30) days from the date of receipt of the material submission unless otherwise specified. The State Traffic Signal Design Engineer will advise in writing as to acceptability of materials to be used on the project.

The State Traffic Signal Design Engineer may determine that the item is approved, in which case no further action is required; or the item may be partially or totally rejected in which case, modify the submittal as required and resubmit within fifteen (15) days. At this time, the review and approval cycle described above begins again.

B. Submittal Costs

Include the costs of submittals within the price paid for individual bid items. No additional compensation will be made.

C. Steel Strain Pole, Concrete Strain Pole or Steel Pole Certification

Instruct the supplier or manufacturer of the strain poles or steel poles with traffic signal mast arms to submit a certification, including mill certificates to:

Department of Transportation
Office of Materials and Research
15 Kennedy Drive
Forest Park, Georgia 30297

Include the following in the certification:

- A statement that the items were manufactured according to the Specifications, including the Specification subsection number
- Project number and P.I. number

Instruct the supplier or manufacturer to send copies of the transmittal letter to the Engineer. Refer to Subsection 647.3.03.C.

Prepare Shop Drawings and related signal strain pole design calculations. Provide “bending moment at yield” to determine the foundation size according to the signal strain pole foundation drawings. Submit all Shop Drawings and related signal strain pole design calculations to the Engineer to be forwarded to the State Bridge and Structural Design Engineer for review and approval. Obtain written approval prior to pole fabrication and installation.

Show all dimensions and material designations of the designs on the drawings. See Section 501 for the certification procedure for poles and anchor bolts.

D. Signal Item Certification

Submit six (6) copies of material catalog product numbers and descriptions to the Engineer. Reference the project number, P.I. number and Specification subsection number for the following traffic signal items:

- Signal heads
- Mounting hardware
- Controllers
- Cabinet assemblies
E. Test Results Submittal

Submit the results of the testing of the following items to the Engineer:
- Loop Detector Testing
- Signal Cable Testing
- Interconnect Cable Testing
- Pre-emption Testing
- Controller and Cabinet Testing
- Any other operational testing required by the Engineer

F. Mast Arm Pole Chart

For locations with mast arm pole installations, submit a “Mast Arm Pole Chart” for review and approval by the Engineer. The “Mast Arm Pole Chart” shall also include a sketch on an 8 ½ inch x 11 in (216 mm x 297 mm) sheet of paper showing the following:
- Curb lines
- Location of mast arm pole based on utility information. (Final location of mast arm pole must meet the criteria for setback from the road as specified in the Roadside Design Guide by AASHTO and in the Standard Detail Drawings)
- Distance from both adjacent curbs to mast arm pole
- Distance along mast arm from pole to curb and from curb to each proposed signal head
- Directional arrow
- Street names
- Position of Luminaries

Label the sketched distances. Once this pole chart is approved, the contractor shall use the distances measured to the proposed signal head locations when ordering the mast arm to ensure that the mast arm is fabricated with holes for signal head wiring in the correct locations.

647.2 Materials

647.2.01 Delivery, Storage, and Handling

A. State-supplied Equipment

For projects where traffic signal equipment is to be supplied by the Georgia Department of Transportation, obtain State-supplied traffic signal equipment from the Traffic Signal Electrical Facility (TSEF):

1. Contact the Engineer by phone or correspondence within one week after receiving the Notice to Proceed and arrange for a location to pick up the signal equipment.
2. Sign GDOT’s Warehouse Issue Request Form 592 to accept delivery of the State-supplied equipment from GDOT’s Traffic Signal Equipment Warehouse. Initial Form 592 if equipment is received from a GDOT District Field Office.
3. Inspect the equipment to ensure that it is operating properly and perform any operational tests within ten (10) calendar days after receiving the equipment.
4. Before installation, and within ten (10) calendar days, certify to the Engineer in writing that the State-supplied equipment was received in good condition.

5. Notify the Engineer in writing if the State-supplied equipment is defective. The State Signal Engineer will replace the defective State-supplied equipment.

6. If no written dissent is received after ten (10) calendar days or if equipment is installed in the field, the Engineer will consider this equipment to be satisfactory and accepted.

7. The Contractor shall supply new equipment to replace State-supplied equipment that is damaged by the Contractor.

B. Signal Equipment

See Section 925 for signal equipment specifications.

The signal equipment, components, supplies, or materials used in traffic signal installation may be sampled and tested if not previously approved by the Department.

Test according to the Specifications and the Sampling, Testing, and Inspection Manual using one or more of the following methods:

- Have the Department use their own facilities.
- Have the supplier or manufacturer use their facilities with an authorized Department representative to witness the testing.
- Provide independent laboratory test results indicating compliance with Department Specifications referenced in Subsection 647.1.02, “Related References”, of this document.

When testing by the Department is required, supply the item to the Department. Acceptance of materials tested does not waive warranties and guarantees required by the Specifications.

C. Cable

Use cable that conforms to Section 680, Section 925, and the appropriate IMSA, NEMA, or UL Specifications for the wire or cable.

Obtain pole attachment permits required by local utility companies or pole owners to allow joint use for signal cable, hardware, or other auxiliary devices.

D. Interconnect Communications Cable

The interconnect cable (communication cable) links the master controller, the field controllers, and sensors. Follow these guidelines:

1. Use fiber optic interconnect cable for all new interconnected signal systems. See Section 935 for fiber optic cable information, specifications and installation and testing techniques.

2. Use copper cable only as directed by the Project Engineer or where specifically shown in the Plans. Refer to Section 647.3.05, “Construction”, of this document for installation.

E. Messenger Cable

Use cable that conforms to ASTM A 475 Siemens-Martin grade or better with Class A coating. The messenger is used to support cable indicated in the Plans as overhead cable. Use devices such as wire ties or lashings to attach the cable.

- Before erecting the messenger strand, determine the suspension strand length to span the distance between the poles.
- Run the messenger strand from structure to structure without splicing.
- The maximum allowable sag is five percent (5%) of one-half of the longest diagonal distance between the signal poles.
- Calculate attachment points for the messenger strand at the signal pole according to the Plan detail sheet.

F. Fiber Optic Cable

Use fiber optic cable that complies with Section 935. Use Department approved materials, and utilize Department and fiber optic cable manufacturer recommended installation methods practices and techniques for installation, storage and termination of fiber optic cable.

- Use minimum 24 fiber, single mode fiber optic cable, for communications unless otherwise specified in the plans.
Submit fiber optic cable manufacturer supplied product information on materials to be used for review for Specification Section 935 for compliance.

Before erecting the messenger strand, determine the suspension strand length to span the distance between the poles.

Run the messenger strand from structure to structure without splicing.

The maximum allowable sag is five percent (5%) of one-half of the longest diagonal distance between the signal poles.

Calculate attachment points for the messenger strand at the signal pole according to the Plan detail sheet.

For underground installation, utilize materials and techniques approved by the Engineer and in conformance with Subsection 647.3.05.M and detail sheets for conduit and pull box installations. Underground fiber optic cable installation shall include tone tape or cable for utility detection and in compliance with project detail sheets.

G. Conduit on Structures

Use rigid metallic materials for all exposed conduit for cabling. Use metallic conduit on the exterior of signal poles and other structures and to house signal conductors for the entire length from the weatherhead on the pole to the interior of the cabinet (see Subsection 647.3.05X).

647.3 Construction Requirements

Refer to Subsection 107.07 of the Specifications regarding proper conduct of The Work.

647.3.01 Personnel

For the definition of a qualified electrician, see Subsection 755.1.01.

647.3.02 Equipment

Use machinery such as trucks, derricks, bucket vehicles, saws, trenchers, and other equipment necessary for the work and approved by the Engineer prior to installation operations.

647.3.03 Preparation

Utility Permits

A. Application

Apply for, obtain, and pay for utility services and pole attachment permits for signal operation required in the Plans.

B. Maintenance

Maintain these utility services until Final Acceptance of each signal installation. After Final Acceptance, transfer these services and permits to the local government or jurisdiction responsible for maintenance and operation. Ensure that the transfer does not interrupt service.

C. Utility Location

1. Adjustment

Prior to ordering signal poles, locate utilities and adjust the location of poles, where necessary, to minimize utility conflicts. Obtain approval from the Engineer for any deviation from the Plans.

Determine the final length of mast arms based on any field adjusted pole locations. Final location shall be approved by the Engineer.

2. Clearance

When installing aerial cable of any type, ensure that overhead clearance and separation requirements conform to local utility company standards and the NEC. Refer to the Standard Details Drawings for further information on utility clearances.

3. Pre-emption

When traffic signal pre-emption is used, coordinate with the railroad, fire department or any other agency that uses pre-emption to obtain pre-emption output and route output cable to the signal controller operating the intersection to be pre-empted. Obtain all permits and approval for crossing at grade or grade separated railroad facilities.

647.3.04 Fabrication

General Provisions 101 through 150.
647.3.05 Construction

A. Acquiring and Disposing of Equipment

Do not modify the signal equipment, design, and operation without the District Traffic Operations Engineer’s written approval.

All traffic signal equipment removed or replaced shall be returned to District Traffic Signal Shops unless otherwise noted in the Plans or as directed by the Engineer.

B. Traffic Signal Equipment Modification and Removal

Upon modification of any existing traffic signal equipment, responsibilities for maintenance, operations and response to traffic signal malfunction become the responsibility of the contractor and provisions of Section 647.3.07, “Contractor Warranty and Maintenance”, apply.

1. Remove existing signal equipment that is not used in the final installation when the new signal equipment is operational.
 a. Carefully remove equipment to minimize damage and retain it in its original form. This equipment may include:
 - Steel poles including the foundation down to 2 feet (600 mm) below ground level finished grade
 - Concrete Strain poles
 - Timber poles
 - Traffic signal cabinets including contents, cabinet base and work pads
 - Original signal heads including span wire support
 - Other equipment not retained in the final installation
 b. Salvage the equipment as directed in the Plans or as directed by the Engineer

2. If the Plans specify delivery of salvaged equipment to a Department facility, provide an inventory list and arrange a mutually agreeable delivery time with the Engineer twenty-four (24) hours in advance.

3. Replace traffic signal equipment that the Engineer determines has been damaged or destroyed during installation or modification of the traffic signal, at no expense to the Department. Replace with new material.

4. If the Engineer finds that the existing material to be relocated is unsatisfactory, replace with new material. The costs will be paid for as Extra Work. Include the removal costs of all equipment, including salvaged equipment, in the cost of the overall bid price submitted.

5. Remove old signal heads by the end of the day that the new signal equipment is placed in operation. Remove all other signal equipment within seven (7) days after operations of the newly operational equipment, or within thirty (30) day burn-in period commencement.

C. Auxiliary Cabinet Equipment

Provide auxiliary cabinet equipment or special purpose equipment with connecting harnesses, if necessary, or as shown in the Plans or Standard Detail Drawings.

1. Install the equipment in its associated cabinet. Extraneous wiring maybe necessary to install the equipment. Additional cabling shall be enclosed in rigid, galvanized conduit and neatly secured.

2. Connect the auxiliary equipment to its cable harness, or insert it in premounted racks or sockets.

D. Signal Controllers

Furnish and install approved microprocessor controllers at the locations shown in the Plans or as directed by the Engineer. All equipment furnished shall comply with Section 925, “Traffic Signal Equipment”.

1. Identify the controller and other auxiliary equipment by serial number and model. These numbers shall agree with previously approved catalog submittals.

2. Assemble the controller, cabinet, and auxiliary equipment to provide the operational sequence shown in the Plans and future operations specified.
E. Cabinet Assembly

1. Location

 When placing the cabinet, choose a location that:
 a. Protects maintenance personnel from vehicles when servicing the equipment.
 b. Allows the front panel door of the controller to open away from the intersection for view of signal indications while servicing or performing cabinet work.
 c. Does not block a sidewalk or passageway and complies with Federal regulations for Americans with Disabilities Act (ADA) clearance requirements.
 d. Is located away from the roadway or curb line to prevent vehicular damage to the cabinet.
 e. Is not located within drainage areas or installed in areas likely to collect and hold surface water.

Relocate the cabinet to avoid conflicts from proposed reconstruction projects, commercial driveways, etc. within the right-of-way at the Engineer’s discretion.

2. Erection

 Install and level traffic signal controller cabinets at locations shown in the Plans and/or as directed by the Engineer.
 a. Install cabinets to conform to the Standard Detail Drawings. Install pole or base-mounted as indicated in the Plans.
 b. Seal base-mounted cabinets to their base using silicone based sealer. Pliable sealant used shall not melt or run at temperatures as high as 212 °F (100 °C).
 c. Use prefabricated bases and work pads.
 d. Install technician pad in front and rear of the controller cabinet door. See standard details for pad information.

3. Field Cabinet Wiring

 All wiring shall be neat and secured and comply with NEC, NEMA, and Table 647-1, Table 647-2, Table 647-3 and Table 647-4 of this Specification.
 a. Cut field cabinet wiring to the proper length and organize it in the cabinet.
 □ Use at least No. 6 AWG wire on conductors between service terminals and the “AC+” terminals to signal light relays, and buss terminals.
 □ Use at least No. 6 AWG wire on terminal connections to light neutral.
 b. Crimp terminal connections to conductors with a ratchet-type crimping tool that will not release until the crimping operation is completed.
 c. Do not use splices inside the controller cabinet, base, or conduit.
 d. Do not use solid wire, except grounding wire.
 e. Supply the cabinets with cabinet wiring diagrams, schematic drawings, pin assignment charts, and manuals for circuits and components. Store these documents in the cabinet in a resealable, weatherproof container.

F. Signal Monitors

 Furnish signal monitor equipment as follows:
 1. Mount signal monitors in a rack with appropriate connectors to attach to the wiring harness.
 2. Program the monitor card according to the signal operation indicated in the Signal Plans before placing the installation in flash or stop-and-go operation.
 3. Configure and equip the signal monitor to monitor all red signal indications. Ensure that the red output for unused or vacant load bays or output slots is jumpered to 120 V AC+.

G. Power Disconnect

 Install a power disconnect box at each intersection as shown in the Standard Detail sheets. Install service cables from disconnect box and terminate as specified on the controller cabinet-wiring diagram.

H. Flashing Beacon

 Furnish and install the flashing beacon controller at the locations shown in the Plans and/or as directed by the Engineer. Install it as a complete unit (solid state flasher and cabinet with time clock, if applicable) and ensure that it conforms to this Specification.
I. Loop Detector Systems

Install and test loop detector systems according to NEMA Standards Publication TS 1-1983, Section 15, Inductive Loop Detectors, subsequent revisions (except as shown in the Plans), details, notes, and this Specification.

Ensure that loop detectors are complete and fully operational before placing the signal in stop-and-go operation.

1. General Installation Requirements
 Each loop must consist of at least two turns of conductor, unless otherwise shown in the Plans or this Specification. Do not place a portion of the loop within 3 feet (1 m) of a conductive material in the pavement such as manhole covers, water valves, grates, etc.
 a. Install pull boxes, condults, and conduits before beginning loop installation.
 b. Ensure that the ambient pavement surface temperature in the shade is at least 40 °F (5 °C) before placing sealant into saw cuts.

2. Loop Saw Cuts
 a. Outline the loop on the pavement to conform to the specified configuration.
 b. Install the detector loop in a sawed slot in the roadway surface deep enough to provide at least 2 inches (50 mm) of sealant cover.
 c. Ensure that the slot is at least 0.25 inches (6 mm) wide for stranded No. 14 AWG loop wire, THHN, THWN, XHHN, or XLPE, and at least 0.31 inches (7 mm) wide for polyethylene or PVC encased No. 14 AWG loop wire.
 1) At the intersection of the slots, drill a 1.25 inch (31 mm) diameter hole or make miter saw cuts in the pavement.
 Overlap miter saw cuts at the intersection of saw cuts so that the slots have a full-depth and smooth bottom.
 2) Prevent the wire from bending sharply.
 3) Do not install detector loop wire unless sawed slots are completely dry and free of debris. Use compressed air to thoroughly dry the sawed slot.
 4) Install the loop wire starting at the nearest pull box or condute, around the loop for the specified number of turns, and back to the pull box or condute.

 NOTE: Loop wire from the street is to be spliced in condults or pull boxes only.

 d. Press the wire in the slot without using sharp objects that may damage the jacket.
 e. Hold the loop in place every 5 feet (1.5 m) with 1 inch (25 mm) strips of rubber, neoprene, flexible tubing, or foam backer rod as approved by the Engineer.
 f. Leave the hold down strips in place when filling the slot with loop sealant.
 g. Where encased loop wire is used, apply a waterproof seal to the ends of the polyethylene tubing that encase the wire to prevent moisture from entering the tube.
 h. Where the loop wires cross pavement joints and cracks, protect the loop wires using the method specified in “Miscellaneous Details” in the Plans.

3. Loop Sealing
 After successfully testing each loop, fill the slots with sealant to fully encase the conductors.
 a. Ensure that the sealant is at least 2 inches (50 mm) thick above the top conductor in the saw cut.
 b. Apply the sealant so that subsequent expansion does not extend the sealant material above the pavement surface.
 c. Before the sealant sets, remove surplus sealant from the adjacent road surfaces without using solvents or epoxy sealants.
 d. Obtain approval from the Office of Materials and Research to use polyurethane sealants. They shall conform to Subsection 833.2.09.
 e. When the Engineer determines that the loop sealant can accommodate traffic but the surface is tacky, dust the sealer on the pavement surface with cement dust before opening the roadway to traffic.
 f. Dispose of the solvents used to clean loop installation equipment according to the manufacturer’s specifications and local, State, and Federal regulations.
4. **Loop Connections**
 Connect loop conductors to a shielded lead-in cable that runs from the pull box adjacent the pavement edge or conduit to the detector hook-up panel in the controller cabinet, unless otherwise specified in the Plans.
 a. Use continuous (no splices) shielded lead-in cable from the pull box or conduit to the cabinet input file terminal. Do not ground the shield in the loop lead-in cable at the cabinet.
 b. Connect each loop to an individual detector channel as specified in the Plans.
 c. If the Plans specify that two or more loops will be operated on the same detector channel or detector amplifier unit, wire them in series to their loop lead-in at the pull box or conduit.
 d. Use series-parallel connections when series connections do not meet the manufacturer’s specified operating range for the detector amplifier unit.
 e. Make weather-tight and waterproof splices as detailed on the plan Standard Detail sheets. Make loop splices to loop lead-in cable only after the detector system has been tested and demonstrated under traffic conditions to the Engineer’s satisfaction.

5. **Loop Maintenance**
 Locate all existing loops, determine the operational status of all loop assemblies, and notify the Engineer prior to commencing loop construction activities at the intersection.
 Maintain all existing, operational loops, unless otherwise notified by the Engineer. Repair of an existing loop that is non-operational prior to beginning work will be considered as extra work.
 Locate points of conflict between new loops and existing loops, and install all new loops and saw cuts so as not to cut existing loop lead-ins and loop wires that are to be retained.
 If an existing operational loop that is not scheduled for replacement fails during the construction time frame, notify the Engineer and complete the replacement of the damaged loops immediately.
 The Engineer may grant a twenty-four (24) hour period to repair the loops if their operation is not critical. All costs associated with the replacement of the loops damaged during construction shall be charged and paid for by the Contractor.

J. **Pedestrian Push Button**
 Install the push button with a pedestrian instruction sign as illustrated on the Department’s standard detail sheets and according to the Plans.
 1. Place the pedestrian buttons as shown on the signal plan sheet and within easy access of the pedestrian crosswalk.
 2. Position the pedestrian button to correspond to the appropriate signal phase. Locate pedestrian buttons perpendicular to the appropriate signal indication and signal phase, and as field conditions require.
 3. Place the buttons approximately 3.5 feet (1.05 m) above the sidewalk or ground level.

K. **Cable**
 Install and connect electrical cable to the proper equipment to produce an operating traffic signal system. Use stranded copper cable conforming to Section 925.
 Install wiring in accordance with ISMA, NEMA, UL, and the Department’s Traffic Signal Wiring Standards, shown in Tables 647-1, 647-2, 647-3, and 647-4 of this Specification.
 In addition to the information provided below, see Section 682, Section 922, and Section 925 for cable equipment and installation specifications.
Table 647-1
Vehicular Signals
Georgia DOT Wiring Standards

<table>
<thead>
<tr>
<th>Signal Indications</th>
<th>3-Section Signal Heads Seven Conductor Cable</th>
<th>5-Section Signal Heads Seven Conductor Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phases 2, 4, 6, and 8</td>
<td>Phases 1, 3, 5, and 7</td>
</tr>
<tr>
<td>Red</td>
<td>Red Wire</td>
<td>Red Wire</td>
</tr>
<tr>
<td>Yellow</td>
<td>Orange Wire</td>
<td>Orange Wire</td>
</tr>
<tr>
<td>Green</td>
<td>Green Wire</td>
<td>Green Wire</td>
</tr>
<tr>
<td>Red Arrow</td>
<td>White Wire with Black Tracker</td>
<td></td>
</tr>
<tr>
<td>Yellow Arrow</td>
<td>Black Wire</td>
<td>Black Wire</td>
</tr>
<tr>
<td>Green Arrow</td>
<td>Blue Wire</td>
<td>Blue Wire</td>
</tr>
<tr>
<td>Neutral</td>
<td>White Wire</td>
<td>White Wire</td>
</tr>
</tbody>
</table>

Table 647-2
Vehicular Loop Detectors
Georgia DOT Wiring Standards

<table>
<thead>
<tr>
<th>Detectors</th>
<th>Phases 3, 4, 7, and 8 Presence Loops</th>
<th>Phases 2 and 6 Setback Pulse Loops and Phases 1 and 5 Presence Loops</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loop Wires</td>
<td>Shielded Loop Lead-in Cable, 3 Pair</td>
</tr>
<tr>
<td></td>
<td>Phases 2 and 6 Setback Pulse Loops</td>
<td>Shielded Loop Lead-in Cable, 3 Pair</td>
</tr>
<tr>
<td>Right Curb Lane</td>
<td>Red Wire</td>
<td>Red/Black Pair (1)</td>
</tr>
<tr>
<td>Second Lane</td>
<td>Green Wire</td>
<td>Green Black Pair (1)</td>
</tr>
<tr>
<td>Third Lane</td>
<td>White Wire</td>
<td>White/Black Pair (1)</td>
</tr>
<tr>
<td>Fourth Lane</td>
<td>Red Wire</td>
<td>Red/Black Pair (3)</td>
</tr>
<tr>
<td>Fifth Lane</td>
<td>Green Wire</td>
<td>Green/Black Pair (3)</td>
</tr>
<tr>
<td>Sixth Lane</td>
<td>White Wire</td>
<td>White/Black Pair (3)</td>
</tr>
<tr>
<td>First Left-Turn Lane</td>
<td>Red Wire</td>
<td>Red/Black Pair (4)</td>
</tr>
<tr>
<td>Second Left-Turn Lane</td>
<td>Green Wire</td>
<td>Green/Black Pair (4)</td>
</tr>
</tbody>
</table>

Table 647-3
Pedestrian Signals
Georgia DOT Wiring Standards

<table>
<thead>
<tr>
<th>Signal Indications</th>
<th>2-Section Signal Heads Seven Conductor Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phases 2 and 6</td>
</tr>
<tr>
<td>Don't Walk</td>
<td>Red Wire</td>
</tr>
<tr>
<td>Walk</td>
<td>Green Wire</td>
</tr>
<tr>
<td>Neutral</td>
<td>White Wire</td>
</tr>
</tbody>
</table>
NOTE: Do not use aluminum cable.

L. Signal Cable for Vehicular Signal Heads and Pedestrian Heads

Install cable for signal heads and pedestrian heads as follows:

1. For vehicle signal heads, install one 7-conductor signal cable for each intersection approach from the controller cabinet to the leftmost through-signal head on each approach. From this leftmost signal head, install a 4-conductor signal cable to each of the other signal heads on the same approach in sequence.

2. For pedestrian signal heads, install one 7-conductor signal cable from the controller cabinet to each pedestrian head installation location to operate either one or two pedestrian heads.

3. Make a minimum 2 foot (600 mm) diameter weather drip loop as shown in the Standard Detail Drawings in the Plans at the entrance to each signal head, pole, overhead conduit, and weatherhead.

4. Neatly tie signal cables leaving a structure or weatherhead to enter a signal fixture. Tie the cables to the messenger cable as illustrated in the Standard Detail Drawings.

M. Interconnect Communications Cable

Use fiber optic interconnect cable for all new interconnected signal systems. See Section 935 for fiber optic cable information, specifications and installation and testing techniques. Install and test interconnect communications cable as follows:

1. Installation
 a. Provide support for the interconnect cable on new or existing utility poles or signal poles; install underground in conduit.
 b. Pull cables with a cable grip that firmly holds the exterior covering of the cable.
 c. Pull the cables without dragging them on the ground, pavement or over or around obstructions. The Engineer will inspect and approve the cable prior to installation. Use powdered soapstone, talc, or other approved inert lubricants to pull the cable through the conduit.
 d. When using a separate messenger cable, spirally wrap the communications cable with a lashing machine according to the IMSA-20-2 Specifications.
 e. Do not splice outside the signal cabinet except at the end of full reels of 5,000 feet (1500 m).
 f. Ensure that splice points are near support poles and accessible without closing traffic lanes.
 g. Unless drop cable assemblies for communications are used, loop the cable in and out of the control cabinets. Coil and tie 10 feet (3 m) of cable in the controller cabinet foundation. Tape the cable ends to keep moisture out until the terminals are attached.
 h. Prevent damage to the cable during storage and installation.

 NOTE: Do not allow workers to step on or run over any cable with vehicles or equipment.

2. Field Test

Conduct a test for continuity and isolation with the Engineer according to Section 935.

 a. Perform the attenuation test for each fiber. Test for all events above 0.10 dB and total attenuation of the cable. Submit both printed and electronic (diskette) OTDR testing results as referenced in Subsection 935.1.03.
 b. Perform the isolation test for testing insulation resistance for each conductor and cable shield in the system.
 1) Fiber optic cable testing is to be conducted according to the requirements of Section 935.3.06.B, of the Specifications.
 2) Record the fiber cable test results for each on the Interconnect Cable Data Sheet and include it as project documentation.
c. If the conductors fail the continuity or isolation test, remove the installed cable, install new cable, and repeat the tests.

Table 647-5
Interconnect Cable Data Sheet

<table>
<thead>
<tr>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Number:</td>
</tr>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>Weather:</td>
</tr>
<tr>
<td>Temperature:</td>
</tr>
<tr>
<td>Contractor:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller Cabinet:</td>
</tr>
<tr>
<td>City or County:</td>
</tr>
<tr>
<td>Intersection Name(s)</td>
</tr>
<tr>
<td>Route Number(s)</td>
</tr>
<tr>
<td>Termini of Cable:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
</tr>
<tr>
<td>Manufacturer:</td>
</tr>
<tr>
<td>Number of Conductors:</td>
</tr>
<tr>
<td>Splice Point:</td>
</tr>
<tr>
<td>Total Length of Cable:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor Tube Color Description</td>
</tr>
<tr>
<td>Continuity</td>
</tr>
<tr>
<td>Attenuation</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
</tr>
<tr>
<td>6.</td>
</tr>
<tr>
<td>7.</td>
</tr>
<tr>
<td>8.</td>
</tr>
<tr>
<td>9.</td>
</tr>
<tr>
<td>10.</td>
</tr>
<tr>
<td>11.</td>
</tr>
<tr>
<td>12.</td>
</tr>
</tbody>
</table>

| Shield |
| Comments |
| Inspector's Name and Title: |
N. Loop Detector Lead-in Cable

Use 3-pair shielded lead-in cable in compliance with Section 925 for Detector loop lead-in installed for loop detectors. Use a shielded lead-in cable connecting the loop to the detector hook-up panel in the controller cabinet, unless otherwise specified in the Plans.

- Splice the loop detector wire to a shielded loop detector lead-in cable in a pull box adjacent to the loop detector installation.
- Use continuous (no splices) shielded lead-in cable from the pull box or conduit to the cabinet input file terminal. Do not ground the shield in the loop lead-in cable at the cabinet.
- Connect each loop to an individual detector channel as specified in the Plans.
- Make weathertight and waterproof splices between lead-in and loop wire. Loop installation may be approved only after the detector system has been tested and demonstrated under traffic conditions to the Engineer’s satisfaction, during the Operational Test Period.

O. Pedestrian Push Button Lead-in

Use 3-pair shielded lead-in cable compliant with Section 925 for pedestrian push buttons. Install one 3-pair shielded lead-in cable to each corner of the intersection, to operate either one or two push buttons. Do not ground the shield for the push button lead-in cable at the controller cabinet.

P. Messenger Cable, Stranded-Steel

Set messenger strands so that the height of the installed traffic signal heads conforms to the clearances on the Standard Detail Drawings. Lash cables to messenger cable or use cable ties spaced at 6 inch (150 mm) increments.

1. Drill wood poles to receive the eye bolts so that the span wire and eyebolt at each connection form a straight angle. Never pull or strain the messenger on the eye bolt to an angle of variance greater than ten degrees (10°).
2. Attach down guy wires to guy hooks. Never attach them directly to the eyebolt.
3. Ensure that messenger strand clearances conform with local utility company standards.
4. Make stranded messenger cable attachment points with the appropriate size strand vises or 3 bolt clamps. Stranded steel messenger cable is not paid for separately under this Specification.

NOTE: Never splice messenger cable between structures.

Q. Underground Cable for Signal Circuits

Underground cable for signal circuits includes cable, with conduit, as shown in the Plans. Install cable under existing pavement or surfaced shoulder, according to Subsection 680.3.05.

1. Cable in Conduit

Pull cable into conduits as follows:

a. Pull cables into conduits without electrical or mechanical damage. Pull cables by hand only. The use of trucks or other equipment is not permitted, unless approved by the Engineer. If mechanical pulling is approved, do not exceed the manufacturer’s tension rating for the cable.

b. Pull cables with a cable grip that firmly holds the exterior covering of the cable.

c. Use powdered soapstone, talc, or other inert lubricants to place conductors in conduit according to manufacturer’s recommendations.

d. Handle and install the conductors to prevent kinks, bends, or other distortion that may damage the conductor or outer covering.

e. Pull all cables in a single conduit at the same time. When pulling cables through hand holes, pole shafts, etc., use a pad of firm rubber or other material between the cable and the opening edges to prevent cable damage.

f. When installing cable in conduit with existing signal cable circuits, remove all existing cables and pull them back into the conduit with the new cables.

g. The distance between pull boxes in a run of conduit shall not be greater than 250 feet (75 m), unless otherwise shown in the Plans or approved by the Engineer, with the exception of fiber optic cable. The distance between pull boxes in a run of conduit for fiber optic cable shall not exceed 750 feet (225 m). Identification tape and or tone detection wire shall be used for fiber optic cable in conduit. All unused conduit shall have a continuous pull cable installed between pull boxes. All buried conduit shall be marked using sentinel marker posts identifying buried conduit, approved by the project engineer. See Section 682 for additional requirements.
2. Splices

Required signal conductor splicing shall be performed according to the National Electric Code; use materials compatible with the sheath and insulation of the cable.

Make splices at the first opportunity for items such as electrical communication boxes, pull boxes, controller cabinets, or pole bases unless otherwise shown in the Plans.

NOTE: Do not splice signal conductor cables for vehicle signal heads or pedestrian heads between the controller cabinet and the first signal or pedestrian signal head attachment.

Do not splice the pedestrian push button lead-in cable between the controller cabinet and the first pedestrian push button on each corner.

Do not splice fiber optic cable or copper cable between intersections unless otherwise approved by the Engineer. If approved, splice only in above ground enclosures or aerial splice boxes. Do not splice fiber optic or copper cable in pull boxes.

Make signal conductor line splices with copper-clad pressed sleeves or an approved equivalent. See “Pull Box Splices” in the miscellaneous construction details in the Plans.

a. Insulate required splices with plastic, pressure sensitive, all-weather 1.5 mil (0.038 mm) electrical tape

b. Apply the tape half-lap to a thickness 1.5 times thicker than the factory-applied insulation and sheath. Taper it off over the sheath neatly to approximately 3 inches (75 mm) from the conductor splice.

c. For cable splicing in junction boxes, use a heat-shrinkable, self-sealing splice instead of the above.

d. Pad the sharp points and edges of the connector an fill voids with extra wraps of plastic tape. Do not stretch the tape excessively or cause creeping.

e. Make the spliced joints watertight.

Note: Splice detector wires to shielded loop detector lead-in at pull boxes located immediately after the loop wire leaves the roadway. No splices will be permitted in shielded loop detector lead-in cable from this point to the controller cabinet.

R. Aerial Cable for Signal Circuits

Aerial cable for signal circuits consist of one or all of the following cables:

- Loop lead-in (sensor and detector)
- Signal wiring (controller)
- Interconnect cable (communications)

Support these cables on existing or newly installed signal or utility poles as detailed in Subsection 647.2.01.F.

S. Conduit and Fittings

Install conduit by type (rigid, HDPE, PVC) as shown in the Plans and the Standard Detail Drawings. Refer to the NEC, for conduit full percentages.

Separate signal conductors from vehicle detector and communications interconnect cables, except inside of poles. Separate the power cable to the controller cabinet from all other cables in its own 1 in (25 mm) rigid conduit except inside poles. Ensure that conduit conforms to Section 682, Section 923 and Section 925 with the following addition:

- Use flexible conduit only where shown in the Details or as directed to do so in writing by the District Signal Engineer.

Use the conduit size specified in the Plans, unless otherwise directed by the Engineer. Obtain written approval from the Engineer prior to installing conduit other than the size specified in the Plans.

All 2 inch (50 mm) conduit elbows shall be “sweep” type. The minimum radius for the elbow is 18 inches (450 mm), unless otherwise approved by the Engineer.

NOTE: Do not use multi-cell conduit.
Install conduit and fittings as follows:

1. Ensure that exposed conduit on poles are rigid, galvanized metal conduit.
2. Ream the ends of metallic conduit after cutting the threads. Ream other conduit as necessary.
3. Cut the ends square, and butt them solidly in the joints to form a smooth raceway for cables.
4. Make conduit joints to form a watertight seal.
5. Coat metallic conduit threads with red- or white-lead pipe compound, thermoplastic or Teflon seal. Ensure that they are securely connected.
6. Make plastic conduit joints with materials recommended by the conduit manufacturer.
7. Install bushings in the conduit to protect the conductors. When conduit is installed for future use, properly thread and cap the ends of the metallic conduit runs.
 a. Plug the ends of nonmetallic conduit runs to prevent water or other foreign matter from entering the conduit system.
 b. Seal the exposed conduit ends with a permanently malleable material.
 c. Ensure that empty conduit installed for future wire or cable has a nylon pull string or cord inside that is impervious to moisture and rot and can withstand a load of 50 pounds (23 kg) without breaking. Secure this pull cord at each open end and at each pull box.
8. Ensure that conduit on pole exteriors are mounted with galvanized, two-hole straps or clamps. Place the clamps not more than 3 feet (1 m) from junction boxes, condulets, or weatherheads. Place it at 5 foot (1.5 m) intervals elsewhere.
 a. Fasten the clamps to wood poles with galvanized screws or lag bolts.
 b. Do not install conduit risers on concrete, steel, or mast arm poles unless approved by the Engineer.
9. Install a weatherhead at the end of exterior conduit runs on a pole or other structure to prevent moisture of other matter from entering the conduit.
10. After installation, ensure that the conduit or fitting placement has not warped or distorted any condulet, terminal, or control or junction box.

T. Underground Conduit

Underground conduit includes encased or direct burial conduit.

1. Install the conduit in a trench excavated to the dimensions and lines specified in the Plans.
 a. Provide at least 18 inches (450 mm) finished cover, unless otherwise specified.
 b. Under pavement, excavate at least 36 inches (900 mm) below the bottom of the pavement.
2. Before excavation, determine the location of electrical lines, drainage, or utility facilities in the area to prevent damage.
 a. Place the conduit where it will not conflict with proposed guardrail, sign posts, etc.
 b. Change locations of conduit runs, pull boxes, etc., if obstructions are encountered during excavation. Changes are subject to the Engineer’s approval.
 c. Where possible, provide at least 12 inches (300 mm) between the finished lines of the conduit runs and utility facilities such as gas lines, water mains, and other underground facilities not associated with the electrical system.
3. When the conduit run is adjacent to concrete walls, piers, footings, etc., maintain at least 4 inches (100 mm) of undisturbed earth or firmly compacted soil between the conduit and the adjacent concrete or, when the conduit is encased, between the encasement and the adjacent concrete.
 Unless specified in the Plans, do not excavate trenches in existing pavement or surfaced shoulders to install conduit.
4. When placing conduit under an existing pavement, install the conduit by jacking and boring, or other approved means. See Section 615 for jacking and boring pipe specifications. Obtain the Engineer’s approval prior to installing conduit by means of boring-method.
5. When the Plans allow trench excavation through an existing pavement or surfaced shoulder, restore the pavement shoulder surface, base, and subgrade according to the Specification.
6. Cut trenches for conduit on a slight grade (0.25 percent minimum) for drainage, unless otherwise specified. When the grade can not be maintained all one way, grade the duct lines from the center, both directions, down to the ends.
7. Avoid moisture pockets or traps. Excavate vertical trench walls.
8. Tamp the bottom of the trench to produce a firm foundation for the conduit.
9. When necessary to prevent damage, sheet and brace the trenches and support pipe and other structures exposed in the trenches.
10. Conduit installed for fiber optic cable installation shall have detectable tone wire installed for detection as specified and detailed in the Project Standard Detail Sheets.

U. Encased Conduit

Place encased conduit in the locations shown in the Plans unless otherwise specified. Construct as follows:
1. Construct the encasement using Class A concrete that meets requirements in Section 500.
2. Extend the encasement or conduit under roadway pavements or surfaces 6 inches (150 mm) past the outer edge of paved shoulders or sidewalks, or past curbs if no shoulder or sidewalk is present.
3. Extend the conduit at least 3 inches (75 mm) beyond the encasement.
4. Place 3 inches (75 mm) of concrete in the bottom of the trench and place the conduit on top of it.
5. Temporarily plug the ends of the conduit to prevent concrete or foreign materials from entering.
6. Cover the conduit with at least 3 inches (75 mm) of concrete.
 Wait to encase the conduit with concrete until the Engineer inspects and approves the conduit.
7. Cure the concrete encasement according to Subsection 500.3.05 Z, except curing may be reduced to twenty-four (24) hours. Use a precast encasement if approved by the Engineer.

V. Direct Burial Conduit

Install direct burial conduit as shown in the Plans. Use rigid galvanized steel, polyvinyl chloride, or polyethylene conduit. Excavate at least 36 inches (900 mm) below the top of the finished ground or 36 inches (900 mm) below the bottom of the pavement.

When rock is in the bottom of the trench, install the conduit on a bed of compacted, fine-grain soil at least 4 inches (100 mm) thick.

Conduit installed for fiber optic cable installation shall have detectable tone wire installed for detection as specified in Section 935 and detailed in Standard Detail Sheets.

W. Backfilling

Immediately backfill the conduit after the Engineer’s inspection and approval, except for encased conduit, which must complete a twenty-four (24) hour cure period.
1. Backfill with approved material free of rocks or other foreign matter.
2. Backfill in layers no greater than 6 inches (150 mm) loose depth, up to the original ground level.
3. Compact each layer to one hundred percent (100%) of the maximum dry density as determined by GDT 7, GDT 24a, or GDT 24b, GDT 67.

X. Conduit on Structures

Install conduits, condulets, hangers, expansion fittings, and accessories on structures according to the Plans and, unless otherwise specified, the following:
1. Run the conduit parallel to beams, trusses, supports, pier caps, etc.
2. Install horizontal runs on a slight grade without forming low spots so they may drain properly.
3. Run conduits with smooth, easy bends. Hold the conduit ends in boxes with locknuts and bushings to protect the conductors.
4. When not specified in the Plans or Special Provisions, submit the type and method for attachment to structures to the Engineer for submission to the District Traffic Operations Engineer for approval.

All exposed conduit shall be galvanized, rigid conduit unless otherwise specified.

Y. Testing Conduit

After installing the conduit, test it in the presence of the Engineer.
1. Test conduit using a mandrel 2 inches (50 mm) long and 0.25 inches (6 mm) smaller in diameter than the conduit.
2. Repair conduit to the Engineer’s satisfaction if the mandrel can not pass through. If repairs are ineffective, remove and replace the conduit at no additional cost to the Department.
3. Thoroughly clean the conduits. When installing conduit but wiring at a later date:
 a. Perform the mandrel test.
 b. Ream the duct opening to remove burrs or foreign matter.
 c. Thoroughly clean the duct.
 d. Provide and install a weatherproof cap at each open end.
 e. All installed conduit not used or containing cable shall have a continuous nylon pull string installed between junction boxes.

Z. Grounding

Ground the cabinets, controller, poles, pull boxes, and conduit to reduce extraneous voltage to protect personnel or equipment. See Section 639 and Section 924 for grounding requirements.

NOTE: Grounding shall meet the minimum requirements of the NEC.

Provide permanent and continuous grounding circuits with a current-carrying capacity high enough and an impedance low enough to limit the potential above the ground to a safe level.

Perform grounding as follows:

1. Bond the grounding circuits to nonferrous metal driven electrodes. Use electrodes that are at least 0.625 inches (15 mm) in diameter, 8 feet (2.4 m) long, and are driven straight into the ground.
2. Use the shortest possible ground lead that leads directly to a grounding source.
3. Ensure that the maximum resistance between the ground electrode and the cabinet ground buss or other point in the grounding system is no greater than five (5) ohms.
4. Connect the ground electrodes and the ground wire with an exothermic weld.
5. Connect neutral conductors to the cabinet buss-bar and ground them at each terminal point.
6. Ground the cabinet with a No. 6 AWG solid copper wire between the buss-bar to the ground electrode. Bends shall not exceed 4 inch (100 mm) radius bends.
7. Permanently ground the poles by bonding the No. 6 AWG solid copper wire to a separate ground rod.
8. Ground pole-mounted accessories to the pole.
9. Underground metallic conduit or down guys are not acceptable ground electrodes. Do not use Snap-On connections.

AA. Ground Rod

Install ground rods in or adjacent to the traffic signal pole bases, controller cabinet bases, and pull boxes to shield and protect the grounding system.

When ground rods are not protected, bury them at least 2 inches (50 mm) below the finished ground level. See Section 924 for information pertaining to ground rod composition.

1. Use 0.625 inch (15 mm) diameter ground rods at least 8 feet (2.4 m) long. Use copper clad ground rods.
2. Drive single ground rods vertically until the top of the rod is no more than 2 inches (50 mm) above the finished ground.
3. Attach a length of No. 6 AWG solid copper wire to the top of the ground rod using an exothermic weld.
4. When controller cabinets are mounted on timber poles, ground them with No. 6 AWG solid copper wire attached to the ground rod. Run the wire inside a minimum 0.75 inch (19 mm) rigid conduit attached to the timber pole and to the chassis ground in the controller cabinet.
5. When ground penetration is not obtained:
 a. Place a horizontal ground rod system of three (3) or more parallel ground rods at least 6 feet (1.8 m) center-to-center and no more than 2 inches (50 mm) above the finished ground.
 b. Ensure that this grounding system produces a resistance of 5 ohms or less.
 c. Join the ground rods and connect them to the grounding nut of the traffic signal base with No. 6 AWG solid copper wire.
6. Install a ground wire on wood poles.
 a. Use at least No. 6 AWG solid copper wire bonded to the grounding electrode and extending upward to a point perpendicular to the uppermost span.
b. Place wire staples no greater than 2 feet (0.6 m) apart to secure the ground wire to the pole.
c. Connect the span wire to the pole ground using split bolt connectors. Use the pole ground for a pole mount cabinet.
7. Ensure that grounding for signal strain poles conforms to the grounding assembly typical erection detail sheet in the Plans.
8. Permanently ground cabinet and cabinet conduits to a multi-terminal main ground buss.
 a. Use a No. 6 AWG solid copper wire bonded between the buss and grounding electrode.
 b. Connect the power company neutral, conduit ground, and grounds of equipment housed in the cabinet to the buss-bar.
 c. Do not ground to a permanent water system instead of the driven ground rod. Ensure that grounding devices conform to the requirements of the NEC and NEMA.

BB. Signal Poles

See Section 501 for signal pole materials certification and Subsection 925.2.27 and Subsection 925.2.28 for traffic signal equipment. Refer to the Plans for pole locations.

Where necessary, adjust pole location to avoid utility conflicts. Provide minimum clearance distances between the signal pole and the roadway as specified in the Plans and on the Standard Detail Drawings.

1. Strain Poles

 Provide signal strain poles that conform to Section 639.
 Provide caissons or foundations that conform to the “Construction Detail for Strain Pole and Mast Arm Pole Foundations” in the Plans.
 Determine the required foundation size based on the manufacturer’s specified “bending moment at yield” for each pole.
 Provide strain poles with manufacturer-installed holes for pedestrian heads and push buttons. Seal unused holes with water tight plugs and/or rubber gaskets.
 Rake the poles during installation to provide a pole that is plumb once the load is applied.

2. Metal Poles

 Install metal poles as follows:
 a. Ensure that anchor bolts, reinforcing bars, and ground rods conform to Section 639 and Section 852 and are placed in the excavation.
 b. Support the anchor bolts with a template to provide the proper bolt circle for the pedestal or pole to be installed.
 c. Wire the reinforcing bars together or to the anchor bolts.
 d. Wire the conduits in the base to the reinforcing bars for support. Ensure that they are accessible above and beyond the foundation.
 e. Before pouring the foundation concrete, determine that the anchor bolt orientation is correct so that the tensile load is divided between at least two anchor bolts. Pour and vibrate the concrete with the Engineer present.
 f. Ensure that the pole foundations and pedestals with the anchor-type base conform to Section 500 and Section 639. Do not install or locate poles without the Engineer’s approval.
 The Engineer may take a concrete test cylinder as it is being poured.
 1) Cure the cylinder and submit it for testing to the Office of Materials and Research.
 2) If the concrete foundation fails to meet the requirements of the Specifications and is not accepted, replace the foundation upon notification of failure.
 g. After installing poles and applying the load of the signal span, inspect them for plumb and for the proper horizontal position of the mast arm, when applicable.
 Correct deficiencies by using the leveling nuts on the anchor bolts or be adjusting the mast arm.
 h. The Engineer will examine the pedestals and poles for damaged paint or galvanizing. Restore the finish coating where necessary.
 i. After the Engineer approves the pole installation, finish the area between the pole base and the top of the foundation with grounding material.
 If the finish or galvanized steel materials is scratched, chipped, or damaged, the material will be rejected. The finish may be replaces as specified under Section 645, with the Engineer’s approval.
NOTE: Never add holes or openings to the metal pole or mast arm without approval from the Office of Bridge and Structural Design.

j. For poles or arms that need galvanization, thoroughly clean the steel poles and arms and touch up non-galvanized parts with i-d red or original-type primer.
 Apply the remaining coats according to the System V (Heavy Exposure) Section 535, unless otherwise indicated in the Plans.

k. Install a service bracket on one pole at each intersection to attach power service wire as specified in the Plan details. Install a disconnect box on one pole at each intersection to attach power service where the power service is provided overhead.

l. Install poles to which controller cabinets are attached with mounting plates, bolts, nipples, and at least two, 2 inch (50 mm) threaded openings at the top and bottom of the pole.

m. Attach the fittings to the poles as specified by the manufacturer in the Plans or as the Engineer directs. The fittings may include:
 - Cast aluminum cap
 - Weatherhead with chase nipples and couplings
 - Galvanized elbow with bushing installed by cutting the pole and welding in place around the entire circumference
 - Copper-clad ground rod that is 0.5 inches (12 mm) or 0.625 inches (15 mm) diameter by 8 feet (2.4 m) long attached to the pole by a tap screw or weld fitting of No. 6 AWG semi-hard drawn solid copper wire and a standard copper clad ground clamp

n. Use a strandvise to attach spanwire to a clevis device or another strandvise. The Office of Materials and Research will inspect the anchor bolts. If approved, the Office of Materials and Research will display the inspector’s hammer stamp mark on the top of the bolt.

3. Concrete Strain Poles
 a. Ensure that concrete strain poles meet the requirements of Section 639. Use concrete poles that have threaded couplings to accept weatherheads, pedestrian head mounting hardware, or utility service points shown in the construction details.
 b. Install concrete strain poles so that the angle of variance between the eye bolt on the pole and the span wire is less than ten degrees (10°).
 c. Verify pole hole orientations for pedestrian heads, pedestrian push button stations, luminaries arms, etc., with the Engineer prior to proceeding with traffic signal installation.

4. Mast Arms
 Install mast arms that can accommodate traffic signal mounting hardware and that adhere to the manufacturer’s recommended procedures and Section 925 and Section 915. Do not add holes.
 a. Seal the openings in the mast arms to prevent pests from entering.
 b. Align the mast arm to allow the signal heads to hang plumb at the correct height without using extensions.

NOTE: The contractor shall submit a “Mast Arm Pole Chart” to the Engineer for review and approval as described in Subsection 647.1.03.E of this Specification.

Verify pole hole orientations for pedestrian heads, pedestrian push button stations, luminaries arms, etc., with the Engineer prior to proceeding with traffic signal installation.

5. Aluminum Pedestrian Pedestals Poles
 Install aluminum pedestal poles, which adhere to Section 850 on breakaway aluminum bases that meet the requirements for breakaway construction. See Section 925 for breakaway base requirements. See the Standard Detail Drawings for Pole and Foundation Details.
 a. Secure at least four anchor bolts in a concrete foundation as shown in the construction detail.
 b. Contain the wiring inside the pole. Do not allow conduit outside the pole except to wire the pedestrian push button.
c. Position the pedestal pole plumb and high enough to clear the pedestrian’s head as shown in the Plans - usually 10 feet (3 m) from the ground line.
d. Instruct the supplier to furnish a mill certificate that shows the alloy and physical properties of the steel used in fabricating the anchor bolts. The bolts may be subjected to a tensile and shear strength test.

6. Timber Poles
Timber poles do not require the use of concrete for filling the cavity around the pole base.
Use timber poles that meet the requirements of Section 861. Use Class II for all signal support poles. Use Class IV for aerial loop lead-in or communication cable if approved by the Engineer. Poles shall be inspected and include AWW stamp.
Drill wood poles to receive the eye bolt so that the angle of variance between the eye bolt and span wire at each connection is less than ten degrees (10°). See the Standard Detail Drawings for additional information.
Guy timber poles use single or double guy wires as shown in the Plans and as directed by the Engineer. Guy helper cables with separate guy wires when helper signal span cables are indicated in the Plans.

NOTE: Never attach down guy wires to eye bolts. Attach down guy wires to guy hook brackets only and install insulating rods on all down guy installations as detailed on Standard Detail Sheets

CC. Pull Boxes

Ensure that pull boxes conform to Subsection 680.3.05.B and the Standard Detail Drawings or Plan Detail Sheet. Install pull boxes as required by the Specifications and Plans.
1. Include provisions for drains in pull box excavations as specified.
2. Do not place the aggregate for the drain until the Engineer approves the excavation.
3. Set the precast pull boxes in place, level, and install conduits at required (conduit shall penetrate at least 3 inches (75 mm) into the pull boxes). Adjust the location of the pull box if necessary to avoid obstacles.
 - Do not locate pull boxes on the curb side of the signal pole in the intersection radius return
 - Install pull boxes so that the long dimension is parallel to the adjacent roadway
 - Install the pull box at a location that is level with the surrounding ground or pavement. Do not place a pull box in a ditch or depression. Unless otherwise shown in the Plans, when installed either in a sidewalk or in the ground, the top of the pull box shall be level with the sidewalk or ground surface
4. Obtain the Engineer’s approval, and begin backfilling and installing the frame and cover. Ground metal lids or covers.

DD. Span Wire and Span Wire Assemblies

Use span wire to support signal heads, cable, and other hardware only. Use messenger cable to support the aerial cable plant. Install span wire and messenger wire where specified in the Plans and in accordance with the Standard Detail Drawings. See Section 925 for information on span wire and messenger cable.
1. Install signal span wire not to exceed the sag specified in the Standard Detail Drawings.
2. Use helper cables where specified in the plans and on the Standard Detail Drawings.
3. See Subsection 639.3.05.F except, when erecting cable on a timber pole, in which case locate the attachment point a minimum of 18 inches (450 mm) above the top of the pole, to determine the required attachment point.
4. For construction of a box or modified box span, use either bullrings or interlocking strandvises. Be consistent throughout the intersection in use of bull rings or strandvises.
5. Install 8 inch (200 mm) diameter drip loop wrapped two times at the cable entrance to signal heads. Arrange cable so that it enters the structure from the bottom of the drip loop. Use a 24 inch (600 mm) diameter drip loop where cables enter a weatherhead and use a 24 inch (600 mm) sag at corners of a span.
6. Lash cables to span wire or use cable ties spaced at 6 inch (150 mm) increments.
7. Ground all span wire and down guy assemblies as shown on Standard Detail Sheets.

EE. Traffic Signal Heads

Place traffic signal heads according to the signal design and Plan detail drawings. Deviation from the Plans must be according to the MUTCD, current edition and at the Engineer’s approval.
1. Install traffic signal heads at least 17 feet (5.1 m), but no greater than 19 feet (5.7 m) over the roadway.
2. Use extension mounting hardware to give signal heads on the same approach the same vertical clearance.
 a. If extensions are over 2.5 feet (0.75 m), tether them at the bottom of the signal head using 0.25 inch (6 mm) span wire and a breakaway tether plate or fitting.
 b. Measure the clearance from the pavement to the lowest part of the assembly, including brackets and back plates.
 c. Mount traffic signals on the side of wood or metallic poles with a clearance of at least 12 feet (3.6 m) above the sidewalk or pavement grade of the center of the highway, whichever grade is higher.
3. Connect the signal cable to the wire in each signal head to provide the correct signal indication when the cables are connected to the controller cabinet back pans. Do not splice cables except in hand holes at the bases of poles or overhead in junction boxes.
4. Install optically programmable (OP) signal heads as shown in the Plans and standard detail sheet and as directed by the manufacturer.
5. Mount OP heads securely or tether them to limit movement. Mask the lamp for directing visibility under the Engineer’s supervision.
6. Tether signal heads that have tunnel visors longer than 12 inches (300 mm), at the discretion of the Engineer.
7. Attach signal heads to mast arms using rigid mounting brackets. See Section 925 for equipment information. Adjust signal heads on mast arms so that all red indications on the same mast arm are at the same elevation.
8. Install lane control heads for reversible lane systems and ramp metering heads as shown in the Plans and the Standard Detail Drawings. Center each signal over the lane or lanes under signal control.

 Leave a vertical clearance for blank-out signs as shown on the Standard Detail Drawings. Use a spirit level to ensure that the bottom edge of each sign is horizontal.

FF. Pedestrian Signal Heads

Install pedestrian signal heads on wood, concrete, steel strain poles, wood or steel auxiliary poles, or metal pedestal poles. Do not mix pole mount methods at the same intersection installation.

Install the pedestrian signal heads as shown on the Standard Detail Drawings and the intersection plan sheets and drawings.

Leave a vertical clearance from the bottom of the head to the ground level of least 10 feet (3 m) unless specified by the Engineer.

1. Pedestal Mounts
 Make pedestal mounts with a lower supporting assembly consisting of:
 - A 4 inch (100 mm) slip-fitter bracket
 - Hollow aluminum arms with a minimum inside cross-sectional area equal to a 1.5 inch (38 mm) pipe

 Use serrated locking devices that firmly hold the signal heads in the required alignment.

2. Pole Mounts (Side of Pole)
 For Metal poles, use side hinge “clamshell” mounting hardware or hardware as described in Wood Pole or Metal Pole alternate.
 a. Side Hinge “Clamshell”
 See the Standard Detail Drawings.
 b. Wood Pole or Metal Pole alternate:
 Make pole mounts with the upper and lower assembly consisting of:
 - A post arm with a minimum cross-sectional area equal to a 1.5 inch (38 mm) pipe
 - A post hub plate that matches the outside pole contour
 - Secure the hubs to metal or concrete poles using 0.75 inch (19 mm) wide stainless steel bands. Secure the hubs to wood poles using lag bolts

 Space the junctions so that each pedestrian signal head can be directed toward approaching traffic as needed.

 Use serrated locking devices that hold the pedestrian signal heads in alignment.

GG. Blank-out Signs

Install blank-out signs as follows:

1. Securely fasten the signs to a stationary structure or to a messenger strand support system.
2. Center each sign over the lane or lanes under sign control, where applicable.
3. Leave a vertical clearance for blank-out signs as shown in the Plans or in Subsection 647.3.05.EE, “Traffic Signal Heads.” Use a spirit level to ensure that the bottom edge of each sign is horizontal.

4. Use terminal strips to connect each sign electrically to the external control box or cabinet.

647.3.06 Quality Acceptance

A. Testing Loop Detector Installation

Test each loop after installing the conductors in the slots cut in the pavement and before sealing.

☐ Perform a test where the loop wire is spliced to the shielded lead-in wire and where the shielded lead-in wire enters the controller cabinet

☐ If there are no splice points, such as in direct entry to the controller cabinet, only perform the tests at the controller

☐ Record the test results on the Loop Installation Data Sheet in Table 647-8, as shown in this section. Make copies of the data sheet as needed

☐ Include the data sheets in the records, and place a copy in the controller cabinet

Conduct the following five (5) tests to evaluate each loop installation for acceptance before sealing the loop in the pavement:

1. Induced AC Voltage Test
 Read 0.05 V AC or less on a digital voltmeter or no deflection on the pointer of an analog meter.

2. Inductance
 Inductance (I) is measured in microhenries (mH), and the total inductance is equal to the inductance of loop plus inductance of the loop lead-in.
 Acceptable inductance is within 10 percent (10%) of the calculated value for a single loop with the design criteria listed in Table 647-6 and Table 647-7:

<table>
<thead>
<tr>
<th>Table 647-6 Standard (Bi-Pole) Loops</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 ft x 6 ft (3 turns) [1.8 m x 1.8 m (3 turns)]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6 ft x 18 ft (2 turns) [1.8 m x 5.4 m (2 turns)]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6 ft x 30 ft (2 turns) [1.8 m x 9 m (2 turns)]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6 ft x 40 ft (2 turns) [1.8 m x 12 m (2 turns)]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6 ft x 50 ft (2 turns) [1.8 m x 15 m (2 turns)]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6 ft x 70 ft (2 turns) [1.8 m x 21 m (2 turns)]</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
3. Leakage Resistance to Ground
 The resistance to ground shall be 1 M\(\mu\) or more.

4. Loop Resistance
 The resistance reading on an ohmmeter is approximately within ten percent (10%) of the calculated value:
 - Acceptable Resistance @ (dc @ 68 °F [20 °C]): ohms(\(\mu\))
 - No. 14 AWG wire: \(R = 13.32\mu/mile\) (or) \(R = 2.523 \times 10^{-3} \mu/ft\). Approximately 2.52 ohms per 1,000 feet of No. 14 AWG wire \([R = 8.3\mu/km\) (or) \(R = 8.3 \times 10^{-3} \mu/m]\)
 - No. 12 AWG wire: \(R = 5.2\mu/mile\) (or) \(R = 9.85 \times 10^{-3} \mu/ft\). Approximately 0.98 ohms per 1,000 feet of No. 12 AWG wire \([R = 3.24\mu/km\) (or) \(R = 3.24 \times 10^{-3} \mu/m]\)

5. Loop Q
 Q at 50 kHz is greater than 5.

Report to the Engineer an out-of-range reading on any of the above tests. If a test is found unacceptable, remove the loop, install new wire, and repeat the test procedure.

Include in the test results:
- Type and model number of the equipment used (must be ohmmeter having a high resistance scale of R x 10 KW or greater)
- The last calibration date of the equipment and the scale used

Check the loop using an impedance tester to determine the natural operating frequency and impedance.

Ensure that the completed units detect all motor vehicles. If the loop detection system does not meet the above test requirements, payment will not be made for work on the signal installation until corrections are completed.

Table 647-7

<table>
<thead>
<tr>
<th>Loop Configuration</th>
<th>Quadrupole (QP) Loops</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 ft x 30 ft (2, 4, 2 turns) [1.8 m x 9 m (2, 4, 2 turns)]</td>
<td>(I = 269 \text{ mH} + 23 \text{ mH per 100 feet of loop lead-in cable}) (I = 269 \text{ mH} + 23 \text{ mH per 30 m of loop lead-in cable})</td>
</tr>
<tr>
<td>6 ft x 40 ft (2, 4, 2 turns) [1.8 m x 12 m (2, 4, 2 turns)]</td>
<td>(I = 349 \text{ mH} + 23 \text{ mH per 100 feet of loop lead-in cable}) (I = 349 \text{ mH} + 23 \text{ mH per 30 m of loop lead-in cable})</td>
</tr>
<tr>
<td>6 ft x 50 ft (2, 4, 4 turns) [1.8 m x 15 m (2, 4, 4 turns)]</td>
<td>(I = 429 \text{ mH} + 23 \text{ mH per 100 feet of loop lead-in cable}) (I = 429 \text{ mH} + 23 \text{ mH per 30 m of loop lead-in cable})</td>
</tr>
<tr>
<td>6 ft x 60 ft (2, 4, 2 turns) [1.8 m x 18 m (2, 4, 2 turns)]</td>
<td>(I = 509 \text{ mH} + 23 \text{ mH per 100 feet of loop lead-in cable}) (I = 509 \text{ mH} + 23 \text{ mH per 30 m of loop lead-in cable})</td>
</tr>
<tr>
<td>6 ft x 70 ft (2, 4, 2 turns) [1.8 m x 21 m (2, 4, 2 turns)]</td>
<td>(I = 589 \text{ mH} + 23 \text{ mH per 100 feet of loop lead-in cable}) (I = 589 \text{ mH} + 23 \text{ mH per 30 m of loop lead-in cable})</td>
</tr>
</tbody>
</table>
Table 647-8
Loop Installation Data Sheet

<table>
<thead>
<tr>
<th>Conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Number:</td>
<td></td>
</tr>
<tr>
<td>Date:</td>
<td></td>
</tr>
<tr>
<td>Contractor:</td>
<td></td>
</tr>
<tr>
<td>Weather:</td>
<td></td>
</tr>
<tr>
<td>Temperature:</td>
<td></td>
</tr>
<tr>
<td>Pavement Condition - Wet () or Dry ()</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>City or County:</td>
<td></td>
</tr>
<tr>
<td>Intersection Name or Number:</td>
<td></td>
</tr>
<tr>
<td>Route Number(s) or Name (s):</td>
<td></td>
</tr>
<tr>
<td>Installation or Plan Sheet Number:</td>
<td></td>
</tr>
<tr>
<td>Size and Type of Loop:</td>
<td></td>
</tr>
<tr>
<td>Distance from Stop Bar:</td>
<td></td>
</tr>
<tr>
<td>Distance Lead-in Cable:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Wire Color/Insulation Type/Gauge:</td>
<td></td>
</tr>
<tr>
<td>Loop Lead-In Wire Color/Insulation Type/Gauge:</td>
<td></td>
</tr>
<tr>
<td>Splice:</td>
<td></td>
</tr>
<tr>
<td>Conduit Length from Curb/E.O.P. to Splice Point:</td>
<td></td>
</tr>
<tr>
<td>Conduit Length from Splice Point to Cabinet:</td>
<td></td>
</tr>
<tr>
<td>Sealtant Type and Part Number:</td>
<td></td>
</tr>
<tr>
<td>Sealtant Manufacturer and Lot No.:</td>
<td></td>
</tr>
<tr>
<td>Interconnect Wire Type and Length:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loop Tests</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Induced Voltage _____</td>
<td></td>
</tr>
<tr>
<td>2. Inductance _____ microhenries</td>
<td></td>
</tr>
<tr>
<td>3. Leakage Resistance to Ground _____ megohms</td>
<td></td>
</tr>
<tr>
<td>4. Loop Resistance _____ ohms</td>
<td></td>
</tr>
<tr>
<td>5. Loop Q (Quality) _____ Q</td>
<td></td>
</tr>
</tbody>
</table>

| Comments | |
|--- | |

| Inspector’s Name, and Title | |
B. Field Tests

In addition to performing tests during installation and before turning on the equipment, perform the following tests on traffic signal circuits in the presence of the Engineer:
- Test each circuit for continuity
- Test each circuit for grounds

If a test fails, repair the circuit immediately. New signals shall operate in the flash mode for three (3) days prior to beginning stop-and-go operation unless otherwise directed by the Engineer.

C. Operational Tests

After the equipment is installed and the system checkout is complete:
1. The Engineer will notify the District Traffic Operations Engineer in writing to request final inspection.
2. The District Signal Technicians will conduct an in-depth inspection and will give the Engineer a written punch list of items that the Contractor needs to correct within three weekdays of the notification.
3. When defects are resolved, the District Traffic Operations Engineer will begin an operational test period to demonstrate that every part of the system functions as specified.
 a. The operational test for the traffic signal system shall be at least thirty (30) days of continuous, satisfactory operation.
 b. If a component or system fails or shows unsatisfactory performance, the condition must be corrected and the test repeated until thirty (30) days of continuous satisfactory operation is obtained.
 c. The District Traffic Operations Engineer will send the Engineer and Construction Office a letter showing the start, termination, suspension, or successful completion of the operational test period.
4. The District Traffic Operations Engineer may recommend payment only after the successful completion of the test period.
5. The Contractor shall obtain written acceptance of the signal installation from the District Traffic Operations Engineer before Final Acceptance.

Costs incurred during operational tests, including power consumption, shall be at the Contractor’s expense and included in the price bid for Contract Items.

647.3.07 Contractor Warranty and Maintenance

A. Traffic Signal Equipment Maintenance

Perform an inspection with the Engineer to determine the operational status of existing field equipment and finalize materials and equipment is to be removed due to the project.

Prepare written directions identifying what equipment was operational and non-operational and responsibility for repair. Functional responsibility for new traffic signal equipment installed will become the responsibility of the contractor until successful completion of a 30 day Acceptance Test Period.

Contractor responsibility for operation and maintenance for newly installed signal material at the intersection begins from the first day of construction activity at the intersection, including modification of existing equipment due to construction activity, until Final Acceptance of the traffic signal.

Measure and document existing vertical signal head clearance during the inspection. Maintain existing vertical clearances until Final Acceptance.

Failure to measure and document vertical clearances as part of the inspection will require that all signals be maintained with a vertical clearance of 17 feet (5.1 m) until Final Acceptance. Maintain newly installed signals continuously as detailed in following sections, until Final Acceptance.

Provide a telephone number where the Worksite Traffic Control Supervisor (WTCS) responsible representative of the contractor can be reached twenty four (24) hours a day seven (7) days a week in the event of an emergency.

If a signal is not functioning properly:
1. Non-Emergency

 Commence work on this signal within one (1) day of the written notice from the Engineer requesting per calendar day charged against monies due or that may become due until the maintenance work is started.

 Liquidated damages are in addition to those specified in Subsection 108.08, “Failure or Delay in Completing Work on Time,” for delay or failure in completing the Work within the specified time and to the satisfaction of the Engineer.
The contractor shall be responsible for all materials and equipment necessary to correct signal malfunction or repair.

2. Emergency
 If the District Traffic Operations Engineer determines that the signal malfunction or failure is an operational hazard, the contractor is to take corrective action within three (3) hours of notification.
 Failure to respond within three (3) hours will result in a non-refundable deduction of money of $1,000.00 with an additional charge of $500.00 per hour after the first three (3) hours until a work crew arrives on site and begins corrective action.
 In addition, the cost of labor and material will be charged if the Department takes corrective action using its own forces or local municipality forces.
 Total charges will not exceed $5,000.00 (per emergency call) in addition to the material cost and labor incurred to make repairs by the Department or local municipality forces.
 The Department will not be held responsible or liable for any alleged damage to the signal or as a result of the signal malfunction due to problems that may occur after Department or local municipality forces make emergency repairs.
 The contractor shall be responsible for all materials and equipment necessary to correct signal malfunction or repair.
 In the event of failure to replace or repair to original condition any equipment or material within seven (7) calendar days from the Engineer’s notice, the Engineer may have the work done by others and charge the cost of money due from the contract work.
 Final Acceptance will not be given until payment for such work is received.

B. Warranties
 Provide manufacturer’s warranties or guarantees on electrical, electronic, or mechanical equipment furnished, except state-supplied equipment.
 Ensure that warranties and/or guarantees are consistent with those provided as customary trade and industry standard practices; or as otherwise specified in the Plans, Standard Specifications, or Special Provisions.
 Upon Final Acceptance, transfer the manufacturer and Contractor warranties or guarantees to the Engineer. Ensure that warranties are continuous and state that they are subject to transfer.
 Acceptance or approval of the Work does not waive warranties or guarantees where required by the Specifications.
 Final Acceptance will not be granted until all warranties and guarantees are received.

C. Guaranties
 Repair and/or replace all equipment and material supplied under these Contract Documents which has been determined by the Engineer to not meet Specifications.
 The Engineer reserves the sole right to determine suitability or unsuitability of the supplied equipment and material. Bear the total cost of delivery and transportation related to the repair and replacement of equipment and material throughout the duration of the Contract unless otherwise approved by the Engineer.
 Transfer to the Engineer any warranties and guaranties remaining on all items after Final Acceptance. Perform transfer at 12:01 AM of the day following Final Acceptance.

647.4 Measurement
Traffic signal items complete, in place, and accepted of the kind, size, and type specified are measured as follows:

A. Traffic Signal Installation
 Signal installation will be paid for by lump sum, including furnishing labor, materials, tools, equipment, and incidentals required to compete the work unless otherwise specified in this Subsection.

B. Communications Wire, Fiber Optic Cable
 The number of feet (meters) of communications cable, wire or fiber optic cable, is the actual number of linear feet (meters) of the size installed and accepted. Communications cable shall be paid for under Section 935.

C. Strain Poles, Traffic Signs
 Highway signs are measured and paid for under Section 636. Strain poles are measured and paid for under Section 639.

D. Miscellaneous
 Miscellaneous items will be measured as specified in the pay item.
 No measurement will be made for individual items unless a pay item is included in the plans for the specific item.
647.4.01 Limits
General Provisions 101 through 150.

647.5 Payment
The lump price bid for Traffic Signal Installation covers all Items of work in this Specification including furnishing labor, materials, tools, equipment, and incidentals required to complete the work.

Costs for installation, operation, maintenance, and removal of the traffic signal equipment are included under this Item.

Include payment for removal; disposal of existing pavement, shoulder surface, base and sub-grade; and restoration to original condition in the Contract Price for the items to which they pertain. They will not be paid for separately.

Furnishing, installing, and removing sheeting, bracing, and supports will not be paid for separately, but is included in the Contract Prices for other items.

No additional payment will be made for testing and storing State-supplied or contractor-furnished traffic signal equipment.

No payment will be made for individual items unless a pay item is included in the plans for the specific item.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 647-Traffic signal installation no-</th>
<th>Per lump sum</th>
</tr>
</thead>
</table>

Payment for various elements of traffic signals will be as shown on the plans.

A. Partial Payment
The Contractor may initiate a partial payment process for the lump sum traffic signal Items by submitting a written request to the Engineer. If the Engineer approves this request, payment will be made as follows:

<table>
<thead>
<tr>
<th>Underground (loops, pull boxes, and conduits)</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead (span, heads, poles, push buttons)</td>
<td>30%</td>
</tr>
<tr>
<td>Cabinet, contents, and base</td>
<td>30%</td>
</tr>
<tr>
<td>Successful completion of operational test</td>
<td>20%</td>
</tr>
</tbody>
</table>

B. Additional Items
Payment Items related to Section 647 are described in the following sections:

<table>
<thead>
<tr>
<th>Strain Poles</th>
<th>Section 639</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Lighting</td>
<td>Section 680</td>
</tr>
<tr>
<td>Lighting Standards and Luminaries</td>
<td>Section 681</td>
</tr>
<tr>
<td>Electrical Wire, Cable, and Conduit*</td>
<td>Section 682</td>
</tr>
<tr>
<td>Grassing</td>
<td>Section 700</td>
</tr>
<tr>
<td>Timber Poles</td>
<td>Section 639 and Subsection 861.2.02</td>
</tr>
<tr>
<td>Sign Blanks</td>
<td>Section 912</td>
</tr>
<tr>
<td>Reflectorization Materials</td>
<td>Section 913</td>
</tr>
<tr>
<td>Traffic Signal Equipment</td>
<td>Section 925</td>
</tr>
</tbody>
</table>

* Payment for conduit installation shall be as described in Section 682 unless conduit installation is performed as part of a traffic signal installation, in which case measurement and payment is a part of the complete traffic signal installation. Payment is Lump Sum, unless listed as a separate pay item.

647.5.01 Adjustments
General Provisions 101 through 150.
Section 648—Traffic Impact Attenuator

648.1 General Description

This work includes furnishing and installing impact attenuation devices that conform to the details. Install where shown on the Plans.

648.1.01 Definitions

General Provisions 101 through 150.

648.1.02 Related References

A. Standard Specifications

General Provisions 101 through 150.

B. Referenced Documents

- ASTM A 709 Grade 36 (ASTM A 709 M Grade 250)
- Merchant Quality-M-1020

648.1.03 Submittals

General Provisions 101 through 150.

648.2 Materials

Use attenuators that have been approved by FHWA as meeting NCHRP 350 for the test level required.

Ensure that materials used in the attenuator meet the requirements of the following:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Cell sandwich</td>
<td>High speed (45 mph [70 kph] and over)*</td>
</tr>
<tr>
<td>Type 1-A</td>
<td>Cell cluster</td>
<td>Low speed (up to 45 mph [70 kph])*</td>
</tr>
</tbody>
</table>

* mph (kph) shown are for general information and may change due to actual design conditions.

A. Cells

1. Flexible Cell Cartridges for Cell Sandwich Type Attenuator

Provide material for a cell sandwich type attenuator as follows:

a. Use flexible cell cartridges with an outside diameter of approximately 5 1/2 in (140 mm) and standard lengths of 24 in (600 mm), 30 in (750 mm), and 36 in (900 mm). Use cartridges made of vinyl-coated nylon fabric (shelter-lite style 3022-RG-0) or equal with these features:
 - Consists of 6.1 oz/yd² (207 g/m²) of nylon and 16 oz/yd² (543 g/m²) of vinyl to produce a total weight of 22.1 oz/yd² (750 g/m²).
 - Remains flexible and watertight in extreme heat and cold.
 - Has a hydrostatic resistance of 300 psi (2070 kPa) or better.

 Permanently glue an insert containing orifices to regulate the release of water into the open end.

b. In the nose of the cell sandwich type attenuator, use vinyl wall cells as described in this subsection, except equip each unit with a flexible cell cartridge assembly suspended in the open end.

2. Vinyl Wall Cells for Cluster Type Attenuator

Provide material for a cluster type attenuator as follows:

a. Use cells that are hollow, vinyl plastic cylinders with ¼ in (6 mm) thick walls, and a nominal outside diameter of 6 in (150 mm). The cells shall be 39 in (1 m) long unless otherwise indicated on the Plans.

b. Permanently glue an insert with orifices to regulate the release of water into the open end of the cells.

c. Use cells made of high-quality plastic specially formulated from high molecular weight homopolymer vinyl resins combined with the appropriate plasticizers. Ensure that the plasticizers can produce a high-strength and flexible vinyl in high and low temperatures.

d. Use ultra-violet stabilizers, heat stabilizers, antibacteriological agents, and other additives to give maximum protection and long life in outdoor environments.
B. Fasteners for Cluster Type Attenuator

Ensure that the fasteners are the proper length. Use self-drilling, heat-treated, sheet-metal screws (No. 14 hexagonal head) and speed nut-washer combinations that are cadmium plated or hot-dip galvanized.

Join the cells at the top and bottom to adjacent or adjoining cells as required by the design. Attach to the structural backing system with straps and fasteners specified above, as shown on the drawings or as recommended by the manufacturer.

Ensure that other fastener types such as nuts and bolts are commercial grade, galvanized, or zinc-plated steel.

C. Orifice Inserts and Evaporation—Control Caps

Use insert-cap combination units made of the same quality vinyl plastic as the cells. Permanently attach the caps to the inserts with an adhesive that can bond the parts together. Determine the orifice sizes from the design requirements and permanently bond the orifice insert to the cell with a vinyl adhesive as recommended by the manufacturer.

D. Miscellaneous Metal Work

Use metal parts that are ASTM A709 Grade 36 (A 709 M Grade 250) or merchant-quality M-1020 unless otherwise specified and are hot-dip galvanized, painted, or both, to protect against corrosion.

E. Wire Rope

For the two 7/8 in (22 mm) wire ropes, use preformed galvanized 6 by 19 wire ropes with independent wire cores. Have the manufacturer furnish the 4 pullout wire ropes. Ensure that they are flexible, 3/8 in (10 mm) galvanized, 7 in by 12 in (175 mm by 300 mm) wire ropes, or an approved equal. Use wire rope that meets the requirements of ASTM A 741, Type 2.

F. Diaphragms, Fender Panels, and Interior Panels

Use diaphragms with a nominal thickness of 1-1/2 in (38 mm) and a fiberglass coating on both sides.

Use diaphragms and fender panels designed by the manufacturer to meet the strength requirements of the unit.

Fender panels may vary in thickness from 3/4 in to 1-1/4 in (19 mm to 32 mm). Coat both sides with fiberglass.

Overlay the interior panels with plywood. Seal and paint the edges for further protection.

G. Color

Use a yellow attenuator painted by the manufacturer with yellow fender panels with a 6 in (150 mm) reflectorized vertical white stripe along the outer edge of each panel, according to the Plan details.

H. Safety Flex Belt

Have a safety flex belt wrapped around the cell clusters and nose section of cell sandwich units. The belt is 30 in (750 mm) high.

Ensure that the belt is made of polypropylene cloth and resins combined to distribute loads vertically yet allow longitudinal or transverse deflections.

Use ½ in (13 mm) diameter carriage bolts to fasten the belt to the backup or other sections of the belt or to fender panels.

I. Concrete Work, Anchors, and Back-Up Assemblies

Perform concrete work with anchors and construct back-up assemblies according to the Plan details and the manufacturer’s recommendations.

J. Type 2 Sand Loaded Modules—Cylindrical Drums

1. Cylinder Walls

Use cylinder walls that are made of high-density polypropylene structural foam or equal material. Each cylinder shall have a nominal diameter of 36 in (900 mm) and a height as shown on the Plans.

Join the cylinders together according to the manufacturer’s instructions. Use pop-rivets if needed.

2. Lids

Use polyethylene lids with a thinner wall thickness than cylinder walls. Ensure that lids press tightly and snap fit into the module.
3. Core
Use a polystyrene or equal material core of the appropriate height. Install the core according to the manufacturer’s instructions.

4. Rivets
Use rivets that are AD 612 BSLF with ½ in (13 mm) diameter washers and an approximate weight of 10 lbs (4.5 kg) per 1,000 rivets.

5. Sand
For Type 2 attenuators, use a high-grade washed and dried silica sand that conforms to the following gradation:

| Material passing No. 10 (2.00 mm) sieve | 90 to 100% by weight |
| Material passing No. 50 (300 μm) sieve | 0 to 5% by weight |

Add 5% salt to the sand to prevent freezing.

6. Color
Use the color yellow unless otherwise specified.

K. Type 2-A Sand Loaded Modules—Stabilizer Drums with Wine Glass-Shaped Inner Containers

1. Stabilizer and Inner Container Walls
Use stabilizer and inner container walls made of high-density expanded polyethylene structural foam or equal material.

Mold each stabilizer and inner container into one piece.

- The stabilizer shall be 35-3/4 in (900 mm), ± 1/4 in (6 mm) high with an outside diameter of 36 in (900 mm), ± 1/4 in (6 mm) at the top and 2 ft -8 1/2 in (825 mm), ± 1/4 (6 mm) in at the bottom.
- The wine glass-shaped inner container shall be 36 in (900 mm), ± 1/4 in (6 mm) high and in sizes designed to contain 200, 400, and 700 lb (90, 180, and 320 kg) sand masses or other amounts as determined by the Engineer.

The stem heights place the center of gravity of each module at the proper elevation to control the attitude of impacting vehicles. Place the inner containers inside the stabilizers in an array, and like the stabilizer, to shatter upon impact.

- The wall thickness for both stabilizer and inner container shall be 1/4 in (6 mm), ± 1/16 in (2 mm).

2. Lids
Use black lids made of the same material and thickness as the walls. Ensure that the lid has a tight fit and clamps securely over the horizontal lid on the top of the container.

Use stabilizers, inner containers, and lids made of durable and weatherproof material formulated to resist deterioration from ultra-violet rays.

3. Sand
Use the same sand for Type 2-A attenuators as specified for Type 2.

4. Color
Use the color yellow unless otherwise specified.

NOTE: Hex foam sandwich crash cushion may be substituted for the water or solid filled cylinders.

648.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

648.3 Construction Requirements

648.3.01 Personnel
Have the attenuator assembly installed by experienced workers. Have experienced workers attach a cable, strap, or other device to existing pavement, bridge, or other structure.

648.3.02 Equipment
General Provisions 101 through 150.
648.3.03 Preparation
Before installing the attenuator unit, prepare the site, including removing and replacing concrete and other items.

648.3.04 Fabrication
Ensure that traffic impact attenuators of the type shown are installed according to the manufacturer’s recommendations and conform with the Plans.

648.3.05 Construction
A. Type 1 And Type 1-A Cell Sandwich and Cell Cluster
 Use vinyl wall cells in the nose portion of Type 1 and Type 1-A. Use flexible cell cartridges in the cell sandwich portions of the Type 1 attenuator and place according to the Plan details.
 1. Install according to the manufacturer’s recommendations and the Plan details. Installation includes filling the cells with water and enough antifreeze consisting of calcium chloride 78 percent flake or ethylene glycol at the rate of 3.7 lb/gal (443 g/L) to prevent freezing to −38 °F (−39 °C).
 Do not use calcium chloride in attenuators mounted on structures.
 2. Fasten the cells together at the top and bottom according to the manufacturer’s recommendations. Ensure that the concrete portions of the attenuator are according to the Plan details.
 3. Have the manufacturer provide the standard anchors, clips, straps, or other incidentals to mount the attenuator.
B. Type 2 and Type 2-A Sand-Loaded Modules
 Assemble the parts of the completed module, including filling it with sand, in sequence and according to the recommendations of the manufacturer.
 1. Ensure that the weight, height, and location of each module and overall arrangement of each installation is as shown on the Plans.
 2. Use the bottom disc when placing Type 2 modules on soft ground or when directed by the Engineer.
 3. Place the modules so that they will remain in their final position after being filled with sand. Mark the location and weight of each module on the bearing surface for easy replacement.
 4. After the modules are set and filled with sand, drill each lid for Type 2 attenuators at 4 equidistant points. Pop-rivet the lids in place to prevent loss or theft.
 5. When placing Type 2 modules on sloping areas subject to extreme vibration, use steel half-ring locators to prevent serious displacement.
 These cases will be noted on the Plans. Install half-ring locators on the side of the downward slope according to the manufacturer’s recommendations.
 6. When placing Type 2-A modules on surfaces subject to vibration (i.e., bridge decks) or on slopes, fasten to the surface an ¼ in (6 mm) by ± 1/16 in (2 mm) thick stem block with a 6 in (150 mm) diameter hole in the center. The block holds the stem of the inner container in place and prevents the module from moving.

648.3.06 Quality Acceptance
General Provisions 101 through 150.

648.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

648.4 Measurement
Each traffic impact attenuator (array) of the type specified, complete, in place, and accepted at its location (No. ___), is measured by the Unit, including components, hardware, anchors, incidentals, freeze treated water or sand, and labor for each installation shown on the Plans.

Site preparation work, as described under Subsection 648.3.05, “Construction Requirements,” is measured and paid for separately under the respective items involved unless otherwise specified.

648.4.01 Limits
General Provisions 101 through 150.
648.5 Payment
Traffic impact attenuator, as measured above, is paid for per each unit. Payment is full compensation for materials, labor, and incidentals to complete the Item.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 648</th>
<th>Traffic impact attenuator array, type 1, no.</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 648</td>
<td>Traffic impact attenuator array, type 1-A, no.</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 648</td>
<td>Traffic impact attenuator array, type 2, no.</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 648</td>
<td>Traffic impact attenuator array, type 2-A, no.</td>
<td>Per each</td>
</tr>
</tbody>
</table>

648.5.01 Adjustments
General Provisions 101 through 150.

Section 649—Concrete Glare Screen

649.1 General Description
This work includes erecting a Portland cement concrete glare screen according to Plan dimensions on top of a concrete median barrier.

649.1.01 Definitions
General Provisions 101 through 150.

649.1.02 Related References
A. Standard Specifications
 Section 621—Concrete Barrier
B. Referenced Documents
 General Provisions 101 through 150.

649.1.03 Submittals
General Provisions 101 through 150.

649.2 Materials
Use materials that comply with Section 621 and the Plan details.

649.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

649.3 Construction Requirements
649.3.01 Personnel
General Provisions 101 through 150.

649.3.02 Equipment
General Provisions 101 through 150.

649.3.03 Preparation
General Provisions 101 through 150.

649.3.04 Fabrication
General Provisions 101 through 150.
649.3.05 Construction

Construct the glare screen using one of the following alternatives:

A. Alternative One

Cast the median barrier and while the concrete is still plastic, insert “D” bars into the fresh concrete as indicated on the Plans. Wait until the median barrier concrete has reached a compressive strength of 2000 psi (14 MPa) or an age of seven days. Then place a second course of barrier, of the dimensions shown on the Plans, on top of the first course and finish and cure according to Subsections 621.3.05.C and 621.3.05.D.

B. Alternative Two

As an alternative to inserting “D” bars into the plastic concrete, wait until the median barrier concrete has reached a compressive strength of 2,000 psi (14 MPa), then drill holes for the “D” bars and epoxy them in place.

Construct the second course of barrier on top of the first course according to Plan dimensions. Finish and cure according to Subsections 621.3.05.C and 621.3.05.D.

649.3.06 Quality Acceptance

General Provisions 101 through 150.

649.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

649.4 Measurement

Concrete glare screen is measured for payment in linear feet (meters) of accepted work of each specified height. The surface is measured along the top of the glare screen.

649.4.01 Limits

General Provisions 101 through 150.

649.5 Payment

This work will be paid for at the Contract Unit Price per linear foot (meter) for each specified height. Payment will be full compensation for furnishing materials and performing the Work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 649</th>
<th>Concrete glare screen (height)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
</table>

649.5.01 Adjustments

General Provisions 101 through 150.

Section 650—Impact Attenuator Units (Compression Crash Cushion)

650.1 General Description

This work consists of furnishing and installing impact attenuator units to conform with Plan locations and details and/or as directed by the Engineer.

650.1.01 Definitions

General Provisions 101 through 150.

650.1.02 Related References

A. Standard Specifications

General Provisions 101 through 150.

B. Referenced Documents

- ASTM A 123/A 123M
- NCHRP 350

782
650.1.03 Submittals
A. Installation Drawings
 Submit all required certifications, test reports and drawings of details for completing the installation. Obtain the
 Engineer’s approval of these documents before beginning work on the attenuator installation.

B. Manufacturer’s Information
 Furnish items such as manufacturer’s brochures or specifications that completely outline the manufacturer’s
 recommendations for materials and installation methods. All workmanship and materials are subject to the Engineer’s
 approval.

650.2 Materials
A. Attenuator
 1. Ensure that the manufactured materials for each type of crash cushion comply with current Specifications and
 recommendations of the manufacturer.
 2. Use attenuators that have been classified as “accepted” by the Department’s Office of Materials and Research and
 approved by the Federal Highway Administration (FHWA) as meeting NCHRP-350 for the test level specified.
 3. Ensure that restoration and/or repair can be accomplished without the necessity of removing the unit from the
 original location.
 4. Ensure the approach end of the attenuator is equipped with a reflectorized object marker in accordance with Plan
 Details. The object marker may be furnished by the manufacturer of the attenuator or by others. Ensure that the front
 most section of the unit (the “nose”) is yellow in color unless specified otherwise.
 5. Use an approved back-up system as specified in the Plans.
 6. Anchor the attenuator to the pavement according to a system recommended by the manufacturer for the type
 pavement encountered.
 7. Use Class "A" concrete for reinforced concrete pads, concrete back up if used, and concrete transition where
 required.
 8. Use metal components and hardware galvanized according to ASTM A 123/A 123M unless otherwise specified.
 Ensure all metal components and hardware of permanent attenuators are free of corrosion when shipped.

650.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

650.3 Construction Requirements
650.3.01 Personnel
General Provisions 101 through 150.
650.3.02 Equipment
General Provisions 101 through 150.
650.3.03 Preparation
General Provisions 101 through 150.
650.3.04 Fabrication
A. Design Criteria and Type Selection
 The Impact Attenuator Unit Type will be shown on the plans. Four characters designate the type attenuator.
 ❙ First character
 Indicate either a permanent or temporary installation.
 The letter "P" designates a permanent installation.
 The letter "T" designates a temporary installation as typical for work zones.
 The two-letter designation of "T/P" indicates the unit is to be used in a temporary situation and then converted
 to a permanent unit.
 ❙ Second character
 Designates the required NCHRP test level.
Third character
Indicates the traffic flow direction(s).
The letter "B" indicates bi-directional traffic typical for median applications or when the unit is installed on the shoulder of a two-lane, two-way traffic facility. Bi-directional means traffic flows in opposite directions at the site of the attenuator installation.
The letter "U" indicates uni-directional traffic flow typical for gore areas. Uni-directional means traffic on both sides traveling the same direction, from the nose to the rear of the unit.
The letter "S" indicates traffic flow in one direction on a single side only, typical for a unit located on the outside shoulder of a roadway with one-way traffic and the other side of the attenuator not being exposed to traffic.

Fourth character
Indicates the numerical value of the width, in inches (millimeters), of the base of the rigid object that the attenuator will be shielding.
At bridge columns, this character is typically the width of the column plus the barrier base widths on the column sides at the pavement surface.

B. Examples
A Type T-3-B-30 attenuator indicates:
- a temporary installation
- tested and approved at NCHRP test level 3
- bi-directional traffic flow
- a 2'-6" (760 mm) wide base of the rigid object being shielded.

A Type P-3-U-60 attenuator designates
- a permanent installation
- tested and approved at NCHRP test level 3
- Uni-directional traffic flow
- a 5' (1500 mm) wide base for the rigid object being shielded.

Portable Attenuators are designated as Temporary (Type T) units.

650.3.05 Construction
Field locate the position of the attenuator nose as shown on the plans prior to beginning the installation. Have any variations approved by the Engineer.

If the length of the attenuator unit is less than that indicated in the plan details for the specified conditions, the length of the concrete transition section or the length of the longitudinal barrier shall be increased as needed to provide a proper beginning point for the attenuator nose as shown in the plans.

The length of the system will be the combined length of the attenuator unit, the back-up system and any required transition. The length of the system shall not be excessive to the extent that it intrudes appreciably within the clear offset distance as shown on the plans.

The increased length of transition or barrier is considered as an incidental part of the system and will not be itemized separately.

Temporary portable units shall be installed, moved, reinstalled and maintained as required.

650.3.06 Quality Acceptance

- Obtain certification from the manufacturer that the impact attenuator unit installed meets all required approvals and specifications and furnish these to the Engineer.
- Furnish any mill test/galvanizing test reports and heat numbers for all metal components of the unit per current requirements of the Department's Office of Materials and Research.

650.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.
650.4 Measurement
Each Impact Attenuator specified, complete in place and accepted at its location, will be measured by the unit for each type indicated on the plans and detailed in Subsection 650.3.04, “Fabrication”. Each unit measured includes all components, hardware, anchors, back-ups, platforms, concrete pads, incidentals, and labor for each installation shown on the plans.

Portable units will be measured for payment only once, regardless of how often they are moved.

650.4.01 Limits
General Provisions 101 through 150.

650.5 Payment
Impact Attenuator Units will be paid for per each type specified. Payment is full compensation for all materials, labor, and incidentals necessary to complete the Item including installing, moving, reinstalling and maintaining Temporary Units as required.

Payment will also include the back-up system and transitions where required.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 650</th>
<th>Impact attenuator unit, (compression crash cushion) Type P-</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 650</td>
<td>Impact attenuator unit, (compression crash cushion) Type T-</td>
<td>Per each</td>
</tr>
</tbody>
</table>

650.5.01 Adjustments
General Provisions 101 through 150.

Section 651—Raised Traffic Bars

651.1 General Description
This work includes furnishing and placing raised traffic bars according to the type, locations, and specifications in the Plans.

651.1.01 Definitions
General Provisions 101 through 150.

651.1.02 Related References
A. Standard Specifications
 Section 500—Concrete Structures
 Section 886—Adhesive (Epoxy Resin)

B. Referenced Documents
 General Provisions 101 through 150.

651.1.03 Submittals
General Provisions 101 through 150.

651.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesive (Epoxy Resin)</td>
<td>Section 886</td>
</tr>
<tr>
<td>Concrete, Class A, Air Entrained</td>
<td>Section 500</td>
</tr>
</tbody>
</table>

651.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.
651.3 Construction Requirements

651.3.01 Personnel
General Provisions 101 through 150.

651.3.02 Equipment
General Provisions 101 through 150.

651.3.03 Preparation
General Provisions 101 through 150.

651.3.04 Fabrication
General Provisions 101 through 150.

651.3.05 Construction

A. Precasting
 1. Concrete
 Use concrete materials, and mix and place concrete, to comply with Section 500 for Class A, Air Entrained.
 2. Forms
 Use forms that meet the requirements of Section 500. Make the insides of forms accessible for tamping and vibrating the concrete.
 3. Finish
 Unless otherwise specified on the Plans, finish bars according to Subsection 500.3.05.AB. For unformed areas, use Type IV—Floated Surface Finish, unbroomed. For formed areas, use Type I—Ordinary Surface Finish.
 4. Curing
 Cure bars according to Subsection 500.3.05.Z, except do not use curing compound on the bottom surfaces.

B. Installation

 Follow these steps to cement bars to the pavement:
 1. Sandblast clean the highway surface of dirt, curing compound, grease, oil, moisture, loose or unsound layers, and other material that would prevent the bar adhesive from bonding.
 2. Use epoxy resin type IR or IS adhesive as follows:
 a. Use type IR when pavement temperature is between 50 ° to 60 °F (10 ° to 15 °C), or when traffic conditions require a rapid set.
 b. Use type IS when pavement temperatures are above 60 °F (15 °C) and when traffic conditions permit.
 c. Do not place bars when pavement temperatures drop below 50 °F (10 °C).
 3. Place enough adhesive on the cleaned pavement, or on the bottom of the bar, to completely cover the area of contact with no voids. Allow a slight amount of adhesive to extrude from all sides of the bar after it has been pressed into place.
 4. Position the bar and press it firmly into the pavement. Immediately and completely remove excess adhesive around the edge of the bar with a clean, absorbent cloth. Do not use thinners or solvents to remove the adhesive. Protect the bar from impact until the adhesive hardens to the degree designated by the Engineer.

C. Adhesive Qualities

 Do not use a viscous or partially set batch of adhesive that does not extrude from under the bar edges when pressed to the pavement.

 Do not heat any adhesive above 120 °F (49 °C).

 Prepare adhesive as follows:
 1. Before combining Package A and B, thoroughly stir each package. Reject material that cannot be readily redispersed.
 2. After stirring, mix one volume from Package A with one volume from Package B until obtaining a uniform color with no visible streaks of either component.
 3. Cement bars in place within 10 minutes of starting to mix the adhesive.
4. To prolong the pot life of the adhesive, either let it cool after mixing the components or spread out a thin layer on a board before applying it.

5. When an approved fast setting adhesive is used, mix the components using a 2-component type automatic mixing and extrusion apparatus. Place the bars immediately after the adhesive has been mixed and extruded.

651.3.06 Quality Acceptance
General Provisions 101 through 150.

651.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

651.4 Measurement
Complete and in-place raised traffic bars, of the type specified, are measured by the linear foot (meter) along the bottom front face of the bar.

651.4.01 Limits
General Provisions 101 through 150.

651.5 Payment
Raised traffic bars will be paid for at the Contract Unit Price per linear foot (meter). Payment is full compensation for furnishing and installing the bar.

Payment will be made under:

| Item No. 651. | Raised traffic bars, type | Per linear foot (meter) |

651.5.01 Adjustments
General Provisions 101 through 150.

Section 652—Painting Traffic Stripe

652.1 General Description
This work includes furnishing and applying reflectorized traffic line paint according to the Plans and these Specifications.

This Item also includes applying words and symbols according to Plan details, Specifications, and the current Manual on Uniform Traffic Control Devices.

652.1.01 Definitions
Painted Stripes: Solid or broken (skip) lines. The location and color are designated on the Plans.

Skip Traffic Stripes: Painted segments between unpainted gaps as specified on the Plans. The location and color are designated on the Plans.

652.1.02 Related References
A. Standard Specifications
 Section 656—Removal of Pavement Markings
 Section 870—Paint
B. Referenced Documents
 QPL 46
 AASHTO M 247

652.1.03 Submittals
General Provisions 101 through 150.
652.2 Materials

Ensure that materials for painting traffic stripe, words, and symbols meet the following requirements:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Line Paint 5A and 5B</td>
<td>870.2.02.A.2 and 870.2.02.A.3</td>
</tr>
<tr>
<td>Glass Beads for Use in Luminous Traffic Lines</td>
<td>AASHTO M 247, Type 1*</td>
</tr>
</tbody>
</table>

*In addition, meet the following requirements for glass beads:

- Maximum quantity of angular particles is less than 1% by weight
- Maximum quantity of particles with milkiness, scoring, or scratching is less than 2% by weight
- Glass beads do not impart any noticeable hue to the paint film
- Glass beads conforming to the following alternate gradation may be used provided that all other requirements of AASHTO M 247 and this Specification are met.

<table>
<thead>
<tr>
<th>Alternate Gradation</th>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. 16 (1.190 mm)</td>
<td>99 - 100</td>
</tr>
<tr>
<td></td>
<td>No. 20 (0.850 mm)</td>
<td>75 - 95</td>
</tr>
<tr>
<td></td>
<td>No. 30 (0.600 mm)</td>
<td>55 – 85</td>
</tr>
<tr>
<td></td>
<td>No. 50 (0.300 mm)</td>
<td>10 – 35</td>
</tr>
<tr>
<td></td>
<td>No. 100 (0.150 mm)</td>
<td>0 - 5</td>
</tr>
</tbody>
</table>

652.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

652.3 Construction Requirements

652.3.01 Personnel

General Provisions 101 through 150.

652.3.02 Equipment

A. Traveling Traffic Stripe Painter

Use a traffic stripe painter that can travel at a predetermined speed both uphill and downhill, applying paint uniformly. Ensure that the painter feeds paint under pressure through nozzles spraying directly onto the pavement.

Use a paint machine equipped with the following:

1. Three adjacent spray nozzles capable of simultaneously applying separate stripes, either solid or skip, in any pattern.
2. Nozzles equipped with the following:
 - Cutoff valves for automatically applying broken or skip lines
 - A mechanical bead dispenser that operates simultaneously with the spray nozzle to uniformly distribute beads at the specified rate
 - Line-guides consisting of metallic shrouds or air blasts
3. Tanks with mechanical agitators
4. Small, portable applicators or other special equipment as needed

B. Hand Painting Equipment

Use brushes, templates, and guides when hand painting.

C. Cleaning Equipment

Use brushes, brooms, scrapers, grinders, high-pressure water jets, or air blasters to remove dirt, dust, grease, oil, and other foreign matter from painting surfaces without damaging the underlying pavement.
652.3.03 Preparation
Locate approved paint manufacturers on QPL 46.
Before starting each day’s work, thoroughly clean paint machine tanks, connections, and spray nozzles, using the appropriate solvent.
Thoroughly mix traffic stripe paint in the shipping container before putting it into machine tanks.
Before painting, thoroughly clean pavement surfaces of dust, dirt, grease, oil, and all other foreign matter.

652.3.04 Fabrication
General Provisions 101 through 150.

652.3.05 Construction
A. Alignment

Ensure that the traffic stripe is the specified length, width, and placement. On sections where no previously applied markings are present, ensure accurate stripe location by establishing control points at spaced intervals. The Engineer will approve control points.

B. Application

Apply traffic stripe paint by machine. If areas or markings are not adaptable to machine application, use hand equipment.

1. Application Rate
 All work will be subject to application rate checks for both paint and beads.
 Apply 5 in (125 mm) wide traffic stripe at the following minimum rates:
 a. Solid Traffic Stripe Paint: At least 25 gal/mile (58.8 L/km)
 b. Skip Traffic Stripe Paint: At least 6.3 gal/mile (14.8 L/km)

 NOTE: Change minimum rate proportionately for varying stripe widths.

2. Thickness
 Maintain a 15 mils (0.38 mm) minimum wet film thickness for all painted areas.

3. Do not apply paint to areas of pavement when:
 - The surface is moist or covered with foreign matter.
 - Air temperature in the shade is below 40 °F (5 °C)
 - Wind causes dust to land on prepared areas or blows paint and beads around during application.

4. Apply a layer of glass beads immediately after laying the paint. Apply beads at a minimum rate of 6 lbs to each gallon (700 grams to each liter) of paint.

C. Protective Measures

Protect newly applied paint as follows:

1. Traffic
 Control and protect traffic with warning and directional signs during painting. Set up warning signs before beginning each operation and place signs well ahead of the painting equipment. When necessary, use a pilot car to protect both the traffic and the painting operation.

2. Fresh Paint
 Protect the freshly painted stripe using cones or drums. Repair stripe damage or pavement smudges caused by traffic according to Subsection 652.3.06.

D. Appearance and Tolerance of Variance

Continually deviating from stated dimensions is cause for stopping the work and removing the nonconforming stripe. (See Section 656.) Adhere to the following measurements:

1. Width
 Do not lay stripe less than the specified width. Do not lay stripe more than 1⁄2 in (13 mm) over the specified width.
2. Length
 Ensure that the 10 ft (3 m) painted skip stripe and the 30 ft (10 m) gap between painted segments vary no more than ± 1 ft (300 mm) each.

3. Alignment
 a. Ensure that the stripe does not deviate from the intended alignment by more than 1 in (25 m) on tangents or curves of 1 degree or less.
 b. Ensure that the stripe does not deviate by more than 2 in (50 mm) on curves exceeding 1 degree.

652.3.06 Quality Acceptance
Ensure that stripes and segments of stripes are clean-cut and uniform. Markings that do not appear uniform or satisfactory, either during the day or night, or do not meet Specifications, will be corrected at the Contractor’s expense. Work will be subject to application rate checks for both paint and beads.

The following will be accepted:

- Sections of painted stripe, words, and symbols that have dried so that paint will not be picked up or marred by vehicle tires
- Sections placed according to the Plans and Specifications

The Contractor will be relieved of responsibility for maintenance on accepted sections.

A. Correction of Alignment
 When correcting a deviation that exceeds the permissible tolerance in alignment, do the following:
 1. Remove the affected portion of stripe, plus an additional 25 ft (8 m) in each direction.
 2. Paint a new stripe according to these Specifications.
 Remove the stripe according to Section 656.

B. Removal of Excess Paint
 Remove misted, dripped, or spattered paint to the Engineer’s satisfaction. Do not damage the underlying pavement during removal.
 Refer to the applicable portions of Section 656.

652.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

652.4 Measurement
When traffic stripe is paid for by the square yard (meter), the number of square yards (meters) painted is measured and the space between stripes is included in the overall measurement.

Linear measurements are made on the painted surface by an electronic measuring device attached to a vehicle. On curves, chord measurements, not exceeding 100 linear feet (30 linear meters), are used.

Traffic stripe and markings, complete in place, are measured and accepted for payment as follows:

A. Solid Traffic Stripe
 Solid traffic stripe is measured by the linear foot (meter), linear mile (kilometer), or square yard (meter). Breaks or omissions in solid lines or stripes at street or road intersections are not measured.

B. Skip Traffic Stripe
 Skip traffic stripe is measured by the gross linear foot (meter) or gross linear mile (kilometer). Unpainted spaces between the stripes are included in the overall measurements if the Plan ratio of 1 to 3 remains uninterrupted. Measurement begins and ends on a stripe.

C. Pavement Markings
 Markings are words and symbols completed according to Plan dimensions. Markings are measured by the unit.

652.4.01 Limits
General Provisions 101 through 150.
652.5 Payment
Payment will be full compensation for the work under this Section, including the following:
- Cleaning and preparing surfaces
- Furnishing materials, including paints, beads, and thinners
- Applying, curing, and protecting paints
- Protecting traffic, including providing and placing necessary warning signs
- Furnishing tools, machines, and other equipment necessary to complete the Item

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 652</th>
<th>Description</th>
<th>Unit of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solid traffic stripe, _____ in (mm), (color)</td>
<td>Per linear mile (kilometer)</td>
</tr>
<tr>
<td></td>
<td>Skip traffic stripe, _____ in (mm), (color)</td>
<td>Per gross linear mile (kilometer)</td>
</tr>
<tr>
<td></td>
<td>Solid traffic stripe, _____ in (mm), (color)</td>
<td>Per linear mile (kilometer)</td>
</tr>
<tr>
<td></td>
<td>Skip traffic stripe, _____ in (mm), (color)</td>
<td>Per gross linear mile (kilo)</td>
</tr>
<tr>
<td></td>
<td>Pavement markings, words, and symbols, (color)</td>
<td>Per each</td>
</tr>
<tr>
<td></td>
<td>Traffic stripe, _____ in (mm), (color)</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

652.5.01 Adjustments
General Provisions 101 through 150.

Section 653—Thermoplastic Traffic Stripe

653.1 General Description
This work includes furnishing and applying thermoplastic reflectorized pavement marking compound. Ensure that markings conform to Plan details and locations, these Specifications, and the Manual on Uniform Traffic Control Devices.

Thermoplastic traffic stripe consists of solid or broken (skip) lines, words, and symbols according to Plan color, type, and location.

653.1.01 Definitions
Thermoplastic Marking Compound: A compound extruded or mechanically sprayed on the pavement that cools to pavement temperature. When combined with glass spheres it produces a reflectorized pavement marking.

Short Lines: Crosswalks, stop bars, arrows, symbols, and crosshatching. Extrude short lines rather than spraying them on. Unless otherwise specified, spray all other lines.

653.1.02 Related References
A. Standard Specifications
 Section 652—Painting Traffic Stripe

B. Referenced Documents
 QPL 46
 Federal Test Method Standard 141, Method 4252
 ASTM D 1155
 ASTM D 620
 ASTM D 570
 ASTM D 256
653.1.03

ASTM D 2240
ASTM E 28
ASTM 121

653.1.03 Submittals
Ensure that the producers of the thermoplastic compound and glass spheres furnish to the Department copies of certified test reports showing results of all tests specified in this Section. Also ensure that producers certify that the materials meet the other requirements of this Section by submitting copies of certification at the time of sampling. Final Acceptance, however, will be based on satisfactory test results from samples obtained by the Department before delivery.

653.2 Materials
A. General Characteristics of Thermoplastic
 1. Deterioration
 Use thermoplastic material with the following characteristics:
 a. Does not deteriorate upon contact with:
 - Pavement materials
 - Petroleum droppings from traffic
 - Chemicals, such as sodium chloride or calcium chloride, used to prevent formation of ice on roadways or streets
 b. Does not scorch, discolor, or deteriorate if kept at the manufacturer's recommended application temperature, or at least 375 °F (190 °C), for up to 4 hours.
 c. Has a temperature versus viscosity characteristic that remains constant from batch to batch through four re-heatings.
 2. Fumes
 Use material that in the plastic state does not give off fumes that are toxic or harmful to persons or property.

B. Detailed Characteristics of Thermoplastic
 1. Material Composition
 Use material binder with the following characteristics:
 - A mixture of synthetic resins, with at least one resin that is solid at room temperature, and high boiling point plasticizers
 - A total binder content of 18 percent to 35 percent by weight
 - A pigmented binder that is well-dispersed and free of dirt, foreign objects, or ingredients that cause bleeding, staining, or discoloration
 The binder shall be Type A—alkyd. Ensure that at least 33% of the binder composition or at least 8% by weight of the entire material formulation is a maleic-modified glycerol ester of resin. Ensure that the finished thermoplastic pavement marking material is not adversely altered by contact with oily pavement materials or by contact from oil dropping onto the pavement surface from traffic.
 Ensure that the filler has the following characteristics:
 - White calcium carbonate or equivalent
 - Compressive strength of 5,000 psi (34.5 MPa)
 2. Suitability for Markings
 Use thermoplastic material that is especially compounded for traffic markings and has the following characteristics:
 - Prevents markings from smearing or spreading under normal traffic conditions at temperatures below 120 °F (49 °C)
 - Gives a uniform cross section, with pigment evenly dispersed throughout the material
 - Has a uniform material density and character throughout its thickness
 - Allows the stripe to maintain its original dimensions and placement
 - Ensures that the exposed surface is free from tack and is not slippery when wet
3. Drying Time
When applied at a temperature range of 400 °F to 425 °F (204 °C – 218 °C) and a thickness of 1/8 in. to 3/16 in. (3 mm to 5 mm), the material shall set to bear traffic in a maximum of 2 minutes when the air temperature is 50 °F ± 3 °F (10 °C ± 2 °C) and shall set to bear traffic in a maximum of 10 minutes when the air temperature is 90 °F ± 3 °F (32 °C ± 2 °C).

4. Reflectorization
Ensure that during manufacturing, reflectorizing glass spheres were mixed into the compound to the following specifications:
- At least 16 percent by weight using glass spheres with a minimum refractive index of 1.65
- At least 25 percent by weight using glass spheres with a minimum refractive index of 1.50

C. Physical Requirements of Thermoplastic
1. Color
Confirm the color of thermoplastic as follows:
 a. White thermoplastic material contains at least 8 percent by weight titanium dioxide that meets the requirements of ASTM D 476, Type II, Rutile. The white thermoplastic material shall be pure white and free from dirt or tint.
 b. The material, when compared to the magnesium oxide standard using a standard color spectrophotometer according to ASTM D 4960, shall meet the following:

<table>
<thead>
<tr>
<th>Scale</th>
<th>Definition</th>
<th>Magnesium Oxide Standard</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rd</td>
<td>Reflectance</td>
<td>100</td>
<td>75 min.</td>
</tr>
<tr>
<td>a</td>
<td>Redness-Greenness</td>
<td>0</td>
<td>-5 to + 5</td>
</tr>
<tr>
<td>b</td>
<td>Yellowness-Blueness</td>
<td>0</td>
<td>-10 to + 10</td>
</tr>
</tbody>
</table>

Compare yellow material to match Federal Test Standard Number 595, Color 13538.

2. Color Retention
Use thermoplastic stripe tested for color retention as follows:
 a. Test specimens prepared from samples submitted according to ASTM D 620 by the Department Inspector.
 b. Use an ultraviolet light source as specified in the test procedure, or use a 275 watt sunlamp with a built-in reflector.
 c. Ensure that after 100 hours of exposure to the light source, the test specimens show no color change when compared to an unexposed specimen.

3. Water Absorption
Ensure that materials have no more than 0.5 percent by weight of retained water when tested by ASTM D 570, procedure (a).

4. Softening Point
Ensure that materials have a softening point of at least 175 °F (79 °C) as determined by ASTM E 28.

5. Specific Gravity
Ensure that the specific gravity of the thermoplastic compound at 77 °F (25 °C) is between 1.9 to 2.5.

6. Impact Resistance
Use material with an impact resistance of at least 10 in-lbs at 77 °F (1.13 N·m at 25 °C), tested as follows:
 a. Heat for 4 hours at 400 °F (204 °C).
 b. Cast into bars of 1 in² (625 mm²) cross sectional area, 3 in (75 mm) long.
 c. Place with 1 in (25 mm) extending above the vise in a cantilever beam (Izod type) tester using the 25 in-lbs (2.82 N·m) scale. This instrument is described in ASTM D 256.
7. Indentation Resistance
 Measure the hardness by a Shore Durometer, Type A2, as described in ASTM D 2240. Maintain the temperature of the Durometer, 4.4 lb. (2 kg) load and the specimen at 115 °F (45 °C). Apply the Durometer and 4.4 lb. (2 kg) load to the specimen and the reading shall be between 50 to 75 units, after 15 seconds.

8. Low Temperature Stress Resistance
 a. Furnish sample test blocks as follows:
 1) Coat the samples using the same method as the planned installation of the compound.
 2) Coat the samples with at least 32 in² (206 mm²) of the compound.
 b. Have the samples tested as follows:
 1) Immerse a sample in cold water for one hour.
 2) Immediately place the sample in a freezer chest or other insulated cold compartment and maintain at a temperature of -20 °F (-29 °C) for 24 hours.
 3) After 24 hours, remove the sample and bring it to normal room temperature.
 Following the test, confirm that the sample does not crack, flake, or fail to adhere to the substrate.

9. Reheating
 Ensure that the compound does not break down, deteriorate, scorch, or discolor if held for 6 hours at the plastic temperature of 425 °F (218 °C); or if reheated up to the plastic temperature 4 times.

10. Abrasion Resistance
 Have the material tested for abrasion resistance as follows:
 a. Ensure that the maximum loss of the material does not exceed 0.4 grams when subjected to 200 revolutions on a Taber Abraser at 77 °F (25 °C), using H-22 Calibrate wheels that are weighted to 500 grams.
 b. Keep the wearing surface wet with distilled water throughout the test.
 c. Prepare the panel by forming a representative lot of material at a thickness of 0.125 in. (3.18 mm) on a 4 in (100 mm) square steel plate with a thickness of 0.050 ± 0.001 in (1.27 mm ± 0.03 mm), on which a primer has been previously applied.

11. Yellowness Index
 The white thermoplastic material shall not exceed a yellowness index of 0.12 according to AASHTO T 250.

12. Flowability
 After heating the thermoplastic material for 240 ± 5 minutes at 425 °F ± 3 °F (218 °C ± 2 °C) and testing the flowability, ensure that the white thermoplastic has a maximum of 21 percent residue according to AASHTO T 250.

13. Flowability-Extended Heating
 After heating the thermoplastic material for 8.0 ± 0.5 hours at 425 °F ± 3 °F (218 °C ± 2 °C), while stirring the last 6 hours and testing for flowability, ensure that the thermoplastic has a maximum percent residue of 28 according to AASHTO T 250.

14. Storage Life
 The material shall meet the requirements of this specification for 1 year. Ensure that the thermoplastic melts uniformly with no evidence of skins or unmelted particles during the 1-year period.

D. Physical Requirements of Glass Spheres

1. Premixed Glass Spheres
 Ensure that the compound has been manufactured with glass spheres in the proportion specified in Subsection 653.2.B.4, “Reflectorization.” The glass spheres contained in the material shall meet the following requirements:
 a. Index of Refraction. Determine the index of refraction of the premixed glass spheres by the liquid immersion method at 77 °F (25 °C).
b. **Roundness.** Ensure that the minimum percentages of premixed glass spheres are true spheres according to the following table:

<table>
<thead>
<tr>
<th>Percent of Premixed Glass Spheres That are True Spheres (when tested according to ASTM D 1155)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Index of Refraction</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>1.65</td>
</tr>
<tr>
<td>1.50</td>
</tr>
</tbody>
</table>

c. **Imperfections.** Ensure that no more than 5 percent of the spheres show air inclusions, bubbles, lap lines, chill wrinkles, or other imperfections when viewed through a 60-power microscope in the refractive index liquid.

d. **Foreign Matter.** Ensure that the quantity of foreign matter does not exceed 1 percent.

e. **Gradation.** Have the beads tested using ASTM: D 1214 to ensure they have the following gradations:

<table>
<thead>
<tr>
<th>U.S. Sieve Standard Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 16 (1.18 mm)</td>
<td>100</td>
</tr>
<tr>
<td>No. 30 (600 µm*)</td>
<td>60 to 90</td>
</tr>
<tr>
<td>No. 50 (300 µm)</td>
<td>15 to 40</td>
</tr>
<tr>
<td>No. 80 (180 µm)</td>
<td>0 to 10</td>
</tr>
<tr>
<td>No. 100 (150 µm)</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

*µ = micro meter

f. **Chemical Resistance.** Use material manufactured with glass spheres that withstand immersion in water and acids without corroding or etching, and withstand sulfides without darkening or decomposing.

Have the chemical resistance tested by placing a 3 g to 5 g sample in each of three glass beakers or porcelain dishes and immersing as follows:

- Cover the first with distilled water.
- Cover the second with a 3N solution of sulfuric acid.
- Cover the third with a solution of 50 percent sodium sulfide, 48 percent distilled water, and 2 percent Aerosol 1B or similar wetting agent.

Ensure that after one hour no darkening, hazing, or other evidence of instability is evident when examined microscopically.

2. **Drop-On Glass Spheres**

Ensure that these spheres meet the requirements of Subsection 652.2.

E. **Requirements of Sealing Primer**

Place the particular type of two-part epoxy binder-sealer at the application rate as recommended in writing by the thermoplastic material manufacturer.

653.2.01 **Delivery, Storage, and Handling**

Use material delivered in 50 lb (22.7 kg) unit cardboard containers or bags strong enough for normal handling during shipment and on-the-job transportation without loss of material.

Ensure that each unit container is clearly marked to indicate the following:

- Color of the material
- Process batch number or similar manufacturer’s identification
- Manufacturer’s name
- Address of the plant
- Date of manufacture
653.3 Construction Requirements

653.3.01 Personnel
General Provisions 101 through 150.

653.3.02 Equipment
Depending on the marking required, use hand equipment or truck-mounted application units on roadway installations.

A. Spray Application Machine

Ensure that each spray application machine is equipped with the following features:

- Parts continuously mix and agitate the material.
- Truck-mounted units for lane, edge, and center lines can operate at a minimum of 5 mph (8 kph) while installing striping.
- Conveying parts between the main material reservoir and the shaping die or gun prevent accumulation and clogging.
- Parts that contact the material are easily accessible and exposable for cleaning and maintenance.
- Mixing and conveying parts, including the shaping die or gun, maintain the material at the plastic temperature with heat transfer oil or electrical element controlled heat. Do not use an external source of direct heat.
- Parts provide continuously uniform stripe dimensions.
- Applicator cleanly and squarely cuts off striping ends and applies skip lines. Do not use pans, aprons, or similar appliances that the die overruns.
- Parts produce varying widths of traffic markings.
- Applicator is mobile and maneuverable enough to follow straight lines and make normal curves in a true arc.

B. Automatic Bead Dispenser

Apply glass spheres to the surface of the completed stripe using a dispenser attached to the striping machine to automatically dispense the beads instantaneously upon the installed line. Synchronize the glass sphere dispenser cutoff with the automatic cutoff of the thermoplastic material.

C. Special Kettles

Use special kettles for melting and heating the thermoplastic material. Kettles equipped with automatic thermostatic control devices provide positive temperature control and prevent overheating. Ensure that the applicator and kettles are equipped and arranged according to the requirements of the National Fire Underwriters.

D. Hand Equipment

Use hand equipment for projects with small quantities of lane lines, edge lines, and center lines, or for conditions that require the equipment. Use hand equipment approved by the Engineer.

Ensure that hand equipment can hold 150 lbs (68 kg) of molten material and is maneuverable to install crosswalks, arrows, legends, lane, edge, and center lines.

E. Auxiliary Vehicles

Supply the necessary auxiliary vehicles for the operation.

653.3.03 Preparation
General Provisions 101 through 150.

653.3.04 Fabrication
General Provisions 101 through 150.

653.3.05 Construction

A. General Application

Thoroughly clean pavement areas to be striped. Use hand brooms, rotary brooms, air blasts, scrapers, or other approved methods that leave the pavement surface clean and undamaged. Take care to remove all vegetation and road film from the striping area. All new Portland Cement Concrete pavement surfaces shall be mechanically wire brushed or abrasive cleaned to remove all laitance and curing compound before being striped.
Lay stripe with continuous uniform dimensions.

Apply the type of stripe at each location according to the Plans, using one of the following methods:

- Spray techniques
- Extrusion methods wherein one side of the shaping die is the pavement, and the other three sides are contained by or are part of the suitable equipment to heat and control the flow of material.

1. Temperature
 Apply thermoplastic traffic stripe only when the pavement temperature in the shade is above 40 °F (4 °C).
 To ensure optimum adhesion, install the thermoplastic material in a melted state at the manufacturer’s recommended temperature but not at less than 375 °F (190 °C).

2. Moisture
 Do not apply when the surface is moist. When directed by the Engineer, perform a moisture test on the Portland cement concrete pavement surface. Perform the test as follows:
 a. Place approximately 1 yd² (1m²) of roofing felt on the pavement surface.
 b. Pour approximately 1/2 gallon (2 L) of molten thermoplastic onto the roofing felt.
 c. After 2 minutes, lift the roofing felt and inspect to see if moisture is present on the pavement surface or underside of the roofing felt.
 d. If moisture is present, do not proceed with the striping operation until the surface has dried sufficiently to be moisture free.

3. Binder-Sealer
 To ensure optimum adhesion, apply a binder-sealer material before installing the thermoplastic in each of the following cases:
 - Extruded thermoplastic
 - Where directed by the Engineer for sprayed thermoplastic
 - Old asphaltic concrete pavements with exposed aggregates
 - Portland cement concrete pavements as directed by the Engineer

 Ensure that the binder-sealer material forms a continuous film that mechanically adheres to the pavement and dries rapidly. Use a binder-sealer currently in use and recommended by the thermoplastic material manufacturer according to QPL 46.

 To ensure optimum adhesion, apply a two-part epoxy binder-sealer on all Portland cement concrete pavements for either sprayed or extruded thermoplastic material.

 Apply the epoxy binder-sealer immediately in advance of, but concurrent with, the application of the thermoplastic material. Apply in a continuous film over the pavement surface.

4. Bonding to Old Stripe
 The old stripe may be renewed by overlaying with new material. Ensure the new material bonds to the old line without splitting or cracking.

5. Offset from Construction Joints
 Off-set longitudinal lines at least 2 in (50 mm) from construction joints of Portland cement concrete pavements.

6. Crosswalks, Stop Bars, and Symbols
 Make crosswalks, stop bars, and symbols at least 3/32 in (2.4 mm) thick at the edges and no more than 3/16 in (4.8 mm) thick at the center.

7. Film Thickness
 a. Maintain the following minimum average film thicknesses on all open graded asphalt concrete friction courses:
 - 0.120 in (3.0 mm)* for lane lines
 - 0.090 in (2.3 mm)* for edge lines
 - 0.150 in (3.8 mm)* for gore area lines
b. Maintain the following minimum average film thicknesses on all other pavement types:
 - 0.090 in (2.3 mm)* for lane lines
 - 0.060 in (1.5 mm)* for edge lines
 - 0.120 in (3.0 mm)* for gore area lines

(See below for ‘*’ reference.)

Compute the minimums by the amount of material used each day, as follows:

<table>
<thead>
<tr>
<th>(For 5 in wide stripe)</th>
<th>(For 125 mm wide stripe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Average Film Thickness (in) =</td>
<td>([lbs used] / (total linear feet)) x 0.236</td>
</tr>
<tr>
<td>(For 10 in wide stripe)</td>
<td>(For 250 mm wide stripe)</td>
</tr>
<tr>
<td>* Average Film Thickness (mm) =</td>
<td>([kg used] / (total linear meters)) x 4.0</td>
</tr>
</tbody>
</table>

8. Glass Spheres
 a. Apply glass spheres to installed stripe surface at a minimum rate of 14 lbs of spheres to each 100 square feet ((700 g/m²) of thermoplastic material.
 b. Apply the glass sphere top-coating with a pressure-type gun specifically designed for applying glass spheres that will embed at least one-half of the sphere’s diameter into the thermoplastic immediately after the material has been applied to the pavement.

B. Removing Existing Stripe

Remove existing stripe according to Section 656.

Remove 100 percent of existing traffic stripe from:
 - Portland cement concrete pavement where the new stripe will be placed at the same location as the existing marking
 - Pavement where the new stripe will be placed at a different location from the existing markings

C. Tolerance and Appearance

No traffic stripe shall be less than the specified width and shall not exceed the specified width by more than 1/2 in (13mm). The length of the 10 ft (3 m) segment for skip stripe and the 30 ft (9 m) gap between segments may vary plus or minus 1 ft (300 mm). The alignment of the stripe shall not deviate from the intended alignment by more than 1 in (25 mm) on tangents and on curves up to and including 1 degree (radius of 1745 m or greater). On curves exceeding 1 degree (radius less than 1745 m), the alignment of the stripe shall not deviate from the intended alignment by more than 2 in (50 mm).

Stop work when deviation exceeds the above dimensions, and remove the nonconforming stripe.

653.3.06 Quality Acceptance

Segments of the thermoplastic traffic stripe that have been placed according to the Plans and Specifications may be accepted 30 days after the required work is complete in that segment.

If thermoplastic traffic stripe fails to meet Plan details or Specifications or deviates from stated dimensions, correct it at no additional cost to the Department. If removal of pavement markings is necessary, perform it according to Section 656 and place it according to this Specification. No additional payment will be made for removal and replacement of unsatisfactory striping.

653.3.07 Contractor Warranty and Maintenance

After segments are accepted, the Contractor will be relieved of maintenance on those segments.

653.4 Measurement

When stripe will be paid for by the square yard (meter), the actual number of square yards (meters) painted will be measured. The space between the stripes will be included in the overall measurement.
Linear measurements may be made by electronic measuring devices attached to a vehicle.

Thermoplastic traffic stripe, complete in place and accepted, is measured as follows:

A. Solid Traffic Stripe
 Stripe is measured by the linear foot (meter), linear mile (kilometer), or square yard (meter). Breaks or omissions in solid lines or stripes at street or road intersections are not measured for payment.

B. Skip Traffic Stripe
 Skip stripe is measured by the gross linear mile (kilometer) as specified. The unpainted space between the painted stripes is included in the overall measurement if the Plan ratio of one to three (10 ft [3 m] segment and 30 ft [9 m] gap or other patterns as designated on the Plans) remains uninterrupted. Measurement begins and ends on a stripe.

C. Words and Symbols
 Each word or symbol complete according to Plan dimensions is measured by the Unit.

653.4.01 Limits
 General Provisions 101 through 150.

653.5 Payment
 Payment is full compensation for the Work under this section, including:
 - Cleaning and preparing surfaces
 - Furnishing all materials
 - Applying, curing, and protecting stripe
 - Protecting traffic, including providing necessary warning signs
 - Furnishing tools, machines, and other equipment necessary to complete the Item

Measurement and payment for removing pavement markings will be according to Section 656 when shown in the Proposal as a payment Item. Otherwise, removal will not be paid for separately, but will be included in the payment for other Work under this section.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 653</th>
<th>Thermoplastic traffic stripe, ___ in (mm), (color)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 653</td>
<td>Thermoplastic solid traffic stripe, ___ in (mm), (color)</td>
<td>Per linear mile (kilometer)</td>
</tr>
<tr>
<td>Item No. 653</td>
<td>Thermoplastic skip traffic stripe, ___ in (mm), (color)</td>
<td>Per gross linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 653</td>
<td>Thermoplastic skip traffic stripe, ___ in (mm), (color)</td>
<td>Per gross linear mile (kilometer)</td>
</tr>
<tr>
<td>Item No. 653</td>
<td>Thermoplastic pavement markings, words, and symbols (color), type ____</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 653</td>
<td>Thermoplastic traffic stripe</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

653.5.01 Adjustments
 General Provisions 101 through 150.

Section 654—Raised Pavement Markers

654.1 General Description
 This work includes furnishing and placing raised pavement markers according to the Plans or as directed by the Engineer. Use markers that conform to Plan shapes, dimensions, and tolerances.

654.1.01 Definitions
 General Provisions 101 through 150.
654.1.02 Related References

A. Standard Specifications
 Section 868—Bituminous Adhesive for Raised Pavement Markers
 Section 886—Epoxy Resin Adhesives
 Section 919—Raised Pavement Marker Materials

B. Referenced Documents
 QPL 74

654.1.03 Submittals
General Provisions 101 through 150.

654.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bituminous Adhesive</td>
<td>868</td>
</tr>
<tr>
<td>Epoxy Resin Adhesives</td>
<td>886</td>
</tr>
<tr>
<td>Pavement Markers</td>
<td>919</td>
</tr>
</tbody>
</table>

654.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

654.3 Construction Requirements

654.3.01 Personnel
General Provisions 101 through 150.

654.3.02 Equipment
Before beginning construction, clean marker replacement equipment and ensure that it is mechanically sound.

 A. Containers and Stirring Devices
 Clean containers and stirring devices (paddles, propellers for drills, etc.) before hand-mixing epoxy.

 B. Automatic Mixing Device
 1. Cleaning
 Clean the mixing head to the automatic epoxy mixing equipment after stopping work for any extended period of
time. The length of down-time allowed depends on the pot life of the adhesive system being used.
 2. Mixing Ratio
 Use an automatic mixing device that delivers separate components to the mixing head in a one-to-one ratio by
volume.
 3. Sample Valves
 Equip the lines feeding the mixing head with suitable valves to allow samples to be taken for checking the ratio of
each component.

 C. Bituminous Adhesive Equipment
 Clean and maintain equipment for melting, stirring, and dispensing bituminous adhesive according to the bituminous
adhesive manufacturer’s requirements.

654.3.03 Preparation
General Provisions 101 through 150.

654.3.04 Fabrication
General Provisions 101 through 150.

800
654.3.05 Construction

A. Adhesive Types

Cement markers to pavement surfaces with a Type I-R Epoxy or Type I-S Epoxy (see Section 886), or with a bituminous adhesive (see Section 868). Space markers according to the Plans.

1. Type I-R Epoxy. Use Type I-R Epoxy when the pavement temperature is above 50 °F (10 °C), or when traffic conditions require a rapid setting system.
2. Type I-S Epoxy. Use Type I-S Epoxy when the pavement temperature is above 60 °F (15 °C) and traffic conditions permit a slower setting system.
3. Bituminous Adhesive. Use bituminous adhesive when the pavement temperature is above 40 °F (4 °C) or when traffic conditions require a rapid setting material.

B. Handling and Applying Adhesives

Obtain an epoxy adhesive furnished as two separate components. Combine and use the components as follows:

1. Immediately before use, thoroughly stir the individual components with separate paddles. Reject material permanently increasing in viscosity or showing settling of pigments, filler, or thixotropic additives that cannot be readily dispersed.
2. After stirring or agitating the two separate components, mix them in a one-to-one ratio and blend thoroughly until obtaining a uniform color without streaks.
3. At time of mixing, ensure that the temperature of both components is 60 ° to 80 °F (15 ° to 27 °C). If necessary, heat components using indirect heat to avoid locally overheating and decomposing the material. Do not heat adhesive above 120 °F (49 °C).
4. Place markers between the start of mixing the epoxy system and the termination of the pot life. The Engineer will designate the allowable pot life based on environmental factors. Never use a partially set mixed system that does not readily extrude around the perimeter of the marker when pressed to the roadway.
5. When using an approved fast-setting epoxy system, mix the separate components with a two-component type automatic mixing and extrusion apparatus, and place markers immediately.
6. Use bituminous adhesive furnished in approximately 30 lb (14 kg) cubes.
 a. Heat the cubes in an oil-jacketed melting pot.
 b. Maintain the bituminous adhesive at the manufacturer-recommended temperature during placement of the markers.
 c. Discard bituminous adhesive heated above 450 °F (232 °C).

C. Placement of Markers

1. Surface Cleaning

Clean pavement of dirt, curing compound, grease, oil, paint, moisture, loose or unsound layers, or other material that would impair the bond between the adhesive and the roadway.

 a. Use either sand-blasting or grinding equipment to clean. Remove the dust before placing the marker.
 b. Provide cleaning equipment air lines with suitable traps to prevent oil or moisture from being redeposited on the road surface.

2. Placement Limits

Place markers as follows:

 a. Do not place markers over joints in rigid pavement.
 b. Do not place markers when pavement temperature is below 40 °F (4 °C).
 c. When possible, wait 60 to 90 days before placing markers using epoxy adhesive on newly constructed asphaltic concrete pavements.

3. Marker Placement Using Epoxy Adhesives

Place markers using epoxy adhesives as follows:

 a. Place enough adhesive on the cleaned pavement or the bottom of the marker to completely cover the contact area of the marker.
 b. Press the marker firmly to the pavement.
c. Allow a slight bead of epoxy adhesive to extrude from under the marker edges.
d. Remove adhesive on the face of the marker or adhesive that obscures the marker. Do not use thinners or solvents to clean epoxy adhesives from the markers.

4. Marker Placement Using Bituminous Adhesives

Place markers using bituminous adhesives as follows:
a. Place enough bituminous adhesive on the cleaned pavement or the bottom of the marker to completely cover the contact area of the marker.
b. Press the marker firmly to the pavement.
c. Allow a slight bead of adhesive to extrude from under the marker edges.
d. Remove adhesive on the face of the marker or adhesive that obscures the marker.
e. Place the marker before the bituminous adhesive cools and does not extrude around the perimeter of the marker when pressed to the roadway.

654.3.06 Quality Acceptance

Refer to QPL 74 for raised pavement markers that have met these requirements.

654.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

654.4 Measurement

The number of each type of installed and accepted pavement marker is counted separately for payment.

654.4.01 Limits

General Provisions 101 through 150.

654.5 Payment

Raised pavement markers will be paid for at the Unit Price for each Unit of each type. Payment is full compensation for furnishing and installing each marker.

When designated, payment will also include recessing the marker.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 654</th>
<th>Raised pavement markers type___</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 654</td>
<td>Raised pavement markers type___(recessed)</td>
<td>Per each</td>
</tr>
</tbody>
</table>

654.5.01 Adjustments

General Provisions 101 through 150.

Section 655—Pavement Arrow with Raised Reflectors

655.1 General Description

This work includes installing pavement arrows with raised reflectors. Mark arrows with traffic paint, thermoplastic, or preformed plastic pavement markings according to the Proposal and Plan details.

655.1.01 Definitions

General Provisions 101 through 150.

655.1.02 Related References

A. Standard Specifications

Section 652—Painting Traffic Stripe
Section 653—Thermoplastic Traffic Stripe
Section 654—Raised Pavement Markers
Section 657—Preformed Plastic Pavement Markings
Section 868—Bituminous Adhesive For Raised Pavement Markers
Section 870—Paint
Section 886—Epoxy Resin Adhesives
Section 913—Reflectorizing Materials
Section 919—Raised Pavement Marker Materials

B. Referenced Documents
 General Provisions 101 through 150.

655.1.03 Submittals
General Provisions 101 through 150.

655.2 Materials
Ensure that materials conform to the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Beads (Paint)</td>
<td>652.2</td>
</tr>
<tr>
<td>Thermoplastic Traffic Markings</td>
<td>653.2</td>
</tr>
<tr>
<td>Glass Spheres (Thermoplastic)</td>
<td>653.2.D</td>
</tr>
<tr>
<td>Preformed Plastic Pavement Markings</td>
<td>657</td>
</tr>
<tr>
<td>Bituminous Adhesive</td>
<td>868</td>
</tr>
<tr>
<td>Traffic Line Paint</td>
<td>870.2.02</td>
</tr>
<tr>
<td>Epoxy Adhesives, Type I</td>
<td>886.2.01.A</td>
</tr>
<tr>
<td>Raised Pavement Marker</td>
<td>919</td>
</tr>
</tbody>
</table>

655.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

655.3 Construction Requirements

655.3.01 Personnel
General Provisions 101 through 150.

655.3.02 Equipment
General Provisions 101 through 150.

655.3.03 Preparation
General Provisions 101 through 150.

655.3.04 Fabrication
General Provisions 101 through 150.

655.3.05 Construction
Install the raised markers for pavement arrows according to Subsection 654.3.05.

A. Painted Arrows
 Apply painted arrows according to Section 652.

B. Thermoplastic Arrows
 Except as noted below, place thermoplastic according to Section 653. Do not sand blast arrows to be coated with thermoplastic.
 1. Apply thermoplastic 125 mils (3.18 mm) thick.
2. Screed or level the thermoplastic.
3. Immediately embed the raised reflector in the molten thermoplastic.

C. Preformed Plastic Pavement Markings
 Apply preformed plastic pavement markings according to Section 657.

655.3.06 Quality Acceptance
 General Provisions 101 through 150.

655.3.07 Contractor Warranty and Maintenance
 General Provisions 101 through 150.

655.4 Measurement
 Each type of arrow is measured by the Unit.

655.4.01 Limits
 General Provisions 101 through 150.

655.5 Payment
 Each arrow will be paid for per Unit placed. Payment is full compensation for furnishing materials, cleaning, and installing the completed arrow with raised reflectors.
 Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 655</th>
<th>Pavement arrow (painted) with raised reflectors</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 655</td>
<td>Pavement arrow (thermoplastic) with raised reflectors</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 655</td>
<td>Pavement arrow (preformed plastic) with raised reflectors</td>
<td>Per each</td>
</tr>
</tbody>
</table>

655.5.01 Adjustments
 General Provisions 101 through 150.

Section 656—Removal of Pavement Markings

656.1 General Description
 This work includes removing existing traffic stripes or markings according to Plans or as designated by the Engineer.

656.1.01 Definitions
 General Provisions 101 through 150.

656.1.02 Related References
 A. Standard Specifications
 Section 107—Legal Regulations and Responsibility to the Public
 Section 150—Traffic Control
 Section 804—Abrasive for Blast Cleaning
 B. Referenced Documents
 General Provisions 101 through 150.

656.1.03 Submittals
 General Provisions 101 through 150.

656.2 Materials
 General Provisions 101 through 150.
656.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

656.3 Construction Requirements

656.3.01 Personnel
General Provisions 101 through 150.

656.3.02 Equipment
General Provisions 101 through 150.

656.3.03 Preparation
General Provisions 101 through 150.

656.3.04 Fabrication
General Provisions 101 through 150.

656.3.05 Construction
Remove pavement markings before changing the traffic pattern. This Specification does not relieve the Contractor of the responsibilities in Section 150 or Subsection 107.07.

Utilize blasting, such as sand blasting or water blasting, grinding, or other approved methods to completely remove pavement markings without materially damaging the pavement surface or texture. Repair (at the Contractor’s expense) damage to the pavement or other surface from removing the markings. Use repair methods acceptable to the Engineer.

A. Blast Cleaning

Do not allow sand and other debris to accumulate and interfere with drainage or create a traffic hazard.

1. When blast cleaning within 10 ft (3 m) of a lane occupied by public traffic, immediately remove residue and dust when the sand hits the pavement surface.

2. Use a vacuum attachment operating simultaneously with blast cleaning, or use other methods approved by the Engineer.

3. Ensure that sand for blast cleaning conforms to Section 804.

656.3.06 Quality Acceptance
General Provisions 101 through 150.

656.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

656.4 Measurement

Removal of existing pavement markings is measured by the linear foot (meter), linear mile (kilometer), gross linear foot (meter), gross linear mile (kilometer), or square yard (meter) of the designated width and the type of stripe.

Where removal of traffic markings will be paid for by the square yard (meter), the actual number of square yards (meters) removed will be paid for. The space between the stripes or letters will be included in the overall measurement.

Removal of words in existing traffic markings is measured per each word removed.

656.4.01 Limits
General Provisions 101 through 150.

656.5 Payment

When shown as a Pay Item on the Plans, payment for removing pavement markings will be at the Contract Unit Price for the Unit. Payment is full compensation for furnishing materials, labor, equipment, and traffic control necessary to perform the work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>656</td>
<td>Removing existing solid traffic stripe ___ in (mm) wide (type)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>656</td>
<td>Removing existing skip traffic stripe ___ in (mm) wide (type)</td>
<td>Per gross linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 656</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>Item No. 656</td>
<td>Removing existing solid traffic stripe ___ in (mm) wide (type)</td>
<td>Per linear mile (kilometer)</td>
</tr>
<tr>
<td>Item No. 656</td>
<td>Removing existing skip traffic stripe ___ in (mm) wide (type)</td>
<td>Per gross linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 656</td>
<td>Removing existing traffic markings (type)</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 656</td>
<td>Removing existing traffic markings—words</td>
<td>Per each</td>
</tr>
</tbody>
</table>

656.5.01 Adjustments
General Provisions 101 through 150.

Section 657—Preformed Plastic Pavement Markings

657.1 General Description
This work includes placing plastic pavement markings or legends according to the Plans and Specifications or as otherwise directed.

657.1.01 Definitions
General Provisions 101 through 150.

657.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 Manual on Uniform Traffic Control Devices for Streets and Highways
 QPL 74

657.1.03 Submittals
Transfer to the Department manufacturer warranties or guarantees for heat-applied preformed plastic marking materials. Ensure that warranties or guarantees state that they are subject to transfer.

657.2 Materials
Select one of the following types of preformed marking material according to the Plans and Proposal:

- Type TR—Temporary Removable Plastic Marking
- Type TN—Temporary Non-removable Plastic Marking
- Type PA—Permanent Plastic Marking
- Type PB—Permanent Patterned Plastic Marking

For a list of sources, see QPL 74.

A. General Requirements for Preformed Pavement Markings

1. Shapes and Sizes
 Use markings that conform to the shapes and sizes outlined in the Manual on Uniform Traffic Control Devices for Streets and Highways.

2. Pigmentation
 Use white or yellow pigmented plastic according to each marking type.

3. Adhesion
 Use markings that can be affixed to bituminous or Portland cement concrete pavements by pressure-sensitive precoated adhesive or a liquid contact cement.
 Ensure that marking adhesive adheres to the roadway under normal climactic and traffic conditions.

4. Conformability
Use markings that will mold to pavement contours, breaks, faults, and the like, by normal action of traffic at normal pavement temperatures.

5. Resealability
Use markings containing resealing characteristics that allow the material to fuse to itself or to similar previously applied material under normal use.

6. Glass or Ceramic Beads
Use markings with a layer of glass or ceramic beads bonded to the surface according to the marking type. Type PB contains ceramic beads and glass beads. Types TR, TN, and PA contain only glass beads.
Use glass beads with less than 2% by weight showing any milkiness, scoring or scratching. Use clear, transparent beads that are free from air inclusions and conform to the following:

<table>
<thead>
<tr>
<th></th>
<th>Glass Beads</th>
<th>Ceramic Beads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractive Index, (tested by oil immersion)</td>
<td>1.50 minimum</td>
<td>1.70 minimum</td>
</tr>
<tr>
<td>Uniform Distribution of Spheres</td>
<td>0.75 minimum</td>
<td>0.75 minimum</td>
</tr>
</tbody>
</table>

7. Reflective Intensity
Ensure that marking types TR, TN, and PA use white or yellow film with the initial reflective intensity indicated in the table below, when measured at the angles shown. See Subsection 657.2.C.2.k for reflective intensity of Type PB.

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divergence Angle</td>
<td>0.2°</td>
<td>0.5°</td>
</tr>
<tr>
<td>Incidence Angle</td>
<td>86°</td>
<td>86°</td>
</tr>
<tr>
<td>Reflective Intensity --candle power per foot-candle per square foot (Candelas per Lux per square meter)</td>
<td>1.00</td>
<td>0.75</td>
</tr>
</tbody>
</table>

8. Composition
Use markings made of high-quality polymeric materials and pigments. Ensure types TR, PA, and PB contain the following composition of materials:

<table>
<thead>
<tr>
<th>Material</th>
<th>Min% By Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resins and Plasticizers</td>
<td>20</td>
</tr>
<tr>
<td>Pigments</td>
<td>30</td>
</tr>
<tr>
<td>Graded Glass Beads</td>
<td>33</td>
</tr>
</tbody>
</table>

B. Requirements for Temporary Markings (Types TR and TN)

1. Temporary Removable Markings (Type TR)
Use temporary, removable markings that meet the following requirements:

a. Removability
 Ensure the marking material can be removed from asphaltic and Portland cement as follows:
 - Lifted intact or in large pieces.
 - Lifted either manually or with a roll-up device.
 - Lifted at temperatures above 40 °F (5 °C) without using heat, solvents, sand blasting, or grinding.
 Ensure the pavement shows no objectionable staining or damage after removing the marking.

b. Elongation and Tensile Strength
 Provide temporary markings with the following elongation and tensile strength when tested according to ASTM D 638:

<table>
<thead>
<tr>
<th></th>
<th>Min% By Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elongation</td>
<td>0.75 minimum</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>40 lbs/in² (275 kPa) minimum</td>
</tr>
</tbody>
</table>
Test as follows:
1) Cut a 1 in by 6 in (25 mm by 150 mm) specimen.
2) Test at a temperature between 70 °F and 80 °F (21 °C and 27 °C).
3) Test at a jaw speed of 12 in/min (300 m/min).

c. Adhesion
Ensure that at least 10 lbs (20 N) of force is required to lift stuck-on marking material from the pavement.

d. Glass Bead Retention
Confirm the glass bead retention quality of marking material in both of the following ways:
1) Laboratory Test
 - Take a 2 in by 6 in (50 mm by 150 mm) sample.
 - Bend the sample over a ½ in (13 mm) diameter mandrel, leaving the 2 in (50 m) side perpendicular to the mandrel axis.
 - Ensure that the area on the mandrel shows no more than 10 percent of the beads entrapped by the binder less than 40 percent.
2) Field test
 Ensure the beads cannot be easily removed by scratching the material firmly with the thumbnail.

e. Skid Resistance
Ensure that the material surface provides a 35 BPN minimum skid resistance value when tested according to ASTM E 303.

f. Thickness
Ensure that the removable marking material is at least 20 mils (0.50 mm) thick not including the backing adhesive.

2. Temporary Non-Removable markings (Type TN)
This type of pavement marking may use a conformable metallic foil backing with a precoated pressure-sensitive adhesive.

a. Abrasion Resistance
 Use marking material that does not wear through to the backing surface in less than 125 cycles.
 Test according to Federal Test Standard 141, Method 6192, using an H-22 wheel and a 250 gram load.

b. Skid Resistance
 Ensure the retroreflective pliant polymer surface provides a skid resistance value of at least 35 BPN. Test according to ASTM E 303.

c. Elongation and Tensile Strength
 No test for elongation and tensile strength is required for type TN marking.

d. Glass Bead Retention
 Refer to Subsection 657.2.B.1.d, “Glass Bead Retention” for types TR and TN.

e. Thickness
 Ensure the nonremovable marking material is at least 20 mils (0.50 mm) not including the adhesive backing.

C. Requirements for Permanent Markings (Types PA and PB)
1. Permanent Plastic Marking (Type PA)
Provide permanent plastic markings with these features:

a. Adhesive and Backing
 Use markings supplied with the following:
 - A precoated adhesive
 - An easily removable backing to protect the adhesive
 - An adhesive backing that allows repositioning of the marking on the surface before permanently sticking with greater pressure
 In addition, supply rolls of lane lines with a precoated adhesive but without the protective backing material.
b. Pigments
 1) White
 Use white marking material with at least 20 percent of the total pigment consisting of titanium dioxide that meets Federal Specification TT-P442 for a dense opaque marking.
 2) Yellow
 Use yellow marking material with sufficient yellow pigment for a durable finished color.
 In addition, match the yellow to the Highway Yellow Color Tolerance Chart and Chip 33538 of Federal Standard 595.
 3) Appearance
 Ensure that each marking meets the following appearance standards:
 - Markings are extruded to a uniform thickness.
 - Edges are smoothly cut and true.
 - Glass spheres are retained on all sides by the plastic base material.
 - The wearing surface is free of indentations, displaced spheres, or other irregularities that retain dirt, dust, or other foreign materials.

c. Thickness
 Ensure the permanent material is at least 60 mils (1.52 mm) thick, without the pre-coated adhesive.

d. Glass Bead Retention
 Confirm that the surface glass beads are strongly bonded and are not easily removed by traffic. Test them as follows:
 1) Use a Taber Abraser with an H-18 wheel and 125 gram load.
 2) Inspect the sample at 200 cycles under the microscope to observe the extent and type of bead failure.
 3) Ensure that no more than 15 percent of the beads have popped-out.
 4) Verify that the predominant mode of failure is “wear-down” of the beads.

e. Reseal Test
 Test the plastic to confirm that it reseals to itself. Test as follows:
 1) Cut two samples, 1 in by 3 in (25 mm by 75 mm) each, keeping the adhesive backing material in place.
 2) Overlap these pieces face-to-face on a flat steel plate. The overlap area should be 1 in² (625 mm²).
 3) Center a 1000 gram weight over the overlap area.
 4) Place the sample in an oven for 2 hours at 190 °F ± 10 °F (88 °C ± 5 °C).
 5) Cool the sample to room temperature.
 6) Ensure the sample pieces cannot be separated except by tearing. Reject material that separates without tearing.

f. Tensile Strength and Elongation
 Ensure that the permanent markings have the following elongation and tensile strength when tested according to ASTM D 638:

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elongation</td>
<td>75% minimum</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>150 psi (1035 kPa) minimum</td>
</tr>
</tbody>
</table>

 Test as follows:

 NOTE: Run this test 3 times and base the result on an average of the 3 tests.

 1) Cut 3 specimens, 1 in by 6 in (25 mm by 150 mm) each.
 2) Place 1 in² (625 mm²) of carborundum extra-coarse emery cloth or its equivalent at each end of the test specimens to prevent the adhesive from sticking to test equipment.
 3) Test at a temperature between 70 ° and 80 °F (21 ° and 27 °C).
 4) Test at a jaw speed of 10 to 12 in/min (250 mm to 300 mm/min).
g. **Skid Resistance**
 Test the plastic surface to verify that it provides a skid resistance value of at least 45 BPN. Test according to ASTM E 303.

h. **Abrasion Resistance**
 Ensure that plastic loses no more than 0.25 grams of weight in 500 revolutions when abraded according to Federal Test Method Standard No. 141 (Method 6192).
 Test the material with calibrated H-18 wheels with a 1000 gram load on each wheel.

i. **Adhesive Shear Strength**
 Ensure that the load required to break the adhesive bond is strong enough to resist a load at least 10 lbs (4.54 kg).
 Test as follows:

<table>
<thead>
<tr>
<th>NOTE: Run this test 3 times and base the result on an average of the 3 tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Cut 3 specimens, 1 in by 6 in (25 mm by 150 mm) each.</td>
</tr>
<tr>
<td>2) Apply a 1 in by 3 in (25 mm by 75 mm) piece of carborundum extra coarse emery cloth or its equivalent to the adhesive face of each test strip. Overlap the area by 1 in² (625 mm²).</td>
</tr>
<tr>
<td>3) Apply 60 psi (415 kPa) of pressure over the overlapped area for 120 seconds.</td>
</tr>
<tr>
<td>Apply the load by gripping the ends of each laminated piece in a tensile test machine, such as a Dillon or Scott tester.</td>
</tr>
<tr>
<td>4) Run the test at 77 °F (25 °C).</td>
</tr>
<tr>
<td>5) Run the test at 0.25 in/min (64 mm/min).</td>
</tr>
</tbody>
</table>

2. **Permanent Patterned Plastic Marking (Type PB)**
 Use patterned plastic markings with these features:
 a. **Patterned Surface**
 Ensure that the patterned surface has the following characteristics:
 - A reflective layer of ceramic beads bonded to a durable polyurethane topcoat.
 - The raised area comprises between 35 and 65 percent of the total marking face.
 - The surface presents a near vertical face to traffic from any direction.
 - The Office of Materials and Research approves the pattern configuration.
 - The channels between raised areas are free of exposed beads or particles.
 b. **Adhesive and Backing**
 Refer to Subsection 657.2.C.1.a, “Adhesive and Backing” for Type PA.
 c. **Pigments**
 Refer to Subsection 657.2.C.1.b, “Pigments” for Type PA.
 d. **Ceramic Beads**
 Ensure that the top layer of ceramic beads is bonded to a durable polyurethane surface.
 e. **Ceramic Bead Retention**
 Refer to Subsection 657.2.C.1.d, “Glass Bead Retention” for Type PA.
 f. **Thickness**
 Ensure the materials are at least 60 mils (1.52 mm) thick, not including the pre-coated adhesive backing.
 g. **Reseal Test**
 Refer to Subsection 657.2.C.1.e, “Reseal Test” for Type PA.
 h. **Tensile Strength and Elongation**
 Refer to Subsection 657.2.C.1.f, “Tensile Strength and Elongation” for Type PA.
 i. **Skid Resistance**
 Refer to Subsection 657.2.C.1.g, “Skid Resistance” for Type PA.
 j. **Abrasion Resistance**
 Refer to Subsection 657.2.C.1.h, “Abrasion Resistance” for Type PA.
k. **Reflective Intensity**

Determine reflective intensity using photometric testing procedures of Federal Specification L-S-300 A, Paragraph 4.4.7. Reflective values are as follows:

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation Angle</td>
<td>0.2°</td>
<td>1.0°</td>
</tr>
<tr>
<td></td>
<td>1.05°</td>
<td>0.2°</td>
</tr>
<tr>
<td>Entrance Angle</td>
<td>86°</td>
<td>86.5°</td>
</tr>
<tr>
<td></td>
<td>88.8°</td>
<td>86°</td>
</tr>
<tr>
<td>Reflective Intensity–candle power per foot-candle per 5 ft² (Candelas per Lux per square meter)</td>
<td>1.10</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>0.30</td>
</tr>
</tbody>
</table>

657.2.01 **Delivery, Storage, and Handling**

A. **Marking Storage**

Use markings manufactured and packaged for storage at normal shelf temperatures for 1 year.

B. **Contact Cement Storage**

Use contact cements with a shelf life of 6 months.

657.3 **Construction Requirements**

General Provisions 101 through 150.

657.3.01 **Personnel**

Send a factory-trained representative from the material manufacturer to the jobsite at the start of each project.

657.3.02 **Equipment**

General Provisions 101 through 150.

657.3.03 **Preparation**

General Provisions 101 through 150.

657.3.04 **Fabrication**

General Provisions 101 through 150.

657.3.05 **Construction**

Remove existing pavement markings according to Subsection 653.3.05.B, “Removing Existing Stripe.”

A. **Pre-Conditions for Applying Markings**

1. Meet the following conditions before applying markings onto new asphaltic pavements:

 - The ambient temperature is 60 °F (15 °C) and rising.
 - New asphaltic pavement temperature is at least 120 °F (49 °C).
 - The plastic can be applied to new asphaltic pavement immediately before the new surface is rolled for the final time.
 - Conventional steel rollers and water used with them do not impede the plastic’s application.

2. Meet the following conditions before applying markings onto all pavements:

 - The ambient temperature is 60 °F (15 °C) and rising.
 - The pavement temperature is at least 70 °F (21 °C) and rising.
 - The previous night temperature did not fall below 40 °F (4 °C).
 - No significant rainfall occurred 24 hours prior to the plastic’s application.
B. Remove Existing Stripe

Remove at least 90% of existing traffic stripe under either of the following conditions:

- On Portland cement concrete pavement where the new stripe is to be placed at the same location as the existing marking
- On all pavements where the new stripe is to be placed at a location different from the existing marking

C. Applying Markings

Apply markings as follows:

1. Thoroughly clean the pavement. Clean with compressed air, hand brooms, rotary brooms, scrapers, or other approved methods which leave the pavement thoroughly clean and undamaged. Remove all vegetation and road film from the area to be striped. Mechanically wire brush or abrasive blast clean all new Portland cement concrete pavement surfaces to remove all laitance and curing compound from the area to be striped.
2. Apply an adhesive activator according to the manufacturer’s recommendations, when required.
3. Position markings according to the Plans.
4. Press positioned markings firmly onto the pavement.
5. Offset longitudinal lines at least 2 in (50 mm) from construction joints of Portland cement concrete pavements.

D. Tolerances and Appearance

1. Cut off all stripe ends squarely and cleanly.
2. The length of the 10 ft (3 m) segment for skip stripe and the 30 ft (9 m) gap between segments may vary plus or minus 1 in (25 mm). Do not allow the alignment of skip stripe to deviate from the intended alignment by more than 0.5 in (13 mm). Do not allow the alignment of edge stripe to deviate from the intended alignment by more than 0.5 in (13 mm) on tangents and on curves with a radius up to and including one degree. Do not allow the alignment of edge stripe to deviate from the intended alignment by more than 1 in (25 mm) on curves exceeding one degree.
3. Stop work when deviation exceeds the above dimensions, and remove the nonconforming stripe.

657.3.06 Quality Acceptance

Segments of preformed plastic traffic stripe that have been placed according to the Plans and Specifications may be accepted 30 days after the required work is complete in that segment. If Preformed Plastic Traffic Stripe fails to meet Plan details or Specifications or deviates from stated dimensions, correct it at no additional cost to the Department. If removal of pavement markings is necessary, perform it according to Section 656 and replace it according to this Specification. No additional payment will be made for removal and replacement of unsatisfactory striping.

657.3.07 Contractor Warranty and Maintenance

A. Warranties

Transfer all warranties or guarantees normally furnished by the manufacturer to the Department. Include a provision that warranties are subject to transfer. Warrant Type PB Plastic Markings to adhere to the pavement and to provide a minimum coefficient of retroreflection of 0.10 candles per ft-candle per square foot (0.10 candela per lux per square meter) when measured at 1.0 ° observation angle and 86.5 ° entrance angle for a period of at least 6 years for longitudinal markings and at least 2 years for intersection markings and symbols under normal traffic conditions.

B. Maintenance

Use the following according to manufacturer’s instructions to ensure effective marking performance:

- Solvents or adhesives
- Appropriate equipment
- Recommendations for application

657.4 Measurement

Preformed plastic pavement markings complete in place and accepted are measured as follows:

A. Solid Traffic Stripe

Solid stripe is measured by the linear foot (meter) or linear mile (kilometer) as specified. Breaks or omissions in solid lines and stripes at street or road intersections are not measured for payment.
B. Skip Traffic Stripe

Skip stripe is measured by the gross linear foot (meter) or gross linear mile (kilometer) as specified. The unpainted spaces between the stripes are included in the overall measurement, if the Plan ratio is not interrupted. Measurement begins and ends on a stripe.

C. Payment by Square Yard (Meter)

When preformed pavement markings are paid for by the square yard (meter), the number of square yards (meters) covered is measured. The space between the markings is included in the overall measurement. The color, width, and type are according to the Plans.

D. Preformed Plastic Word or Symbol

Each preformed plastic word or symbol, complete according to Plan dimensions, is measured by the unit. The code for each word or symbol is stated in the Plans.

E. Removing Existing Pavement Markings

Measurement and payment for removing pavement markings will be according to Section 656 when shown in the Proposal as a payment Item. Otherwise, removal will not be paid for separately, but will be included in the payment for other Work under this Section.

657.4.01 Limits
General Provisions 101 through 150.

657.5 Payment

Payment in each case is full compensation for applying markings, including adhesives, cleaning, application, and traffic control necessary to complete the Item.

Payment will be made under:

Item No. 657.	Preformed plastic solid pavement markings _____ in (mm), (color), (type)	Per linear foot (meter)
Item No. 657.	Preformed plastic solid pavement markings _____ in (mm), (color), (type)	Per linear mile (kilometer)
Item No. 657.	Preformed plastic skip pavement markings _____ in (mm), (color), (type)	Per gross linear foot (meter)
Item No. 657.	Preformed plastic skip pavement markings _____ in (mm), (color), (type)	Per gross linear mile (kilometer)
Item No. 657.	Preformed plastic pavement markings	Per square yard (meter)
Item No. 657.	Preformed plastic pavement markings, words or symbols (color), (type)	Per each

657.5.01 Adjustments
General Provisions 101 through 150.

Section 659—Hot Applied Preformed Plastic Pavement Markings

659.1 General Description

This work includes furnishing and placing hot applied preformed plastic pavement markings according to these Specifications and at locations shown in the Plans or as otherwise directed. Use applied markings that are very durable, impervious to oil and grease, and provide immediate and continuing retroreflectivity. Use hot applied preformed plastic pavement markings that are compatible with existing alkyd and hydrocarbon thermoplastic material.

659.1.01 Definitions
General Provisions 101 through 150.

659.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents

Manual on Uniform Traffic Control Devices for Streets and Highways
AASHTO M 249

659.1.03 Submittals

Transfer to the Department all manufacturer warranties or guarantees for heat-applied preformed plastic marking materials. Ensure that warranties or guarantees can be transferred.

659.2 Materials

A. Marking Characteristics

Ensure that markings have the following characteristics:

1. Composition

 The pavement marking material shall consist of a homogeneous mixture of high quality hydrocarbon resin, alkyd resin, or modified ester rosin solution in conjunction with aggregates, pigments, binders, and glass beads. Use thermoplastic material that conforms to AASHTO M 249, except for relevant differences due to the material being supplied in a preformed state.

 The markings shall contain at least 30% glass beads that conform to AASHTO M 247, Type 1. Use glass beads that are clear and transparent with at least 80% true spheres. The glass beads shall have a minimum index of refraction of 1.50.

2. Pigmentation

 a. White

 The white markings shall contain at least 8% by weight of titanium dioxide pigment meeting ASTM D 476, Type II, Rutile. The color shall be Federal Highway White, Color 17886, as per Federal Standard 595. The white markings shall have a minimum daylight reflectance (Y value) at 45°/0° of 80%.

 b. Yellow

 The yellow markings shall contain sufficient yellow pigment to ensure a color of Federal Highway Yellow, Color 13538, as per Federal Standard 595. The yellow markings shall have a minimum daylight reflectance (Y value) at 45°/0° of 45%.

3. Shapes and Sizes

 Prefabricated legends and symbols must conform to the applicable shapes and sizes outlined in the “Manual on Uniform Traffic Control Devices for Streets and Highways.” As an option, turn arrows and combination arrows may come without pre-applied surface glass beads to allow reversibility.

4. Thickness

 Ensure that the material is at least 0.125 in (3.175 mm) thick.

5. Retroreflectivity

 The preformed markings shall have the following initial minimum reflectivity values:

<table>
<thead>
<tr>
<th>Retroreflectivity</th>
<th>Power Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>White @ 86.5° incidence angle and 1.5° divergence angle</td>
<td>350 candle power/ft candle ft² (350 mc/ix/m²)</td>
</tr>
<tr>
<td>Yellow @ 86.5° incidence angle and 1.5° divergence angle</td>
<td>200 candlepower/ft candle ft² (200 mc/ix/m²)</td>
</tr>
</tbody>
</table>

6. Skid Resistance

 The surface of the preformed markings shall provide a minimum skid resistance of 45 BPM when tested according to ASTM E 303.

B. Heating Characteristics

 The preformed markings shall be capable of being affixed to bituminous or Portland cement concrete pavements by the use of the normal heat of a torch recommended by the manufacturer and according to the manufacturer’s installation guidelines. The preformed markings shall have resealing characteristics so that it will fuse with itself and with previously applied marking material of the same composition under normal conditions of use.

659.2.01 Delivery, Storage, and Handling

The markings shall be manufactured and packaged in a way that permits storage at normal shelf temperatures for up to one year after purchase.
659.3 Construction Requirements

659.3.01 Personnel
General Provisions 101 through 150.

659.3.02 Equipment
General Provisions 101 through 150.

659.3.03 Preparation
General Provisions 101 through 150.

659.3.04 Fabrication
General Provisions 101 through 150.

659.3.05 Construction
A. Pre-Conditions for Applying Markings with Heat
 Apply markings under the following conditions:
 1. Apply markings when the ambient temperature is 35 °F (2 °C) or above.
 2. Apply markings when the pavement is clean, dry, and free of debris.
 3. Apply drop-on glass beads to the entire surface of preformed markings that do not have factory pre-applied surface beads.
 4. Apply the drop-on glass beads to the preformed marking material while still in a liquid state. Use beads that meet the same requirements specified in Subsection 659.2.A.

659.3.06 Quality Acceptance
Materials shall be evaluated by the National Transportation Product Evaluation Program (NTPEP), the Georgia Department of Transportation or other State DOT test facilities before being approved for use. Data generated from the field tests will be used to select those materials that have performed satisfactorily during the evaluation period.

Hot applied preformed plastic pavement markings that have met the laboratory test and field test requirements will be placed on the Georgia Department of Transportation Qualified Products List. The manufacturer shall certify that the Hot Applied Preformed Plastic Pavement Markings supplied to construction and maintenance projects is formulated of the same material as when tested by NTPEP and will conform to the requirements of this Specification. Products that have met all the requirements in this Section but fail to perform adequately in actual use will be removed from the Qualified Products List.

659.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

659.4 Measurement
Heat-applied preformed plastic pavement markings, complete in-place and accepted, are measured as follows:
A. Solid Traffic Stripe
 Solid traffic stripe of the color, width, and type shown on the Plans or in the Proposal will be measured by the linear foot (meter) or linear mile (kilometer) as specified. Breaks or omissions in solid lines or stripes at street or road intersections will not be measured for payment.

B. Skip Traffic Stripe
 Skip traffic stripe of the color, width, and type shown on the Plans or in the Proposal will be measured by the gross linear foot (meter) or gross linear mile (kilometer) as specified. The unpainted spaces between the stripes will be included in the overall measurement if the Plan ratio remains uninterrupted. Measurement will begin and end on a stripe.

C. Payment by Square Yard (Meter)
 When hot applied preformed plastic pavement markings are paid for by the square yard (meter), the actual number of square yards (meters) covered will be measured in the overall measurement, including the space between the markings. The color, width, and type shall be indicated on the Plans.
D. Heat Applied Preformed Plastic

Each heat-applied preformed plastic word or symbol, complete according to Plan dimensions, is measured by the unit. The code for each word or symbol is stated in the Plan.

659.4.01 Limits
General Provisions 101 through 150.

659.5 Payment

Payment in each case will be full compensation for all aspects of heat-applied markings, including adhesives, cleaning, application, and traffic control necessary to complete the Item.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 659</th>
<th>Hot applied preformed plastic solid pavement markings _____ in (mm), (color), (type)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 659</td>
<td>Hot applied preformed plastic solid pavement markings _____ in (mm), (color), (type)</td>
<td>Per linear mile (kilometer)</td>
</tr>
<tr>
<td>Item No. 659</td>
<td>Hot applied preformed plastic skip pavement markings _____ in (mm), (color), (type)</td>
<td>Per gross linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 659</td>
<td>Hot applied preformed plastic skip pavement markings _____ in (mm), (color), (type)</td>
<td>Per gross linear mile (kilometer)</td>
</tr>
<tr>
<td>Item No. 659</td>
<td>Hot applied preformed plastic pavement markings</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 659</td>
<td>Hot applied preformed plastic pavement markings words or symbols (color), (type)</td>
<td>Per each</td>
</tr>
</tbody>
</table>

659.5.01 Adjustments
General Provisions 101 through 150.

Section 660—Sanitary Sewers

660.1 General Description
This work includes furnishing materials and installing sanitary sewers and appurtenances.

660.1.01 Definitions
House Connection: A sewer pipe from a single building to a common sewer or discharge point.

660.1.02 Related References

A. Standard Specifications
 Section 207—Excavation and Backfill for Minor Structures
 Section 611—Relaying, Reconstructing, or Adjusting to Grade of Miscellaneous Roadway Structures
 Section 668—Miscellaneous Drainage Structures
 Section 801—Fine Aggregate
 Section 830—Portland Cement
 Section 841—Iron Pipe
 Section 842—Clay Pipe Section
 843—Concrete Pipe Section
 847—Miscellaneous Pipe Section
 848—Pipe Appurtenances

816
B. Related Documents

General Provisions 101 through 150.

660.1.03 Submittals
General Provisions 101 through 150.

660.2 Materials
Ensure that backfill and foundation preparation materials meet the requirements of Section 207.

Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic PVC Sewer Pipe</td>
<td>847.2.07</td>
</tr>
<tr>
<td>Concrete Pipe Sanitary Sewers</td>
<td>843</td>
</tr>
<tr>
<td>Cast Iron Pipe Sanitary Sewers</td>
<td>841</td>
</tr>
<tr>
<td>Steel Pipe Sanitary Sewers</td>
<td>847.2.04</td>
</tr>
<tr>
<td>Clay Pipe Sanitary Sewers</td>
<td>842</td>
</tr>
<tr>
<td>Plastic Truss Pipe</td>
<td>847.2.07</td>
</tr>
<tr>
<td>Ductile Iron Pipe Sanitary Sewers</td>
<td>841</td>
</tr>
<tr>
<td>Portland Cement</td>
<td>830.2.01</td>
</tr>
<tr>
<td>Fine Aggregate for Mortar</td>
<td>801.2.02</td>
</tr>
<tr>
<td>Rubber Type Gasket Joints</td>
<td>848.2.01</td>
</tr>
<tr>
<td>Resilient Clay Pipe Joints</td>
<td>843</td>
</tr>
<tr>
<td>Bolted Couplings</td>
<td>848.2.02</td>
</tr>
<tr>
<td>Cement Mortar lining</td>
<td>847.2</td>
</tr>
<tr>
<td>Coal-Tar Enamel lining</td>
<td>847.2</td>
</tr>
<tr>
<td>Jute and Hemp Joints: Jute and hemp shall be pure, dry, unoiled, and braided.</td>
<td></td>
</tr>
</tbody>
</table>

Ensure that pipe fittings meet the requirements of the section pertaining to the type of pipe used.

660.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

660.3 Construction Requirements
During relocation operations, maintain continuous sewage flow through existing sewer lines. Do not temporarily divert sewage flow into open trenches or streams.

660.3.01 Personnel
A. Pipe Cutting
 Have skilled workers cut the pipe.

B. Mechanical Joint Installation
 Have an experienced mechanic install mechanical joints.

660.3.02 Equipment
General Provisions 101 through 150.

660.3.03 Preparation
General Provisions 101 through 150.

660.3.04 Fabrication
General Provisions 101 through 150.
660.3.05 Construction

A. Excavation, Backfill, and Foundation Preparation
 Excavate, backfill, and prepare the foundation according to Section 207. In addition, meet the following requirements:
 1. Trenches
 Excavate the trench as follows:
 a. Excavate the trench to provide a maximum width of 8 in (200 mm) on each side of the outside diameter of the pipe barrel up to 2 ft (600 mm) above the top of the pipe, unless otherwise specified.
 b. Shape the trench bottom to fit the pipe.
 c. Cut recesses in the trench bottom to accommodate the bells, except on house connections.
 d. Ensure that the minimum grade on house connections is two percent unless otherwise specified.
 2. Time of Placement
 Install sewer pipe on foundation preparation material placed the same day.
 3. Excavations on Private Property
 a. Carefully excavate within private property easements.
 b. Carefully remove sod and topsoil, stockpile it, keep it safe, and replace it in its original position.
 c. Leave private property neat and presentable.

B. Laying Pipe
 Lay pipe as follows:
 1. Lay sewer pipe according to the lines and grades on the Plans, or as established by the Engineer.
 2. Lay bell and spigot pipe with bells up grade and spigot ends fully entered into the bells.
 3. Lay underground pipe so that at least 25 percent of its barrel circumference is supported for its entire length.
 4. Install pipe on piers or piles according to Plan details.

C. Jointing
 Do not cover joints until the Engineer inspects them.
 Before jointing, carefully clean dirt and other undesirable material from the pipe’s interior, including the bell and the annular space.
 When jointing in dry trenches, form joints by one of the following methods when the water level is below the trench invert and no pumping or bailing is required:
 1. Wiped-Joint Method
 To use this method:
 a. Caulk the joint with jute or oakum dipped in a slurry of cement and water.
 □ Place the caulking.
 □ Use a caulking tool to tightly ram it into the annular space within the pipe socket.
 b. Seal the joints, entirely filling the space in the hub around the spigot with mortar.
 □ Use mortar formed of equal parts cement and sand. Mix these dry, then add water to give the proper consistency.
 □ Mix the mortar in small quantities as required for immediate use.
 c. Clean the joint as follows:
 □ Wipe off the joint outside.
 □ On 6 in to 12 in (150 mm to 300 mm) diameter pipe, use a filled bag to remove mortar and debris from inside. Pull the bag through the line immediately after laying each joint.
 □ On pipe over 12 in (300 mm), wipe the joint inside and outside by hand.
 2. Diaper-Joint Method
 Caulk according to Subsection 660.3.05.C.1.a “Wiped Joint Method,” above. Then do the following:
 a. Use a common unbleached sheeting material to encircle the pipe bell and a short section of pipe barrel ahead of the joints.
Form a sheeting envelope by stitching along each edge and adding baling wire into the stitched edges to form a drawstring.

b. Extend the diaper around the pipe barrel, leaving enough opening in the envelope top for pouring.

c. Draw the wires tightly and secure the envelope firmly against the pipe bell and barrel.

d. Through the opening in the envelope top, pour the joint completely full of Portland cement mortar.
 □ Use mortar formed of equal parts cement and sand.
 □ Mix these dry, then add enough water so that the mortar flows freely into the joint space.

e. Firmly press the mortar into the joint by hand after allowing excess water to drain.

f. Leave the diaper in place permanently.

g. Leave the surface smooth and concentric with the pipe barrel.

h. After the joints have hardened, point up the tops with cement mortar:
 □ Use mortar formed of equal parts cement and sand.
 □ Mix these dry.
 □ Add just enough water to provide workability.

3. Mastic-Joint Method (Hotpoured)

 Mastic joints used on concrete or clay pipe shall be as follows:
 a. Before jointing concrete pipe, paint the mating surfaces of each joint with bitumen.
 b. Caulk pipe joints according to Subsection 660.3.05.C.1.a.
 c. After caulking, heat and pour the mastic compound into the joint using a joint runner or gasket.
 Ensure this procedure conforms strictly to the joint compound manufacturer’s recommendations.

4. Steel-Bolted Couplings Method

 Use steel-bolted couplings for jointing plain end pipe according to Plan details or as specified.

5. Welded Joints

 Use welded joints when specified for steel pipe as follows:
 a. Ensure that Work, materials, preparation, and workmanship are according to the latest Standard Specifications, published by the American Waterworks Association and the American Welding Society.
 b. Repair coal tar enamel coating damaged by welding heat.
 □ Repair using a field coat of coal tar enamel inside and outside of the pipe.
 □ When the Engineer determines the inside of the pipe is inaccessible, apply repair coating to the outside only.

6. Mechanical Joints Method

 When specified, install mechanical joints for cast iron pipe.
 Carefully follow the manufacturer’s instructions and have experienced mechanics install the joint as follows:
 a. Wash sockets and spigots with soapy water before slipping glands and gaskets over spigots.
 b. Insert the spigot full depth into the socket.
 c. Brush the gasket with soapy water and push it into position. Make sure the gasket is evenly seated in the socket.
 d. Slide the gland into position for compressing the gasket.
 e. Tighten the bolts and nuts.
 1) Initially, tighten bolts and nuts finger-tight.
 2) Tighten bolts to a permanent tightness with a torque wrench.
 3) Tighten bolts alternately 180 degrees apart.
 f. Keep socket, spigots, glands, and bolts clean and wet with soapy water until completing each joint.
 g. Remake joints that leak. Ensure that each joint meets the leakage test according to Subsection 660.3.06.A.2.

7. Push-On Joints Method

 Make push-on joints according to the manufacturer’s recommendations.
8. Flexible Watertight Joints Method
 Use flexible joints under the roadway, including shoulders and curbs, and according to
 Subsection 660.3.05.C.10. Use the following joints with the specified type of pipe:
 □ Use rubber-type gasket joints with concrete, cast iron, and steel pipe.
 □ Use resilient clay pipe joints with clay pipe.
 Place flexible watertight joints as follows:
 a. Thoroughly clean mating surfaces, inside and out, before joining the pipe in the trench. Wash cast iron pipe
 with soapy water.
 b. Apply a manufacturer-recommended lubricant sealer to the mating surfaces.
 c. Center the ends and socket to compress the joint, ensuring a tight fit between inner surfaces.

9. Solvent Cement Joints Method
 Make these joints according to the manufacturer’s recommendations.

10. Jointing Methods for Wet Trenches
 Use one of the following jointing methods when pipe trench conditions require pumping or bailing to maintain the
 water level below the trench invert:
 □ Diaper Joint, as in Subsection 660.3.05.C.2.
 □ Mechanical Joint, as in Subsection 660.3.05.C.6.
 □ Welded Joint, as in Subsection 660.3.05.C.5.
 □ Flexible Watertight Joint, as in Subsection 660.3.05.C.8.

D. Connections
 Locate connections according to the Plan, or as directed by the Engineer.
 Have a skilled worker cut pipe for connections according to the Plans, or as directed by the Engineer.

1. Manhole Connections
 Carefully connect new sewer lines to existing manholes and existing sewer lines to new manholes.
 □ Do not allow infiltration of foreign substances.
 □ Thoroughly clean masonry or debris from manholes.

2. Connections Intended for Future Use
 Seal and cap connections for future use according to the above requirements for sealing joints. (See
 Subsection 660.3.05.C.)

3. House Connections
 Install wyes and tees in common sewer for house connections according to the Plans, or as directed by the Engineer.
 Unless otherwise indicated, use 6 in (150 mm) diameter connection ends.

660.3.06 Quality Acceptance

A. Sewer lines
 Test and repair sewer lines as follows:
 1. Test sewer lines, complete in place, with reflected light. Ensure a clear unobstructed view between manholes.
 2. Ensure that infiltration does not exceed 1 gal per day per inch diameter per 100 ft of pipe (5 ml per day per
 millimeter diameter per meter).
 On lines where flow indicates a higher infiltration rate, conduct an Engineer-approved leakage test at the
 Contractor’s expense.
 3. Repair sewer line with excessive leakage or deviation from line or grade. Repair the leak or deviation at no expense
 to the Department.

B. Joints
 Ensure that joints are watertight. Immediately repair leaks and defects at the Contractor’s expense.

660.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.
660.4 Measurement

A. Excavation and Backfill

Excavation, foundation preparation material, sand bedding, and normal backfill will not be measured separately for payment. Their cost is included in the Contract Price for related items.

Foundation backfill materials Type II and imperfect backfill material Type III will be measured for payment according to Section 207.

B. Sanitary Sewer Pipe

1. The overall length of pipe installed is measured in linear feet (meters) along the central axis of the pipe diameter.
2. Pipe sections with wyes and tees attached will be included in the measurement.
3. Measurement of house connection lines include bends and riser pipe.

C. Wyes, Tees, and Other Fittings

These Items will be included in the overall pipe measurement.

D. Connections

The cost of making connections, including connections to existing facilities, is included in the Contract Price for sewer pipe.

E. Manholes

Sanitary or combination sewer manholes will be measured for payment according to Section 668.

F. Adjustment and Reconstruction of Existing Manholes

Adjustment and reconstruction of existing sanitary or combination sewer manholes will be measured according to Section 611.

660.4.01 Limits

General Provisions 101 through 150.

660.5 Payment

A. Backfill

Foundation backfill Type II and imperfect backfill material Type III will be paid for according to Section 207.

B. Manholes

Manholes will be paid for according to Section 668. Adjustment of manholes will be paid for according to Section 611.

C. Sewer Pipe

Sewer pipe installations, sanitary or combination, complete in place and accepted, will be paid for at the Contract Price per linear foot (meter).

Payment is full compensation for the Item, including the following:

- Furnishing and housing materials
- Excavating and backfilling for all necessary connections
- Capping and sealing connections intended for future use
- Maintaining continuous sewage flow through existing sewers during relocation

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 660</th>
<th>Sanitary sewer pipe (mm) (type)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
</table>

660.5.01 Adjustments

General Provisions 101 through 150.
Section 666—Vertical Drainage Wicks

666.1 General Description
This work includes furnishing and installing vertical drainage wicks according to locations and depths shown on the Plans, or as directed by the Engineer.

666.1.01 Definitions
General Provisions 101 through 150.

666.1.02 Related References
A. Standard Specifications
 Section 106—Control of Materials
B. Referenced Documents
 ASTM D 4632
 ASTM D 751
 ASTM D 1424

666.1.03 Submittals
A. Materials Certification
 Furnish the Engineer with materials certification, in duplicate, according to Subsection 106.05, “Materials Certification.”
B. Installation Sequence and Method Details
 Submit installation sequence and method details to the Engineer for review at least two weeks before installing the drainage wick.
 The Engineer’s approval of the installation sequence and method does not constitute acceptance of the installation method.
 If at any time the Engineer feels the installation method does not produce a satisfactory drainage wick, alter the method or equipment to comply with these Specifications.

666.2 Materials
A. Drain Fabrication
 Ensure the following:
 - Drainage wicks are prefabricated from a drainage plastic core fabricated with suitable channels wrapped in a nonwoven polyester filter.
 - The brand of prefabricated drain used is AMERDRAIN or MEBRA, or an equivalent approved by the Geotechnical Engineering Bureau.
 - The drain is free of defects, rips, holes, or flaws.
B. Physical Properties
 Ensure that the drain meets minimum requirements according to the following:

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Standard</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breaking Load</td>
<td>ASTM D 4632</td>
<td>30 lbs/in width (5 N/mm width)</td>
</tr>
<tr>
<td>Mullenburst</td>
<td>ASTM D 751</td>
<td>85 lbs/in² (585 kPa)</td>
</tr>
<tr>
<td>Elmendorf Tear</td>
<td>ASTM D 1424</td>
<td>200 grams</td>
</tr>
<tr>
<td>Permeability Coefficient</td>
<td></td>
<td>1x10⁻⁴ in/sec (3x10⁻³ mm/s)</td>
</tr>
</tbody>
</table>
666.2.01 Delivery, Storage, and Handling

A. Drain Protection
 Ensure that the drain is wrapped in burlap or a similar heavy-duty covering during shipment and storage.

B. Storage Protection
 Protect the storage area from sunlight, mud, dirt, dust, debris, and detrimental substances.

666.3 Construction Requirements

666.3.01 Personnel
 General Provisions 101 through 150.

666.3.02 Equipment
 The Contractor is responsible for selecting the proper size and amount of equipment.

A. Approval of Equipment
 Adhere to the following requirements for equipment:
 1. Secure approval of all equipment before beginning work.
 2. Promptly replace or supplement unsatisfactory equipment.
 3. Note that equipment is approved for use on a trial basis.
 4. Remove, replace, or supplement equipment that proves unsatisfactory after a short test section is complete.

B. Required Equipment
 Choose a type of carrier depending upon the desired installation force, and then ensure the following:
 □ The carrier is equipped with a mandrel or sleeve to protect the wick from tears, cuts, and abrasions during installation.
 □ The protective mandrel or sleeve has at least a 10 in² (6450 mm²) cross sectional area.

C. Precautions
 Take precautions to protect instrumentation devices.
 Replace, at no additional cost to the Department, any equipment that is damaged or becomes unreliable during construction due to construction operations.

666.3.03 Preparation

A. Location Stakes
 Prior to drain installation, the Engineer will stake the proposed drain locations. Take reasonable precautions to preserve the stakes.
 Ensure that drain locations do not vary by more than 6 in (150 mm) from locations indicated on the Plans, or as directed by the Engineer.

B. Trial Drain
 Install a trial drain at a location designated by the Engineer to demonstrate that the equipment, method, and materials will provide a satisfactory installation according to this Specification.

666.3.04 Fabrication
 General Provisions 101 through 150.

666.3.05 Construction

A. Installation Depth
 1. Install drainage wicks to the depth shown on the Plans, or to a depth where reasonable efforts at further penetration fail.
 The Engineer may vary the wick depths, spacings, or numbers installed, and may revise Plan limits for this work.
 2. Provide a means of determining the wick depth and quantity of wick used at each drain location and at anytime.
666.3.06

B. Installation of Drains

1. Normal Installation
 Use a mandrel or sleeve to install the drainage wick, as follows:
 a. Ensure that the mandrel or sleeve completely encloses and protects the drainage wick during installation.
 b. Force the mandrel containing the wick vertically into the ground to the required depth.
 c. Cut the mandrel neatly at its upper end after installation.
 d. Ensure that a 4 in to 8 in (100 mm to 200 mm) length of wick protrudes from the ground.

2. Drilling Upper Soils
 If necessary, drill through the dense upper soils before installing the prefabricated drains. Do not drill more than 2 ft (600 mm) into the underlying compressible soils, as determined by the Engineer.

3. Obstruction of Depth
 If obstructions cannot be penetrated using normal and accepted procedures, do the following:
 a. Complete the drain from the point of obstruction to the surface.
 b. Notify the Engineer.
 c. At the direction of the Engineer, install a new drain within 18 in (450 mm) of the obstructed drain.

4. Wick
 Make splices or connections in the drainage wick to ensure continuity.

C. Wick Alignment

1. Carefully check equipment for plumbness before advancing each wick.
2. Ensure that wicks do not deviate more than 1 in/ft (85 mm/m) from the vertical.

666.3.06 Quality Acceptance

No compensation will be allowed for materials, work performed, or drilling if wicks are unsatisfactory. The Engineer will reject wicks that are:

- Out of location by more than 6 in (150 mm)
- Damaged in construction
- Improperly completed

666.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

666.4 Measurement

This work is measured according to the following:

- Drill holes are measured in linear feet (meters), to the nearest 0.1 ft (0.03 m).
- Vertical drainage wicks are measured in linear feet (meters), to the nearest 0.1 ft (0.03 m).

666.4.01 Limits

General Provisions 101 through 150.

666.5 Payment

This work will be paid for at the Contract Price for the accepted quantity of drill holes and vertical drainage wicks, complete and in-place. Payment is full compensation for:

- Drilling holes
- Furnishing materials
- Placing materials
- Providing labor, equipment, tools, and incidentals necessary to complete the work

The Contract Price will be for the number of drains at the spacing shown on the Plans.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 666</th>
<th>Drill holes</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 666</td>
<td>Vertical drainage wicks</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>

666.5.01 Adjustments
General Provisions 101 through 150.

Section 667—Horizontal Drain

667.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 668—Miscellaneous Drainage Structures

668.1 General Description
This work includes constructing catch basins, drop inlets, manholes, junction boxes, spring boxes, drain inlets, special inlets with safety grates, and vertical tee sections.

Construct according to these Specifications and the lines and grades shown on the Plans, or as established by the Engineer.

668.1.01 Definitions
General Provisions 101 through 150.

668.1.02 Related References
A. Standard Specifications
 Section 207—Excavation and Backfill for Minor Structures
 Section 500—Concrete Structures
 Section 607—Rubble Masonry
 Section 608—Brick Masonry
 Section 801—Fine Aggregate
 Section 830—Portland Cement
 Section 834—Masonry Materials
 Section 843—Concrete Pipe
 Section 853—Reinforcement and Tensioning Steel
 Section 854—Castings and Forgings
 Section 866—Precast Concrete Catch Basin, Drop Inlet, and Manhole Units

B. Referenced Documents
 General Provisions 101 through 150.

668.1.03 Submittals
General Provisions 101 through 150.

668.2 Materials
The structures in this section may be constructed of brick, cast-in-place concrete, or pre-cast concrete, unless the Plans or Proposal specifies a specific type of construction.
Use rubble masonry only when specified on the Plans. Ensure that materials meet the following specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class "A" or "B" Concrete</td>
<td>500</td>
</tr>
<tr>
<td>Sand for Bedding Material</td>
<td>801.2.01</td>
</tr>
<tr>
<td>Fine Aggregate for Mortar</td>
<td>801.2.02</td>
</tr>
<tr>
<td>Portland Cement</td>
<td>830.2.01</td>
</tr>
<tr>
<td>Brick</td>
<td>834</td>
</tr>
<tr>
<td>Masonry Stone</td>
<td>834</td>
</tr>
<tr>
<td>Mortar and Grout</td>
<td>834</td>
</tr>
<tr>
<td>Nonreinforced Concrete Pipe</td>
<td>843</td>
</tr>
<tr>
<td>Steel Bars for Reinforcement</td>
<td>853.2.01</td>
</tr>
<tr>
<td>Gray Iron Castings</td>
<td>854.2.01</td>
</tr>
<tr>
<td>Precast Reinforced Concrete Catch Basin, Drop Inlet, and Manhole Units</td>
<td>866</td>
</tr>
</tbody>
</table>

Ensure that the materials for fabricating special inlets and their safety grates are according to Plan details.

Construct the following manholes and drainage structures from pre-cast or cast-in-place concrete:

- Structures within the backfill limits of mechanically stabilized embankment retaining walls
- Structures within 5 ft (1.5 m) of the wall foundation’s front.

668.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

668.3 Construction Requirements

668.3.01 Personnel
General Provisions 101 through 150.

668.3.02 Equipment
General Provisions 101 through 150.

668.3.03 Preparation
General Provisions 101 through 150.

668.3.04 Fabrication
General Provisions 101 through 150.

668.3.05 Construction

A. Excavation and Backfill

Excavate and prepare foundations for the structures included in this section; place pipe through the structures according to Section 207.

B. Concrete

Concrete units may be either poured-in-place or precast. Construct units as follows:

1. Poured-in-Place Units

 The throat or other nonreinforced portions of catch basins may be Class B concrete. Use Class A concrete for the top slab. Construct units according to Section 500.
2. Pre-Cast Reinforced Concrete Units
 Construct pre-cast reinforced concrete units as follows:
 a. Holes for Pipe
 Cast each unit with the number and dimensions of pipe holes necessary to incorporate the unit into the drainage system according to Plan details.
 Installation conditions may require additional pipe for which no holes have been cast. If so, make the holes and repair or replace, to the Engineer’s satisfaction, pipe damaged during the process.
 b. Pipe Connections
 Use mortar or Class A concrete to connect pipe to units.
 c. Installation of Pre-cast Concrete
 1) Pre-cast Reinforced Units: Set these units to within 1/2 in (± 13 mm) of grade on a bed of compacted sand 2 in to 3 in (50 mm to 75 mm) thick.
 2) Sectional Precast Reinforced Units: When using these units to build-up extra-depth catch basins or drop inlets, fill the joints between sections with mortar and wipe smooth.

C. Brick Masonry
 Construct brick masonry structures according to Section 608.

D. Mortar Rubble Masonry
 Construct rubble masonry structures according to Section 607.

E. Castings
 Hold frame castings securely in place to proper line and grade. Make castings an integral part of the complete structure.
 After completion, ensure that castings subject to traffic use are firm and stable under traffic.

F. Maintenance
 Thoroughly clean fallen masonry, silt, debris, and other foreign matter from structures.

G. Safety Grates
 Fabricate safety grates according to Plan details.

H. Sanitary Sewer Manholes
 Ensure that sanitary and combination sanitary and storm sewer manholes conform to the following requirements and the related Specifications.
 1. Form Invert Channels
 Shape invert channels to the lines and grades shown on the Plans, or as established by the Engineer. Ensure that channel surfaces are smooth.
 Form invert channels by one of the following methods:
 - Directly form the invert channel in the concrete base of the manhole.
 - Construct the invert channel of brick and mortar.
 - Lay half-round tile in the concrete base of the manhole.
 - Lay round sewer pipe through the manhole and cut out the top half of the pipe after the concrete base has set.
 Do not use this method if the Plans provide for an offset drop in the invert.
 2. Plaster Outside Walls
 Plaster outside walls as follows:
 a. Saturate the outside wall of each brick manhole with water.
 b. Plaster the wall smooth with a mortar coat at least 1/2 in (13 mm) thick. Manufacture the mortar according to Section 834 with the following exceptions:
 - Manufacture the mortar with one part cement to two parts mortar sand.
 - Do not add hydrated lime.
3. Connections to Manholes
 Complete manhole connections to the Engineer’s satisfaction and as follows:
 a. Carefully connect existing sewer lines to new manholes to prevent infiltration of foreign substances.
 b. Construct manholes in or adjacent to existing sewer lines according to Section 660 to maintain continuous
 sewage flow in existing lines.

668.3.06 Quality Acceptance
General Provisions 101 through 150.

668.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

668.4 Measurement
Catch basins, drop inlets, manholes, junction boxes, drain inlets, special inlets, and safety grates, complete in place and
accepted, are measured for payment according to the following:

A. Catch Basins and Drop Inlets
 Each catch basin or drop inlet is grouped for measurement as follows:
 - Group 1: Structures connected to pipe 36 in (900 mm) or less in diameter, regardless of the pipe skew
 - Group 2: Structures connected to pipe over 36 in (900 mm) diameter regardless of the pipe skew
 Catch basins or drop inlets, complete in place and accepted, are measured by the unit.
 In addition, each catch basin or drop inlet deeper than 6 ft (2m) is measured for additional payment. The extra depth is
 measured in linear feet (meters).

B. Manholes
 Manholes are measured for payment as follows:
 1. Sanitary and Storm Sewer Manholes
 Sanitary sewer manholes and storm sewer manholes are measured separately and divided into two types:
 - Type 1: Structures connected to pipe 42 in (1050 mm) or less in diameter regardless of the pipe skew
 - Type 2: Structures connected to pipe 48 in to 84 in (1200 mm to 2100 mm) diameter regardless of the pipe skew
 Each manhole is measured by the unit.
 2. Manhole Additional Depth
 In addition to Types 1 and 2 above, each Manhole deeper than 6 ft (2 m) is measured for additional payment, termed
 “manhole additional depth.” This additional depth is measured in linear feet (meters) and does not include the upper
 6 ft (2 m). Manhole additional depth is classed as follows:
 - Manhole Additional Depth, Class 1: Applies to each manhole deeper than 6 ft (2 m), but not deeper than 10
 ft. (3 m) Class 1 payment is for the manhole depth between 6 ft and 10 ft. (2 m and 3 m).
 - Manhole Additional Depth, Class 2: Applies to each manhole deeper than 10 ft (3 m), but not deeper than 20
 ft (6 m). Class 2 payment is for the manhole depth between 6 ft and 20 ft (2 m and 6 m).
 - Manhole Additional Depth, Class 3: Applies to each manhole deeper than 20 ft (6 m), but not deeper than 30
 ft (9 m). Class 3 payment is for the manhole depth between 6 ft and 30 ft (2 m and 9 m).
 - Manhole Additional Depth, Class 4: Applies to each manhole deeper than 30 ft (9 m), but not deeper than 45
 ft (14 m). Class 4 payment is the manhole depth between 6 ft and 45 ft (2 m and 14 m).
 Manhole additional depth is measured for payment at the class that includes the greatest depth below the original 6 ft
 (2 m).
 For example, a manhole 32 ft (11m) deep would be measured and paid for as follows:

<table>
<thead>
<tr>
<th>Storm (or sanitary) sewer manhole, type_____</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm (or sanitary) sewer manhole, type_____, additional Depth Class 4</td>
<td>26 linear feet (9 linear meters)</td>
</tr>
</tbody>
</table>
C. Junction Boxes, Spring Boxes, and Drain Inlets
 Junction boxes, spring boxes, and drain inlets are measured by the unit.
 1. Each junction box will be complete according to Plan details.
 2. Each drain inlet will consist of a pipe elbow or tee, concrete collar, and casting of the required diameter.
 3. Each spring box will be complete according to Plan details.

D. Safety Grates
 Safety grates fabricated and installed according to Plan details are measured by the square foot (meter), computed from the overall surface dimensions of each grate.

E. Special Inlets for Safety Grates
 Special inlets, complete in place, are measured for payment in cubic yards (meters) according to Section 500.

F. Vertical Tee Sections (or Saddles)
 Vertical tee sections are not measured for separate payment.

668.4.01 Limits
General Provisions 101 through 150.

668.5 Payment
Payment for the various structures under this Section will be made as follows:

A. Catch Basins and Drop Inlets
 Catch basins or drop inlets will be paid for at the Contract Price per each.
 Depth in excess of 6 ft (2 m) will be paid for at the Contract Price per linear foot (meter).
 Payment is full compensation for the following:
 - Furnishing castings
 - Making pipe connections regardless of skew
 - Providing materials, making forms, and disposing of surplus material

B. Manholes
 Sanitary sewer and storm sewer manholes, complete in place, will be paid for at the Contract Price per each.
 Manhole additional depth of the appropriate class will be paid for at the Contract Price per linear foot (meter).
 Payment is full compensation for the following:
 - Furnishing castings, fittings, and other appurtenances called for on the Plans to complete the Item
 - Making pipe connections regardless of skew
 - Providing materials, making forms, and disposing of surplus material

NOTE: No additional payment will be made for connecting manholes to existing or new sewer lines. Include costs related to connections in the Contract Price for the structure.

C. Junction Boxes, Spring Boxes, and Drain Inlets
 Junction boxes, spring boxes, or drain inlets will be paid for at the Contract Price per each. Payment is full compensation for the following:
 - Furnishing castings, fittings, and other appurtenances called for on the Plans to complete the Item
 - Making pipe connections regardless of skew
 - Providing materials, making forms, and disposing of surplus material

D. Pipe
 Pipe entering or exiting catch basins, drop inlets, manholes, junction boxes, spring boxes, or drain inlets, will be paid for under the section of the Specifications governing the pipe.
E. Sand Bedding Material for Precast Structures
 No separate payment will be made for this material. Its cost is included in the Contract Price for the structure under which it is used.

F. Excavation and Normal Backfill
 No separate payment will be made for excavation and normal backfill. Their cost is included in the Contract Price for the structure being excavated.

G. Safety Grates
 Safety grates will be paid for at the Contract Price per square foot (meter).

H. Inlets for Safety Grates
 Inlets for safety grates will be paid for at the Contract Price per cubic yard (meter) of Class “A” concrete, including reinforcing steel.

I. Vertical Tee Sections (or Saddles)
 Vertical tee sections will be included in payment for the section of structure they are incorporated in.
 No separate payment will be made for excavation, backfill, and disposal of surplus material.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>668.1</td>
<td>Catch basin, group</td>
<td>Per each</td>
</tr>
<tr>
<td>668.1</td>
<td>Catch basin, group additional depth</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>668.1</td>
<td>Drop inlet, group</td>
<td>Per each</td>
</tr>
<tr>
<td>668.1</td>
<td>Drop inlet, group additional depth</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>668.1</td>
<td>Sanitary sewer manhole, type</td>
<td>Per each</td>
</tr>
<tr>
<td>668.1</td>
<td>Sanitary sewer manhole, type, additional depth class</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>668.1</td>
<td>Storm sewer manhole, type</td>
<td>Per each</td>
</tr>
<tr>
<td>668.1</td>
<td>Storm sewer manhole, type, additional depth class</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>668.1</td>
<td>Junction box</td>
<td>Per each</td>
</tr>
<tr>
<td>668.1</td>
<td>Spring box</td>
<td>Per each</td>
</tr>
<tr>
<td>668.1</td>
<td>Drain inlet, __ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>668.1</td>
<td>Safety grate, type</td>
<td>Per square foot (meter)</td>
</tr>
<tr>
<td>668.1</td>
<td>Class A concrete, including bar reinforcing steel</td>
<td>Per cubic yard (meter)</td>
</tr>
</tbody>
</table>

668.5.01 Adjustments
General Provisions 101 through 150.

Section 670—Water Distribution System

670.1 General Description
This work includes furnishing materials for installing, relocating, and adjusting water distribution systems according to the Plans and Specifications.

670.1.01 Definitions
General Provisions 101 through 150.
670.1.02 Related References

A. Standard Specifications

Section 104—Scope of Work
Section 107—Legal Regulations and Responsibility to the Public
Section 207—Excavation and Backfill for Minor Structures
Section 444—Sawed Joints in Existing Pavements
Section 500—Concrete Structures
Section 555—Tunnel Liner
Section 611—Relaying, Reconstructing or Adjusting to Grade of Miscellaneous Roadway Structures
Section 615—Jacking or Boring Pipe
Section 810—Roadway Materials
Section 841—Iron Pipe
Section 847—Miscellaneous Pipe
Section 848—Pipe Appurtenances

B. Related Documents

General Provisions 101 through 150.

670.1.03 Submittals

General Provisions 101 through 150.

670.2 Materials

A. Cast Iron and Ductile Iron Pipe

See Section 841. Use pipes with mechanical or push-on joints. If the Plans or the Engineer allow, use bell and spigot pipe with lead joints.

Ensure that pipes are the class called for on the Plans.

B. Cast Iron Fittings

See Section 841. Fittings consist of cast iron bends, tees, cross, plugs and reducers, double hub tapped tees, offsets, sleeves, plugs, and other cast iron specials necessary to the work.

Ensure that the class of each fitting is at least the class of pipe to which it is connected.

Use fittings furnished with the following:

- The manufacturer’s center-to-center and center-to-socket laying dimensions
- The manufacturer’s standardized mechanical joints or bell and spigot with lead and rubber joints

C. Gate Valves

See Section 848.2.03. Use gate valves that function as follows:

1. Open to the left, unless otherwise specified
2. Are operated by nut
3. Use operating nuts similar to those used by the local water works system, with an arrow indicating the valve opening direction
4. Are designed for vertical installation with nonrising stems and operating nuts, except as follows:
 - Valves 16 in (400 mm) and larger are designed for horizontal installation with bevel gear, an extended gear case with protectors, track, trunnions, scrapers, and a by-pass.
5. Include mechanical joints, bolts, glands, and gaskets unless otherwise indicated on the drawings or necessary to join existing work
6. Include split sleeve mechanical joint-type tapping sleeves
7. Include mechanical joint hub connections
8. Include valve boxes designed as follows:
 - Made for heavy roadway use
 - Made with cast-iron and two-piece slip or screw
 - Made with round drop covers adjustable up or down to 6 in (150 mm)
 - Made with the proper depth, including extensions, unless otherwise specified

D. Butterfly Valves

Use butterfly valves in water mains 12 in (300 mm) and larger. Ensure that butterfly valves meet these requirements:
 - Consist of either a cast iron valve body for buried service or a stainless steel-to-rubber seated tight closing body suitable for two-way flow, Class 150 B
 - Contain manual operators sized for line pressure and velocities
 - Contain 2 in (50 mm) square operating nuts and extension stems and guides, as required
 - Open counterclockwise (to the left)
 - Contain mechanical joints suitable for pipeline connections
 - Comply with AWWA C-504

E. Service Line Pipes, Fittings, and Appurtenances

Use fittings and appurtenances for pipe, as follows:

1. Fittings
 Use the following fittings for copper, galvanized steel, and plastic pipe:
 a. Copper Pipe (or Tubing)
 - Use cast or wrought pattern copper fittings.
 - Use solder joint fittings for rigid copper pipe.
 - Use flared mechanical fittings, if desired, for concealed soft drawn pipe.
 - Use ground joint unions.
 - See Subsection 847.2.03.
 b. Galvanized Steel Pipe
 See Subsection 847.2.01.
 c. Plastic Pipe
 See Subsection 847.2.05.

2. Appurtenances
 Corporation stops, curb stops, or other appurtenances may be substituted for an adapter if its connections are designed for the appurtenances. Meet the following requirements:
 a. Ensure that corporation stops, curb stops, and other appurtenances for copper, galvanized iron, or plastic pipe service lines meet the requirements of ASTM B 62 and AWWA C 800 for threads.
 b. Use adapters to joint plastic, copper, or galvanized iron pipe to existing facilities.
 c. Use a cut-off key that conforms closely to the type used by the water system that the work is connecting to.

F. Polyvinyl Chloride (PVC) Pipe

See Subsection 847.2.05.A.1.

Use pipes that are furnished with either solvent cement or elastomeric gasket coupling.

G. Steel Pipe Casing

For welding use plain-end casings the size, thickness, length, and coating specified on the Plans.

H. Double Strap Saddles

Ensure that double strap saddles conform to Plan details, or are as directed by the Engineer.
I. Fire Hydrants

Use fire hydrants that meet the latest AWWA Specifications and local code requirements. In addition, fire hydrants shall meet the following parameters:

1. Compressive, Self-Oiling, and Nonfreezing
 Use hydrants sealed and lubricated as follows:
 a. The operating nut is totally sealed away from the hydrant barrel.
 b. A large oil reservoir and packing gland continuously and automatically lubricates working parts.
 c. The drain mechanism operates simply, positively, and automatically.

2. Hydrant Safety Flange and Coupling
 Construct the safety flange and coupling above the ground line to permit rapid replacement. Ensure that the force of impact in a traffic accident will break the flange and spread the valve stem coupling.

3. Nozzle Direction
 Construct the hydrant’s nozzles to face in any direction at any time by removing the safety flange bolts and revolving the head without digging or cutting off water.

4. Accessibility to Internal Parts
 Ensure that all working parts of the hydrant, including the seat ring, can be removed through the top without digging. Confirm that seat rings are:
 - Made of bronze
 - Shaped and arranged to be readily removable
 - Able to be screwed into a bronze bushing in the shoe

5. Cover Depth
 If needed, supplement the Department-provided 3-1/2 ft (1 m) vertical leader pipe with extension sections at no additional cost.

6. Valve Opening
 Ensure that valve openings are at least 4-1/4 in (106 mm).

7. Hose and Steamer Connection
 Breech-lock the hose and steamer connections into the hydrant barrel, then caulk with lead to seal them permanently, or thread and pin them into the hydrant body.
 Hydrants include two 2-1/2 in (63 mm) hose nozzles and one steamer connection.

8. Threads
 Use “National Standard” threads for hose nozzles and steamer connections, unless otherwise specified.

9. Operating Nut
 Unless otherwise specified, use 5-sided operating nuts with 1 in (25 mm) flat surfaces.

10. Inlet Connection
 Use 6 in (300 mm) inlet connections furnished with mechanical joints to connect to the mechanical joint lead spigot.

J. Concrete Blocking

Use “Class A” concrete for fire hydrant blocking constructed according to Section 500.

670.2.01 Delivery, Storage, and Handling
Carefully handle pipe, fittings, and other materials to avoid breaking or damaging the cement mortar linings.

Do not roll or drop pipe off trucks or cars. To unload pipe, carefully lift and lower it into position using approved slings and clamps.

670.3 Construction Requirements

670.3.01 Personnel
General Provisions 101 through 150.
670.3.02 Equipment

A. Valve-Tapping Machine
 Furnish the valve-tapping machine and all other equipment required for each installation.

B. Test Pump and Pressure Measurement
 Use a high-quality, reliable test pump and a means of accurately measuring the water required to maintain pressure during the prescribed testing time.

C. Underground Pipe and Cable Finder
 Use a high-quality electronic pipe and cable finder to accurately locate underground utilities and other installations to the Engineer’s satisfaction.

670.3.03 Preparation
General Provisions 101 through 150.

670.3.04 Fabrication
General Provisions 101 through 150.

670.3.05 Construction

A. Finding Existing Underground Utilities and Obstructions
 Comply with Subsection 107.13 and Subsection 107.21.
 According to the best information available to the Department, all known water lines, gas lines, telephone conduits, drainage structures, etc., are shown on the Plans. However, to find such installations, use an electronic pipe and cable finder and assist the Engineer in locating existing installations or obstructions to the work.
 When unforeseen conflicts require Plan changes, perform the work as altered according to Subsection 104.03 and Subsection 104.04.

B. Excavating Trenches

 Excavate trenches to the proper grade, depth, and width as follows:

 1. Trench to Grade
 Ensure that excavated trench bottoms are firm, free from boulders, and conform to the established grade.
 a. Backfill, according to Subsection 670.3.05.E.6, any part of the trench excavated below the established grade.
 Use Class I or Class II Soils (Section 810), and firmly compact the soil.
 b. Where the established grade of a trench is in rock, undercut the bottom of the trench by at least 6 in (150 mm), then backfill and compact according to Subsection 670.3.05.E.6.
 Conduct blasting operations strictly according to Subsection 107.12.
 c. Excavate trenches under pavement to grade as follows:
 1) To remove the pavement, cut it at least 24 in (600 mm) wider than each trench edge to provide solid bearing for the pavement edges when replaced.
 Remove the pavement according to Section 444, except no separate payment will be made for sawed joints unless a bid Item is contained in the Proposal.
 2) Tunnel under existing sidewalks, curbs, gutters, and pavements according to Section 555.
 3) Where possible, jack pipe under an existing pavement according to Section 615, except no separate payment will be made for jacking and boring pipe unless a bid Item is included in the Proposal.

 2. Minimum Trench Depth
 Excavate trenches to provide at least 48 in (1.2 m) cover depth from the pipe to the finished pavement surface, sidewalk, grass plot, etc. unless indicated otherwise on the Plans or by the Engineer.
 If any part of a water main is to be placed in or under a new embankment, finish the embankment to at least a 2 ft (600 mm) plane above the pipe barrel before excavating the trench.

 3. Trench Width
 Excavate trenches wide enough to allow proper installation of pipe, fittings, and other materials.
4. Trench Bellholes
 Excavate bell holes deeply and widely enough to make joints and to allow the pipe barrel to rest firmly on the ditch bottom.

C. Connecting to Existing Mains
 Connect to an existing main with the appropriate fittings according to the Plans or the Engineer. When making connections under pressure, i.e., when normal water service must be maintained, furnish and use a tapping sleeve and valve. Connect to existing mains as follows:
 1. Before opening new pipe line trenches, locate the various points of connections to be made into existing pipe lines. If necessary, uncover pipe lines for the Engineer to prescribe the connections and fittings needed.
 2. Connect to existing pipe lines only to meet operating requirements. Cut existing lines only after obtaining the Engineer’s permission.

D. Laying Water Mains and Appurtenances
 Lay mains, fittings, and appurtenances as follows:
 1. Preparing and Handling Pipes
 Thoroughly clean the pipe and fittings before laying them. Keep them clean until accepted.
 Use suitable tools and equipment. Do not damage the pipe, especially the cement lining inside the cast iron pipe.
 Carefully examine pipe for cracks and other defects and do not lay defective pipe. If pipe or castings appear to be cracked, broken, or defective after laying, remove and replace those sections.
 2. Alignment and Gradient
 Ensure that pipe line alignment and gradient are either straight or deflected to closely follow true curves. Deflect pipe lines only where required, within allowable horizontal and vertical deflection angles according to the Plans.
 3. Special Requirements for Laying Water Mains
 Excavate, clean, lay, joint, and backfill progressively and uniformly according to these requirements:
 - Never leave pipe in the trench overnight without completely jointing and capping.
 - Do not leave completed pipe line exposed in the trench. Backfill and compact the trench as soon as possible after laying, jointing, and testing are complete.
 - At the close of work each day, and when laying pipe, close the exposed end of the pipe-line in the trench with an approved wood or metal head or barrier.
 - If necessary to cover the end of an incomplete pipe line with backfill, close the end of the pipe with a satisfactory cap or plug.

E. Installing Water Mains
 Install water mains as follows:
 1. Flexible Joints
 Use the following flexible joints for connections inside the roadway shoulders or curbs and gutters:
 a. Mechanical Joints
 When using mechanical joints:
 1) Thoroughly wash bell sockets, spigots, gland, gasket, nuts, and bolts with soapy water before assembly. Keep these parts wet until the jointing operation is complete.
 2) Tighten nuts within the torque range recommended by the manufacturer. Check the tightening tolerance with a torque wrench.
 3) If effective sealing is not attained at the maximum recommended torque, disassemble, thoroughly clean, then reassemble the joint.
 4) Do not overstress bolts to compensate for improper installation or defective parts.
 b. “Push-On” Type Joints
 Use “push-on” joints made according to the manufacturer’s recommendations.
c. Bell and Spigot Connections with Lead Joints
 Thoroughly clean the bell inside and the pipe outside. Join bell and spigot connections with lead and gasket as follows:
 1) Gasket: Use a tubular or molded rubber gasket installed according to the manufacturer’s recommendations. Use asbestos rope or treated paper rope only with the Engineer’s approval when the space between the bell and spigot will not permit the use of a rubber ring.
 2) Lead: Place the lead joint at least 2 in (50 mm) deep and pour it to the full depth of the lead groove.
 □ Keep the melting pot near the joint being poured. Make only one pouring for each joint.
 □ Do not allow dross to accumulate in the melting pot.
 □ Thoroughly caulk the joints to secure a tight joint without overstraining the iron in the bells.

2. Cutting Pipe for Water Mains
 Use pipe cutters when cutting pipe or special castings. Do not use a hammer and chisel or a cutting torch.

3. Gate Valves on Water Mains
 Install and joint gate valves as specified in Subsection 670.2.C. Include the valve box, where required.

4. Fire Hydrants
 Install and joint hydrants as specified in Subsection 670.2.I. Include required vertical extension sections. Also, include pipe strap installation, concrete blocking, crushed stone drain, and backfill according to the Plans and this Section.

5. Concrete Blocking
 Furnish materials and install concrete blocking according to Subsection 670.2.J. Form and pour concrete blocking at the backs of fittings, including elbows, tees, pipe plugs, fire hydrants, and other locations according to the Plans or the Engineer.

6. Backfilling
 Furnish equipment, labor, and when necessary material required for backfilling the pipe line trenches according to Section 207.
 a. When testing for leaks in open trenches, do not backfill until testing is complete and leaks are eliminated.
 b. When retaining pavement adjacent to trenches, replace removed pavement with the same or better material when approved.
 c. After backfilling, maintain a smooth riding surface until the repaving is complete. No separate payment will be made for replaced pavement unless a bid Item for this work is contained in the Proposal.

7. Sterilizing Water Mains
 Before placing new and existing pipe lines and appurtenances in service, sterilize them within the overall construction limits. Sterilize in conjunction with the pressure test, if desired.
 a. Chlorination
 Sterilize using only potable water with calcium hypochlorite (HTH), one percent chlorine solution, or other products acceptable to the Engineer and Department of Public Health.
 1) Add enough sterilizing agent to provide a chlorine residual of 10 ppm (parts per million) in 24 hours.
 2) At the end of 24 hours, check the chlorine residual. If it is less than 10 ppm, add additional chlorine and check the line again after 24 hours.

 b. Flushing
 After sterilization, flush the line with potable water until the chlorine residual in tests made at the point of discharge is equal to the chlorine residual of the potable water used for flushing.

 c. Sampling
 Take all samples in the presence of the Engineer.
 1) Leave the pipe line full for 24 hours and request the local Health Department to take bacteriological samples to the Georgia Department of Public Health for analysis.
 2) When test results are not satisfactory, sterilize again, without additional compensation, until satisfactory samples are obtained.
F. Laying Service Lines and Appurtenances

Except as modified in this Section, construct and install service lines according to the requirements for laying water mains.

Install service lines at locations shown on the Plans or where designated by the Engineer. Install new pipe from the water main to the final location of the meter or to points designated by the Engineer to connect with existing or future service lines on abutting property.

A complete service line pipe installation includes all connections using unions, valves, fittings, corporation stops, goosenecks where permitted, and curb stops.

1. Excavation for Service Lines
 Excavate as previously specified in Subsection 670.3.05.B, with the following exceptions:
 - Ensure that trenches under pavements and across driveways are deep enough to provide at least 48 in (1.2 m) of cover, unless otherwise directed by the Engineer.
 - At other areas, trench depth and backfill cover may be adjusted at the discretion of the Engineer to provide at least 18 in (450 mm) of cover.

2. Backfill for Service Lines
 Backfill as specified in Subsection 670.3.05.E.6 for water mains, with the following exception:
 - Backfill only after a leakage test has been made under normal operating pressure in open trenches and all leaks have been eliminated.

3. Laying and Jointing Service Lines
 Install copper, galvanized steel, and plastic service lines as follows:
 a. Copper Pipe
 1) Cut square and burr internal and external pipe ends before inserting them in fitting sockets.
 2) Sand pipe ends clean and wire-brush fitting sockets clean to ensure 100 percent tinning of the socket and pipe joint surfaces and full solder penetration of the joint. Do not use acid or acid-based material for surface cleaning.
 3) While the solder is still molten, wipe the solder bead at the external joint with a dry cloth.
 b. Galvanized Steel Pipe
 Install galvanized steel pipe according to the applicable trenching and laying specifications for other service lines, as they apply. (See Subsection 670.2.E.1.b.)
 c. Plastic Pipe
 Install plastic service line pipe according to the manufacturer’s recommendations.
 - Use compression or flare connections.
 1) Snake plastic pipe in the trench, allowing at least one percent additional pipe length for thermal contraction.
 2) Before backfilling, run water through the pipe to cool to operating temperature. Under normal line operating pressure, check all joints for leaks.
 3) After repairing leaks, backfill the trench with 6 in (150 mm) of clod- and rock-free material. Thoroughly tamp before proceeding with normal backfill.

G. Relocating, Adjusting, and Removing

1. Fire Hydrants and Water Valves
 Relocate, adjust to grade, or remove fire hydrants and water valves and valve boxes according to the Plans or as designated by the Engineer.
 a. Protect parts during removal and relocation. Replace lost or damaged Items at no expense to the Department.
 b. Melt out lead or composition joints. Disconnect each joint before removing them from the trench.
 c. Install relocated gate valves or fire hydrants as specified for new gate valves or fire hydrants.
 d. Construct concrete blocking as specified above for fire hydrants (see Subsection 670.2.I).
 e. Remake tests for leakage and retest until no leaks appear.
 f. Backfill as specified in Subsection 670.3.05.E.6.
 g. Consider valve boxes part of the valve assembly and remove them intact with the valve.
Concrete blocking and additional pipe required to reset the gate valve or fire hydrant at its new location will be paid for separately.

2. Existing Water Meters and Boxes
 Relocate these according to the Plans or the Engineer.
 a. To relocate water meters, remove the existing meter and box and install a short section of pipe in their place.
 b. Inspect, along with the Engineer, each meter before its removal to determine the meter’s condition. The Department will replace defective meters.
 This Item also includes, without additional compensation, required pipe, unions and appurtenances, necessary storage protection, and reinstallation of the meter, meter box, and curb stop in the existing service line, as directed.

3. Existing Water Service Lines
 Water lines will be adjusted to grade by excavating the existing lines, lowering or raising the lines, and backfilling according to the Plans or the Engineer.
 a. Furnish new materials or fittings required for the adjustment without additional compensation.
 b. Change connections at the main that result from this work.
 c. Repair leaks and damage caused by the operations at no expense to the Department.
 d. When retaining a water meter where an existing service line is to be adjusted, adjust the existing meter and box to the proper grade without additional compensation.

4. Existing Water Meter and Water Valve Boxes
 Lower or raise these to the grade established on the Plans or by the Engineer according to Section 611.

670.3.06 Quality Acceptance

A. Testing Water Mains
 When the Engineer approves a section of pipe for testing, furnish the materials, equipment, and labor to conduct the test. Use a test pump and a means of measuring the water necessary to maintain the required pressure during the prescribed testing time.
 Furnish, install, and remove temporary bulkheads, flanges, plugs, and corporation stops at high points in the pipe line and at the test pump, when necessary.
 Use the following testing sequence:

1. Preparation
 Whenever the Engineer determines, test pipe lines before backfilling the trench and service installing lines. However, if high-pressure testing after service lines are in place, shut the lines off at the corporation stops.
 After installing necessary joints, bulkheads, etc., place corporation stops, if no other means can be provided, in the high points of the pipe line and at the pump. Blow the pipe free of air according to accepted procedure.

2. Testing Requirements
 Follow these requirements when testing:
 - Ensure that the test pressure is 50 lbs/in² (345 kPa) higher than the designated class pressure of pipe and fittings.
 - Ensure that leakage does not exceed 15 gal/in of pipe diameter/ mile (1.4 L of pipe diameter/km) per 24 hours.
 - Test the pipe line for two hours.
 - If the Engineer determines that additional testing is required, perform the procedure with no additional compensation.
 - When service lines cannot be isolated (i.e., shut off from the section to be tested), or where pressure testing as described above may cause damage, test the line under normal operating pressure as approved by the Engineer.
 Where possible, do this work in open trenches. Replace cracked, broken, or defective materials and carefully remake joints that leak.
B. Retesting

After the Engineer feels the above conditions have been corrected, retest the lines until they pass the necessary requirements. No additional compensation will be made for the corrections or retesting.

670.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

670.4 Measurement

Water mains, service lines, and other items of work in this Specification, complete, in place, and accepted, are measured for payment as follows:

A. Water Mains

Water mains are measured in linear feet (meter) for each size installed. The mains are measured along the center, parallel to the slope of the pipe, from end of each installation through all valves and fittings.

B. Fittings

Pipe fittings are considered subsidiary to the water line in which they are used and are not measured for separate payment.

C. Gate Valves Including Boxes

When required, these are measured by the number of each size installed.

D. Tapping Sleeve and Valve Assembly

These are measured by the number of each size installed.

E. Fire Hydrants

These are measured by the number of each installed.

F. Service Lines

Service lines are measured in linear feet (meter) for each size of service pipe installed. Measurements are made from end to end and from center of lines to ends of branches including valves and fittings. Valves and fittings are not measured separately for payment.

G. Existing Fire Hydrants, Water Valves, and Water Meters Relocated

Existing fire hydrants, water valves, and water meters are measured by the number of each actually relocated, including relocation and final adjustment of boxes.

H. Existing Meter Boxes and Valve Boxes Adjusted to Grade

Existing meter boxes and valve boxes, adjusted to grade in their original locations, are measured by the number adjusted according to Section 611.

I. Water Valves and Fire Hydrants Removed

Existing water valves, including boxes when necessary, and fire hydrants are measured by the number of each removed.

J. Excavation for Trenches

Excavation is not measured for payment separately, but its cost is included in the amount bid for the Item to which it pertains.

K. Concrete Blocking

The quantity of concrete blocking installed according to and within the limits of Plan details, or as specified, is measured in cubic feet (meters).

L. Service Lines Adjusted to Grade

This Item is measured in linear feet (meters) of service line pipe lowered or raised, including valves, fittings, meters, boxes, and other integral appurtenances. Measurements are made from end to end of actual adjustments.
M. Incidental
Backfilling, pavement removed, and pavement replaced, including sawing, testing, and sterilizing, are not measured for separate payment.

N. Steel Casing
This is measured in linear feet (meters) for each size installed. Measurements are made along the center, parallel to the slope of the casing.

O. Butterfly Valves Including Boxes
When required, these are measured by the number of each installed.

P. Double Strap Saddle
These are measured by the number of each size installed.

670.4.01 Limits
General Provisions 101 through 150.

670.5 Payment
The Contract Unit Price for each Item, complete and accepted, will include all costs incidental to the construction of the Item according to the Plans and as specified in this Section.

The Unit Prices bid will include due allowance for the salvage value of all materials removed from existing or temporary lines, and not installed in the completed work. All such surplus items will become the property of the Contractor unless otherwise specified.

Payment for any Item listed below is full compensation for the Item or Items, complete in place. When placing water mains or service lines in casings, receive separate payment for the cost of furnishing and installing the casings.

A. Water Main Pipe
These will be paid for at the Contract Unit Price per linear foot (meter) for each size of pipe installed. Payment is full compensation for furnishing all materials including fittings, excavating, backfilling, removing, and replacing pavement, testing and sterilizing, and providing other incidentals necessary to complete the Item. Payment will also include the cost of laying pipe in casing when required.

B. Gate Valves
These will be paid for at the Contract Unit Price per each for each size of valve installed, complete in place, including the box, if required. Payment will include material and labor for joint connections.

C. Tapping Sleeve and Valve Assemblies
These will be paid for at the Contract Unit Price per each size installed, complete in place, including materials and labor for joint connections.

D. Fire Hydrants
These will be paid for at the Contract Unit Price per each hydrant installed, complete in place, including vertical extensions, joint connections, pipe straps, crushed stone drain, and other incidentals necessary to complete the Item.

E. Service Line Pipe
This will be paid for at the Contract Unit Price per linear foot (meter) for each size of pipe or tubing. Payment is full compensation for excavating, backfilling, removing, and replacing pavement, testing and sterilizing, placing corporation and curb stops and goosenecks, where required, placing fittings, jointing, and connecting to the main, and providing other incidentals necessary to complete the Item. Payment will also include laying pipe in casing when required.

F. Relocation of Existing Fire Hydrant
This will be paid for at the Contract Unit Price per each, complete in place, including crushed stone drain and other incidentals necessary to complete the Item.

G. Relocation of Existing Water Valve, Including Box
This will be paid for at the Contract Unit Price per each set, complete in place, including excavation, backfill, and other incidentals necessary to complete the Item.
H. Relocation of Existing Water Meter, Including Box
 This will be paid for at the Contract Unit Price per each set, complete in place, including excavation, backfill, and other
 incidentals necessary to complete the Item.
I. Adjusting Existing Meter Boxes and Valve Boxes
 These will be paid for according to Section 611.
J. Removal of Existing Water Valves to Grade
 This will be paid for at the Contract Unit Price per each water valve removed. Valve boxes, when existing, will be
 included and removed without additional compensation.
K. Removal of Existing Fire Hydrants
 This will be paid for at the Contract Unit Price per each fire hydrant removed.
L. Excavation for Trenches
 No separate payment will be made for excavation.
M. Concrete Blocking
 This will be paid for at the Contract Unit Price per cubic yard (meter), complete in place. Payment will include
 excavating, backfilling, forming, and performing necessary Work incidental to placing concrete blocking according to
 the Plans, or as specified. Payment will be made under Section 500.
N. Steel Casing
 This will be paid for at the Contract Unit Price per linear foot (meter) for each size of casing installed. Payment is full
 compensation for furnishing all materials, excavating, backfilling, removing, and replacing pavement, and providing
 other incidentals necessary to complete the Item.
O. Butterfly Valves
 These will be paid for at the Contract Unit Price per each size of valve installed, complete in place, including the box, if
 required. Installation includes materials and labor for joint connections.
P. Double Strap Saddles
 These will be paid for at the Contract Unit Price per each size installed complete in place, including materials and labor
 for joint connections.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 670</th>
<th>Description</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 670</td>
<td>Water main____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 670</td>
<td>Gate valve_____ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 670</td>
<td>Tapping sleeve and valve assembly __ in (mm) x ____ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 670</td>
<td>Fire hydrant</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 670</td>
<td>Water service line____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 670</td>
<td>Relocate existing fire hydrant</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 670</td>
<td>Relocate existing water valve including box</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 670</td>
<td>Relocate existing water meter including box</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 670</td>
<td>Adjust water service line to grade</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 670</td>
<td>Remove existing water valve including box</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 670</td>
<td>Remove existing fire hydrant</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 670</td>
<td>Steel casing____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 670</td>
<td>Butterfly valve_____ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 670</td>
<td>Double strap saddle____ in (mm) x ____ in (mm)</td>
<td>Per each</td>
</tr>
</tbody>
</table>
670.5.01 Adjustments
General Provisions 101 through 150.

Section 676—Appurtenances for Water Systems

676.1 General Description
This work includes furnishing and installing drinking fountains, wash hydrants, and yard hydrants.

676.1.01 Definitions
General Provisions 101 through 150.

676.1.02 Related References
A. Standard Specifications
 Section 500—Concrete Structures
 Section 670—Water Distribution System
 Section 800—Coarse Aggregate
 Section 843—Concrete Pipe

B. Related Documents
 General Provisions 101 through 150.

676.1.03 Submittals
General Provisions 101 through 150.

676.2 Materials
A. Drinking Fountains
 Use the following materials to construct drinking fountains:
 1. Fountain Construction
 Use these materials to construct the fountain:
 - A freeze-proof fountain and valve assembly with jug filler mounted in the base
 - A chrome-plated cast bronze receptor or a 20 gauge (1mm) stainless steel receptor with a 1-1/4 in (31 mm) galvanized iron waste pipe connected to a 2 in (50 mm) galvanized iron drain pipe
 - A chrome-plated vandal-proof bubbler locked to the receptor
 - One freeze-proof valve and one flow regulator supplying the bubbler
 - One freeze-proof valve and one flow regulator supplying the jug filler
 2. Valve Construction
 Use these materials to construct the valves:
 - Use valves with a minimum 18 in (450 mm) bury, each with a 3/8 in (9 mm) copper pipe drain connected to a 2 in (50 mm) galvanized drain pipe
 - Actuation by separate handles mounted at heights convenient to adults and children using a service stop
 - A 6 in by 9 1/4 in (130 mm by 235 mm) stainless steel cover plate at each handle
 - A common ¾ in (19 mm) connection to a 1 in (25 mm) water supply line
 3. Base of Fountain
 Use these base materials for each drinking fountain:
 - Class A Concrete, Section 500
 - Rubble stone or brick according to the Plan
 - Mortar and grout according to Subsection 834.2.03
B. Wash Hydrant
Use base materials consisting of Class A Concrete as specified in Section 500. Use other materials according to the Plans.

C. Yard Hydrant
Use materials according to the Plans, except the following:

<table>
<thead>
<tr>
<th>Crushed Stone, Size 57</th>
<th>Section 800</th>
</tr>
</thead>
</table>
Use Marine Plywood that meets American Plywood Association requirements.

676.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

676.3 Construction Requirements

676.3.01 Personnel
General Provisions 101 through 150.

676.3.02 Equipment
General Provisions 101 through 150.

676.3.03 Preparation
General Provisions 101 through 150.

676.3.04 Fabrication
General Provisions 101 through 150.

676.3.05 Construction
A. Drinking Fountains
Install drinking fountains according to the Plans.
Ensure that plumbing conforms to Section 670.

B. Wash Hydrants
Install wash hydrants according to the Plans and as follows:
1. Ensure that plumbing conforms to Section 670.
2. Construct concrete bases according to Section 500.

C. Yard Hydrants
Install yard hydrants according to the Plans and as follows:
1. Ensure that plumbing conforms to Section 670.
2. Construct a sump pit with each new yard hydrant as follows:
 a. Build the sump pit to Plan dimensions.
 b. Fill the pit with crushed stone, size No. 57.
 c. Cap the pit with marine plywood cut to Plan dimensions.

D. Service Lines and Appurtenances
Provide service lines and appurtenances according to Section 670.

676.3.06 Quality Acceptance
General Provisions 101 through 150.

676.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

676.4 Measurement
All Items furnished and installed under this section are measured per each, complete in place and accepted. Measurement includes drainage connection and sump pit where applicable.
676.01

676.01 Limits
General Provisions 101 through 150.

676.5 Payment
All Items will be paid for at the Contract Unit prices.

<table>
<thead>
<tr>
<th>Item No. 676</th>
<th>Description</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 676</td>
<td>Drinking fountain</td>
<td></td>
</tr>
<tr>
<td>Item No. 676</td>
<td>Wash hydrant</td>
<td></td>
</tr>
<tr>
<td>Item No. 676</td>
<td>Yard hydrant</td>
<td></td>
</tr>
</tbody>
</table>

676.5.01 Adjustments
General Provisions 101 through 150.

Section 680—Highway Lighting

680.1 General Description
This work includes furnishing and installing roadway and structure lighting systems according to the Specifications and Plan details.

680.1.01 Definitions
Conduit: Metallic or nonmetallic pipe, tube, or duct.
Rigid Conduit: Metallic conduit unless otherwise noted.

680.1.02 Related References
A. Standard Specifications
 Section 205—Roadway Excavation
 Section 500—Concrete Structures
 Section 681—Lighting Standards and Luminaires
 Section 682—Electrical Wire, Cable, and Conduit
 Section 683—High Level Lighting Systems
 Section 800—Coarse Aggregate
 Section 801—Fine Aggregate
 Section 832—Curing Agents
 Section 853—Reinforcement and Tensioning Steel
 Section 854—Castings andForgings
 Section 870—Paint
 Section 920—Lighting Standards and Towers
 Section 921—Luminaires
 Section 922—Electrical Wire and Cable
 Section 923—Electrical Conduit
 Section 924—Miscellaneous Electrical Materials
B. Related Documents
 GDT 7
 GDT 59
 GDT 67

680.1.03 Submittals
A. Purchase List
 Before purchasing materials, submit 7 copies of the complete materials and structures list, including Shop Drawings, to the Engineer for approval. Include the manufacturer’s name, catalog number(s), and other descriptive data needed to clearly define each Item.

B. Manufacturer’s Certifications
 1. Certification of Construction Items
 Secure supplier or manufacturer certifications, including mill certificates, guaranteeing the construction items were manufactured according to the Specifications.
 Ensure that the certificate shows that representative samples were tested and test results conform to the Specifications.
 2. Certification of Quantity
 Attach a copy of the bill of lading, sales order, or list showing the quantity of materials furnished for a specific project. Make this part of the certification by reference.

C. Manufacturer’s Guarantees
 After the work is complete and accepted, obtain manufacturer’s guarantees for the mechanical and electrical equipment used.
 Give these to the Engineer who will pass them to the agency responsible for continued equipment maintenance.

680.2 Materials
Furnish only new materials and equipment for this work. Ensure that materials meet the following requirements unless otherwise indicated:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement Concrete, Class A</td>
<td>500</td>
</tr>
<tr>
<td>Coarse Aggregate</td>
<td>800</td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td>801</td>
</tr>
<tr>
<td>Cement Concrete Curing Materials</td>
<td>832</td>
</tr>
<tr>
<td>Bar Reinforcement for Concrete Structures</td>
<td>853.2.01</td>
</tr>
<tr>
<td>Gray Iron Castings</td>
<td>854.2.01</td>
</tr>
<tr>
<td>Paints (Field Painting)</td>
<td>870</td>
</tr>
<tr>
<td>Lighting Standards and Towers</td>
<td>920</td>
</tr>
<tr>
<td>Luminaires</td>
<td>921</td>
</tr>
<tr>
<td>Electric Wire and Cable</td>
<td>922</td>
</tr>
<tr>
<td>Electric Conduit</td>
<td>923</td>
</tr>
<tr>
<td>Miscellaneous Electrical Materials</td>
<td>924</td>
</tr>
</tbody>
</table>

A. Codes and Regulations
 Ensure that all materials and work performed meet the latest revisions of the following standard codes and regulations:
 - National Electrical Code (NEC)
 - National Electrical Safety Code
680.2.01

- Illuminating Engineering Society
- American National Standards Institute (ANSI)
- Power company regulations and standards
- Codes, regulations, and rules in the work area or municipality

In addition to the above, ensure that electrical materials meet the following standards, provided a standard exists for that material:

- Underwriter’s Laboratories, Inc. (UL)
- American Institute of Electrical Engineers (AIEE)
- National Electrical Manufacturer’s Association (NEMA)

680.2.01 Delivery, Storage, and Handling
Dispose of excess or unsuitable material according to Section 205.

680.3 Construction Requirements
680.3.01 Personnel

A. Approved Contractors

Ensure that the Contractor performing this work is on the Department’s list of approved electrical contractors or electrical subcontractors.

B. Qualified Electrician

Always have a qualified electrician on the job site when pulling electrical wiring or making electrical connections.

A qualified electrician is either of the following:

- An electrician with a Class II license issued by the Georgia State Construction Industry Licensing Board
- An electrician who has completed an approved four-year apprenticeship training program and is classified as a Journeyman Electrician

Have the qualified electrician show his or her classification to the Engineer in charge. For further definition, see Subsection 755.1.01.

680.3.02 Equipment
Ensure that equipment is at the project site and approved before construction begins.

680.3.03 Preparation
Before beginning work, pay applicable fees and obtain needed permits from power companies or governmental agencies.

680.3.04 Fabrication
General Provisions 101 through 150.

680.3.05 Construction
A. Installing Conduit

1. General Requirements for Conduit

Install the specified size and type of conduit at the locations given on the Plans, or as directed.

a. Cut and ream conduit as follows:

1) Cut metallic conduit threads and then ream the ends.
2) Ream other conduit as necessary.
3) Cut conduit ends square.
4) Ensure that conduit ends butt solidly in the joints to form a smooth raceway for cables.

b. Ensure conduit joints form a watertight seal by doing the following:

1) Coat metallic conduit threads with red or white lead, pipe compound, or thermoplastic seal, and then securely connect them.
2) Form asbestos cement conduit joints with hot tar, asphalt, or bitumen paint, then drive tightly.
3) Form plastic and bituminous fiber conduit joints as recommended by the conduit manufacturer and as approved by the Engineer.

Install bushings in conduit to protect the conductors.

Cap or plug conduit as follows:
1) Thread and cap the ends of metallic conduit intended for future use.
2) Plug the ends of nonmetallic conduit runs to keep water or other foreign matter out of the conduit.

Build conduit runs in straight lines where possible.
If sweeps are necessary, use long sweep bends with a radius of at least 6 times the conduit’s nominal diameter, unless otherwise specified.

2. Conduit on Structures
Install conduits, conduitels, hangers, expansion fittings, and accessories on structures according to the Plans and the following, unless otherwise specified:

a. Run conduit parallel to beams, trusses, supports, pier caps, etc., as directly as possible.
b. Install horizontal runs in a slight grade without forming low spots that may prevent proper drainage.
c. Run conduits with smooth, easy bends.
d. Hold conduit in boxes with locknuts.
e. Do not clamp or attach conduit to beam flanges.
f. Use bushings to protect the conductors.

3. Underground Conduit Installation
Use encased or direct burial conduit for underground installations. Install the conduit in a trench excavated according to Plan dimensions and lines. Follow the requirements for avoiding obstructions, described in Subsection 680.3.05.A.3.b, below.

a. Trench Excavation
Unless specified on the Plans, do not excavate conduit trenches through existing pavement or surfaced shoulders. Install the conduit under the existing pavement by jacking, boring, or using other approved means.

When the Plans specifically allow a trench through an existing pavement or surfaced shoulder, restore the pavement, surface, base, and subgrade to the Engineer’s satisfaction.

Include pavement surface, base, and subgrade removal, disposal, and restoration in the Contract Price for the items to which they pertain.

Excavate trenches as follows:
1) Unless otherwise specified, cut conduit trenches on a slight grade (0.25 percent minimum) for drainage.
2) When the grade cannot be maintained all one way, grade the duct lines from the center in both directions, down to the ends. Avoid pockets or traps where moisture may accumulate.
3) Make the trench walls vertical.
4) Tamp the trench bottom as necessary for a firm conduit foundation.
5) Sheet and brace the trenches when required.
6) Adequately support pipe and other structures exposed in trenches if support is necessary to prevent damage.
 Include furnishing, installing, and removing sheathing, bracing, and supports in the Contract Prices for other items, as they pertain.

b. Obstructions to Excavation
Before excavating, determine the location of electrical lines, drainage, or utility facilities. Avoid damaging these while working. In addition, avoid conflict with proposed guardrail, sign posts, etc.

If necessary due to obstructions, slightly change the locations of conduit runs, pull boxes, etc., as approved by the Engineer.

Make the following allowances around obstructions:
1) Where possible, provide at least 12 in (300 mm) between the finished conduit runs and utility facilities, such as gas lines, water mains, and other underground facilities not related to the electrical system.
2) Where the conduit run is adjacent to concrete walls, piers, footings, etc., maintain at least 4 in (100 mm) of undisturbed earth or firmly compacted soil between the conduit and the adjacent concrete.

3) When the conduit is encased, maintain at least 4 in (100 mm) of undisturbed earth or firmly compacted soil between the encasement and adjacent concrete.

c. Encased Conduit

Place encased conduit at the locations shown on the Plans.

Unless otherwise specified, follow these requirements for encased conduit:

- Use Class A concrete according to Section 500.
- Use precast concrete encasement only if approved by the Engineer.
- Run a mandrel test on completed installations.
- Ream duct openings to remove burrs or foreign matter.
- Immediately following testing, thoroughly clean conduit in a manner acceptable to the Engineer.
- After cleaning finished conduit that will not be wired until a future date, provide and install a weatherproof cap at each open end. Have the Engineer inspect and approve this work.

Install new underground concrete encasement as follows:

1) Construct encasement under pavements or surfaces so that it extends at least 12 in (300 mm) beyond the outside edges of pavement, paved shoulders, sidewalks, or curbs, when no shoulder or sidewalk is indicated.

2) Ensure that the end of installed conduit extends at least 6 in (150 mm) beyond the encasement.

 If using Type I nonmetallic conduit in the encasement, use Type II nonmetallic conduit for the 6 in (150 mm) beyond the encasement and for the last 24 in (600 mm) within the encasement.

3) Place 3 in (75 mm) of concrete in the trench bottom to support the conduit.

4) Plug the conduit ends temporarily to keep concrete or foreign material out, then place the conduit in the trench.

5) Pour concrete into the trench to at least 3 in (75 mm) above the conduit.

6) Do not encase conduit in concrete until tested, inspected, and approved by the Engineer. (See Subsection 680.3.05.A.5, below.)

7) Cure concrete encasement according to Subsection 500.3.05.Z, except reduce the curing period to 24 hours.

4. Direct Burial Conduit

Install direct burial conduit underground according to the Plans using the following conduit types:

- Rigid galvanized steel
- Rigid aluminum
- Bituminous fiber
- Asbestos cement
- Unplasticized polyvinyl chloride

When the trench bottom is rock, install direct burial conduit in a bed of well-compacted, fine-grained soil at least 4 in (100 mm) thick.

Ensure the trench is deep enough for the finish cover to be:

- At least 18 in (450 mm) from the top surface of raw ground
- At least 24 in (600 mm) from the bottom side of pavement

5. Backfill Over Underground Conduit

Do not backfill encased conduit until the concrete encasement has cured at least 24 hours.

a. Once the Engineer has inspected and approved the direct burial conduit installation, promptly backfill it to the required grade. Use soil without rocks or other foreign matter.

b. Backfill with approved material in layers no deeper than 6 in (150 mm) loose depth.

c. Compact each layer to 100 percent of the maximum dry density as determined by test method GDT 7, GDT 59, or GDT 67.
6. Testing Conduit
 After installing conduit, test it with a mandrel in the Engineer’s presence as follows:
 a. Use a 2 in (50 mm) mandrel with a diameter 1/4 in (6 mm) smaller than the conduit diameter.
 b. Repair conduits that the mandrel will not pass through. If repairs cannot be made to the Engineer’s satisfaction, remove and replace the conduit at no additional cost to the Department.

B. Constructing Pull and Junction Boxes

 Construct pull and junction boxes according to the design, dimensions, and locations shown on the Plans.

 1. Box Construction
 a. Construct concrete boxes from Class A concrete according to Section 500. Ensure that precast concrete boxes follow the same requirements.
 b. Use manufactured units if the Engineer determines that they are equal to concrete boxes in design, quality, and structural strength.

 2. Covers
 Provide cast iron, steel, or reinforced concrete covers with each pull or junction box according to the Plans.
 Ground the cast iron or steel covers to electrical junction or pull boxes according to NEC Section 370-18(c) and NEC Section 250-42.

 3. Conduit Entrance Holes
 After installing conduit, seal the conduit entrance holes in pull or junction boxes to the Engineer’s satisfaction.
 Blank off unused entrance holes and openings that will be used in the future to extend conduit. Use suitable plastic, bituminous fiber, or other approved plugs that keep foreign matter out.

 4. Drainage
 Provide pull and junction boxes with a drainage hole unless the application or the Engineer dictate otherwise.
 Provide a drainage system for each ground-mounted box to ensure that no water accumulates inside the box.

C. Installing Underground Cable for Lighting Circuits

 For underground lighting circuits, use cable with or without conduit according to the Plans.

 When installing cable under existing pavements or surfaced shoulders, install specified conduit according to Subsection 680.3.05.A.4.

 1. Cable Slack
 When cable is brought through the base of the lighting standard or junction box, leave enough slack to allow the connections to be made outside the standard or box.

 2. Cable in Conduit
 Carefully pull cables into place in conduits using approved methods so that the cable is installed without electrical or mechanical damage. Install as follows:
 a. Use powdered soapstone, talc, or other inert lubricants when placing conductors in conduit.
 b. Handle and install conductors carefully to prevent kinks, bends, or other distortions that could damage the conductor or outer covering.
 c. Pull all cables within a single conduit at the same time.
 When pulling cables through hand holes in pole shafts, etc., place a pad of firm rubber or other suitable material between the cable and the opening edges to prevent cable damage.

 3. Direct Burial Cable in Trenches
 Do not reel and pull cables into the trench from one end. Unreel and lay them alongside the trench, then lay them in the trench as follows:
 a. “Snake” the cables slightly in the trench to allow for settling of earth.
 b. Do not allow cable to crossover in the trench.

 4. Splices
 Splice conductors according to the National Electrical Code and the splice manufacturer’s recommendations. Splices are subject to the Engineer’s approval.
Follow these requirements for splicing conductors, including underground cable splices, if specified:

- Make splices watertight.
- Make splices only in junction boxes and pole bases unless otherwise shown on the Plans.
- When making straight or line splices in the same-sized conductors, use tin-plated copper compression tubular splices.
- When making splices in different-sized conductors or conductors with different terminating directions:
 a. Use tin-plated copper compression ring tongue terminals on each conductor.
 b. Bolt the conductors/terminals together with stainless steel or high strength silicone bronze hardware.
- Use locknuts, pal nuts, or lock washers to keep connections tight. Do not use split bolt connectors.
- Use an oxidation inhibitor compound on aluminum conductor connections.

5. Heat-Shrinkable Tubing Around Splices

After making a conductor splice, insulate it with heat-shrinkable tubing, supplied by the manufacturer, with an adhesive coating on the inner wall.

Follow these requirements for heat-shrinkable tubing:

- Use shrink tubing with insulation thickness equal to or greater than the insulation thickness of the conductor.
- Use UL listed heat-shrinkable tubing that meets ANSI C119.1 (latest edition) requirements for submersible and direct buried splices.

Apply heat-shrinkable tubing as follows:

a. When connections are bolted together, wrap the bolted connection with cloth tape before applying the heat-shrinkable tubing.

b. Pad sharp points and edges on splices to prevent the heat-shrinkable tubing from splitting during shrinking.

c. Place the shrink tubing to have at least 3 in (75 mm) of seal length on the conductor beyond the splice after the tube is fully recovered.

6. Grounding

Ground underground cable as follows:

a. Connect neutral/grounding conductors to the ground rod at all control points and to the ground wire cast in pole foundations. Use the type and size of continuous neutral/grounding conductors shown on the Plans. Connect according to Plan details.

b. Install ground rods adjacent to light standard bases at locations shown on the Plans. Install ground rods in one of the following ways:

 1) Driven Ground Rods

 a) Drive single ground rods vertically until the top of the rod is at least 12 in (300 mm) below the finished ground.

 b) Attach a length of No. 6 AWG, bare solid, soft drawn, or medium-hard drawn copper ground wire to the ground rod. Use suitable ground rod clamps.

 c) Connect the wire to the standard base grounding nut.

 2) Laid Ground Rods

 When sufficient penetration cannot be obtained in the above manner, place the following ground rod system:

 a) Place 3 parallel ground rods at least 6 ft (2 m) center-to-center horizontally and at least 12 in (300 mm) below the finished ground.

 b) Join and fasten these rods to the grounding nut of the standard base with No. 6 AWG, bare solid, soft drawn or medium hard drawn copper ground wire and suitable clamps.

D. Installing Light Standard and Towers

Install the specified design, kind, and size of light standards or towers at Plan-specified locations. Install these structures, complete with specified supporting assembly and luminaires, to the mounting heights shown on the Plans.

Consider transformer bases to be an integral part of the lighting standard unless otherwise specified.
Install light standards and towers as follows:

1. Installing Foundations
 a. Foundations for Bolt-Down Base Standards with Anchor or Transformer Bases
 Install these as follows:
 1) Excavate a hole the size and depth shown on the Plans.
 Remove and dispose of excavated material as directed by the Engineer.
 2) Place the specified type and size anchor bolts according to the pole manufacturer’s recommendations. Hold these securely by a template to ensure proper position in the completed foundation.

 NOTE: Never attempt to realign the anchor bolts after pouring the foundation.
 3) Place conduits in foundations, orient them to accommodate service cables, and securely hold them to avoid displacement.
 4) Pour Class A concrete into the excavated area to the following depths:
 a) First pour against undisturbed earth up to 4 in (100 mm) below the finished ground line.
 b) Then, using an approved form, continue to pour to the finished top of the foundation elevation, as specified.
 5) Chamfer the top and formed portions of the foundation edges.
 6) Give a Type III finish to all portions of the foundation above finished grade down to at least 2 in (50 mm) below finished grade, according to Subsection 500.3.05.AB.4, “Type III—Special Surface Coating Finish.”
 7) Where break-away bases are required, do not allow any portion of the base or anchor bolts to protrude more than 4 in (100 mm) above the ground line.
 b. Tower Foundations and Pole Foundations on Structures
 Construct these according to Plan details.
 Where break-away bases are required, do not allow any portion of the base or anchor bolts to protrude more than 4 in (100 mm) above the ground line.
 c. Foundations for Prestressed Concrete-Butt Base Standards
 Excavate for prestressed concrete butt base lighting standard foundations either manually or mechanically.
 When excavating:
 1) Dig or drill holes to the depths and diameters shown on the Plans.
 2) Place and compact 6 in (150 mm) of crushed stone in the bottom of the hole. Use crushed stone according to Subsection 800.2.01, with stone size 57.

2. Installing Light Standards and Towers on Foundations
 Erect the standards or towers as recommended by the manufacturer and approved by the Engineer. Erect carefully to avoid marring the finish or damaging the standard.
 Ground the lighting supports according to the Plans.
 a. Installing Bolt-Down Base Standards with Anchor or Transformer Bases
 After installing foundations according to Subsection 680.3.05.D.1, install lighting standards as follows:
 1) When using bracket arm type, use metal shims or double nuts supplied with the poles to plumb the pole about its center axis.
 2) When using the single arm type, unless otherwise specified, install the luminaire and hardware, then plumb the back side of the standard, providing a slight rake or lean away from the traveled way.
 b. Installing Prestressed Concrete-Butt Base Standards
 After installing foundations according to Subsection 680.3.05.D.1, install prestressed concrete-butt base standards as follows:
 1) Position the pole in the center of the hole at grade and hold it in place, as follows.
 a) Set two bracket arm lighting standards to plumb.
 b) Rake single bracket arm lighting standards according to Subsection 680.3.05.D.2.a.(2).
2) Fill the space surrounding the pole butt base as follows:
 - Fill with crushed stone, applied in 6in (150mm) layers. Use crushed stone according to Subsection 800.2.01, with stone size 57.
 - Compact each layer with mechanical tamping equipment.
 - Moisten the stone backfill as necessary.
 - Fill the area to the bottom edge of the cable entrance in the butt base.
3) Install the cable.
4) Continue to fill and compact the area with 6in (150 mm) layers of crushed stone to 12 in (300 mm) below grade.
5) Backfill the remaining 12 in (300 mm) with soil in 2 equal layers, thoroughly compacting each layer.

3. Installing Frangible or Break-Away Standards

 Ensure that frangible or break-away lighting standards meet the breakaway requirements according to Plan details and AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals.

E. Bridge Lighting Installations

 When installing lighting on a bridge, examine the bridge plans or the completed structure, whichever applies, to determine the proposed or existing details that affect the lighting standards. Do this before ordering the standards.

 Immediately report to the Engineer discrepancies between the highway lighting Plans, the existing bridge structure, or the proposed bridge Plans so that these differences can be reconciled.

F. Bracket Arms

 Install the specified type, design, kind, dimensions, and number of bracket arms on the lighting standards according to the Plans.

G. Luminaires

 Mount or install the specified design and size of luminaire shown on the Plans. Level according to the manufacturer’s recommendations and Plan details, and as approved by the Engineer.

1. Position the Luminaires

 Position luminaires to illuminate the roadway as follows:
 a. Provide glare shields on luminaires if required by the Plans.
 b. Where a lighting unit illuminates a roadway portion on a grade, rotate the luminaire on its major axis to bring the minor axis parallel to the roadway.

2. Install Pole and Bracket Cable

 Install the pole and bracket cable as follows:
 a. Clamp cables into the proper terminals on the luminaire’s terminal board.
 b. Splice cables to the proper phase and neutral conductors outside the handhole in the pole base.
 c. Ensure that cables contain specified size and type in-the-line fuses and waterproof holders within each phase conductor.
 d. Leave enough slack in cables to check or replace the fuse outside of the handhole.

3. Finish the Installation
 a. After making the required circuit splices outside the handhole, place wires inside the handhole.
 b. Leave slack in cables for future maintenance.
 c. Attach a suitable identification tag to each phase cable, using white for the neutral grounding wire.
 d. Clean the light control surfaces and glassware after installation. Clean according to the luminaire manufacturer’s recommendations.

H. Miscellaneous Electrical Items

 Install the following according to Plan details:

 Ground rods, fuses, arresters, circuit breakers, disconnect switches, photoelectric controls, magnetic contactors, assemblies, related components, and incidental hardware.

 Consider these Items to be incidental to the lighting system and include their cost in the Contract Price for other Items.
I. Power Source
Make prior arrangements for furnishing power to operate the lighting system. Notify the power company at least 30 days before needing to connect to the power source.
Connect the lighting system to the secondaries of the local power supplier’s overhead or underground distribution system at the locations indicated on the Plans.
Unless otherwise specified, install the service pole, metallic conduit riser, weatherproof circuit breaker, and weatherhead with enough wire to connect to the power source.

J. Field Painting
After erecting nongalvanized steel standards, thoroughly clean and touch up the standards, as required, with 1B Orange or original type primer.
Apply remaining coats according to System V (Heavy Exposure) in Section 535, unless otherwise indicated on the Plans.

K. Seed and Sod Repair
If areas previously seeded or sodded are disturbed during this work, sprig, reseed (with mulch), or resod those areas according to Section 700.

L. Final Cleanup
Do final clean-up according to Subsection 104.07 as it applies. Before final inspection, touch up finishes, clean surfaces, and perform other tasks as directed by the Engineer to ensure the work’s effectiveness and neat appearance.

680.3.06 Quality Acceptance
A. Field Painting
If the finish on galvanized steel material is scratched, chipped, or otherwise damaged, the material will be rejected. Repair the finish only with the Engineer’s approval, according to Section 645.

B. Testing
Complete and energize each lighting circuit as early as practicable. Before beginning testing, provide an electrician, with a megger, a voltmeter, and an ammeter to perform the following tests.
Perform the tests in the presence of the Department’s Inspector(s) for each lighting circuit. Make test data part of the project records.

1. Megger Reading
Megger the circuit conductors to be certain that the phase conductors have no grounds before connecting them to the source breaker, sign structure, lighting standard wiring, or lightning arresters. Test as follows:
 a. Test 480-volt systems at 1,000 volts dc.
 b. Test systems under 480 volts at 500 volts dc.
 c. Apply the test voltage for 10 minutes.
The minimum acceptable megger reading is one megohm.

2. Service Voltage
Measure the service voltage as follows:
 a. Measure the service voltage between the phase conductors before turning the circuit breaker on at the service point. Also measure the service voltage between each phase conductor and the neutral or ground.
 b. After observing the proper voltage as indicated on the Plans, turn the circuit breaker on, wait 10 minutes for the luminaires to warm up, and repeat the voltage measurements.
 c. After the circuit has been energized for at least 10 minutes, measure the load current in each phase conductor and in the neutral at the service point. Ensure that the current in the phase conductors is balanced and that there is no current in the neutral.

C. Final Acceptance
Final Acceptance of the lighting system will be withheld for a 30-day testing period of continuous nightly automatic operation or until all other items have been accepted, whichever occurs later. The testing period begins after completion of the lighting work. The Contractor is responsible for energy costs during the testing period.
1. Test and Acceptance Time
 Begin the test period after one of the following, whichever occurs later:
 - Completion of the lighting work
 - Acceptance of all other items in the Contract (except grasing)
 Any portion of this test period that occurs after all other Work has been accepted will not be charged against the Contract time.
2. Correction of Defects
 Correct defects in material or workmanship at no expense to the Department if they occur during one of the following periods, whichever occurs later:
 - During the 30-day test period
 - Before the Project is accepted
 If defects are identified during the 30-day test, correct the defects, then continue the test for another 30 days. Run the test each time a defect is identified and corrected until achieving uninterrupted, continuous nightly automatic operation for 30 days.
3. Final Voltage Test
 After the testing period and at Final Acceptance, provide an electrician, a voltmeter, and an ammeter to perform this test as in Subsection 680.3.06.B.2, above. Perform the test in the presence of the Department’s Inspector(s) for each lighting circuit. Make this test data part of project records.

680.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

680.4 Measurement
Highway lighting Items complete in place and accepted are measured as follows:
A. Lump Sum
 When the Contract contains an Item for highway lighting on a Lump Sum basis, measurement is for the total of all Items installed.
B. Separate Items
 When the Contract contains Items for separate elements of highway lighting, measurement for each Item is as follows:
 1. Conduit
 Encased conduit, direct burial, and conduit on structures are measured by the linear foot (meter) for the type and size installed.
 2. Accessory Items
 a. Electrical junction boxes are measured by the unit, complete, in place for all types unless separated by type on the Plans.
 b. Pull boxes, ground rods, fuses, arresters, circuit breakers, disconnect switches, photoelectric controls, and magnetic contractors are not measured for payment separately, but are included in the overall cost of the lighting installation.
 3. Cable
 Cable is measured by the linear foot (meter) from center-to-center of pull boxes, light standards, etc., for each specified conductor type, number, and size.
 No additional allowance is made for slack length, length inside equipment or standards, and similar instances where additional wire length is required.
 Cable for lighting towers and the pole and bracket cable lighting standards is not measured separately for payment.
 4. Lighting Standards and Towers
 Each lighting standard, with or without a base, or each lighting tower of the specified kind, design, and mounting height (M.H.) is measured by the unit, complete in place.
 Foundations for towers are measured separately.
 Appurtenances for lighting standards and towers are measured as follows:
 a. The service car of the specified type and design is measured by the unit, including the drive motor.
680.5 Payment

Payment for highway lighting will be made as follows:

A. Lump Sum

When the Contract indicates that payment for highway lighting elements will be made on a Lump Sum basis, the Lump Sum payment is full compensation for materials, labor, equipment, and incidentals necessary to complete the Item according to Plan details.

B. Separate Items

When the Contract contains items for various highway lighting elements, payment will be made for each item as follows:

1. Conduit
 a. Encased conduit will be paid for at the Contract Unit Price per linear foot (meter) complete in place for each type installed. Payment is full compensation for excavating; required sheeting; backfilling; disposing of excess or unsuitable material; furnishing and placing materials; installing concrete, conduit, and reinforcement, when specified; installing bends, joints, fittings, and appurtenances; and installing encased conduit complete.
 b. Direct burial conduit will be paid for at the Contract Unit Price per linear foot (meter), complete in place. Payment is full compensation for all applicable work and materials noted under Subsection 680.5.B.1.a for required conduit jacking and bedding materials.
 c. Conduit on structures will be paid for at the Contract Unit Price per linear foot (meter), complete in place. Payment is full compensation for furnishing and installing all materials, including conduits, hangers, expansion fittings, grounding materials, associated hardware and accessories, and installation of conduit complete.

2. Accessory Items
 a. Electrical junction boxes will be paid for at the Contract unit price per each.
 b. Pull boxes, ground rods, fuses, arresters, circuit breakers, disconnect switches, photoelectric controls, and magnetic contactors will not be paid for separately. They will be included in the overall cost of the lighting installation.

3. Cable
 Cable, including direct burial cable, will be paid for at the Contract Unit Price per linear foot (meter), complete in place. Payment is full compensation for furnishing and installing the cable and ground materials; making splices, joints, and connections; trenching, furnishing and placing cushion and backfill material; and disposing of excess or unsuitable excavated material.
 Cable for lighting towers and the pole and bracket cable for lighting standards will not be paid for separately, but will be considered as an integral part of the lighting tower or lighting standard.

4. Lighting Standards and Towers
 Each light standard or lighting tower will be paid for at the Contract Unit Price per each.
Payment is full compensation for furnishing and installing the complete lighting standard or tower, including the bracket arm(s) or high mast luminaire support and lowering assembly, and associated hardware and connections; furnishing grounding material; furnishing backfill materials; backfilling; reshaping to proper contours; and repairing seeded or sodded areas.

Appurtenances for lighting standards and towers will be paid for as follows:

a. When lighting towers are designed for the use of a service car, normally one unit is required for each project and will be paid for at the Contract Unit Price per each. Payment is full compensation for furnishing the complete service car, including the drive motor and required accessories.

b. If specified as a separate payment Item, the power supply unit will be paid for at the Contract Unit Price per each. Payment is full compensation for furnishing the complete power supply unit, including transformer, if required, and required accessories.

c. Foundations for lighting standards are considered an integral part of the lighting standard and will not be paid for separately.

For lighting tower foundations only, the Class A concrete, reinforcement steel, and piling will be paid for separately according to the applicable sections.

5. Luminaires

Luminaires will be paid for at the Contract Unit Price per each. Payment is full compensation for furnishing and installing the complete luminaire. Installation includes ballast(s), lamp(s), glare shields where required, and associated hardware and wiring.

6. Transformer Bases

When shown on the Plans as a separate payment Item, transformer bases will be paid for by the Unit for each specific size shown on the Plans.

7. Service Pole Risers

These will be paid for at the Contract Unit Price per each. Payment is full compensation for furnishing and installing the complete service pole riser as shown on the Plans. Installation includes the wood pole, metallic conduit riser, weatherproof circuit breaker(s), weatherhead, enough wire to connect to the power source, and other required accessories.

Payment will be made under Sections 681, 682, and 683.

8. Seed and Sod Repair

Include the costs incurred in reseeding, resodding, and otherwise restoring the areas to their original condition in the Contract Price for other Items. These will not be paid for separately.

9. Energy Cost During Testing

The Contractor is responsible for the energy cost of each circuit or part of a circuit during the test period.

The cost of energy consumed after the successful completion of the 30-day test period will be borne by others.

Payment Items related to this section are described in the following sections:

<table>
<thead>
<tr>
<th>Lighting standards and luminaires</th>
<th>Section 681</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical wire, cable, and conduit</td>
<td>Section 682</td>
</tr>
<tr>
<td>High level lighting systems</td>
<td>Section 683</td>
</tr>
</tbody>
</table>

680.5.01 Adjustments

General Provisions 101 through 150.

Section 681—Lighting Standards and Luminaires

681.1 General Description

This work includes furnishing and installing lighting standards and luminaires for roadway and highway structure lighting systems, either complete or as indicated on the Plans.

681.1.01 Definitions

General Provisions 101 through 150.
681.1.02 Related References

A. Standard Specifications
 Section 680—Highway Lighting
 Section 920—Lighting Standards and Towers
 Section 921—Luminaires

B. Referenced Documents
 General Provisions 101 through 150.

681.1.03 Submittals
Refer to Subsection 680.1.03.

681.2 Materials
Use materials that meet the requirements of Subsection 680.2 and the following:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting Standards and Towers</td>
<td>Section 920</td>
</tr>
<tr>
<td>Luminaires</td>
<td>Section 921</td>
</tr>
</tbody>
</table>

681.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

681.3 Construction Requirements

681.3.01 Personnel
General Provisions 101 through 150.

681.3.02 Equipment
General Provisions 101 through 150.

681.3.03 Preparation
General Provisions 101 through 150.

681.3.04 Fabrication
General Provisions 101 through 150.

681.3.05 Construction
Perform construction according to Subsection 680.3.05.

681.3.06 Quality Acceptance
Refer to Subsection 680.3.06.

681.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

681.4 Measurement
Measurement and payment will conform to Subsection 680.4.

681.4.01 Limits
General Provisions 101 through 150.
681.5 Payment
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 681</th>
<th>Lighting standard—aluminum ____ MH post top</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 681</td>
<td>Lighting standard—aluminum ____ MH ____ arm</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 681</td>
<td>Lighting standard—steel ____ MH post top</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 681</td>
<td>Lighting standard—steel ____ MH ____ arm</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 681</td>
<td>Lighting standard—prestressed concrete ____ MH post top</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 681</td>
<td>Lighting standard—prestressed concrete ____ MH ____ arm</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 681</td>
<td>Transformer base—aluminum ____ in (mm)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 681</td>
<td>Luminaire (description)</td>
<td>Per each</td>
</tr>
</tbody>
</table>

681.5.01 Adjustments
General Provisions 101 through 150.

Section 682—Electrical Wire, Cable, and Conduit

682.1 General Description
This work includes furnishing and installing wire, cable, and conduit for roadway and structure lighting systems, complete or as indicated on the Plans.

682.1.01 Definitions
General Provisions 101 through 150.

682.1.02 Related References
A. Standard Specifications
 Section 680—Highway Lighting
 Section 922—Electrical Wire and Cable
 Section 923—Electrical Conduit
B. Referenced Documents
 General Provisions 101 through 150.

682.1.03 Submittals
Refer to Subsection 680.1.03.

682.2 Materials
Use materials that meet the requirements of Subsection 680.2 and the following:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Wire and Cable</td>
<td>Section 922</td>
</tr>
<tr>
<td>Electrical Conduit</td>
<td>Section 923</td>
</tr>
</tbody>
</table>

682.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.
682.3 Construction Requirements

682.3.01 Personnel
Refer to Subsection 680.3.01.

682.3.02 Equipment
General Provisions 101 through 150.

682.3.03 Preparation
General Provisions 101 through 150.

682.3.04 Fabrication
General Provisions 101 through 150.

682.3.05 Construction
Perform construction according to Subsection 680.3.05.

682.3.06 Quality Acceptance
Refer to Subsection 680.3.06.

682.3.07 Contractor Warranty and Maintenance
See Subsection 680.1.03.C, “Manufacturer’s Guarantees.”

682.4 Measurement
Measurement will conform to Subsection 680.4.

682.4.01 Limits
General Provisions 101 through 150.

682.5 Payment
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 682</th>
<th>Description</th>
<th>Unit of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cable, type___, AWG No.___</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 682</td>
<td>Multi-conductor cable, type___ (No. of each size and AWG No.)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 682</td>
<td>Conduit-rigid (size)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 682</td>
<td>Conduit-nonmetallic, type (size)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 682</td>
<td>Conduit-encased, type (size) — (No. of ways)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 682</td>
<td>Conduit-flexible (size)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 682</td>
<td>Service pole riser</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 682</td>
<td>Electrical junction box</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 682</td>
<td>Lighting system</td>
<td>Per lump sum</td>
</tr>
</tbody>
</table>

682.5.01 Adjustments
General Provisions 101 through 150.

Section 683—High Level Lighting Systems

683.1 General Description
This work includes furnishing and installing lighting towers and high-level luminaires for roadway lighting systems, complete as indicated on the Plans.

683.1.01 Definitions
General Provisions 101 through 150.
683.1.02 Related References
A. Standard Specifications
 Section 680—Highway Lighting
 Section 920—Lighting Standards and Towers
 Section 921—Luminaires
B. Referenced Documents
 General Provisions 101 through 150.

683.1.03 Submittals
Refer to Subsection 680.1.03.

683.2 Materials
Use materials that meet the requirements of Subsection 680.2 and the following:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting Standards and Towers</td>
<td>Section 920</td>
</tr>
<tr>
<td>Luminaires</td>
<td>Section 921</td>
</tr>
</tbody>
</table>

683.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

683.3 Construction Requirements

683.3.01 Personnel
General Provisions 101 through 150.

683.3.02 Equipment
General Provisions 101 through 150.

683.3.03 Preparation
General Provisions 101 through 150.

683.3.04 Fabrication
General Provisions 101 through 150.

683.3.05 Construction
Perform construction according to Subsection 680.3.05.

683.3.06 Quality Acceptance
Refer to Subsection 680.3.06.

683.3.07 Contractor Warranty and Maintenance
Contractor warranty and maintenance shall conform to Section 680. Refer to Subsection 680.3.07

683.4 Measurement
Measurement will conform to Section 680.4.

683.4.01 Limits
General Provisions 101 through 150.

683.5 Payment
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 683</th>
<th>Lighting tower—steel ____ MH</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lighting tower—steel ____ MH-including lowering equipment</td>
<td>Per each</td>
</tr>
</tbody>
</table>
683.5.01 Adjustments
General Provisions 101 through 150.

Section 685—Blast Cleaning Portland Cement Concrete Structures

685.1 General Description
This work includes blast cleaning Portland cement concrete surfaces and removing blasting residue from roadway and shoulder surfaces.

685.1.01 Definitions
General Provisions 101 through 150.

685.1.02 Related References
A. Standard Specifications
 Section 109—Measurement and Payment

B. Related Documents
 General Provisions 101 through 150.

685.1.03 Submittals
General Provisions 101 through 150.

685.2 Materials
General Provisions 101 through 150.

685.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

685.3 Construction Requirements

685.3.01 Personnel
General Provisions 101 through 150.

685.3.02 Equipment
Maintain and use the following equipment for this work so as not to threaten anyone’s safety or health.

- Blasting/cleaning equipment
- Supporting traffic control devices, such as arrow boards, signs, barricades, cones, etc., according to the Traffic Control Section of the Contract and the MUTCD

A. Environmental Protection
 Provide blasting equipment with either of the following environmental protections:
 - An enclosure to keep dust from escaping into the surrounding area
 - Water spraying equipment that encircles the blast nozzle(s) to suppress the dust created by the blasting operation

B. Protective Devices
 Provide and have personnel use eye and hearing protection devices when working near the blasting operation.
 Also, provide personnel with respirators (with appropriate filters) or with forced air hoods when working in dust-contaminated areas.
685.3.03 Preparation
General Provisions 101 through 150.

685.3.04 Fabrication
General Provisions 101 through 150.

685.3.05 Construction
A. Blast Cleaning Methods

Use any of the following blast cleaning methods:
- Dry abrasive blasting with compressed air, blast nozzles, and abrasive
- Recirculating dry abrasive blasting with compressed air, blast nozzles, abrasive, and a recovery system
- Dry abrasive blasting with centrifugal wheels and abrasive
- Recirculating dry abrasive blasting with centrifugal wheels, abrasive, and a recovery system
- Wet abrasive blasting with compressed air, blast nozzles, abrasive, and a water injection system

B. Blast Cleaning Operation

Follow these requirements for blast cleaning operations:
1. When using compressed air in the blasting operation, provide and maintain traps to prevent contaminating the blasted substrate with oil or grease.
2. When blast cleaning within 10 ft (3 m) of a lane occupied by traffic, immediately remove the residue to prevent a traffic hazard.
3. Control dust to the Engineer’s satisfaction to protect motorists from reduced visibility or damage to passing vehicles. The Engineer judges dust control effectiveness. If the Engineer believes that the blasting makes the highway unsafe, stop operations until instituting effective dust control measures.

C. Appearance of the Blasted Surface

Blast the surface uniformly, leaving only minute quantities of existing coating remaining in pit surface imperfections.

The remaining existing coating may be no more than one percent of the blast-cleaned surface in each square yard (meter).

Match the structure’s finished appearance to the standard photographs. Copies of these can be found in the District Office, the Office of Materials and Research, or the Office of Maintenance.

685.3.06 Quality Acceptance
All work performed under this Specification is subject to timely inspection by the Department. Correct defective work by reblasting at no additional cost to the Department.

685.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

685.4 Measurement

Blast cleaning of the Portland cement concrete structures is measured by the square foot (meter), according to Section 109. Median barrier walls are measured by the linear mile (kilometer) for variable height. Each face of the blast-cleaned wall is measured separately.

685.4.01 Limits
General Provisions 101 through 150.

685.5 Payment
Blast cleaning will be paid for at the Contract Unit Price bid. Payment is full compensation for costs, direct and indirect, incurred in complying with the requirements of this Specification.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 685</th>
<th>Blast cleaning Portland cement concrete structures</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 685</td>
<td>Blast cleaning Portland cement concrete median barriers—variable height</td>
<td>Per linear mile (kilometer)</td>
</tr>
</tbody>
</table>

685.5.01 Adjustments
General Provisions 101 through 150.

Section 690—Static Scale System

690.1 General Description
This work includes furnishing and installing components for three-axle load static scale weighing systems according to the Plans and Specifications. Install the scales in truck weighing stations.

690.1.01 Definitions
General Provisions 101 through 150.

690.1.02 Related References
A. Standard Specifications
 Section 101—Definitions and Terms
 Section 105—Control of Work
 Section 108—Prosecution and Progress
 Section 109—Measurement and Payment
 Section 500—Concrete Structures
 Section 511—Reinforcement Steel
 Section 853—Reinforcement and Tensioning Steel
B. Related Documents
 National Institute of Standards and Technology Handbook 44

690.1.03 Submittals
A. Material, Equipment, and Shop Drawings
 After the Contract is awarded, submit the following to the Engineer for approval:
 - Complete materials list
 - Complete Shop Drawings
 - List of equipment with supporting data that will be incorporated into the work
 Identify each item on the material and equipment list with an applicable Section and Subsection from the Specifications.
 Allow the Department 60 days for review of materials, equipment, shop drawings and other manufacturer’s data.
B. Manufacturer’s Data
 Along with the materials and equipment list, submit manufacturer’s catalogs, cuts, diagrams, performance curves, charts, and other data demonstrating that equipment adheres to the Specifications and Plans. Model numbers alone are not acceptable.
C. Manufacturer’s Guarantees and Instructions
 Submit manufacturer’s guarantees on materials and equipment, as well as manufacturer’s instruction manuals. The Engineer will transmit these to the Department for future operation and maintenance of the truck scale system. Ensure that guarantees are subject to transfer.
D. Contractor Warranty
 Before beginning work, furnish a written warranty for the static scale system according to Subsection 690.3.07.

E. Brand Names or Equal
 When materials and equipment are designated in the Plans or Specifications by “brand names or equal,” the equal materials may be used with the Engineer’s approval. Submit the name and complete description of the equal material or equipment in writing. Also submit supporting data for equipment performance according to Subsection 690.1.03 above.

690.2 Materials
 Ensure that materials and equipment conform to the electronic axle load scale Plans and these Specifications. The Contractor’s attention is directed to Subsection 105.04.A, “Specifications of Other Organizations”.
 Furnish new materials and equipment subject to the Engineer’s approval.

A. Electronic Axle Truck Scale Components
 Use the following standard package components and accessories for permanent scale installation according to the Plans and this Section:
 - Three electronic weighing platforms
 - Three weight indicating and recording elements with one totalizer
 - Reinforced concrete scale pits and approach aprons
 - Traffic signal lights and controls
 - Conduit and cable with electrical installation for axle scales and traffic signal lights

B. Weighing Platforms and Load Cells
 Install each of the 3 weighing platforms in a common pit capable of simultaneously weighing 3 tandem axles that vary from 40 in to 54 in (1 m to 1.4 m) center-to-center.
 Install each weighing platform with the following capacities:
 - At least 40,000 lb (18 000 kg) capacity
 - Capacity to weigh an axle unit up to 12 ft (3.7 m) wide in one operation
 - One-axle maximum capacity
 - Capability to withstand 100 percent transit side load

1. Load Cells
 Install each weighing platform with electronic load cells with the following capabilities:
 - At least 20,000 lb (9000 kg) capacity
 - At least 200 percent overload rating
 - One-time static overload capacity of at least 300 percent of normal without structural failure
 Environmentally seal each cell against moisture and corrosion under normal pit conditions. (See Subsection 690.3.05.A, “Reinforced Concrete Scale Pit Construction.”)

2. Axle Scales
 Ensure that each weighing platform’s axle load scale has a 0.1 percent test load acceptance tolerance according to the National Institute of Standards and Technology Handbook 44.

3. Axle Weigh Bridges
 Equip each weighing platform’s axle weigh bridge with appropriate check devices designed to prevent the reinforced concrete platform from moving horizontally.

C. Weight Indicating and Recording Elements
 Use easily replaced and repaired plug-in weight indicators, printers, interfacing, and memory storage units.
 Power the weight indicating and recording elements using a 115-volt AC, 60 hertz, single phase electricity.
 Furnish one spare weight indicator and one spare electronic printer in case of electronic equipment interruptions.
1. Digital Weight Indicator
 Provide each weighing platform with an individually housed digital indicator with these features:
 - Weight indicating capability of maximum 20 lb (10 kg) increments
 - Measuring capability of up to 99,980 lbs (45 350 kg)
 - Five-digit illuminated displays using at least ½ in (13 mm) high digits
 - Easily replaced snap-in snap-out type printed circuit boards for the indicator electronics
 - Push-button zero that can eventually take an additional outside digital indicator for driver viewing

2. Printer Recorder
 Provide an individually housed dot-matrix programmable printer-totalizer capable of printing letters and numbers on paper tape with the following format:
 Georgia Department of Transportation
 ______________________ County Weigh Station
 ______________________ Bound Lane
 ______________________ (Date/Time)
 (The following chart is a format example only.)

<table>
<thead>
<tr>
<th>Axle 1</th>
<th>11,980 lbs (5434 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axle 2</td>
<td>17,860 lbs (8101 kg)</td>
</tr>
<tr>
<td>Axle 3</td>
<td>18,200 lbs (8255 kg)</td>
</tr>
<tr>
<td>Axle 4</td>
<td>19,720 lbs (8945 kg)</td>
</tr>
<tr>
<td>Axle 5</td>
<td>18,800 lbs (8528 kg)</td>
</tr>
<tr>
<td>Axle 6</td>
<td>18,500 lbs (8391 kg)</td>
</tr>
<tr>
<td>Gross</td>
<td>105,060 lbs (47 654 kg)</td>
</tr>
</tbody>
</table>

 a. Install printer systems with the following:
 - Print control switches on each individual weighing platform
 - Totalizer memory bank status indicators capable of 0.1 percent accuracy for each of the 3-axle load scales
 - Twenty-four-hour clocks

D. Reinforced Concrete Scale Pits
 See Subsection 690.3.05.A, “Reinforced Concrete Scale Pit Construction.”

E. Traffic Signal Lights and Controls
 Use three traffic signals, equipped as follows:
 - Two 8 in (203 mm) diameter lenses
 - Two 150-watt signal bulbs
 - Visors over each lens

F. Conduit and Cable
 Furnish and install according to the National Electrical Code conduit, cable and pull boxes, junction boxes, shielding, grounding, surge voltage lightning protection between the weight indicating and recording element and the scale, the weight platforms, pit light, receptacle, and appurtenances.
 See Subsection 690.3.05.D for installation.

690.2.01 Delivery, Storage, and Handling
Do not use the interstate Right-of-Way outside the truck weighing station to store equipment or supplies.
690.3 Construction Requirements

690.3.01 Personnel
A. Training
 During the Acceptance Performance Test (APT) period following installation, train at least 10 Department-designated people to operate and maintain the truck weighing station systems. Furnish two operations and maintenance manual(s) for each set of platforms.
 1. Provide one day of on-the-job-instruction in weighing trucks and using controls for weighing, recording, and traffic signal.
 2. Provide one day of training in routine maintenance and trouble-shooting to determine probable causes of malfunctions.
B. Assistance During APT
 Provide a trained static scale system specialist to assist in system operation for approximately one week during the APT.

690.3.02 Equipment
General Provisions 101 through 150.

690.3.03 Preparation
Truck weighing station construction may already be in progress. Coordinate operations with utility companies and other Contractors to complete the work quickly.

690.3.04 Fabrication
General Provisions 101 through 150.

690.3.05 Construction
Maintain limit of access to the truck weighing station. Enter and exit the station by ramps only.
A. Reinforced Concrete Scale Pit Construction
 Furnish the reinforced concrete scale pits complete, including the structural design. Ensure the structural design supports the maximum compression load cell overload capacity without structural failure (see Subsection 690.2.B).
 1. Concrete Work
 Install scale pit concrete including sleeves, piping, conduits, anchors, frames, other Items to be built-in, and other required Work and appurtenances.
 Do concrete Work according to Section 500 and Section 511.
 Use deformed billet steel bars for bar reinforcement steel according to Subsection 853.2.
 2. Scale Pit Construction
 Construct scale pits and aprons at locations designated on the Plans and as follows:
 a. Make the top of the pit and aprons flush and level with the adjoining pavement.
 b. Furnish and install a pit drain connected to a 4 in (100 mm) drain line, provided by the Department, to a point below and near the center of the scale pit unless otherwise noted on the Plans.
 c. Provide a float-controlled high water alarm system in the scale pits that automatically activates a red warning light within the operator’s tower when water in the scale pit reaches 6 in (150 mm) deep.
 d. Install an alarm buzzer with the high water alarm system in the operator’s tower. Equip the buzzer with a volume control.
 e. Provide scale pits with an access cover and manhole with at least 3 ft (1 m) of vertical crawl space for equipment inspection and maintenance.
 f. Enclose each scale platform and pit with steel coping.
B. Traffic Lights and Controls
 Install and wire three red (stop)–green (go) traffic signal lights and controls as indicated on the Plans. and as follows:
 1. Place two of these traffic lights in the bypass lane. Operate these using one common three-position (red-off-green) toggle switch located on the counter in the operations tower.
 2. Place the third traffic light at the axle load scales area. Operate this at the scales console in the operations tower.
C. Span and Calibration Adjustments

Place span and calibration adjustments for the entire weighing system inside the weighing station building at the indicators. Install the adjustments so that replacing the circuit board does not require recalibration of the scales.

D. Cable and Conduit Connections

Install cable connections in conduit between the elements and the platform scales.

Follow these requirements for cable and installation:

☐ Conform to Section XV of the Scale Manufacturer’s Association’s Specification Recommendations.
☐ Use armored flexible cable between scale pits and load cells.
☐ Use Schedule 40 PVC for the buried conduit between the scale pits and the operations building.
☐ Environmentally seal the load cell and underground connector cable connections.

690.3.06 Quality Acceptance

Time is of the essence in this Contract. Complete installation and testing on or before the Project completion date and be ready for the Department’s acceptance performance test.

Test with weights certified and calibrated according to Georgia Department of Agriculture standards.

Measure the acceptance tolerance of the weighing system according to Subsection 690.2.B.

A. Acceptance Performance Test (APT)

The APT shall demonstrate to the Department’s satisfaction that the static scale system consistently meets the performance requirements of the Plans and Specifications.

At the conclusion of a successful APT, apply 0.2 percent maintenance tolerance to the scales and equipment until they are recalibrated.

1. Testing Procedure

Submit a test plan to the Department for approval within 30 days after the Notice to Proceed.

Begin the APT on the first normal working day following completion, calibration, and testing of the installation.

During the APT period, the Department will operate the static scale system for approximately 8 hours per day, 5 days per week for 8 consecutive weeks.

Provide a trained static scale system specialist to assist in the operation for approximately 1 week.

2. Failure or Delay in Completing Work on Time

The Contractor’s attention is directed to Subsection 108.08, “Failure or Delay in Completing Work on Time.” Liquidated damages will start on the day after the project completion date if the installation is not complete and ready for the APT.

Deductions for liquidated damages for each day of overrun in contract time will stop when the APT begins.

690.3.07 Contractor Warranty and Maintenance

A. Static Scale System Warranty

Before beginning construction, warrant the static scale system equipment in writing against defective material and workmanship.

Furnish the written warranty to the Department when submitting Shop Drawings for approval. Include the provision that warranties are subject to transfer to the Department.

Warrant that for 6 months from the beginning date of the APT that equipment will perform according to Subsection 690.2.B and Subsection 690.2.C, continuously serving as intended under conditions required for the equipment.

The written warranty must be accepted and approved by the Department before beginning installation of the static scale system.

The warranty excludes damage caused by fire, flooding, lightning, accidents, vandalism, or natural disasters.
B. Warranty Service

Write the warranty to cover materials, equipment, service, labor, travel, and incidentals necessary for warranty service at no additional cost to the Department.

Provide warranty service including the following:

1. Every 90 days during the period of warranty, calibrate to acceptance tolerance of scales using certified test weights.
2. Make additional warranty calls during regularly scheduled working hours Monday through Friday as requested by the Chief of Permits and Enforcement or a duly authorized representative. Make a maximum of 10 calls during the warranty period without additional charge to the Department.

Perform requested warranty service either the same day or on the first working day following the request.

690.4 Measurement

This work will not be measured separately for payment.

690.4.01 Limits

General Provisions 101 through 150.

690.5 Payment

Electronic axle load truck static scale system will be paid for at the Contract Lump Sum Price. Payment is full compensation for materials, equipment, labor, tools, direction, and incidentals necessary to complete the Item according to the Specifications and Plans. Payment includes the spare weight indicator and standby printer, calibration and testing, a 6-month warranty, and Department personnel training.

Partial payments will be made on the basis of the following schedule of payments expressed as a percentage of the Contract Lump Sum Price:

<table>
<thead>
<tr>
<th>Scale pit construction</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnishing, installing, and calibrating the scales, weight indicator/recording element, and totalizer/printer</td>
<td>70%</td>
</tr>
<tr>
<td>End of 90-day acceptance performance testing as described under Subsection 690.3.06</td>
<td>10%</td>
</tr>
</tbody>
</table>

Payment will be made under:

| Item No. 690 | Electronic axle load truck static scale system truck weighing station | Per lump sum |

690.5.01 Adjustments

General Provisions 101 through 150.

Section 691—Weigh-in Motion Scale System

691.1 General Description

This work includes furnishing and installing weigh-in-motion system in truck weighing stations according to the Plans and Specifications.

The Department’s objective is to have a system that automatically pre-selects vehicles in motion for weighing, then automatically directs the vehicles to the enforcement scales.

691.1.01 Definitions

General Provisions 101 through 150.

691.1.02 Related References

A. Standard Specifications

 Section 101—Definitions and Terms
 Section 105—Control of Work
 Section 108—Prosecution and Progress
Section 109—Measurement and Payment
Section 500—Concrete Structures
Section 511—Reinforcement Steel
Section 680—Highway Lighting
Section 923—Electrical Conduit

B. Referenced Documents

Scale Manufacturer’s Association Handbook 44
Insulated Power Cable Engineers’ Association Specifications
National Bureau of Standard Handbook 44
Code of Public Transportation, State of Georgia

691.1.03 Submittals
After the Contract is awarded, submit the items listed below to the Engineer for approval.

Allow the Department 60 days for review of materials, equipment, shop drawings and other manufacturer’s data.

When the Department approves the Shop Drawings and other items listed herein, assume responsibility for furnishing material or performing Work as required by the Plans and these Specifications. Meet the requirements of the acceptance performance test (APT) according to Subsection 691.3.06.

A. Equipment Performance Supporting Data

Furnish documentation according to Subsection 691.3.07 that demonstrates to the Department’s satisfaction that equipment proposed for use in the weigh-in-motion scale system:

☐ Is of standard manufacture
☐ Has been available for purchase for at least two years
☐ Has a proven acceptable performance history under conditions similar to those for the intended use

Include the following information with the equipment documentation:

☐ Detailed descriptions of how the system requirements will be met
☐ Drawings showing control and display panels with descriptions
☐ Description of a similar installation with the standard package components described in Subsection 691.2.A that has been in use for at least 1 year or has satisfactorily completed one project for the Department, including:
 ☐ The owner’s name
 ☐ Owner’s address
 ☐ A contact name
 ☐ A contact telephone number

B. Demonstration

Demonstrate to the Department, by means of a pre-existing weigh-in-motion system which has been fabricated with the component equipment to be used on this project, that the Contractor has successfully provided and installed a weigh-in-motion system which is fully operative and has been in use for not less than one year, and is meeting the weighing performance requirements in Subsection 691.3.06 “Quality Acceptance.”

Upon request by the Engineer, arrange the pre-existing system demonstration and furnish operations performance data to the Department within 10 days after the request.

The Department will, at its option and expense, provide selected persons to view the demonstration.

C. Manufacturer’s Data

Along with the materials and equipment list, submit manufacturer’s catalogs, cuts, diagrams, performance curves, charts, and other data demonstrating that equipment complies with the Specifications and Plans. Model numbers alone are not acceptable.
D. Warranty
Before beginning work, furnish a written warranty for the static scale system according to Subsection 691.3.07.

E. Manufacturer’s Guarantees and Instructions
Submit manufacturer’s guarantees on materials and equipment as well as manufacturer’s instruction manuals. The Engineer will transmit these to the Department for future operation and maintenance of the truck scale system. Ensure guarantees are subject to transfer.

F. Brand Names or Equal
Materials and equipment designated on the Plans or Specifications as “brand names or equal,” may be substituted for equal materials with the Engineer’s approval. Submit the name and complete description of the equal material or equipment in writing. Also submit supporting data for equipment performance.

691.2 Materials
A. Weigh-in-Motion Scale Components
The work includes, but is not limited to, the following standard package components. Construct accessories as shown on the Plans and as described in these Specifications.

- Electronic weighing platform(s)
- Speed-preset detectors, inductive loop type with:
 - Presence detector loops
 - Speed detector loops
- Weight indicator, recording elements, and control unit with digital processor
- Over-height detector
- Traffic control subsystems

Components will automatically pre-select vehicles with one of the following conditions for legal static weighing or over-dimension measuring:

- Exceeds manually entered threshold axle or gross weight
- Exceeds bridge formula weight and axle spacing limitations according to Subsection 691.3.06.A
- Is within 6 in (150 mm) or above of the maximum height limitation as set forth herein

B. Electronic Axle Load Scale Plans
Ensure that materials and equipment for this work conform to the electronic axle load scale plans and these Specifications. The Contractor’s attention is directed to Subsection 105.04.A, “Specifications of Other Organizations.”

C. Scalepits and Weighing Platforms
Use scale pits and weighing platforms as follows:

1. Scale Pits
 Furnish the structural design of and install scale pits. Ensure that the one-time overload capacity without structural failure is at least 300 percent of the legal axle load limit.

2. Weighing Platforms
 Furnish and install weighing platforms with a minimum load capacity of at least 200 percent of the legal axle load limit.

D. Inductive Loops
Furnish and install inductive loops in existing concrete pavement according to Subsection 691.3.05.B.

E. Weight Indicator, Recording Elements, and Control Unit with Digital Processor
 Refer to Subsection 691.3.05.C.

F. Traffic Control Subsystem
 Furnish and install the traffic control subsystem according to the Plans, these Specifications, and Subsection 691.3.05.D.
G. Conduit and Cable with Electrical Wiring

Furnish and install cables according to the NEC, Section XV of the National Bureau of Standards Handbook 44, the Plans, Subsection 691.3.05.E, and the following:

1. Rigid Steel Conduit: Use according to Subsection 923.2.01.A.2.
2. Non-metallic conduit: Use according to Subsection 923.2.02.
3. Flexible conduit: Use flexible conduit with these features:
 - Galvanized steel core
 - Liquid tight jacket of polyvinyl chloride (PVC)
 - Continuous copper bonding conductor wound spirally between the convolutions
 - UL approved flexible conduit
4. Use wire and cable that conforms to the applicable sections of the IPCEA (Insulated Power Cable Engineers’ Association) Specifications S-19-81.

Use pull and junction boxes according to Subsection 680.3.05.B.

691.2.01 Delivery, Storage, and Handling
Do not use the interstate Right-of-Way outside the truck weighing station to store equipment or supplies.

691.3 Construction Requirements

691.3.01 Personnel

A. Training

During the acceptance testing period following installation, train at least 10 Department-designated people to operate and maintain truck weighing station systems.

B. Assistance During APT

Provide a trained static scale system specialist to assist in system operation for approximately one week during the APT. (See Subsection 691.3.06.D.)

691.3.02 Equipment

General Provisions 101 through 150.

691.3.03 Preparation

Truck weighing station construction may be in progress. Coordinate operations with utility companies and other contractors to complete the work quickly.

691.3.04 Fabrication

General Provisions 101 through 150.

691.3.05 Construction

A. Scalepit(s) and Weighing Platform(s)

Construct the scale pits in existing pavement and base material as shown on a typical section according to Section 500 and Section 511 and as follows. Closely coordinate efforts with other contractors.

1. Install a drain line to an outlet beyond the shoulder pavement.
2. Make the entire weigh-in-motion scales flush with the pavement. Ensure that the completed scales do not rock or hammer.
3. Hermetically seal and treat the load cells to prevent moisture penetration and corrosion under normal pit conditions.

B. Inductive Loops

Saw cut pavement, install the loop wires, and seal the saw cuts to the Engineer’s satisfaction.

Provide a loop detector in the bypass lane that detects a vehicle that was directed by the automatic sorting system to proceed to the static axle scales but has incorrectly proceeded to the bypass lane.

Equip the loop detector to activate a buzzer at the operator’s console to alert the operator.
C. Weight Indicator, Recording Elements, and Control Unit with Digital Processor

Furnish and install the weight indicator, recording elements, and control unit with a digital processor in the operations office that will be provided by others.

Others will install the heating and air conditioning system in the operations office environment where the equipment will perform.

1. Electrical Service
 Electrical service provided by others in the operations office will be 115-volt, 60 hertz (plus or minus 2 hertz), single phase service. Provide for power connections from panel board “A” to the equipment in the operations office.

2. Threshold Indicators
 Furnish and install detection devices that use overhead traffic control signs to automatically direct vehicles to the static system under the following conditions:
 □ The vehicle exceeds an operator-entered threshold speed when passing over scales.
 □ The vehicle is out of position so that all wheels do not pass over the scales.
 Provide thumb wheel switches or a keyboard on the operator’s console so that threshold weights for axle and gross weights can be entered into the instrumentation.
 When the operator-entered threshold weights are exceeded, have the instrumentation automatically activate the overhead traffic control sign and eye level, pole-mounted sign directing the pre-selected vehicle to the static scale system.

3. Control Signs and Indicators
 Provide a high-intensity light on the back of each overhead signal head that will illuminate at the same time the green arrow is illuminated. Install two repeater pin lights at the weigh-in-motion console that indicate the vehicle has been directed to the static scales or the bypass lane.
 Provide a manual switch in the operations office to override the automatic mode of the overhead signs.

4. Statistical Data Printer
 Equip the operator’s console with a microprocessor with changeable program that stores, recalls, and provides statistical data in hard copy via a printer.
 The printer shall print at the operator’s discretion the weight indicator video display identifying axle weights, axle spacing, length of vehicle, and gross weights to include data/time and velocity for each vehicle weighed in motion.
 Equip the printer to print axle and gross weight data in no more than three seconds.

5. Selection Distance
 Program the instrumentation to pre-select successive vehicles one second or more apart from tail to head.

6. Automatic Zero
 Provide automatic zero tracking along with an adapter connection for “field changing” the indicating and recording weight units from pounds to kilograms.

D. Traffic Control Subsystem

Furnish and install the following components:

1. Lamps
 Furnish and install reflector lamps using International Traffic Engineers colors in red for the “X” and green for the arrow.
 □ Use signals capable of the number of indications shown on the Plans and clearly visible at 1/4 mile (400 m) under normal atmospheric conditions.
 □ Use lamp sockets and lamps that are UL approved for outdoor service.
 □ Use lamps rated at 120 volts with a manufacturer’s life expectancy of no less than 1,500 hours.
 Ensure that if two lamp bulbs fail, the lamp continues to indicate the proper signal.

2. Lighting Effects
 Provide control signals with hinged and ventilated protective sun screens to eliminate “phantom” effects from unlighted lamps. Screens also protect the signal lamps from damage from thrown objects and birds.
3. Other

Furnish and install poles, cables, guys and anchors, and appurtenances including controls and electrical connections between the operations office and the overhead signs and cable.

E. Conduit and Cable with Electrical Wiring

Install cables in rigid galvanized steel or schedule 40 polyvinyl chloride (PVC) conduit between load cells, junction boxes, and electronic instrumentation. Install only smooth, standard dimension conduit according to the following:

- In exposed outside areas, install rigid galvanized steel conduit unless otherwise indicated.
- In underground areas, install rigid galvanized steel or schedule 40 PVC conduit.
- For inside areas other than installations in concrete slabs, install electrical metallic tubing (EMT) conduit, if desired.

Make conduit connections to moveable or vibrating equipment with the correct length of flexible conduit.

1. Installation Procedures

Install conduit as follows:

a. Use at least four 1 in (25 mm) rigid galvanized steel conduits to attach the electrical junction box at the operator’s console to a ground-mounted junction box 5 ft (1.5 m) from the building. The junction box is provided by the Building Contractor.

b. Shield the electronic cable connecting the transducers and instrumentation. Interconnect and carry shields to a single common ground.

c. Use a ground separate from the power source ground. Provide it for the transducer/instrumentation only.

d. Environmentally seal transducer and underground connector cable connections.

2. Grounding System

Furnish and install surge voltage lightning protection consisting of 8 ft (2.4 m) grounding rods at each transducer load cell location, at the balance box(s), and at the instrumentation input. Ensure that the grounding system meets National Electric Code requirements.

Ground the scale platforms at 4 locations with 5/8 in (16 mm) diameter grounding rods 8 ft (2.4 m) long and a continuous length of ground bus. Ground each platform at least once.

3. Instrument Input

Provide the instrument input, balance box(s), and each pair of transducer load cells with fast acting, two-stage shunting circuitry and surge capacity that are compatible with the transducers and electronic components.

Ensure that the surge voltage lightning protection system is electrically passive at normal circuit operating voltage and returns to a passive state after the surge voltage has been shunted. The shunted circuitry shall be capable of being tested and repaired independently of the scale operating parts and circuitry.

691.3.06 Quality Acceptance

A. Scale Performance Requirements

Ensure that the weigh-in-motion scale system automatically and accurately weighs each axle of a multi-axle vehicle (up to 11 axles) within the tolerances given in this subsection. Ensure that the system establishes the gross weight of the vehicle by totaling the individual axle weights.

Vehicle weight is defined as the vehicle weight established by static weighing on axle load scales with an acceptance tolerance of 0.1 percent of test load according to the National Bureau of Standard Handbook 44. Use the axle load truck scales regularly used for enforcement weighing within the truck weighing station.

Ensure that the system’s measurement of the distance in feet (meters) between two or more consecutive axles on 65,000 lbs (29483 kg) vehicles (gross weight) is within 5 percent of a distance measured by permits and enforcement officers using standard measuring equipment and techniques.

Ensure that 90 percent of the vehicles checked for compliance with the bridge formula outlined below are measured to this accuracy.

1. Bridge Formula

Have operators confirm that the system checks vehicles with a gross weight of 39,000 lbs (17,690 kg) or more for compliance with the “Bridge Formula” provisions of Chapter 32-6, Article 2, Section 32-6-26 of the Code of Public Transportation, State of Georgia.
2. Speed and Rate of Vehicles
 Build the weighing system to perform the above functions while up to 12 vehicles per minute pass in motion over the scales.
 Ensure that weights are accurate as a variety of multiple axle trucks pass over the scales at speeds from 10 mph to 55 mph (15 to 90 kph)
3. Gross Weight
 Ensure that the scales accurately establish the vehicle gross weight as follows:
 - At speeds above 10 mph (15 kph), within plus or minus 5 percent of the actual vehicle gross weight and within a 90 percent confidence level
 - At speeds below 10 mph (15 kph), within plus or minus 2 percent of actual vehicle gross weight within a 95 percent confidence level
4. Axle Weight
 Ensure that the scales establish vehicle axle weights as follows:
 - At speeds above 10 mph (15 kph), within plus or minus 10 percent of the vehicle axle weight and within a 75 percent confidence level
 - At speeds below 10 mph (15 kph), within plus or minus 5 percent of the vehicle axle weight and within a 75 percent confidence level
5. Accuracy Limits
 Ensure 75 to 100 percent of load limits up to 20,340 lbs (9226 kg) for a single axle weight and 80,000 lbs (36 287 kg) for gross vehicle weight.
6. Environmental Conditions
 Ensure that the weigh-in-motion system operates under typical environmental conditions experienced in the state of Georgia.
7. Over-Height Detection Device
 Include the following over-height detection devices with the scale system:
 a. In the Vicinity
 Install an over-height detection device near the scales to detect vehicles 13 ft (4 m) high or more (adjustable to 13 ft, 6 in [4.1 m]). Ensure that this detector operates under the same conditions of vehicle speeds, numbers of vehicles per minute, and environmental conditions required for other components of the system. Have the system automatically direct vehicles at or above the present height limit to the static scales.
 b. At the Approach
 At the approach to the static scales used for enforcement weighing, where indicated on the Plans, install another over-height detection device that will detect a vehicle 13 ft, 6 in (4.1 m) high or more. Install a momentary adjustable volume audible alarm and a red light set to blink for 5 seconds in the operator’s office to alert the operator of a possible over-height violation.

B. Time is of the Essence

Time is of the essence in this Contract. Complete installation and testing on or before the Project completion date and be ready for the Department’s acceptance performance test.

1. Failure or Delay in Completing Work on Time
 The Contractor’s attention is directed to Subsection 108.08, “Failure or Delay in Completing Work on Time.”
 Liquidated damages for each day of Project overrun will start on the day after the Project completion date if the installation is not complete and ready for the APT.
 Liquidated damages will stop when the APT begins.
 At the end of the APT period, if the weigh-in-motion scale system as described on the Plans and these Specifications does not perform to the satisfaction of the Department, the Department reserves the right to continue testing or reject the entire system.
2. Removal of Equipment
 If the Department rejects the entire weigh-in-motion scale system, the Contractor may remove the electronic weighing platform(s), weight indicator, recording elements, and control unit with digital processor.
The Contractor may not remove inductive loops, traffic control subsystem overhead signs, conduit, and cable with electrical wiring. These will become the Department’s property.

C. Testing
Before the APT begins, run calibration and performance tests on the weigh-in-motion scale system with weights certified and calibrated according to Georgia Department of Agriculture standards.
The weigh-in-motion scale platforms will be statically calibrated to plus or minus 1 percent (between 1,000 lbs and 6,000 lbs [454 kg and 2724 kg]) when the weights are uniformly distributed over two 100 in² (0.065 m²) areas anywhere on the scale platforms.
Measure for acceptance tolerances according to Subsection 691.3.06.A.

D. Acceptance Performance Test (APT)
The APT shall demonstrate to the Department’s satisfaction that the weigh-in-motion scale system consistently meets the performance requirements of the Plans and Specifications.
Submit a test plan to the Department for approval within thirty 30 days after Notice to Proceed.
The APT period shall begin on the first normal working day following completion, calibration, and testing of the installation.
During the APT period:
1. The Department will operate the weigh-in-motion pre-selection system for approximately 8 hours per day, 5 days per week for 8 consecutive weeks.
2. Department personnel will check the calibrated performance by obtaining actual vehicle weight samples.
3. Provide a trained static scale system specialist to assist in the APT operation for approximately one week.

691.3.07 Contractor Warranty and Maintenance
A. Weigh-in-Motion Scale System Warranty
Before beginning construction, warrant the weigh-in-motion scale system equipment in writing against defective material and workmanship.
Furnish the written warranty to the Department when submitting Shop Drawings for approval. Include the provision that warranties are subject to transfer to the Department.
Warrant that for 6 months from the beginning date of the APT the equipment will perform according to Subsection 691.3.06.A, operating as intended under conditions required for the equipment.
Have the written warranty accepted and approved by the Department before beginning installation of the weigh-in-motion scale system.
The warranty excludes damage caused by fire, flooding, lightning, accidents, vandalism, or natural disasters.
Provide warranty service within 48 hours of notice that warranty work is required, excluding weekends.

691.4 Measurement
This work will not be measured separately for payment

691.4.01 Limits
General Provisions 101 through 150.

691.5 Payment
The weigh-in-motion scale system as described above will be paid for at the Contract Lump Sum Price. Payment is full compensation for all materials, equipment, labor, tools, superintendence, and incidentals necessary to complete the Item according to the Plans and Specifications. Payment also includes calibration and testing, acceptance performance testing, a 6-month warranty, and Department personnel training.
A percentage of the Contract Lump Sum Price will be paid according to the following cost schedule:

| Completion of installation, calibration, and testing of the entire weigh-in-motion scale system | 35% |
| Completion of the acceptance performance test to the satisfaction of the Department. | 65% |
Payment will be made under:

| Item No. 691 | Weigh-in-motion scale system truck weighing station | Per lump sum |

691.5.01 Adjustments
If the APT does not demonstrate that the performance requirements of the Plans and Specifications have been successfully accomplished to the satisfaction of the Department, and the Department rejects the entire weigh-in-motion scale system, payment to the Contractor will be limited to 35 percent of the Contract Lump Sum Price.

Section 700—Grassing

700.1 General Description
This work includes preparing the ground, furnishing, planting, seeding, fertilizing, sodding, and mulching disturbed areas within the Right-of-Way limits and easement areas adjacent to the right-of-way as shown on the Plans except as designated by the Engineer.

700.1.01 Definitions
General Provisions 101 through 150.

700.1.02 Related References
A. Standard Specifications
 - Section 160—Reclamation of Material Pits and Waste Areas
 - Section 163—Miscellaneous Erosion Control Items
 - Section 718—Wood Fiber
 - Section 822—Emulsified Asphalt
 - Section 882—Lime
 - Section 890—Seed and Sod
 - Section 891—Fertilizers
 - Section 893—Miscellaneous Planting Materials
B. Referenced Documents
 - QPL 33

700.1.03 Submittals
General Provisions 101 through 150.

700.2 Materials
Use materials that meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Fiber Mulch</td>
<td>718.2</td>
</tr>
<tr>
<td>Emulsified Asphalt</td>
<td>822</td>
</tr>
<tr>
<td>Agricultural Lime</td>
<td>882.2.01</td>
</tr>
<tr>
<td>Seed</td>
<td>890.2.01</td>
</tr>
<tr>
<td>Sod</td>
<td>890.2.02</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>891.2.01</td>
</tr>
<tr>
<td>Plant Topsoil</td>
<td>893.2.01</td>
</tr>
</tbody>
</table>
700.3.02

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulch</td>
<td>893.2.02</td>
</tr>
<tr>
<td>Inoculants</td>
<td>893.2.04</td>
</tr>
<tr>
<td>Tackifiers</td>
<td>QPL 33</td>
</tr>
</tbody>
</table>

A. **Seeds**
 Whenever seeds are specified by their common names, use the strains indicated by their botanical names.

B. **Water**
 Obtain the water for grassing from an approved source. Use water free of harmful chemicals, acids, alkalies, and other substances that may harm plant growth or emit odors. Do not use salt or brackish water.

C. **Asphalt**
 Secure the mulch with asphalt made of a homogeneous emulsification of a refined petroleum. Ensure that the asphalt can be sprayed on with or without diluting with water.
 Use suitable asphalt free of petroleum solvents or other diluting agents that may harm plant growth. Use asphalt according to Section 822. Do not use asphalt that separates after freezing or from any other cause.

D. **Fertilizer Mixed Grade**
 Select fertilizer mixed grade such as 10-10-10, 6-12-12, 5-10-15, or other analysis within the following limits:
 - Nitrogen 5 to 10 percent
 - Phosphorus 10 to 15 percent
 - Potassium 10 to 15 percent
 If using mixed grade fertilizer for hydroseeding, ensure that it has the following analysis:
 - Nitrogen 5 to 19 percent
 - Phosphorus 10 to 19 percent
 - Potassium 10 to 19 percent

E. **Mulch**
 Use straw or hay mulch according to Subsection 700.3.05.G.
 Use wood fiber mulch in hydroseeding according to Subsection 700.3.05.F.1.

700.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

700.3 Construction Requirements

700.3.01 Personnel
General Provisions 101 through 150.

700.3.02 Equipment
Use grassing equipment able to produce the required results.
Never allow the grading (height of cut) to exceed the grassing equipment’s operating range.

A. **Blower Equipment**
 When using blower equipment to apply bituminous treated mulch in a single operation, place two or more jets or spray nozzles at or near the end of the discharge spout to eject a uniform coat of mulch.

B. **Mulch Material Equipment**
 Use mulching equipment that uniformly cuts the specified materials into the soil to the required control depth.
C. Rollers
 Use at least 12 in (300 mm) diameter rollers with corrugated or notched surfaces. Do not use smooth surface rollers.

D. Hydoseeding Equipment
 For hydoseeding equipment, see Subsection 700.3.05.F.

700.3.03 Preparation
 General Provisions 101 through 150.

700.3.04 Fabrication
 General Provisions 101 through 150.

700.3.05 Construction
 Follow the planting zones, planting dates, types of seed, seed mixtures, and application rates described throughout this Section.

 In general:
 □ Obtain the Engineer’s approval before changing the ground cover type.
 □ Do not use annual rye grass seeds with permanent grassing.
 □ Follow the planting zones indicated on the Georgia State Planting Zone Map, below.
 □ Sod may be installed throughout the year, weather permitting.
 □ For permanent grassing, apply the combined amounts of all seeds for each time period within each planting zone and roadway location listed in the Seeding Table, below. Do not exceed the amounts of specified seed.
Planting Zone Map

DEPARTMENT OF TRANSPORTATION
PLANTING ZONES IN GEORGIA
OUTLINEMAP SHOWING COUNTIES

+
SEEDING TABLE

<table>
<thead>
<tr>
<th>Planting Zones</th>
<th>Planting Dates</th>
<th>Rye Grass, Millet, Cereal Grass (Oats)</th>
<th>Common Bermuda Grass (Hulled)</th>
<th>Common Bermuda Grass (Unhulled)</th>
<th>Tall Fescue</th>
<th>Weeping Love Grass</th>
<th>White Or Crimson Clover</th>
<th>Scarified Interstate Lespedeza</th>
<th>Unscarified Interstate Lespedeza</th>
<th>REQUIRED PERMANENT PLANTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March 1 – May 15</td>
<td>10 (11)</td>
<td>10 (11)</td>
<td>50 (56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Common Bermuda Grass</td>
</tr>
<tr>
<td>1</td>
<td>May 1 – July 31</td>
<td>10 (11)</td>
<td>10 (11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>August 1 – February 28</td>
<td>15 (17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>November 15 – January 31</td>
<td>6 (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3,4</td>
<td>February 15 – August 31</td>
<td>10 (11)</td>
<td>10 (11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3,4</td>
<td>September 1 – February 14</td>
<td>15 (17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3,4</td>
<td>November 15 – January 31</td>
<td>6 (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plant these combinations on back slopes, fill slopes and areas which will not be subject to frequent mowing

<table>
<thead>
<tr>
<th>Zones</th>
<th>Dates</th>
<th>Pounds (kg) Of Seed Per Acre (hectare)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>March 1 – July 31</td>
<td>4 (5)</td>
</tr>
<tr>
<td></td>
<td>August 1 – February 28</td>
<td>30 (34)</td>
</tr>
<tr>
<td>3,4</td>
<td>February 15 – August 31</td>
<td>4 (5)</td>
</tr>
<tr>
<td></td>
<td>September 1 – February 14</td>
<td>50 (56)</td>
</tr>
</tbody>
</table>

A. Ground Preparation

Prepare the ground by plowing under any temporary grass areas and preparing the soil as follows:

1. **Slopes 3:1 or Flatter**

 On slopes 3:1 or flatter, plow shoulders and embankment slopes to between 4 in and 6 in (100 mm and 150 mm) deep.

 Plow front and back slopes in cuts to no less than 6 in (150 mm) deep. After plowing, thoroughly disk the area until pulverized to the plowed depth.

2. **Slopes Steeper Than 3:1**

 Serrate slopes steeper than 3:1 according to Plan details when required.

 On embankment slopes and cut slopes not requiring serration (sufficient as determined by the Engineer), prepare the ground to develop an adequate seed bed using any of the following methods as directed by the Engineer:

 - Plow to a depth whatever depth is practicable.
 - Use a spiked chain.
Walk with a cleated track dozer.
Scarify.

Disking cut slopes and fill slopes is not required.

3. All Slopes
 a. Obstructions
 Remove boulders, stumps, large roots, large clods, and other objects that interfere with grassing or may slide into the ditch.
 b. Topsoil
 Spread topsoil stockpiled during grading evenly over cut and fill slopes after preparing the ground.
 Push topsoil from the top over serrated slopes. Do not operate equipment on the face of completed serrated cuts.

B. Grassing Adjacent to Existing Lawns

When grassing areas adjacent to residential or commercial lawns, the Engineer shall change the plant material to match the type of grass growing on the adjacent lawn. The Contract Unit Price will not be modified for this substitution.

If the Engineer believes bituminous treated mulch would harm other portions of the work, bituminous treated mulch may be substituted with 1,500 lbs/acre (1680 kg/ha) of wood fiber mulch with tackifier.

C. Temporary Grassing

Apply temporary grassing according to Subsection 163.3.05.F and the following:
 1. Determine lime requirements by a laboratory soil test.
 2. Add mulch only if the temporary grass does not provide adequate mulch to meet the requirements of Subsection 700.3.05.G.

In March or April of the year following planting and as soon as the weather is suitable, replace all areas of temporary grass with permanent grass by plowing or overseeding using the no-till method. If the no-till method is used, ensure that temporary grass is less than 3 inches in height (this may be achieved by mowing). Additional mulch will be required only if the temporary grass does not provide adequate mulch to meet the requirements of Subsection 700.3.05.G, “Mulching.”

Temporary grass, when required, will be paid for according to Section 163.

D. Applying Agricultural Lime and Fertilizer Mixed Grade

Apply and mix lime and fertilizer as follows:

1. Agricultural Lime
 Uniformly spread agricultural lime on the ground at the approximate rate determined by the laboratory soil test.

2. Fertilizer Mixed Grade
 Uniformly spread the fertilizer selected according to Subsection 700.2.D over the ground at approximately 1,200 lbs/acre (1350 kg/ha).

 If using a higher analysis fertilizer with hydroseeding, apply it at the same rate per acre (hectare) as the standard fertilizer.

3. Mixing
 Before proceeding, uniformly work the lime and fertilizer into the top 4 in (100 mm) of soil using harrows, rotary tillers, or other equipment acceptable to the Engineer.

 On cut slopes steeper than 3:1, other than serrated slopes, reduce the mixing depth to the maximum practical depth as determined by the Engineer.

 Omit mixing on serrated slopes.

E. Seeding

Following is a list of both common names and botanical names for approved seed types. Whenever seeds are specified by the common names, the strains indicated by their botanical name apply.
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Botanical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Ryegrass</td>
<td>Lolium multiflorum</td>
</tr>
<tr>
<td>*Bermuda Grass, Common Hulled and Unhulled</td>
<td>Cynodon dactylon</td>
</tr>
<tr>
<td>**Crimson Clover</td>
<td>Trifolium incranatum Var. Reseeding</td>
</tr>
<tr>
<td>**Lespedeza Virgata</td>
<td>Lespedeza Ambro Virgata</td>
</tr>
<tr>
<td>**Lespedeza Sericea</td>
<td>Lespedeza cuneta, Var. Sericea</td>
</tr>
<tr>
<td>**Lespedeza Serala</td>
<td>Lespedeza cuneta, Var. Serala</td>
</tr>
<tr>
<td>**Lespedeza Interstate</td>
<td>Lespedeza cuneta, Var. Interstate</td>
</tr>
<tr>
<td>**Lespedeza Korean</td>
<td>Lespedeza stipulacea Maxim</td>
</tr>
<tr>
<td>Pensacola Bahiagrass</td>
<td>Paspalum notatum, var. Pensacola</td>
</tr>
<tr>
<td>Tall Fescue</td>
<td>Festuca arundinacea</td>
</tr>
<tr>
<td>Weeping Love Grass</td>
<td>Eragrostis curvula</td>
</tr>
<tr>
<td>**White Dutch Clover</td>
<td>Trifolium repens</td>
</tr>
<tr>
<td>**Crown Vetch</td>
<td>Coronilla Varia</td>
</tr>
</tbody>
</table>

*Do not use Giant Bermuda Seed (Cynodon species) including NK-37.
**Requires inoculation.

Prepare seed and sow as follows:

1. **Inoculation of Seed**
 Inoculate each kind of leguminous seed separately with the appropriate commercial culture according to the manufacturer’s instructions for the culture.
 When hydroseeding, double the inoculation rate.
 Protect inoculated seed from the sun and plant it the same day it is inoculated.

2. **Sowing**
 Weather permitting, sow seed within 24 hours after preparing the seed bed and applying the fertilizer and lime, or sow seed within 24 hours after applying mixed-in-place mulch.
 Sow seed uniformly at the rates specified in the Seeding Table. Use approved mechanical seed drills, rotary hand seeders, hydraulic equipment, or other equipment to uniformly apply the seed. Do not distribute by hand.
 To distribute the seeds evenly sow seed types separately, except for similarly sized and weighted seeds. They may be mixed and sown together.

3. **Rolling**
 Roll seeded areas before applying mulch, except on steep slopes where rollers cannot operate satisfactorily. On slopes inaccessible to compaction equipment, cover the seeds by dragging spiked chains over them or by using other methods.
 Do not sow during windy weather, when the prepared surface is crusted, or when the ground is frozen, wet, or otherwise nontillable.

4. **Overseeding**
 Temporary grass areas that were prepared in accordance with Subsection 700.3.05.A, shall be overseeded using the no-till method. The no-till method is defined by planting permanent grass seeds using a drill-type seeder over existing temporary grass without plowing or tilling soil and in accordance with Subsection 700.3.05.C. This method shall be shown on the Plans or directed by the Engineer before being implemented.
F. Hydroseeding

Hydroseeding may be used on any grassing area. Under this method, spread the seed, fertilizer, and wood fiber mulch in the form of a slurry. Seeds of all sizes may be mixed together. Inoculate the seeds at double the rate for seeds not being hydroseeded. Apply hydroseeding as follows:

1. Use wood fiber mulch as a metering agent and seed bed regardless of which mulching method is chosen. Apply wood fiber mulch at approximately 1,500 lbs/acre (560 kg/ha).
2. Prepare the ground for hydroseeding as for conventional seeding in Subsection 700.3.05.A.
3. Use specially designed equipment to mix and apply the slurry uniformly over the entire seeding area.
4. Agitate the slurry mixture during application.
5. Discharge slurry within one hour after being combined in the hydroseeeder. Do not hydroseed when winds prevent an even application.
6. Closely follow the equipment manufacturer’s directions unless the Engineer modifies the application methods.
7. Mulch the entire hydroseeded area according to Subsection 700.3.05.F.1, above, and Subsection 700.3.05.G, below.

G. Mulching

Except as noted in Subsection 700.3.05.B and Subsection 700.3.05.C, apply mulch immediately after seeding areas as follows:

Areas with permanent grass seed and covered with slope mats or blankets will not require mulch.

Evenly apply straw or hay mulch between 3/4 in and 1-1/2 in (20 mm and 40 mm) deep, according to the texture and moisture content of the mulch material.

Mulch shall allow sunlight to penetrate and air to circulate as well as shade the ground, reduce erosion, and conserve soil moisture. If the type of mulch is not specified on the Plans or in the Proposal, use any of the following as specified.

1. Mulch with Binder

 Apply mulch with binder regardless of whether using ground or hydroseeding equipment for seeding.

 a. Mulch uniformly applied manually or with special blower equipment designed for the purpose. When using a blower, thoroughly loosen baled material before feeding it into the machine so that it is uniformly coated with binder and broken up.

 b. After distributing the mulch initially, redistribute it to bare or inadequately covered areas in clumps dense enough to prevent new grass from emerging.

 Do not apply mulch on windy days.

 c. Apply enough binder to the mulch to hold it in place. Immediately replace mulch that blows away.

 When using a power blower to distribute the mulch, spray the binder onto the mulch as the mulch is ejected from the machine. If distributing the mulch by hand, immediately apply the binder uniformly over the mulched areas.

 Use one of the following binders:

 - Emulsified asphalt, SS-1h or SS-1 (Section 822): The public, adjacent property, bridges, pavements, curbs, sidewalks, and other existing structures shall be protected from discoloration by the asphalt. Correct discoloration damage at no expense to the Department.

 - Tackifier: Use a tackifier listed in the Laboratory Qualified Products Manual may be used at the manufacturer’s recommended rates.

2. Mixed-in-Place Mulch

 Apply mixed-in-place mulch on flat areas or slopes 3:1 or less and treat as follows:

 a. Immediately work the mulch into the soil with appropriate equipment to produce a loose soil and mulch mixture 3 in to 3.5 in (75 mm to 90 mm) deep.

 b. After mixing mulch and soil and restoring areas to line and grade, seed as specified in this Section.

3. Walked-in-Mulch

 Apply walked-in-mulch on slopes ranging in steepness from 5:1 to 2:1 and treat as follows:

 a. Immediately walk it into the soil with a cleated track dozer. Make dozer passes vertically up and down the slope.

 b. Where walked-in-mulch is used, do not roll or cover the seeds as specified in Subsection 700.3.05.E.3.
H. Sod

Furnish and install sod in all areas shown on the Plans or designated by the Engineer.

1. Kinds of Sod

 Use only Common Bermudagrass (Cynodon dactylon) or one of the following Bermudagrass varieties:

 Tifway 419
 Tifway II
 Tift 94
 Tifton 10
 Midlawn
 Midiron
 GN-1
 Vamont

 No dwarf Bermuda types shall be used. Sod shall be nursery-grown and be accompanied with a Georgia Department Of Agriculture Live Plant License Certificate or Stamp. Sod shall consist of live, dense, well-rooted material free of weeds and insects as described by the Georgia Live Plant Act.

2. Type And Size Of Sod:

 Furnish either big roll or block sod. Ensure that big roll sod is a minimum of 21 inches wide by 52 feet long. Minimum dimensions for block sod are 12 inches wide by 22 inches long. Ensure all sod consists of a uniform soil thickness of not less than 1 inch.

3. Ground Preparation

 Excavate the ground deep enough and prepare it according to Subsection 700.3.05.A to allow placing of sod. Spread soil, meeting the requirements of Subsection 893.2.01, on prepared area to a depth of 4 inches.

4. Application Of Lime And Fertilizer

 Apply lime and fertilizer according to Subsection 700.3.05.D within 24 hours prior to installing sod.

5. Weather Limitation

 Do not place sod on frozen ground or where snow may hinder establishment.

6. Install Sod

 Install Sod as follows:

 □ Place sod by hand or by mechanical means so that joints are tightly abutted with no overlaps or gaps. Use soil to fill cracks between sod pieces, but do not smother the grass.
 □ Stake sod placed in ditches or slopes steeper than 2:1 or any other areas where sod slipping can occur.
 □ Use wood stakes that are at least 8 in (200 mm) in length and not more than 1 in (25 mm) wide.
 □ Drive the stakes flush with the top of the sod. Use a minimum of 8 stakes per square yard (meter) to hold sod in place.
 □ Once sod is placed and staked as necessary, tamp or roll it using adequate equipment to provide good contact with soil.
 □ Use caution to prevent tearing or displacement of sod during this process. Leave the finished surface of sodded areas smooth and uniform.

7. Watering Sod

 After the sod has been placed and rolled or tamped, water it to promote satisfactory growth. Additional watering will be needed in the absence of rainfall and during the hot dry summer months. Water may be applied by Hydro Seeder, Water Truck or by other means approved by the Engineer.

8. Dormant Sod

 Dormant Bermuda grass sod can be installed. However, assume responsibility for all sod through establishment and until final acceptance.

9. Establishment

 Sod will be inspected by the Engineer at the end of the first spring after installation and at the time of Final Inspection. Replace any sod that is not live and growing. Any cost for replacing any unacceptable sod will be at the Contractor’s expense.
I. Application of Nitrogen
 Apply nitrogen at approximately 50 lbs/acre (56 kg/ha) when specified by the Engineer after plants have grown to 2 in (50 mm) high.
 One application is mandatory and must be applied before Final Acceptance.
 Apply nitrogen with mechanical hand spreaders or other approved spreaders capable of uniformly covering the grassed areas. Do not apply nitrogen on windy days or when the foliage is damp.
 Do not apply nitrogen between October 15 and March 15 except in Zone 4.

700.3.06 Quality Acceptance
The Engineer may require replanting of an area that shows unsatisfactory growth for any reason at any time.
Except as otherwise specified or permitted by the Engineer, prepare replanting areas according to the Specifications as if they were the initial planting areas. Use a soil test or the Engineer’s guidance to determine the fertilizer type and application rate, then furnish and apply the fertilizer.

700.3.07 Contractor Warranty and Maintenance
A. Plant Establishment
 Before Final Acceptance, provide plant establishment of the specified vegetation as follows:
 1. Plant Establishment
 Preserve, protect, water, reseed or replant, and perform other work as necessary to keep the grassed areas in satisfactory condition.
 2. Watering
 Water the areas during this period as necessary to promote maximum growth.
 3. Mowing
 Mow seeded areas of medians, shoulders, and front slopes at least every 6 months. Avoid damaging desirable vegetation.
 In addition, mow as necessary to prevent tall grass from obstructing signs, delineation, traffic movements, sight distance, or otherwise becoming a hazard to motorists.
 Do not mow lespedezas or tall fescue until after the plants have gone to seed.

B. Additional Fertilizer Mixed Grade
 Apply fertilizer at approximately 600 lbs/acre (675 kg/ha) each spring after initial plant establishment. Continue annual applications until Final Acceptance. This additional fertilizer will be measured and paid for at the Contract Unit Price for fertilizer mixed grade.

C. Growth and Coverage
 Provide satisfactory growth and coverage, ensuring that vegetation growth is satisfactory with no bare spots larger than 1 ft² (0.1 m²). Bare spots shall comprise no more than 1 percent of any given area. An exception is given for seed not expected to have germinated and shown growth at that time.

D. Permissible Modifications
 When all Items of the work are ready for Final Acceptance except for newly planted repaired areas or other areas with insufficient grass, the Contractor may fill the eroded areas or treat bare areas with sod obtained, placed, and handled according to Subsection 700.3.05.H.
 Carefully maintain the line and grade established for shoulders, front slopes, medians, and other critical areas.
 Sod as described above will not be paid for separately, but will be an acceptable substitute for the satisfactory growth and coverage required under this Specification. These areas treated with sod are measured for payment under the Item for which the sod is substituted.

700.4 Measurement
A. Permanent Grassing
 Permanent Grassing will be measured for payment by the pound of seed.
700.4.01

B. Mulches
Mulches, including wood fiber mulch, furnished by the Contractor for permanent grassing are not measured for separate payment.

C. Quantity of Sod
Sod is measured for payment by the number of square yards (meters), surface measure, completed and accepted.

D. Water
Water furnished and applied to promote a satisfactory growth is not measured for payment.

E. Quantity of Lime and Fertilizer Mixed Grade
Lime and fertilizer are measured by the ton (megagram).

F. Quantity of Nitrogen Used for Permanent Grassing
Nitrogen is measured in pounds (kilograms) based on the weight of fertilizer used and its nitrogen content.

G. Replanting and Plant Establishments
No measurement for payment is made for any materials or work required under Subsection 700.3.06 and Subsection 700.3.07.

H. Temporary Grass
Temporary grass is measured for payment by the pound (kilogram) of seed according to Section 163.

700.4.01 Limits
General Provisions 101 through 150.

700.5 Payment
As grassing and planting progress, the Contractor will receive full measurement and payment on regular monthly estimates provided the work complies with the Specifications.

A. Permanent Grassing
Permanent grassing will be paid for at the Contract Price per pound (kilogram) of seed, complete and in place. Payment is full compensation for preparing the ground, seeding, mulching, and providing plant establishment.

B. Fertilizer Mixed Grade
Fertilizer mixed grade will be paid for at the Contract Price per ton (megagram). Payment is full compensation for furnishing and applying the material.

C. Lime
Lime will be paid for at the Contract Price per ton (megagram). Payment is full compensation for furnishing and applying the material.

D. Nitrogen
Nitrogen will be paid for at the Contract Price per pound (kilogram) of nitrogen content. Payment is full compensation for furnishing and applying the material.

E. Sod
Sod will be paid by the square yard (meter) in accordance with the following schedule of payments. Payment is full compensation for ground preparation, including addition of topsoil, furnishing and installing live sod, and for Plant Establishment.

1. 70% of the Contract Price per square yard will be paid at the satisfactory completion of the installation.
2. 20% of the Contract Price will be paid upon satisfactory review of sod which is healthy, weed free and viable at the inspection made at the end of the first spring after installation...
3. 10% of the contract price will be paid upon satisfactory review of sod that is healthy, weed free and viable at the Final Acceptance.

F. Temporary Grass
Temporary Grass will be paid for under Section 163.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 700</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>700.5.01</td>
<td>Adjustments</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>Provisions 101 through 150</td>
<td></td>
</tr>
</tbody>
</table>

Section 701—Wildflower Seeding

701.1 General Description
This work includes preparing the ground, furnishing and planting wildflower and companion grass seeds, applying fertilizer, and applying lime, if necessary, to areas designated on the Plans.

701.1.01 Definitions
General Provisions 101 through 150.

701.1.02 Related References
A. Standard Specifications
 - Section 882—Lime
 - Section 890—Seed and Sod
 - Section 891—Fertilizers
B. Referenced Documents
 General Provisions 101 through 150.

701.1.03 Submittals
General Provisions 101 through 150.

701.2 Materials
A. General
 Use materials that meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Lime</td>
<td>882.2.01</td>
</tr>
<tr>
<td>Companion Grass Seed</td>
<td>890.2.01</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>891.2.01</td>
</tr>
</tbody>
</table>

B. Wildflower Seed
 Use seed from the latest season’s crop.
 Use seed that meets the minimum germination rates listed in the Wildflower Seeding Table with 98 percent seed purity and 0.5 percent weed seed. Proportion seed mixture according to the Wildflower Seeding Table.
Wildflower Seeding Table

<table>
<thead>
<tr>
<th>Approx. % by Weight</th>
<th>Botanical Name</th>
<th>Common Name</th>
<th>% Germination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>Achillea millefolium</td>
<td>White Yarrow</td>
<td>50</td>
</tr>
<tr>
<td>5.0</td>
<td>Centaurea cyanus</td>
<td>Cornflower</td>
<td>60</td>
</tr>
<tr>
<td>5.0</td>
<td>Chamecrista fasicu lata</td>
<td>Partridge Pea</td>
<td>N/A</td>
</tr>
<tr>
<td>10.0</td>
<td>Coreopsis lanceolata</td>
<td>Lance-leaved Coreopsis</td>
<td>40</td>
</tr>
<tr>
<td>10.0</td>
<td>Coreopsis tinctoria</td>
<td>Plains Coreopsis</td>
<td>65</td>
</tr>
<tr>
<td>5.0</td>
<td>Delphinium ajacis</td>
<td>Rocket Larkspur</td>
<td>60</td>
</tr>
<tr>
<td>5.0</td>
<td>Escholzia californica</td>
<td>California Poppy</td>
<td>60</td>
</tr>
<tr>
<td>5.0</td>
<td>Gaillardia aristata</td>
<td>Perennial Gaillardia</td>
<td>45</td>
</tr>
<tr>
<td>10.0</td>
<td>Gaillardia pulchella</td>
<td>Annual Gaillardia</td>
<td>45</td>
</tr>
<tr>
<td>2.5</td>
<td>Monarda citriodora</td>
<td>Lemon Mint</td>
<td>40</td>
</tr>
<tr>
<td>10.0</td>
<td>Nemoniphia men ziesii</td>
<td>Baby Blue Eyes</td>
<td>70</td>
</tr>
<tr>
<td>1.0</td>
<td>Oenothera speciosa</td>
<td>Pink Primrose</td>
<td>N/A</td>
</tr>
<tr>
<td>2.0</td>
<td>Papaver rheas</td>
<td>Corn Poppy</td>
<td>60</td>
</tr>
<tr>
<td>10.0</td>
<td>Rubeckia hirta</td>
<td>Black-Eyed Susan</td>
<td>60</td>
</tr>
<tr>
<td>5.0</td>
<td>Salvia farinacea</td>
<td>Blue Sage</td>
<td>40</td>
</tr>
<tr>
<td>3.0</td>
<td>Solidago spp.</td>
<td>Goldenrod</td>
<td>N/A</td>
</tr>
<tr>
<td>10.0</td>
<td>Trifolium incarnatum</td>
<td>Crimson Clover</td>
<td>80</td>
</tr>
</tbody>
</table>

100% total mixplant at a rate of 12 lbs/acre (13 kg/ha)

C. Companion Grass

Apply nurse or companion grass as follows:

<table>
<thead>
<tr>
<th>Planting Season</th>
<th>Grass</th>
<th>Rate per Acre (Hectare)</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 1 to February 28</td>
<td>Tall Fescue</td>
<td>5 lbs (5.5 kg)</td>
</tr>
</tbody>
</table>

D. Fertilizer Mixed Grade

Select fertilizer mixed grade such as 10-10-10, 6-12-12, 5-10-15, or any other analysis within the following limits:

- Nitrogen 5 to 10 percent, phosphorus 10 to 15 percent, and potassium 10 to 15 percent

701.2.01 Storage, Delivery, and Handling

Use seed delivered in original sealed packages bearing the producer’s guaranteed analysis for percentages of species mixture, minimum germination rates, and purity of seed.

701.3 Construction Requirements

701.3.01 Personnel

General Provisions 101 through 150.

701.3.02 Equipment

Use approved mechanical seed drills, drop spreaders, and rotary spreaders to distribute seed.

701.3.03 Preparation

A. Planting Limits

Before preparing the ground, stake planting limits according to the Plans and as approved by the Engineer.
701.3.04 Fabrication
General Provisions 101 through 150.

701.3.05 Construction
A. Ground Preparation

Prepare the ground as follows:

1. Plow between 4 in to 6 in (100 mm to 150 mm) deep.
2. After plowing, thoroughly disk the area until pulverized, then smooth the surface.
3. Remove large clods, boulders, stumps, rocks, and other foreign particles that will interfere with the work and seedling growth.
4. Wait 2 weeks after preparation, then spray new growth with 1 gal per acre (9 L per hectare) of Roundup™ herbicide.
5. Wait at least 10 days before proceeding.

B. Application of Lime and Fertilizer Mixed Grade

Apply lime and fertilizer as follows:

1. Lime
 - Uniformly spread agricultural lime on the ground at the approximate rate determined by the Engineer. If the pH is 6.0 or higher, no lime is required.
2. Fertilizer Mixed Grade
 - Spread the fertilizer, mixed according to Subsection 701.2.D, uniformly over the ground at approximately 200 lbs/acre (225 kg/ha).
3. Mixing
 - Before doing further work on the area, blend the lime and fertilizer uniformly into the top 4 in (100 mm) of soil using harrows, rotary tillers, and other equipment approved by the Engineer.

C. Seeding

Weather permitting, sow seed within 24 hours of applying the fertilizer and lime to the seed bed as follows:

1. Sow seed uniformly according to the rate specified in Subsection 701.2.B. Use approved mechanical seed drills or mix seed with dry sand and spread it with either a drop spreader or rotary spreader.
2. Cover the seed to no more than 1/8 in (3 mm) deep.
3. After seeding, roll the area with a cultipacker or similar equipment to ensure good soil contact for seedling germination.

D. Mulching

After rolling the seed bed, apply 1 ton per acre (2 Mg per hectare) of wood fiber mulch.

701.3.06 Quality Acceptance

A. Replanting

The Engineer may require replanting an area that shows unsatisfactory growth.

Except as otherwise specified by the Engineer, prepare replanting areas the same as the initial planting with the following exception:

☐ Use a soil test or the Engineer’s guidance to determine the fertilizer type and application rate, then furnish and apply the fertilizer.

B. Providing Growth and Coverage

Ensure that wildflower growth and coverage conforms with the intent of the Contract for the vegetation, except for seed not expected to germinate and show growth at that time.

Ensure that vegetation shows a satisfactory visible growth with no bare spots larger than 1 ft² (0.1 m²). Bare spots shall be infrequent, comprising no more than 1 percent of a given area.
701.3.07 Contractor Warranty and Maintenance

A. Plant Establishment
 Preserve, protect, water, reseed or replant, and perform other work as necessary to keep the wildflower areas in satisfactory condition.

B. Watering
 Keep planted areas moist for 4 to 6 weeks during seedling germination and development.
 Following initial growth, water the wildflower areas enough to promote maximum growth.

C. Mowing
 Mow once a year in late fall after seedheads have matured. Avoid damaging desirable vegetation.

701.4 Measurement

A. Wildflower Seeding
 The number of acres (hectares) completed according to the above requirements and accepted by the Engineer is measured for payment.

B. Wood Fiber Mulch
 Mulch furnished and applied is not measured separately.

C. Water
 Water furnished and applied to promote a satisfactory growth is not measured for payment.

D. Agricultural Lime
 Lime is measured by the ton (megagram).

E. Mixed Grade Fertilizer
 Fertilizer is measured by the pound (kilogram).

701.4.01 Limits
Work required under Subsection 701.3.06 and Subsection 701.3.07 is not measured for payment.

701.5 Payment
Wildflower seeded areas will be paid for as follows:

A. Wildflower Seeding
 When plants are satisfactorily planted, 80 percent of the Contract Unit Price bid per acre (hectare) will be paid on the next estimate.
 Until Final Acceptance, perform required maintenance according to Subsection 701.3.07 when necessary or as ordered by the Engineer.
 At Final Acceptance, the remaining 20 percent will be paid. Payment is full compensation for preparing ground, providing wildflower and companion grass seed, applying seed, watering, mulching, and establishing plants.

B. Mixed Grade Fertilizer
 Fertilizer will be paid for at the Contract Price per pound (kilogram). Payment is full compensation for furnishing and applying the material.

C. Lime
 Lime will be paid for at the Contract Price per ton (megagram). Payment is full compensation for furnishing and applying the material.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 701</th>
<th>Wildflower seeding</th>
<th>Per acre (hectare)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 701</td>
<td>Fertilizer mixed grade</td>
<td>Per pound (kilogram)</td>
</tr>
<tr>
<td>Item No. 701</td>
<td>Agricultural lime</td>
<td>Per ton (megagram)</td>
</tr>
</tbody>
</table>

701.5.01 Adjustments
General Provisions 101 through 150.

Section 702—Vine, Shrub, and Tree Planting

702.1 General Description
This work includes furnishing and planting vines, shrubs, trees and plants, as well as treating regenerated areas according to the Specifications, Plans, and the Engineer.

702.1.01 Definitions
General Provisions 101 through 150.

702.1.02 Related References
A. Standard Specifications
 Section 108—Prosecution and Progress
 Section 700—Grassing
 Section 882—Lime
 Section 891—Fertilizers
 Section 893—Miscellaneous Planting Materials
B. Referenced Documents
 Standardized Plant Names

702.1.03 Submittals
A. Certificates of Inspection
 Submit certificates of inspection with the invoice for each shipment of plants as required by law for transportation.
 File certificates with the Engineer before the material is accepted. Plants may be rejected at the site regardless of Federal or State government inspections at the place of growth.
B. Substitutions
 When both primary and alternate plants are specified, use the alternate only after providing written proof that the primary plants specified are not available. In this case a Supplemental Agreement is not required to use the alternate plants.
 When a primary or an alternate plant cannot be furnished, provide the Engineer written proof that neither is available. A Supplemental Agreement is required for substitute plants in this case.

702.2 Materials
Ensure that materials meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>700.2.B</td>
</tr>
<tr>
<td>Agricultural Lime</td>
<td>882.2.01</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>891.2.01</td>
</tr>
</tbody>
</table>
702.2.01

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Topsoil</td>
<td>893.2.01</td>
</tr>
<tr>
<td>Mulch</td>
<td>893.2.02</td>
</tr>
<tr>
<td>Vines, Shrubs, Trees, and Miscellaneous Plants</td>
<td>893.2.03</td>
</tr>
<tr>
<td>Tree Paint</td>
<td>893.2.06</td>
</tr>
<tr>
<td>Prepared Plant Topsoil</td>
<td>893.2.07</td>
</tr>
<tr>
<td>Stakes</td>
<td>893.2.08</td>
</tr>
<tr>
<td>Organic Soil Additives</td>
<td>893.2.09</td>
</tr>
</tbody>
</table>

A. Plant Specifications

Furnish plants according to the plant name and Specifications included on the Plans titled, “Plant Specifications.”

1. **Plant Names**

 Ensure that the botanical and common names of plants specified conform with the most current edition of Standardized Plant Names, as adopted by the American Joint Committee on Horticultural Nomenclature.

2. **Grades**

 Ensure that plants meet the grade requirements of the most current American Standard for Nursery Stock of the American Association of Nurserymen and any other requirements.

 Caliper used for establishing plant grades or trunk sizes is measured according to the American Standard for Nursery Stock. Plant trees with straight stems and symmetrical branches according to their natural growth. Trees with broken or damaged terminal or main stems will be rejected.

3. **Substitutions**

 Use approved substitute plants, as designated by the Engineer, equal in value to specified plants. Request substitutions at least 30 days before the end of the planting season in the area.

B. Nursery Plants

Unless otherwise specified, use plants stock-grown in a licensed nursery under intensive care and cultivation for at least one year. The branch system shall be normally developed and free of disease, injurious insects, disfiguring knots, suckers, injuries, bark abrasions, dead or dry wood, broken terminal growth, or other disfigurements. Ensure that proper certificates of inspection accompany nursery grown plants. See Subsection 893.2.03.

C. Collected Plants

Collected plants grow in the wild and are uncultivated and untransplanted. Do not take collected plants from areas infested with insects under quarantine. See Subsection 893.2.03.

D. Approval and Selection of Materials and Work

Select materials and execute operations required under the Specifications and drawings with the approval of the Engineer. Remove rejected materials from the site promptly.

702.2.01 Delivery, Storage, and Handling

A. Bare-Rooted Plants

Tie bare-rooted plants in bundles and place moist sphagnum moss, shingletoe, or other moisture-retaining material around the roots to keep the plants moist for up to 10 days. Over-wrap the bundle with a heavy weight, waterproof, flexible material, covering the roots and one-half of the tops. Keep the plants wrapped until they are planted or heeled-in.

Wrapped plants may be held in the package for up to 10 days from shipment if protected from the sun and wind. If unable to plant plants within 10 days from shipment, unwrap, spread the roots, heel-in using moist soil, and water well.

Protect roots of plants that have been heeled-in from drying out. Cover soil and roots with wet canvas, burlap, or straw while transporting and distributing them for planting. The type of protection depends on weather conditions and the length of time the plants remain unplanted. Use protection methods satisfactory to the Engineer.
B. Ball ed and Burlapped Plants (B&B)

Ensure that the soil in the ball is the original and undisturbed soil in which the plant has grown.

1. Dig, burlap, transport, and handle the plant carefully to avoid loosening the soil (stripping or exposing the roots).
2. Replace plants rejected because of broken or loose balls, or balls of less diameter than that specified.
3. Adequately protect the roots of balled and burlapped plants, unless they are planted immediately after they are delivered. Completely cover them with damp soil, sawdust, or other moist material until removing them for planting.
4. Keep plants moist while awaiting planting.
 a. Do not saturate the ball, causing it to pull off in handling.
 b. Handle B&B plants by the ball and not by the top growth.
 c. Never leave the balls of plants unprotected overnight.

C. Container-Grown Plants

Keep container-grown plants moist until planted. Handle them by the container or soil ball and not by the top growth.

D. Collected Plants

Do not collect plants more than 24 hours before planting.

1. Select plants with good shape and form. Do not select poorly shaped, weak plants taken from dense shade and crowded conditions.
2. Dig collected plants with a wide root system equal to at least the spread of the top of the plant.
3. Protect the roots with a moist packing material.
4. Load them onto a covered truck, protected from the sun and wind and transfer them directly to the final planting site.
5. Prune collected plants by removing from one-third to one-half of the side branches as directed by the Engineer.

E. Heeled-in Plants

Properly maintain heeled-in plants until they are planted. Do not allow plants to remain heeled-in over the summer or for over 30 days without the Engineer’s consent.

F. Injury Prevention

In digging, loading, unloading, planting, or otherwise handling plants, avoid injuring the trunk, branches, and roots of the plants. Injured plants will be rejected. Protect tops of shrubs and trees while in transit to prevent windburn.

702.3 Construction Requirements

702.3.01 Personnel
General Provisions 101 through 150.

702.3.02 Equipment
General Provisions 101 through 150.

702.3.03 Preparation

A. Inspect Plants Before Digging

The Engineer will inspect trees or plants from the bidder’s source for acceptability. When rejecting the trees or plants, the Engineer reserves the right to pursue and examine other sources of plants to find acceptable specimens. This change will not constitute an increase in cost to the State.

B. Clear and Grub

Clear and grub before planting or beginning to prepare the plant bed.

C. Prepare Plant Bed

Prepare for planting as follows:

1. Planting Limits

Stake planting limits according to Plan details and the Engineer. Have the Engineer approve the method of plant identification before planting.
2. Applications of Soil Additives
 a. Apply fertilizer approximately 3 lbs/100 ft² (1.5 kg/10 m²) of bed surface. Fertilizer for plant bed may be 6-12-12 if 4-12-12 is not available.
 b. Apply agricultural lime for plant bed approximately 5 lbs/100 ft² (2.5 kg/10 m²) of bed surface.
 c. Spread an organic soil additive, either peat moss or pine bark, evenly throughout the designated area to at least 2 in (50 mm) deep. Thoroughly dig it into the soil to at least 6 in (150 mm) deep using a rotary hoe type tiller or other equipment that evenly mixes the soil, lime, fertilizer, and organic soil additive.
 d. Till the area until the surface is smooth and free of weeds, roots, rocks, and other debris, to the satisfaction of the Engineer.

702.3.04 Fabrication
General Provisions 101 through 150.

702.3.05 Construction
A. Seasonal Limitations for Planting

For geographic seasonal limitations, refer to the Planting Zones Map, below. Plant in Zones 1 and 2 between October 15 and March 15. Plant in Zones 3 and 4 between November 1 and March 1.
B. Planting Operations

Plant using either the pit method or the dibble method as called for on the Plant Specification sheet. Before beginning planting of each area, have available the necessary materials including prepared plant topsoil (see Subsection 893.2.07), water, stakes, and mulch.

When seasonal limitations and weather conditions permit, continuously water, mulch, wrap, guy, and stake, until completing the last operation.

After completing planting, provide a method for retaining water adjacent to the plant according to the details shown on the Plans or as directed by the Engineer.

1. Planting By the Pit Method
 a. Placing Bare-Rooted Plants
 Plant bare-rooted plants delivered to the pit area. Protect roots from drying out until placing them in the pit.
 - Center plants in pits and spread roots as they originally grew.
 - Cover and prepare the topsoil according to details shown on the Plans.
 b. Placing Balled and Burlapped Plants
 Immediately plant these plants after they are delivered to the pit site. Never allow the balls to remain unprotected overnight.
 - Center the ball in the prepared pit, leaving the top of the ball 1 in (25 mm) above the top of the ground for settlement.
 - Partially fill the pit with prepared plant topsoil and compact the soil enough to hold the ball firmly.
 - Leave the burlap covering in place. Remove wire or twine from the top of the ball.
 c. Placing Container-Grown Plants
 When the container is delivered to the pit site, split the container from top to bottom and carefully remove the plant.
 - Spread into the hole any major roots growing around the container or prune them to remove any circular growth.
 - Place the ball in the center of the prepared pit, leaving the top of the ball 1 in (25 mm) above the top of the ground for settlement.
 - Partially fill the pit with prepared plant topsoil and compact the soil enough to hold the ball firmly.
 d. Completing Pit Plantings
 After placing pit plantings, water plants thoroughly the same day regardless of weather or soil moisture conditions.
 - After the water has soaked in, add prepared plant topsoil and compact firmly.
 - Stop compacting when the compacted prepared plant topsoil is 2 in (50 mm) below the adjacent ground.
 - Fill each pit with loose, prepared plant topsoil according to the details shown on the Plans.
 - After planting, provide retained water adjacent to the plant according to the Plans or as directed by the Engineer.

2. Planting By the Dibble Method
 If the Plans require the dibble method, perform the work as outlined. Standard dibble blades are made in 10 in (250 mm) and 12 in (300 mm) heights. Use the 12 in (300 mm) blade on all plants except those with a root system of 8 in (200 mm) or less.

Locate plants as shown on the Plans or as approved by the Engineer. Only plant when there is adequate moisture in the ground and when the ground is not frozen.

Follow these steps when grass or other vegetation is present:
 a. Mow an area at least 2 ft (600 mm) on all sides of the proposed location of the individual dibbled plants to a height of 1 in (25 mm).
 b. Apply mulch of the specified type and amount to the mowed area before planting.
 c. Dibble the seedling into the soil.
 d. Dibble the plant within 48 hours after mowing.
 e. Complete each planting according to the Plan details to retain water adjacent to the plant.
C. Mulching

1. For Pit Plantings
 Follow these requirements when mulching for pit plantings:
 a. Where the distance between plants is 4 ft (1.2 m) or less, spread mulch throughout and 2 ft (600 mm) beyond the outermost plants. Where plants are more than 4 ft (1.2 m) apart, apply mulch in a circular fashion around each plant, forming a ring 4 ft (1.2 m) in the outside diameter.
 If plant pits are greater than 4 ft (1.2 m) in diameter, ensure that the mulch extends out to cover the berm as shown in the planting details on the Plans.
 b. Apply mulch within 5 days of planting at least 4 in (100 mm) loose for pine straw or 3 in (75 mm) loose for pine bark to obtain a compacted depth of at least 2 in (50 mm).
 Compaction occurs naturally. Check compaction at least three months after spreading and exposing the mulch to the elements.
 If the compacted depth is less than 2 in (50 mm), apply additional mulch to deficient areas 1 month following notification.

2. For Plantings by the Dibble Method
 Apply mulch according to Subsection 702.3.05.C.1 with the following exceptions:
 a. Apply mulch before planting.
 b. Ensure that the minimum compacted height after 3 months exposure is 1 in (25 mm) instead of 2 in (50 mm).

D. Wrapping

Unless otherwise specified, tightly wrap the trunks of deciduous trees over 1.25 in (32 mm) in caliper. Wrap in strip burlap or waterproof crepe tree wrapping paper or other approved materials.

1. Begin wrapping at the ground and extend spirally up and beyond the first rosette of branches with an overlap of one half the width of the wrapping material.
2. Tie the wrapping material securely with binder twine spaced every 12 in (300 mm) for the full length of the wrapping. Wrap immediately after planting.

E. Staking and Guying

1. Perimeter Staking
 Place perimeter stakes 2 in x 2 in x 36 in (50 mm x 50 mm x 900 mm). Stake the perimeter of indicated regenerated areas within specified planting dates according to the Plans or as directed by the Engineer.

2. Vine, Shrub, and Miscellaneous Plant Staking
 Use stakes to identify isolated vines, shrubs, and miscellaneous plants outside of solid mulched beds according to Plan details.

3. Tree Staking and Guying
 Stake trees with an identification stake and guy according to the details and dimensions shown on the Plans. Each guy wire shall consist of 18-gauge (1.2 mm) malleable galvanized iron wires twisted into a single strand and enclosed loosely into a rubber hose (or other approved covering or guyin materials) extending around the trunk.
 a. After fastening the wire to the stake by tying or twisting it into a figure-8, nail or staple the wire to the stake to prevent slippage using a 4d nail or a 0.5 in (13 mm) staple.
 b. Tighten the wire so that twisting the wire causes a slight strain between the tree and the stake.
 c. Place guy wires above the first rosette of lower branches and fasten wire to the stake approximately 6 in (150 mm) above the ground. Plastic tape of the accepted size and quality may be substituted for the hose and wire specified above. Replace at no additional expense to the Department, any plastic tape that breaks or loosens.

F. Pruning

1. Prune plants on the site before planting and after initial inspection by the Engineer. Never prune severely to get plants to meet Specifications.
 a. Follow modern horticultural practices and use approved tools designed for pruning.
 Lopping, topping, or shearing trees or shrubs will result in rejection.
 b. Prune back damaged, scarred, frayed, split, and skinned branches, limbs, and roots to live wood nearest to the next sound, outside lateral bud, branch, limb, or root.
c. Leave the terminal leaders or buds in trees intact.
d. Remove approximately one-third of the smaller branches on nursery grown vines, shrubs, and trees for root-top balance.
e. Prune roots, when necessary, as directed by the Engineer. Treat cuts 1 in (25 mm) in diameter or larger with an approved tree paint or wound dressing. See Section 893.

G. Watering
Apply water in a manner to prevent erosion. Water plants at the time of planting. Water after applying fertilizer called for in Subsection 702.3.05.H and as necessary to maintain enough moisture to promote plant growth.
Apply enough water to wet the soil to a depth slightly below the roots. Direct the water to the ground around the plant, not the tops.

H. Spring Application of Fertilizer
1. Method and Rate of Application
 Follow these requirements when applying fertilizer in the spring:
 a. Trees
 Deep-root feed trees each spring by using a 8-12-12 slow release fertilizer. Bore a 1.5 in (38 mm) diameter hole between 18 in to 24 in (450 mm to 600 mm) deep at the rate of 8 to 10 holes per tree.
 Use 1 cup (0.25 L) of fertilizer per 1 in (25 mm) in caliper of tree measured 6 in (150 mm) off the ground. Fill the holes with soil upon completing each hole.
 b. Shrubs
 Fertilize shrubs with a 6-12-12 slow release 60 percent organic fertilizer by spreading fertilizer around the base of the plant and working it into the soil by hand. Use 0.5 cup (0.12 L) of fertilizer per foot (0.3 m) of shrub height.
 c. Bed Areas
 Spread fertilizer on bed areas (defined by method of planting in Subsection 702.3.05.B), over the mulch at the rate of 3 lbs/100 ft² (1.5 kg/10 m²) using 6-12-12 or 8-12-12. Thoroughly water in the plants.
 d. Vines
 Fertilize vines when not planted in a bed at the rate of 1/4 cup (60 ml) per vine using 6-12-12 or 8-12-12. Thoroughly water in the plants.
 e. Regenerated Areas
 Spread fertilizer on regenerated areas evenly at a rate of 3 lbs/100 ft² (1.5 kg/10 m²) and thoroughly water in using 6-12-12.

NOTE: 2 cups (1 L) of 6-12-12 or 8-12-12 equals 1 lb (1 kg).

2. Time of Application
 Apply fertilizer in the spring in Zones 1 and 2 (with reference to the Planting Zones specified in Subsection 702.3.05.A) between April 1 and April 15. Apply between March 15 and April 1 for Zones 3 and 4.
 For late plantings, do not apply fertilizer less than 30 days after the plantings.

3. Additional Fertilizer Grades 8-12-12 or 6-12-12
 Approximately one month after the spring fertilizer is applied, the Engineer will inspect planted areas and determine if an additional application of fertilizer is needed for any plant or group of plants.
 If the Engineer determines additional fertilizer is required, apply fertilizer at the rate specified in Subsection 702.3.05.H. Make the additional application between June 15 and July 15th.

I. Treatment of Regenerated Areas
 Treating regenerated areas includes staking the perimeter and applying fertilizer in the spring.
 Pruning, mulching, staking (except perimeter staking), guying, wrapping, mowing, weeding, and watering (except watering following fertilization) are not required.
 Perform perimeter staking as specified in Subsection 702.3.03.C.1. Apply fertilizer in the spring as specified in Subsection 702.3.03.C.2.
J. Restoration and Cleanup

Restore areas where existing grass has been damaged or scarred during planting operations at no expense to the Department. Restore the disturbed areas to their original conditions as directed by the Engineer. Clean up debris, spoil piles, and containers and leave the Project area clean.

702.3.06 Quality Acceptance

Preserve the plants in a healthy growing condition. The acceptability of the plant material furnished and planted as specified will be determined at the end of an establishment period.

The plant establishment period is the period from the last planting specified in Subsection 702.3.05.B until the following October 1. Plant in one planting season.

A. First Establishment Period

At the end of the first planting season, the first establishment period begins. The Department will make the first semi-final inspection 30 days before the end of the first establishment period. Replace dead, dying, diseased, unsatisfactory, and missing plants during the next planting season.

B. Second Establishment Period

At the end of the second planting season, the second plant establishment period begins. The Department will make the second semi-final inspection 30 days before the end of the second establishment period. Again, replace dead, dying, diseased, unsatisfactory, and missing plants.

C. Final Inspection

The Department will make the final inspection of the plants during May, following any needed replacements during the previous planting season. Assume responsibility for the plants until the Final Acceptance of the Project or a portion of the Project.

702.3.07 Contractor Warranty and Maintenance

Project maintenance includes, but is not limited to, watering, cultivating, weeding, pruning, repairing, adjusting guys and stakes, and performing other work as ordered by the Engineer until final acceptance.

Promptly remove from the Project area dead plants or those that no longer conform to the requirements of Subsection 702.2.A.2.

Mow the entire right-of-way within the limits of the Project up to a maximum of three times per calendar year.

A. Leaning Trees

Straighten leaning trees by pulling them over and tying them with new guy wire or stake. Wrap wire around the tree with a piece of rubber hose to avoid cutting the tree.

B. Shrub Maintenance

1. Pruning

Prune or thin shrubs, as directed by the Engineer, at least two times per year, once before spring and once during mid-summer. Maintain an attractive shape and fullness with respect to the intended character of the planting. See Subsection 702.3.05.F.

2. Mulching

Continuously maintain shrub and tree beds with a clean, freshly mulched appearance using the mulch originally specified. See Subsection 702.3.05.C.

3. Applying Fertilizer

See Subsection 702.3.05.H.

4. Applying Insecticides

Inspect shrubs and trees for insects, grubs, mites, etc., once every two weeks. Apply insecticides and pesticides according to the manufacturer’s or installer’s recommendations to effectively control insect infestation. Insecticides such as volck oil, lindane, captan, and sevin are commonly used to control insects and pests.

5. Edging

Edge and trim shrubs, ground cover areas, and tree beds to maintain a clean and manicured appearance.
6. Watering
 During summer months, if it does not rain enough to keep shrubs moist, water shrubs thoroughly by soaking each plant.
 a. Thoroughly water smaller plants with shallow root systems, such as the Evergreen Holly once a week during unseasonably dry conditions.
 b. Water plants thoroughly by soaking each plant. Water each shrub for approximately one-half minute. Junipers will survive on lesser amounts of moisture. They do not need water as regularly as Evergreen Hollies.
7. Policing
 Remove debris such as paper, broken limbs, bottles, cans, etc., while maintaining the site.

C. Tree Maintenance
1. Watering
 Soak the trees during a drought (no rain for three weeks during summer months).
 a. Check trees and plants weekly for dryness by removing the mulch from their base and sampling the soil approximately 6 in (150 mm) deep.
 b. If no moisture is there, water the dry tree thoroughly until the ground is saturated to the base of the tree rootball, normally 24 in to 30 in (600 mm to 750 mm) deep.
2. Mulch
 Maintain a good heavy mulch around trees and shrubs to preserve moisture as specified in Subsection 702.3.05.C.
3. Fertilizer
 See Subsection 702.3.05.H.
4. Abnormal Conditions
 Periodically (once every two weeks) observe trees and shrubs for abnormal conditions such as insects, borers, web worms, red spiders, etc., and immediately treat.
5. Sucker Growth
 Remove sucker growth three times a year. Sucker growth is the shoots that sprout out around the base of the tree trunk.
6. Deadwood
 Remove deadwood at least two times a year. Prune dead branches, paint cuts and wounds or scars with asphaltic tree paint. See Subsection 702.3.05.F.
7. Insect Control
 Apply insecticides as necessary to control bores, aphids, mealy bugs, mites, and tent worms. Follow the manufacturer’s instructions. Lindane and sevin are commonly used for this treatment.

NOTE: Use chemicals according to Federal, State and county directives on environmental control that carry an EPA approval number.

702.4 Measurement
A. Plants
 Plants of the name and size specified are measured for payment according to the number planted that are still living and in an acceptable condition at the time of Final Acceptance.
B. Fertilizer
 Spring application fertilizer applied to planted and regenerated areas will be the actual number of pounds (kilograms) placed and accepted. Fertilizer, lime, and plant topsoil used in prepared plant topsoil or plant bed preparation are not measured for separate payment.
C. Perimeter Stakes
 Perimeter stakes measured for payment are the number in place and accepted.
D. Clearing and Grubbing
 Clearing and grubbing is not measured for payment unless the Item is shown as a separate Pay Item in the Proposal.
702.4.01 Limits
General Provisions 101 through 150.

702.5 Payment
A. Plants

Plants measured for payment will be paid for as follows:

1. After planting satisfactorily, the Department will pay 70 percent of the Contract Unit Price bid per each on the next estimate.
2. Until Final Acceptance, perform all required maintenance according to Subsection 702.3.07.C when necessary or as ordered by the Engineer.

If the Contractor fails to properly maintain the landscaping, the Department will assess liquidated damages according to the schedule of deductions shown in Subsection 108.08, but not less than $150 per calendar day, and will continue until project maintenance is approved by the Engineer.

The liquidated damages are in addition to those specified for delay or failure in completing The Work within the specified time.
3. After the first semi-final inspection, the Department will pay 10 percent of the Contract Unit Price bid per each of the live, viable plants.
4. After the second semi-final inspection, the Department will pay 10 percent of the Contract Unit Price bid per each of the live, viable plants.
5. At Final Acceptance, the Department will pay the remaining 10 percent less the Full Contract Unit Price bid per each plant not accepted.

Payments are full compensation for furnishing, planting, replanting as required, pruning, staking (except for perimeter staking, wrapping and guying, soil conditioning, and preparing plant beds) including applying additives, digging plant pits, preparing plant topsoil and mulch, disposing of waste material, and maintaining the plants during the plant-establishment period.

B. Fertilizer

All grades of fertilizer applied in the spring, measured as specified above, are paid for at the Contract Price per pound (kilogram) or per ton (megagram), whichever is indicated in the Proposal. Payment is full compensation for furnishing and applying and for watering regenerated areas.

C. Perimeter Stakes

Perimeter stakes measured for payment will be paid for at the Contract Price per each. Payment is full compensation for furnishing and placing the stakes.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 702</th>
<th>Plant name and size</th>
<th>Per each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 702</td>
<td>Fertilizer, spring application</td>
<td>Per ton (megagram)</td>
</tr>
<tr>
<td>Item No. 702</td>
<td>Perimeter stakes</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 702</td>
<td>Spring application fertilizer</td>
<td>Per pound (kilogram)</td>
</tr>
</tbody>
</table>

702.5.01 Adjustments
General Provisions 101 through 150.

Section 703—Tree Wells, Tree Walls, and Root Protection

703.1 General Description

This work includes protecting the root systems of selected trees and shrubs with retaining walls, tree wells, and porous material.
703.1.01 Definitions
General Provisions 101 through 150.

703.1.02 Related References
A. Standard Specifications Section
 607—Rubble Masonry Section
 834—Masonry Materials Section
 842—Clay Pipe
 Section 893—Miscellaneous Planting Material

B. Referenced Documents
 General Provisions 101 through 150.

703.1.03 Submittals
General Provisions 101 through 150.

703.2 Materials
Use materials that meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortar and Grout</td>
<td>834</td>
</tr>
<tr>
<td>Masonry Stone</td>
<td>834</td>
</tr>
<tr>
<td>Clay Underdrain Pipe</td>
<td>842.2</td>
</tr>
<tr>
<td>Clay Drain Tile</td>
<td>842.2</td>
</tr>
<tr>
<td>Porous Material</td>
<td>893.2.05</td>
</tr>
<tr>
<td>Tree Paint</td>
<td>893.2.06</td>
</tr>
</tbody>
</table>

703.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

703.3 Construction Requirements

703.3.01 Personnel
General Provisions 101 through 150.

703.3.02 Equipment
General Provisions 101 through 150.

703.3.03 Preparation
General Provisions 101 through 150.

703.3.04 Fabrication
General Provisions 101 through 150.

703.3.05 Construction
A. Excavating and Filling Foundations
 Avoid unnecessarily injuring root systems when excavating for tree wells and tree walls.
 Excavate and fill foundations to these requirements:
 - To the elevations shown on the Plans or as directed
 - To the full widths and lengths of footings shown on the Plans
 Where the soil under tree wells or tree walls is unstable, backfill the foundation area with broken stone, coarse gravel, or other approved material and firmly tamp it.
703.3.06

Ensure that foundations firmly and uniformly support masonry.

B. Constructing Masonry

Build the tree wells and tree walls from rubble masonry according to Plan details. Use rubble masonry according to Section 607.

C. Providing Drainage

Provide adequate well drainage using weep holes, pipe drains, drain tile, or porous material as shown on the Plans.

D. Protecting Tree Roots

Where tree root protection is required, spread porous material loosely to the extent and depths indicated on the Plans, or as directed by the Engineer. Before spreading porous material, clean the tree root protection area of vegetation. Before backfilling over a tree or plant that will be preserved, place porous material above its roots.

E. Damaging Plants

Avoid cutting roots or damaging trees and shrubs while building tree wells and tree walls and placing the porous material to protect the roots.

When making necessary cuts, use sharp tools and cut cleanly according to the best horticultural practices. Immediately cover with tree paint, all scarred or cut surfaces 1 in (25 mm) or more in diameter.

703.3.06 Quality Acceptance

General Provisions 101 through 150.

703.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

703.4 Measurement

A. Tree Well and Tree Wall

Tree well and tree wall masonry completed and accepted is measured for payment in cubic yards (meters).

B. Porous Material

Porous material for tree root protection, placed and accepted, is measured for payment in cubic yards (meters) as measured loose in the vehicle at the point of dumping.

C. Drain Pipe or Tile

Drain pipe or drain tile is measured for payment in linear feet (meters) along the center of each line, lateral, or riser from ends-to-center or center-to-center of junctions and fittings.

D. Excavation, Paint, and Replacement or Disposal of Material

No measurement or payment is made for excavation, tree paint, replacement of unsuitable material, or disposal of surplus material. These are considered a part of the Pay Item to which each pertains.

703.4.01 Limits

General Provisions 101 through 150.

703.5 Payment

Rubble masonry for tree wells and walls and porous material for tree root protection will be paid for at the Contract Unit Price per cubic yards (meters).

Clay drain pipe or drain tile will be paid for by the linear foot (meter).

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 703</th>
<th>Rubble masonry for tree wells and walls</th>
<th>Per cubic yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 703</td>
<td>Porous material for tree root protection</td>
<td>Per cubic foot (meter)</td>
</tr>
<tr>
<td>Item No. 703</td>
<td>Drain pipe _____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 703</td>
<td>Drain tile _____ in (mm)</td>
<td>Per linear foot (meter)</td>
</tr>
</tbody>
</table>
703.5.01 Adjustments
General Provisions 101 through 150.

Section 705—Transplanting Trees

705.1 General Description
This work includes transplanting existing trees at new locations as shown on the Plans and as directed by the Engineer.

705.1.01 Definitions
General Provisions 101 through 150.

705.1.02 Related References
A. Standard Specifications
 Section 700—Grassing
 Section 891—Fertilizers
 Section 893—Miscellaneous Planting Material

B. Referenced Documents
 General Provisions 101 through 150.

705.1.03 Submittals
General Provisions 101 through 150.

705.2 Materials
Use materials that meet the requirements of the following Specifications:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Topsoil</td>
<td>893.2.01</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>891.2.01</td>
</tr>
<tr>
<td>Mulch</td>
<td>893.2.02</td>
</tr>
<tr>
<td>Stakes</td>
<td>893.2.08</td>
</tr>
<tr>
<td>Staking Wire</td>
<td>(See planting details)</td>
</tr>
<tr>
<td>Rubber Hose</td>
<td>(See planting details)</td>
</tr>
<tr>
<td>Tree Paint</td>
<td>893.2.06</td>
</tr>
<tr>
<td>Water for Plant Growth</td>
<td>700.2.B</td>
</tr>
</tbody>
</table>

705.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

705.3 Construction Requirements

705.3.01 Personnel
Have skilled workers transplant according to the best horticultural practices.

705.3.02 Equipment
Have tree transplanting equipment as detailed in the Plans and Specifications on the project site and in satisfactory condition before construction begins.

Excavate trees and tree pits with the Vermeer-type tree spade or tree mover or equivalent approved mechanized equipment.

705.3.03 Preparation
General Provisions 101 through 150.
705.3.04 Fabrication
General Provisions 101 through 150.

705.3.05 Construction
A. Transplanting Operations

Follow these procedures when transplanting trees:

1. Trunk and Branch Protection
 Protect trunks and branches from breaks or bruises. Spray trees in leaf with an approved antidesiccant before digging.

2. Pruning
 Prune trees before transplanting as directed by the Engineer. Remove broken or badly bruised branches with a clean cut. Treat 1 in (25 mm) or larger cuts with an approved tree paint or wound dressing.

3. Securing Roots
 Dig trees to secure as many roots as possible. Maintain a tight, firm ball during the moving operations.

4. Excavating
 Excavate trees and tree pits. Use the excavated material to backfill the pits from which the existing trees were removed.

5. Placing Trees in Pits
 Place transplanted trees into new pits. Backfill voids between the ball and the pit with clean, washed sand and tamp. Thoroughly water the sand in with a root feeder or water needle.

6. Applying Topsoil and Mulch
 Apply plant topsoil to the transplanted tree according to Plan details. Mulch the pits with 3 in (75 mm) of mulching material.

7. Staking and Anchoring Trees
 Stake or anchor trees according to planting details or as directed by the Engineer.

705.3.06 Quality Acceptance
Replace severely damaged or disfigured trees that the Engineer determines were damaged by operations. Replace with trees of approximately the same size, genus, species, variety, and quality at the Contractor’s expense.

705.3.07 Contractor Warranty and Maintenance
A. Watering

After the initial watering, make four additional waterings at two-week intervals.

- Incorporate into the first additional watering Grade 10-20-10 water-soluble fertilizer at the rate of 12 lbs/100 gal (5.5 kg/400 L) of water.
- Make each of the additional waterings with a root feeder or watering needle. Thoroughly saturate the pit.

B. Guarantee Period

A guarantee period is not required for the transplanting work.

705.4 Measurement
The quantity of transplanted trees paid for under this Item is the number transplanted.

Size is determined by tree caliper (diameter) measurement at a point 12 in (300 mm) above the natural ground surface. Where tree caliper exactly coincides with a break point in the Pay Item size intervals, that tree is classed in the lower size interval.

705.4.01 Limits
General Provisions 101 through 150.

705.5 Payment
Transplanting trees will be paid for at the Contract Unit Price. Payment is full compensation for the work and materials including plant topsoil, fertilizer, mulch, stakes, staking wire, rubber hose, tree paint, water, and incidentals necessary to complete the Item.
Payment will be made under:

| Item No. 705 | Transplanting trees,____ in (mm) to____ in (mm) caliper | Per each |

705.0.1 Adjustments
General Provisions 101 through 150.

Section 706—Turf Establishment

706.1 General Description
This work includes providing a hardy and permanent ground cover at designated locations. The cover is subject to the Engineer’s approval.

706.1.01 Definitions
General Provisions 101 through 150.

706.1.02 Related References
A. Standard Specifications
 Section 700—Grassing
B. Referenced Documents
 General Provisions 101 through 150.

706.1.03 Submittals
General Provisions 101 through 150.

706.2 Materials
Select a viable ground cover according to Section 700.

706.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

706.3 Construction Requirements

706.3.01 Personnel
General Provisions 101 through 150.

706.3.02 Equipment
General Provisions 101 through 150.

706.3.03 Preparation
General Provisions 101 through 150.

706.3.04 Fabrication
General Provisions 101 through 150.

706.3.05 Construction
General Provisions 101 through 150.

706.3.06 Quality Acceptance
Refer to Subsection 700.3.06 “Quality Acceptance” and Subsection 700.3.07 “Contractor Warranty and Maintenance” for acceptance of a viable ground cover.

706.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.
706.4 Measurement

No field measurements are required. Measurement is calculated from known dimensions as follows:

A. Type A—Grading and Drainage Projects

[Project length (PL) minus bridge and exception* length (BL)] times [right-of-way width or Engineer-specified width (RW) minus roadbed width (RBW)] equals _____ square feet divided by 43,560 ft²/acre equals pay quantity in acres.

[Project length (PL) minus bridge and exception* length (BL)] times [right-of-way width or Engineer-specified width (RW) minus roadbed width (RBW)] equals _____ square meters divided by 10,000 m² equals pay quantity in hectares.

(PL – BL) x (RW – RBW) = _____ ft² ÷ 43,560 ft²/acre = pay quantity in acres

(PL – BL) x (RW – RBW) = _____ m² ÷ 10,000 m² = pay quantity in hectares

B. Type B: Base and Paving Projects

[Project length (PL) minus bridge and exception* length (BL)] times [unpaved shoulder width (SW) plus 6 ft for each roadway side (RS)] = ___ square feet divided by 43,560 ft²/acre= pay quantity in acres.

[Project length (PL) minus bridge and exception* length (BL)] times [unpaved shoulder width (SW) plus 1.8 m for each roadway side (RS)] = ___ square meters divided by 10,000 m² = pay quantity in hectares.

(PL – BL) x (SW + 6RS) = ____ ft² ÷ 43,560 ft²/acre = pay quantity in acres

(PL – BL) x (SW + 1.8RS) = ____ m² ÷ 10,000 m² = pay quantity in hectares

C. Type C: Complete Project

[Project length (PL) minus (bridge and exception* length (BL))] times [right-of-way width or Engineer-specified width (RW) minus plan paved surface width (PPW)] equals square feet divided by 43,560 ft²/acre= pay quantity in acres.

[Project length (PL) minus (bridge and exception* length (BL))] times [right-of-way width or Engineer-specified width (RW) minus plan paved surface width (PPW)] equals square meters divided by 43,560 ft²/acre= pay quantity in hectares.

(PL – BL) x (RW – PPW) = ____ ft² ÷ 43,560 ft²/acre = pay quantity in acres

(PL – BL) x (RW – PPW) = ____ m² ÷ 10,000 m² = pay quantity in hectares

*Exception means major road intersections and Plan exceptions, not side roads, drives, etc.

706.4.01 Limits

General Provisions 101 through 150.

706.5 Payment

The turf establishment area will be paid for at the Contract Price per acre (hectare). Payment is full compensation for equipment, labor, seed, fertilizer, and any other materials necessary to complete the Item.

Payment will be made under:

| Item No. 706 | Turf establishment, type _____ | Per acre (hectare) |

706.5.01 Adjustment

General Provisions 101 through 150.

Section 708—Plant Topsoil

708.1 General Description

This work includes furnishing and applying approved plant topsoil at the locations shown on the Plans or as directed by the Engineer and according to these Specifications.

708.1.01 Definitions

General Provisions 101 through 150.
708.1.02 Related References
A. Standard Specifications Section
 104—Scope of Work Section
 106—Control of Materials
 Section 107—Legal Regulations and Responsibility to the Public
 Section 893—Miscellaneous Planting Materials
B. Referenced Documents
 General Provisions 101 through 150.

708.1.03 Submittals
General Provisions 101 through 150.

708.2 Materials
A. Plant Topsoil Materials
 Use plant topsoil that meets the requirements of Subsection 893.2.01.
B. Sources of Material
 Except as modified in this Section, furnish plant topsoil material according to Section 106.
 1. Plant Topsoil Obtained from the Work
 The requirements of Subsection 104.06, “Right in and Use of Material Found on the Work” are in effect for plant
 topsoil obtained from the Work.
 a. Obtain the quantity of plant topsoil called for on the Plans.
 b. Use plant topsoil material present on the Project as long as the topsoil meets the Specifications applying to the
 Item.
 c. Excavate for topsoil only within the construction limits of the Project. Obtain topsoil from embankment areas,
 excavation areas, or borrow excavation pits.
 d. When obtaining plant topsoil from borrow excavation pits or the roadway, cross section the excavated areas a
 second time before beginning regular excavation.
 2. Plant Topsoil Furnished by the Contractor
 When insufficient material is obtainable from the Work, obtain additional topsoil offsite.
 The Contract Price will include the costs necessary to locate, purchase, and deliver the required amount of
 acceptable material to the Work.

708.2.01 Delivery, Storage, and Handling
For the purpose of measurement, the Contractor may haul plant topsoil in any type of vehicle, provided the vehicle when
loaded to capacity and traveling over public roads and streets meets the provisions of Subsection 107.14, “Load Restrictions.”
When using pans or scrapers, the capacity will be the manufacturer’s rated capacity.

708.3 Construction Requirements
708.3.01 Personnel
General Provisions 101 through 150.

708.3.02 Equipment
General Provisions 101 through 150.

708.3.03 Preparation
General Provisions 101 through 150.

708.3.04 Fabrication
General Provisions 101 through 150.
708.3.05 Construction

A. General Requirements

Unless otherwise specified in the Plans, uniformly spread plant topsoil to at least 2 in (50 mm) loose depth.

1. Erosion Control
 Only use plant topsoil on slopes where the gradient is 3:1 or flatter.
 To reduce loss of plant topsoil by erosion, place the soil shortly before and in conjunction with grassing operations.
 Place topsoil and complete grassing within specified seasonal limits.

2. Spreading Procedure
 Before applying plant topsoil, scarify the designated areas 6 in to 8 in (150 mm to 200 mm) deep.
 Mix the plant topsoil, lime when required, and the first application fertilizer with the underlying soil when preparing
 the soil for grassing. Spread and smooth the topsoil uniformly.

B. Plant Topsoil Obtained From The Work

1. Stockpiling
 When obtaining topsoil from the work site, strip and stockpile the topsoil in suitable locations in advance of grading
 operations.
 Just before grassing, remove the plant topsoil from the stockpile and spread it over the designated areas.
 If grading is started before grading operations are finished, if feasible, haul the topsoil from undisturbed areas
 before grading begins directly to the areas designated for the topsoil, eliminating the cost of stockpiling and
 removing the stockpile.

2. Surplus Material
 When stockpiling more material than specified in the Contract, use the surplus material as additional plant topsoil
 material if directed by the Engineer.
 After constructing the Item, use the surplus material left in the stockpiles to maintain the Item or to fill washes that
 occur within a reasonable haul distance.
 Otherwise, remove or dress down the remaining material as directed by the Engineer, without additional
 compensation.

C. Plant Topsoil Furnished by Contractor

 When locating, obtaining, and paying for plant topsoil from pits outside the right-of-way, excavate the topsoil and haul it
 directly to the designated areas just before the planting begins.
 Notify the Engineer, according to Subsection 893.2.01, “Plant Topsoil,” of the source of the material. The Engineer will
 inspect the topsoil. If the material is suitable, the Engineer will specify the permissible excavation depth. If the
 permissible excavation depth is exceeded, the material obtained from the areas will be rejected.

708.3.06 Quality Acceptance

After placing the plant topsoil, replace material lost by erosion at no expense to the Department.

708.3.07 Contractor Warranty and Maintenance

General Provisions 101 through 150.

708.4 Measurement

Accepted plant topsoil for this Item is measured by the cubic yard (meter) of material delivered in vehicles to the designated
areas for plant topsoil. Only vehicles loaded to full capacity are measured for payment. No payment will be made for material
delivered in partially filled vehicles.

Plant topsoil is not measured for payment when it is used for an Item that includes the cost of the plant topsoil in the price bid
per Unit for the Item.

708.4.01 Limits

General Provisions 101 through 150.

708.5 Payment

Plant topsoil, eligible for payment, will be paid for at the Contract Unit Price per cubic yard (meter). Payment is full
compensation for furnishing the material, removing objectionable matter from the material, loading and unloading.
stockpiling and removing from the stockpile, hauling, spreading, preparing the ground, pulverizing, mixing, remixing, and for all maintenance.

Payment will be made under:

| Item No. 708. | Plant topsoil | Per cubic yard (meter) |

708.5.01 Adjustments
General Provisions 101 through 150.

Section 710—Permanent Soil Reinforcing Mat

710.1 General Description
This work includes furnishing and placing a permanent mat over prepared areas according to the Plans or as directed by the Engineer.

710.1.01 Definitions
General Provisions 101 through 150.

710.1.02 Related References
A. Standard Specifications
 - Section 700—Grassing
 - Section 881—Fabrics
B. Referenced Documents
 - QPL 49

710.1.03 Submittals
General Provisions 101 through 150.

710.2 Materials
Use materials listed in the QPL 49.

Ensure that materials meet the following requirements.

A. Preformed Mat

Use mat with a web of mechanical or melt-bonded polymer nettings, monofilaments, or fibers entangled to form a dimensionally stable matrix. Bond the mat with one of the following:

- Polymer welding
- Thermal fusion
- Polymer fusion
- Fibers placed between two high-strength, biaxially oriented nets bound by parallel-lock stitching with polyolefin, nylon, or polyester threads

Use a mat with enough strength and elongation to limit stretching and maintain its shape before, during, and after installation under dry or wet conditions. Provide a mat with stabilized components that avoid ultraviolet degradation and are inert to chemicals normally encountered in a natural soil environment. Ensure that the mat conforms to the following physical properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Minimum Value</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>1/2 in (13 mm)</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>0.60 lbs/yd² (325 g/m²)</td>
<td></td>
</tr>
<tr>
<td>Roll width</td>
<td>38 in (965 mm)</td>
<td></td>
</tr>
<tr>
<td>Property</td>
<td>Minimum Value</td>
<td>Test Method</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Tensile strength</td>
<td></td>
<td>ASTM D 5034*</td>
</tr>
<tr>
<td>Length (50% elongation)</td>
<td>15 lbs/in (2.5 N/mm)</td>
<td></td>
</tr>
<tr>
<td>Length (ultimate)</td>
<td>20 lbs/in (3.5 N/mm)</td>
<td></td>
</tr>
<tr>
<td>Width (50% elongation)</td>
<td>5 lbs/in (1 N/mm)</td>
<td></td>
</tr>
<tr>
<td>Width (ultimate)</td>
<td>10 lbs/in (2 N/mm)</td>
<td></td>
</tr>
<tr>
<td>Ultraviolet stability</td>
<td>80%</td>
<td>ASTM D 4355</td>
</tr>
<tr>
<td>1,000 hours in an Atlas ARC Weatherometer (ASTM G 23, Type D)</td>
<td></td>
<td>ASTM D 822</td>
</tr>
</tbody>
</table>

* Modified to use minimum 6 in (150 mm) wide test specimens.

B. Stakes or Staples

Use 1 in by 3 in (25 mm by 75 mm) wood stakes made from sound stock cut in a triangular shape. Cut stakes 12 in to 18 in (300 mm to 450 mm) long depending on soil compaction. Use metal staples with the following characteristics:

- Diameter of 1/8 in (3 mm) or greater
- U shape
- Legs at least 8 in (200 mm) long
- Crown 2 in (50 mm) across

C. Filter Fabric

Use woven or nonwoven filter fabric that meets the requirements of Subsection 881.2.05, “Plastic Filter Fabric.”

710.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.

710.3 Construction Requirements

710.3.01 Personnel

General Provisions 101 through 150.

710.3.02 Equipment

General Provisions 101 through 150.

710.3.03 Preparation

A. Site Preparation

Before protecting areas with mat, prepare the area according to Section 700 with the following steps:

1. Bring to final grade
2. Plow
3. Lime
4. Fertilize

Provide a smooth, firm, and stable surface free of rocks, clods, roots, or other obstructions that would prevent the mat from contacting the soil directly.

710.3.04 Fabrication

General Provisions 101 through 150.
710.3.05 Construction
A. Installing Mat

Do not use a mat in areas with rock outcroppings or large rocks. Install the mat either in ditches or on slopes according to the following requirements:

1. Ditches

To install the mat in ditches:
 a. Cut a transverse trench 6 in wide by 9 in deep (150 mm wide by 225 mm deep) at the ends of the mat and at 25 ft (7.5 m) intervals along the ditch.
 b. Cut longitudinal, 4 in (100 mm) deep anchor slots along each side of the mat along the full length of the ditch, burying mat edges.
 c. Roll out the center strip of matting, starting at the lower end of the ditch.
 d. Roll out each adjacent strip of matting to overlap the preceding strip at least 3 in (75 mm).
 e. Overlap the ends of each mat roll 3 ft (1 m) with the upslope mat on top. Stretch the mat to the bottom of the slot, folding it back and staking through two layers of material.
 f. Stake each strip of matting at 1 ft (300mm) intervals in each anchor slot, with one stake serving the overlapped edges of adjoining strips.
 g. Backfill and compact the slot.
 h. Fold the mat back over the slot and continue in the upstream direction (closed anchor slot).
 i. Stake the mat snugly in the longitudinal slots and at intervals a maximum of 5 ft (1.5 m) along the ditch (open anchor slot).
 j. Backfill and dress the longitudinal anchor slots.

Lay up to 10 ft (3 m) of filter fabric under runs of matting that begin at pipe outlets.

B. Grassing

Grass the entire soil-filled mat and disturbed soil area according to Section 700.

710.3.06 Quality Acceptance
General Provisions 101 through 150.

710.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

710.4 Measurement

Permanent soil-reinforcing mat complete and accepted is measured for payment by the square yard (meter), surface measured.

710.4.01 Limits
Overlaps and anchor slots are incidental to the work and are not measured for payment.

710.5 Payment

This work will be paid for at the Contract Price per square yard (meter) for permanent soil-reinforcing mat, complete in place and accepted. Payment is full compensation for furnishing and installing the mat according to this Specification, including filter fabric and maintenance.

Preparing the area and grassing will be paid for according to Section 700.

Payment will be made under:

| Item No. 710 | Permanent soil reinforcing mat | Per square yard (meter) |

710.5.01 Adjustments
General Provisions 101 through 150.
Section 712—Fiberglass Blanket

712.1 General Description
This work includes furnishing and placing fiberglass blankets over previously prepared and grassed areas according to the Plans or as directed by the Engineer.

712.1.01 Definitions
General Provisions 101 through 150.

712.1.02 Related References
A. Standard Specifications
 - Section 106—Control of Materials
 - Section 700—Grassing
 - Section 822—Emulsified Asphalt
B. Referenced Documents
 General Provisions 101 through 150.

712.1.03 Submittals
Submit certification according to Subsection 106.05 stating that materials conform to the requirements of this Section.

712.2 Materials
A. Fiberglass Mat or Blanket
 Fiberglass mat is a machine-produced blanket consisting of a uniform layer of continuous, randomly oriented glass fiber strands. Use a mat that is at least 48 in (1.2 m) wide and weighs the following:
 - At least 0.2 lbs/yd² (105 g/m²) when used on slopes
 - At least 0.4 lbs/yd² (215 g/m²) when used in waterways
B. Anchoring Staples
 Use staples made of cold-drawn wire no smaller than 14 gauge (2 mm) in diameter, formed into a U shape with 6 in (150 mm) long legs and a 1 in (25 mm) wide crown.
C. Asphalt
 Use asphalt emulsion for tying down the blanket that is grade SS-1h or SS1, conforming to Section 822.

712.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

712.3 Construction Requirements

712.3.01 Personnel
General Provisions 101 through 150.

712.3.02 Equipment
General Provisions 101 through 150.

712.3.03 Preparation
Before placing the fiberglass mat, complete grassing, smooth the area, and clear it of stones, lumps, roots, or other material that would prevent the mat from laying snugly on the underlying soil.

712.3.04 Fabrication
General Provisions 101 through 150.
712.3.05 Construction

A. Placing Mat

Place the fiberglass mat or blanket within 24 hours after the area has been planted but before any rain or watering. Place the mat as follows:

1. Dig a 9 in (225 mm) deep anchor slot across the upgrade end of the site.
2. Place the initial 12 in (300 mm) of blanket in the anchor slot.
3. Backfill and solidly tamp the slot.
4. Unroll the blanket in the direction of water flow, keeping the blanket in contact with the soil over the entire area.
5. Overlap adjacent strips at least 2 in (50 mm). Overlap adjoining ends at least 6 in (150 mm) with the upstream section on top.

B. Stapling

Drive staples vertically into the ground approximately 1 yd (1 m) apart on each side of the blanket.

Drive one row in the center alternately spaced between each side staple.

Place the edge staples in the 2 in (50 mm) overlap. At the end of each mat, place staples in a row spaced approximately 12 in (300 mm) apart.

C. Steep Slopes

The Engineer may specify additional staples or check slots in waterways where slopes are steep or large water volumes or velocities are anticipated.

D. Asphalt Emulsion

The Contractor may apply an asphalt emulsion instead of staples to anchor the blanket.

Apply the bituminous material uniformly over the mat at approximately the following rates:

- 0.12 gal to 0.15 gal/yd² (0.5 L to 0.7 L/m²) for slopes
- 0.24 gal to 0.30 gal/yd² (1 L to 1.4 L/m²) or waterways

After the emulsified asphalt has broken and becomes tacky, apply a light layer of sand or pulverized soil to the treated areas, if directed by the Engineer. This application prevents the treated area from sticking to anything that contacts it. Do not apply sand or soil in quantities that would damage the newly planted areas.

712.3.06 Quality Acceptance

General Provisions 101 through 150.

712.3.07 Contractor Warranty and Maintenance

Maintain treated areas to the Engineer’s satisfaction until Final Acceptance.

712.4 Measurement

The quantity of fiberglass blanket being paid for is the number of square yards (meters), surface measured, completed and accepted. The 2 in (50 mm) side laps and the blanket in the anchor slot are not included in the measurement, but are considered incidental to the work. Treated slopes and treated waterways are measured separately.

712.4.01 Limits

General Provisions 101 through 150.

712.5 Payment

This work will be paid for at the Contract Price per square yard (meter) for fiberglass blanket, complete in place and accepted. Payment is full compensation for furnishing and installing the blanket according to this Specification and maintaining the blanket. Preparing the area and grassing will be paid for according to Section 700.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 712</th>
<th>Fiberglass blanket, (slopes)</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 712</td>
<td>Fiberglass blanket, (waterways)</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>
712.5.01 Adjustments
General Provisions 101 through 150.

Section 713—Organic And Synthetic Material Fiber Blanket

713.1 General Description
This work includes furnishing and placing straw, excelsior, coconut fiber, wood fiber, or synthetic blankets over previously prepared and permanently grassed areas as shown on the Plans or as directed by the Engineer.

713.1.01 Definitions
- Straw Blanket: A machine-produced blanket of clean, weed-free, consistently thick straw from agricultural crops. The straw is evenly distributed over the entire area of the blanket.
- Excelsior Blanket: A machine-produced mat of curled wood excelsior. Eighty percent consists of 6 in (150 mm) or longer fiber evenly distributed over the entire blanket.
- Coconut Fiber Blanket: A machine-produced blanket of 100 percent coconut fiber evenly distributed over the entire blanket.
- Wood Fiber Blanket:
 - Type I—A machine-produced blanket manufactured with reprocessed wood fibers to a consistent thickness.
 - Type II—A hydraulically applied bonded fiber matrix which upon drying, adheres to the soil in the form of a continuous 100 percent coverage, biodegradable erosion control blanket
- Synthetic Fiber Blanket—A machine produced uniform blanket of ultraviolet degradable polypropylene staple fibers reinforced with ultraviolet degradable polypropylene netting.

713.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 General Provisions 101 through 150.

713.1.03 Submittals
Use approved materials from QPL 62 without further testing. Otherwise, submit materials for testing before use.

713.2 Materials
Use blankets that meet the following requirements for placement on slopes and waterways. For a list of organic material fiber blankets, see QPL 62.

A. Straw Blanket
Use blankets at least 48 in (1.2 m) wide and at least 3/8 in (9 mm) thick with a minimum dry weight of 0.5 lb/yd² (270 g/m²) and a stitch pattern and row spacing of no more than 2 in (50 mm). Have the top side covered with a photo-degradable plastic mesh having a maximum mesh size of 5/16 by 5/16 in (8 mm by 8 mm). The mesh will be sewn to the straw with biodegradable thread.

Use this blanket on slopes only.

B. Excelsior Blanket
Use a smolder-resistant blanket with the top side clearly marked. Use a blanket at least 48 in (1.2 m) wide and 1/4 in (6 mm) thick with a minimum dry weight of 0.8 lb/yd² (430 g/m²) and a stitch pattern and row spacing of no more than 2 in (50 mm).

- Slopes: Have the top side covered with a photo-degradable plastic mesh having a maximum mesh size of 1-1/2 by 3 in (38 by 75 mm).
Waterways: Have the top and bottom sides of the blanket covered with a photodegradable plastic mesh having a maximum mesh size of 1 ½ x 3 in (38 x 75 mm), sewn to the fiber with biodegradable thread or otherwise bonded as approved by the Engineer.

C. Coconut Fiber Blanket

Use a blanket at least 48 in (1.2 m) wide and 1/4 in (6 mm) thick with a minimum dry weight of 0.5 lb/yd² (270 g/m²) and a stitch pattern and row spacing of no more than 2 in (50 mm). Use the blanket in waterways only.

Ensure that both sides of the blanket are covered with a photo-degradable plastic mesh with a maximum of 5/8 by 5/8 in (19 by 19 mm). Have the mesh sewn to the fiber with a breakdown-resistant synthetic yarn.

D. Wood Fiber Blanket

Type I

- Use a machine produced blanket manufactured to a consistent thickness using reprocessed wood fibers.
- Use a blanket at least 48 in (1.2 m) wide with a minimum dry weight of 0.35 lb/yd² (190 g/m²). Use the blanket on slopes only.
- Ensure that the top side of the blanket is covered with a photo-degradable plastic mesh with a maximum mesh size of 5/8 by 3/4 in (16 by 19 mm) securely bonded to the mat.
- Ensure that the fibers do not contain a growth that inhibits germination.

Type II

- Ensure the bonded fiber matrix is composed of long strand wood fibers or cellulosic-based fibers held together by a bonding agent, which, upon drying, becomes insoluble and non-dispersible.
- Apply the matrix at the following rates:

<table>
<thead>
<tr>
<th>Application Rate</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,000 lbs/acre (3.4 Mg/ha)</td>
<td>4:1</td>
</tr>
<tr>
<td>3,600 lbs./acre (4.1 Mg/ha)</td>
<td>2:1</td>
</tr>
<tr>
<td>4,000 lbs./acre (4.5 Mg/ha)</td>
<td>1:1</td>
</tr>
</tbody>
</table>

- Do not apply the bonded matrix on saturated soils or immediately before, during or after rainfall. Allow the matrix to dry for at least 24 hours after installation. After drying period, ensure that the bonded fiber matrix does not inhibit the germination or growth of plants beneath and through the formed matrix blanket and that it does not form a water insensitive crust.
- If bonded fiber matrix is to be used, the application of straw mulch for grassing operations is not required.

E. Synthetic Fiber Blanket

Use a blanket having a minimum net size of 5/8 x 3/4 inch (16 x 19 mm). Ensure the netting is securely bonded to the blanket and that the blanket conforms to the following physical properties:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>MINIMUM VALUE</th>
<th>TEST METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>1 oz/sq. yd (34 g/m²)</td>
<td>ASTM D 1682 [6” (150 mm) strip]</td>
</tr>
<tr>
<td>Roll Width</td>
<td>48 inch (1.2 m)</td>
<td></td>
</tr>
<tr>
<td>Tensile Strength Length</td>
<td>6 lbs./in</td>
<td></td>
</tr>
</tbody>
</table>

Use Synthetic fiber blanket on slopes only.

F. Anchoring Staples

Use anchoring staples made from minimum 11-gauge wire, formed into a U shape. The legs will be at least 6 in (150 mm) long and the crown at least 1 in (25 mm) wide. Use staples rigid enough to penetrate the soil without distortion.

713.2.01 Delivery, Storage, and Handling

General Provisions 101 through 150.
713.3 Construction Requirements

713.3.01 Personnel
General Provisions 101 through 150.

713.3.02 Equipment
General Provisions 101 through 150.

713.3.03 Preparation
Before placing the blanket, complete the grassing operations, smooth the area, and remove stones, lumps, roots, or other material that would prevent the blanket from laying snugly on the soil.

713.3.04 Fabrication
General Provisions 101 through 150.

713.3.05 Construction
A. Placing Blanket

Place blankets or mats vertically on slopes, beginning at the top of the slope and extending to the bottom of the slope. Horizontal installation of the blankets is not permitted.

Place the blanket within 24 hours after planting and before rain or watering. Place the blanket on slopes and waterways as follows:

1. On Slopes

Unroll the blanket with the netting on top and the fibers contacting the soil over the entire slope. When using two or more blankets to cover an area, overlay the joint 4 in (100 mm) and staple through the joint. Overlap the ends of the blanket at least 6 in (150 mm) with the upgrade section on top and staple through the overlap.

2. In Waterways

In waterways, ditches, flumes, and channels unroll the blanket with netting sewn on both sides and place in contact with the soil beginning at the downstream terminal and progressing upstream of the blanket according to the Construction Detail for Permanent Soil Reinforcing Mat.

Allow a longitudinal seam only if the blankets overlap at least 6 in (150 mm) and are securely stapled. Overlap ends of the blanket at least 6 in (150 mm) with the upgrade section on top.

Insert 12 in (300 mm) of the upslope end of the first row of blankets into a 6 in (150 mm) deep anchor slot. Staple the blanket in the slot bottom, backfill the slot, and solidly tamp.

B. Stapling

Drive staples vertically into the ground to anchor the plastic mesh. Place the staples approximately 2 yd (2 m) apart on each side of the blanket and add one row in the center alternately spaced between each side staple.

Where blankets lay side to side, place each staple so that half of the staple anchors mesh from each blanket.

At the beginning of a blanket, space staples approximately 12 in (300 mm) apart in a row.

C. Steep Slopes

The Engineer may specify additional staples or check slots in waterways where slopes are steep or large water volumes and/or velocities are anticipated.

713.3.06 Quality Acceptance
General Provisions 101 through 150.

713.3.07 Contractor Warranty and Maintenance
Maintain the blanket installation throughout the life of the Contract. If before Final Acceptance any staples become loose or lift up or if the blanket becomes loose, torn, or undermined, then fix the problem by reshaping, regrassing, refertilizing, or replacing damaged areas. Repairs are done without additional compensation.

713.4 Measurement
Straw blanket excelsior blanket, coconut fiber blanket, wood fiber blanket, or synthetic blanket, installed and accepted is measured for payment by the square yard (meter). Laps and blanket in the anchor slots are not measured. They are considered incidental to the work.
713.4.01 Limits
General Provisions 101 through 150.

713.5 Payment
The preliminary preparation of the areas on which the blanket is to be placed, including seeding or sodding, will be paid for under the appropriate Contract Items.

Straw blanket excelsior blanket, coconut fiber blanket, wood fiber blanket or synthetic fiber blanket will be paid for at the Contract Unit Price per square yard (meter). Payment is full compensation for the construction of the Item including all laps, materials, equipment, tools, labor, incidentals, and maintenance.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 713</th>
<th>Description</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 713</td>
<td>Straw blanket (slopes)</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 713</td>
<td>Excelsior blanket (slopes)</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 713</td>
<td>Excelsior blanket (waterways)</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 713</td>
<td>Coconut fiber blanket (waterways)</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 713</td>
<td>Wood fiber blanket (slopes)</td>
<td>Per square yard (meter)</td>
</tr>
<tr>
<td>Item No. 713</td>
<td>Synthetic fiber blanket (slopes)</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

713.5.01 Adjustments
General Provisions 101 through 150.

Section 714—Jute Mesh Erosion Control

714.1 General Description
This work includes furnishing and placing jute mesh over previously prepared grassed areas according to the Plans or as directed by the Engineer.

714.1.01 Definitions
Jute Mat: A mesh matting made of jute yarn.

714.1.02 Related References
A. Standard Specifications
 Section 106—Control of Materials
B. Referenced Documents
 General Provisions 101 through 150.

714.1.03 Submittals
Provide a materials certification according to Subsection 106.05 that the materials meet the Specifications.

714.2 Materials
Ensure that materials conform with Subsection 106.05 and meet the requirements below.

A. Jute Mat
 Use jute mat made of unbleached, undyed, and loosely-twisted yarn. The unit yarn weight shall be from 0.90 to 1.50 lb/yd² (488 to 814 g/m²). A 48 in (1.2 m) width shall show between 76 and 80 warps, and a 36 in (900 mm) length shall show between 39 and 43 wettings. Furnish woven mesh strips of at least 45 in (1.1 m).

B. Anchoring Staples
 Cold-drawn wire14 gauge (2 mm) or wider in diameter, formed into a U shape from a wire 12 in (300 mm) or longer.
714.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

714.3 Construction Requirements

714.3.01 Personnel
General Provisions 101 through 150.

714.3.02 Equipment
General Provisions 101 through 150.

714.3.03 Preparation
Before placing jute mesh, complete grassing and leave the area in the following condition:

- Smooth
- Uniform
- Free of stones, lumps, or roots
- Free of other material that prevents mesh from snugly contacting the underlying soil

If erosion occurs after attaining the required surface area and contour, repair the area before placing mesh.

714.3.04 Fabrication
General Provisions 101 through 150.

714.3.05 Construction
A. Placing Mesh

After grassing, place jute mesh in an area indicated on the Plans or as directed by the Engineer.

Place mesh according to the Plans and the following requirements:

1. Roll the mesh out in the direction of flow unless the downstream end section connects to a drainage structure or paved ditch. In this case:
 a. Anchor the mesh in a 6 in (150 mm) deep trench adjacent to the structure.
 b. Roll the mesh upstream and use a junction slot to connect it to the mesh that has been rolled downstream.
2. Overlap adjacent strips by at least 6 in (150 mm).
3. Overlap adjoining ends by at least 6 in (150 mm).
4. For all overlaps, place the upstream section on top.
5. Use a Type 2 check slot at the downstream end of the jute mesh that does not connect to a structure.
6. Apply jute mesh without stretching. Lay it evenly but loosely on the soil surface.
7. To keep the area smooth, do not allow workers to walk directly on the seedbed before or after applying mesh.
8. Bury the up-channel end of each installation in a narrow, 6 in (150 mm) deep trench.
9. After burying the mesh, backfill, tamp, and staple the trench as shown on the Plans.
10. Where one roll of jute mesh ends and a second begins, use a junction slot to make the connection as shown on the Plans.
11. Space between the check or anchor slots is no more than 50 ft (15 m) on grades of 3 percent or less. On grades of more than 3 percent, ensure that the space between the check or anchor slots is no more than 25 ft (7.5 m).

B. Stapling

Hold matting strips firmly in place with one row of staples as follows:

1. Staple along each edge.
2. Staple each row along the middle.
3. Space staples no more than 3 ft (1 m) apart in each row.
4. Space the staples in the middle row alternately with those at the edges.
5. For strips wider than 60 in (1.5 m), space staples no more than 3 ft (1 m) apart.
6. At the ends of the covered area and at overlapping joints, space staples no more than 18 in (450 mm) apart.
7. Ensure that staples remain flush with the ground.

C. Rolling

After placing and stapling the jute mesh:

1. Firmly embed it in the soil by tamping or rolling.
2. Secure mesh that bridges over soil surface irregularities with extra staples to provide overall contact with the soil.

714.3.06 Quality Acceptance
General Provisions 101 through 150.

714.3.07 Contractor Warranty and Maintenance
Maintain jute mesh installation during the life of the Contract. Before acceptance of the Project, reshape, regrass, or refertilize if:

- Staples become loose or raised
- Mesh becomes loose, torn, or undermined

Repair or replace jute mesh without additional compensation.

714.4 Measurement

Jute mesh, complete in place and accepted, will be measured for payment by the square yard (meter), surface measure. Laps will not be measured but will be included in the overall area.

714.4.01 Limits
General Provisions 101 through 150.

714.5 Payment

Preparing areas to be meshed, including seeding or sodding, will be paid for under the appropriate Contract Items.

Jute mesh will be paid for at the Contract Unit price per square yard (meter), which is full compensation for constructing the item and providing materials, equipment, tools, labor, maintenance, and incidentals.

Payment will be made under:

| Item No. 714 | Jute mesh | Per square yard (meter) |

714.5.01 Adjustments
General Provisions 101 through 150.

Section 715—Bituminous Treated Roving

715.1 General Description

This work includes furnishing and placing a layer of bituminous treated roving on planted slopes, ditches, waterways, and other areas according to the Plans or as directed by the Engineer.

715.1.01 Definitions
General Provisions 101 through 150.

715.1.02 Related References
A. Standard Specifications
 Section 822—Emulsified Asphalt
B. Referenced Documents
 QPL 24
715.1.03 Submittals
Furnish the Department a certification from the manufacturer stating that glass fibers or fibrillated polypropylene yarn meets the requirements of this Specification.

715.2 Materials
Wind glass fibers or fibrillated polypropylene yarn into cylindrical packages so that the roving can be continuously fed through an ejector driven by compressed air and expanded into a mat.
Lightly bind fibers or yarn together in a ribbon form without using clay, starch, or other damaging substances.
For a list of sources, see QPL 24.
Ensure that the material does not contain the following:

- More than 0.75 percent of saponifiable acids
- Petroleum solvents
- Other agents known to be toxic to plant life

A. Glass Fiber Material
Ensure the glass fiber package weighs no less than 30 lbs (14 kg).

B. Polypropylene Yarn Material
Ensure the polypropylene yarn package meets these requirements:

- Weighs no less than 18 lbs (8 kg).
- The nominal size of the roving is 515 yd/lb (1038 m/kg).
- Contain enough UV inhibitors to retain 70 percent of its strength after 500 hours of exposure in an Atlas Twin Arc Weatherometer.

C. Bituminous Material
Use asphalt emulsion grade SS-1 or SS-1h according to Section 822 for tying down fiber or yarn material.

715.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

715.3 Construction Requirements
715.3.01 Personnel
General Provisions 101 through 150.

715.3.02 Equipment
When applying glass fiber or polypropylene yarn, use an air compressor capable of supplying 40 ft³ (1.1 m³) of air per minute at 80 psi to 100 psi (550 kPa to 690 kPa) pressure. Run 3 kits simultaneously from a 125 ft³ (3.5 m³) compressor. Each kit will consist of:

- One air gun specifically designed for spraying glass fibers or polypropylene yarn
- Enough 3/8 in (10 mm) rubber hose for application
- At least one bucket container

Do not use equipment that cuts or breaks the roving. Apply asphalt using equipment that sprays the material uniformly at the rates specified in Subsection 715.3.05.

715.3.03 Preparation
General Provisions 101 through 150.

715.3.04 Fabrication
General Provisions 101 through 150.
715.3.05 Construction

A. Bituminous Treated Fibers
 Apply bituminous treated roving within 24 hours after planting an area with permanent grass. Apply roving and bituminous material uniformly over the planted areas at the following rates:
 1. On Slopes
 Spread glass fiber on slopes at the approximate rate of 0.2 to 0.25 lbs/yd² (110 g to 135 g/m²). Apply bituminous material at the approximate rate of 0.12 gal to 0.15 gal/yd² (0.5 L to 0.7 L/m²).
 2. In Waterways
 In waterways, ditches, flumes, and channels, spread glass fiber at the approximate rate of 0.4 lbs to 0.5 lbs/yd² (215 g to 270 g/m²). Apply bituminous material at the approximate rate of 0.24 to 0.30 gal/yd² (1 L to 1.5 L/m²).

Areas covered with bituminous treated roving do not require an application of mulch.

B. Bituminous Treated Polypropylene Yarn
 1. On Slopes
 Spread polypropylene yarn on slopes at the approximate rate of 0.10 lbs to 0.15 lbs/yd² (55 g to 80 g/m²). Apply bituminous material at the approximate rate of 0.12 gal to 0.15 gal/yd² (0.5 L to 0.7 L/m²).
 2. In Waterways
 In waterways, ditches, flumes and channels, spread polypropylene yarn at the approximate rate of 0.2 to 0.25 lbs/yd³ (110 g to 135 g/m³). Apply bituminous material at the approximate rate of 0.24 to 0.30 gal/yd² (1 L to 1.5 L/m²).
 After the emulsified asphalt breaks and becomes tacky, lightly apply sand or pulverized soil to treated areas to prevent the treated area from sticking to anything that touches it. Do not apply sand or soil quantities that will damage newly planted areas if directed by the Engineer.

C. Material Substitution
 When bituminous treated roving is specified, the Contractor has the option to substitute any of the following materials for bituminous treated roving:
 - Section 710—Permanent Soil Reinforcing Mat
 - Section 712—Fiberglass Blankets
 - Section 713—Excelsior Blankets
 - Section 714—Jute Mesh
 All of the materials, construction, and measurement portions of Section 710, Section 712, Section 713, or Section 714, whichever is selected, apply to this work.

715.3.06 Quality Acceptance
General Provisions 101 through 150.

715.3.07 Contractor Warranty and Maintenance
Maintain treated areas to the Engineer’s satisfaction until Final Acceptance of the Project.

715.4 Measurement
The quantity of bituminous treated roving to be paid for is measured in the number of surface square yards (meters), complete and accepted. The quantity of materials substituted for bituminous treated roving as allowed by Subsection 715.3.C will be measured according to the applicable portions of Section 710, Section 712, Section 713, or Section 714.

715.4.01 Limits
Treated slopes and waterways are measured separately.

715.5 Payment
This Work will be paid for at the Contract Price per square yard (meter) for bituminous treated roving of the type specified, complete in place and accepted. Materials substituted for bituminous treated roving will be paid for under Item No. 715—Bituminous Treated Roving (waterways), per square yard (meter) complete, in place and accepted.
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 715</th>
<th>Bituminous treated roving (slopes)</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 715</td>
<td>Bituminous treated roving (waterways)</td>
<td>Per square yard (meter)</td>
</tr>
</tbody>
</table>

715.5.01 Adjustments
General Provisions 101 through 150.

Section 716—Erosion Control Mats (Slopes)

716.1 General Description
This work includes furnishing and placing erosion control mats (blankets) made of fiberglass, excelsior, jute mesh, bituminous treated roving, and straw, synthetic, or coconut over grass areas prepared according to Section 700 for permanent grass. Place according to the Plans or as directed by the Engineer. This specification is not applicable for waterways.

716.1.01 Definitions
General Provisions 101 through 150.

716.1.02 Related References
A. Standard Specifications
 Section 712—Fiberglass Blanket
 Section 713—Organic and Synthetic Material Fiber Blanket
 Section 714—Jute Mesh Erosion Control
 Section 715—Bituminous Treated Roving
B. Referenced Documents
 General Provisions 101 through 150.

716.1.03 Submittals
General Provisions 101 through 150.

716.2 Materials
General Provisions 101 through 150.

716.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

716.3 Construction Requirements

716.3.01 Personnel
General Provisions 101 through 150.

716.3.02 Equipment
General Provisions 101 through 150.

716.3.03 Preparation
General Provisions 101 through 150.

716.3.04 Fabrication
General Provisions 101 through 150.

716.3.05 Construction
The contractor may elect to use either Section 712—Fiberglass Blanket, Section 713—Organic and Synthetic Material Fiber Blanket (except do not use Type II Wood Fiber Blanket), Section 714—Jute Mesh Erosion Control, or Section 715—
Bituminous Treated Roving, on slopes. All of the materials, construction and measurement portions of the noted sections apply to the type mat (blanket) selected for use.

Place blankets or mats vertically on the slopes beginning at the top of the slope and extending to the bottom of the slope. Horizontal installation of the blankets or mats is not permitted.

The application of mulch is not required for permanent grassing when one of the above noted mats or blankets is placed on the previously prepared and grassed slopes with 24 hours.

716.3.06 Quality Acceptance
General Provisions 101 through 150.

716.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

716.4 Measurement
Erosion control mats (Slopes) are measured according to the Specification sections referenced in Subsection 716.3.05.

716.4.01 Limits
General Provisions 101 through 150.

716.5 Payment
Erosion control mats (Slopes), measured as specified in Section 712, Section 713, Section 714, or Section 715 will be paid for at the Contract Unit Price per square yard (meter).

This payment is full compensation for constructing the mat (blanket) and providing materials, equipment, tools, labor, and incidentals needed to maintain mats (blankets) for the life of the Contract or until a stand of grass has developed enough to prevent erosion.

Payment will be made under:

| Item No. 716 | Erosion control mats (slopes) | Per square yard (meter) |

716.5.01 Adjustments
General Provisions 101 through 150.

Section 718—Wood Fiber

718.1 General Description
This work includes furnishing and placing wood cellulose fiber or wood pulp fiber in hydroseeding operations according to the Plans and Specifications, and as directed by the Engineer.

718.1.01 Definitions
General Provisions 101 through 150.

718.1.02 Related References
A. Standard Specifications
 Section 106—Control of Materials
 Section 700—Grassing
B. Referenced Documents
 QPL 25

718.1.03 Submittals
Provide a materials certification according to Subsection 106.05 that the materials meet the Specifications.
718.2 Material
Use wood fibers that do not contain germination or growth-inhibiting factors and that meet the requirements of Subsection 106.05 and the following:
- When mixed with water, they disperse and suspend evenly
- After application, their color contrasts with the soil color to assist in identifying the area to be seeded
- When sprayed uniformly on the soil surface, they form an absorbent cover to distribute water to the underlying soil
- On an equilibrium air-dried basis, they contain a maximum of 15 percent water.
- They maintain a pH range of 4.5 to 8.5.

For a list of sources, see QPL 25.

718.2.01 Delivery, Storage, and Handling
Package wood fibers in moisture-resistant bags. Plainly mark the net weight of the packaged material on each bag.

718.3 Construction Requirements
718.3.01 Personnel
General Provisions 101 through 150.

718.3.02 Equipment
General Provisions 101 through 150.

718.3.03 Preparation
General Provisions 101 through 150.

718.3.04 Fabrication
General Provisions 101 through 150.

718.3.05 Construction
Apply enough materials to cover the ground evenly and thoroughly, as directed by the Engineer. Use hydraulic equipment to apply a homogenous water slurry that includes the proper amounts and kind of seed and fertilizer specified in Section 700. Mix the slurry during application.

718.3.06 Quality Acceptance
General Provisions 101 through 150.

718.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

718.4 Measurement
Wood fiber is not measured for separate payment.

718.4.01 Limits
General Provisions 101 through 150

718.5 Payment
This Work will not be paid for separately, but will be included in the payment for Permanent Grassing. (See Subsection 700.5.)

718.5.01 Adjustments
General Provisions 101 through 150.
Section 719—Silt Filter Bag

719.1 General Description
This Specification provides the requirements for furnishing and installing a silt filter bag to trap dissolved silt when pumping accumulated water from sediment basins or other areas where water may accumulate.

719.1.01 Definitions
General Provisions 101 through 150.

719.1.02 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 ASTM D 3776
 ASTM D 4632
 ASTM D 4833
 ASTM D 4491
 ASTM D 3786
 ASTM D 4991
 ASTM D 4355
 ASTM D 4751
 ASTM D 4884

719.1.03 Submittals
General Provisions 101 through 150.

719.2 Materials
Ensure that all materials meet the requirements of the following:
A. Fabric
 The silt filter bag fabric shall be a non-woven geotextile conforming to the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Minimum Value</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>10 oz/yd² (340 g/m²)</td>
<td>ASTM D 3776</td>
</tr>
<tr>
<td>Tensile strength (minimum average of 5 specimens)</td>
<td>270 lb (1100 N)</td>
<td>ASTM D 4632</td>
</tr>
<tr>
<td>Puncture Resistance,</td>
<td>150 lb (730 N)</td>
<td>ASTM D 4833</td>
</tr>
<tr>
<td>Initial Flowrate</td>
<td>70 gal/min-ft² (3500 L/min- m²)</td>
<td>ASTM D 4491</td>
</tr>
<tr>
<td>Bursting Strength</td>
<td>550 psi (3800 kPa)</td>
<td>ASTM D 3786</td>
</tr>
<tr>
<td>Permitivity</td>
<td>1.3 sec⁻¹</td>
<td>ASTM D 4991</td>
</tr>
<tr>
<td>UV Stability, 70% of initial Tensile Strength</td>
<td>173 lb (770 N)</td>
<td>ASTM D 4355</td>
</tr>
<tr>
<td>AOS Retained</td>
<td>100%</td>
<td>ASTM D 4751</td>
</tr>
</tbody>
</table>

B. Seams
 All seams shall be sewn with a double needle machine using a high strength thread. The seams shall have a minimum average wide-width strength of 100 lb/in (17.5 N/mm) when tested according to ASTM D 4884.

C. Opening
 Provide a silt filter bag with an opening to accommodate a 6" (150 mm) hose.
719.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

719.3 Construction Requirements

719.3.01 Personnel
General Provisions 101 through 150.

719.3.02 Equipment
General Provisions 101 through 150.

719.3.03 Preparation
General Provisions 101 through 150.

719.3.04 Fabrication
General Provisions 101 through 150.

719.3.05 Construction

1. Place the silt filter bag on a #57 stone gravel bed sloped to ensure that the filtered water will exit at the desired location. Chose the exit location to prevent erosion.

2. Extend the pump hose past the inlet opening to ensure that the silt-laden water will discharge in the center of the bag. Ensure that the seal between the inlet and hose is watertight.

3. When the filter bag is full of silt and cannot readily pass any more water, use a new filter bag. If approved by the Engineer, bury the full filter bag on site or remove the top section of fabric and seed the exposed filtrate. The size and number of silt filter bags will be shown on the Plans or determined by the Engineer.

719.3.06 Quality Acceptance
General Provisions 101 through 150.

719.3.07 Contractor Warranty and Maintenance
Continue water filtration as directed by the Engineer.

719.4 Measurement
Silt filter bags measured for payment will be the actual number of bags used for filtration, complete and accepted.

719.4.01 Limits
General Provisions 101 through 150.

719.5 Payment
Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 719.</th>
<th>Silt filter bag</th>
<th>Per each</th>
</tr>
</thead>
</table>

719.5.01 Adjustments
General Provisions 101 through 150.

Section 720—Triangular Silt Barrier

720.1 General Description
The work covered by this section consists of furnishing, installing, and removing water-permeable triangular silt barriers used to remove suspended particles from drainage water.

720.1.01 Definitions
General Provisions 101 through 150.
720.1.02 Related References
A. Standard Specifications
 Section 700
B. Referenced Documents
 General Provisions 101 through 150.

720.1.03 Submittals
General Provisions 101 through 150.

720.2 Materials
A. General
 Triangular silt barriers shall have a water-permeable urethane foam core surrounded by a woven geotextile fabric. The foam core shall have a triangular cross-section with a minimum height of 8 in (200 mm) in the center and a minimum base length of 16 in (400 mm). The other two cross-sectional sides shall be of equal length.
 The fabric shall be wrapped around the foam core and shall extend beyond both sides of the triangle at least 24 in (600 mm).
B. Filter Fabrics
 Filter fabrics shall be composed of strong rot-proof synthetic fibers formed into a woven fabric. The fabric shall be free of treatment or coating that might significantly alter its physical properties after installation.
 The fabric shall contain stabilizers or inhibitors to make the filaments resistant to deterioration from exposure to sunlight or heat. The fabric shall be a pervious sheet of synthetic fibers oriented into a stable network so that the fibers retain their relative position to each other under normal handling, installation, and service conditions. Edges of the fabric shall be finished to prevent the outer yarn from pulling away from the fabric.
 Fabrics shall be free of defects or flaws that would significantly affect its physical or filtering properties.
 The fabric shall not be exposed to temperatures greater than 140 °F (60 °C).
 The fabric shall meet the following physical requirements:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength – Pounds (newtons)</td>
<td>260 (1155)</td>
</tr>
<tr>
<td>(Min.) (ASTM D-4632)</td>
<td>(1)</td>
</tr>
<tr>
<td>Warp – 260 (1155)</td>
<td>Fill – 180 (800)</td>
</tr>
<tr>
<td>Elongation (% Max.)</td>
<td>40</td>
</tr>
<tr>
<td>AOS (Apparent Opening Size)</td>
<td>#30 (600 µm)</td>
</tr>
<tr>
<td>(Max. Sieve Size) (ASTM D-4751)</td>
<td></td>
</tr>
<tr>
<td>Flow Rate gal/min/ft² (L/min/m²)</td>
<td>175 (2850)</td>
</tr>
<tr>
<td>(GDT 87)</td>
<td></td>
</tr>
<tr>
<td>Ultraviolet Stability</td>
<td>80</td>
</tr>
<tr>
<td>(2) (ASTM D-4632 after 300 hours</td>
<td></td>
</tr>
<tr>
<td>weathering in accordance with ASTM</td>
<td></td>
</tr>
<tr>
<td>D-4355)</td>
<td></td>
</tr>
<tr>
<td>Bursting Strength psi (kPa)</td>
<td>175 (1200)</td>
</tr>
<tr>
<td>(ASTM D-3786 Diaphragm Bursting</td>
<td></td>
</tr>
<tr>
<td>Strength Tester)</td>
<td></td>
</tr>
</tbody>
</table>

 (1) Minimum roll average of five specimens.
 (2) Percent of required initial minimum tensile strength.

C. Wire Staples
 Fix the triangular silt barriers to the ground with wire staples. The staples shall be made of 11-gage wire with legs at least 6 in (150 mm) long.

720.2.01 Delivery, Storage, and Handling
During shipment and storage, protect the silt barrier with a heavy-duty covering that will protect the barrier from sunlight, mud, dust, dirt and debris.
720.3 Construction Requirements

720.3.01 Personnel
General Provisions 101 through 150.

720.3.02 Equipment
General Provisions 101 through 150.

720.3.03 Preparation
General Provisions 101 through 150.

720.3.04 Fabrication
General Provisions 101 through 150.

720.3.05 Construction
Install triangular silt barriers according to this Specification, as shown on the Plans or as directed by the Engineer.

1. Excavate a trench 4 to 6 in (100 to 150 mm) deep using equipment such as a trenching machine or motor grader; or, if equipment cannot be operated on site, by hand.
2. Secure the edge of the fabric into the trench with wire staples.
3. Install the fabric in the trench so that 4 to 6 in (100 to 150 mm) of fabric is against the side of the trench with 2 to 4 in (50 to 100 mm) of fabric across the bottom in the upstream direction.
4. Backfill the trench and compact it so that no flow can pass under the barrier.
5. Where the individual sections of triangular silt barrier meet, fix the fabric to the ground with wire staples at each joint location and at each end of the barrier.

The location and quantity of triangular silt barrier to be installed will be affected by the conditions that occur during the construction of the project.

The Engineer may increase, decrease or eliminate the quantity of triangular silt barrier. Do not consider these variations in quantity as alterations in the details of construction or a change in the character of the Work.

Triangular silt barrier may be substituted for baled straw.

720.3.06 Quality Acceptance
The Engineer will reject the barrier at the time of installation if it has defects, rips, holes, flaws, deterioration, or damage incurred during manufacture, transportation, or storage.

720.3.07 Contractor Warranty and Maintenance
Maintain the silt barrier until the Project is accepted or until the silt barrier is removed, and remove and dispose of silt accumulations. Maintenance and sediment removal is covered in Section 165. Remove and replace triangular silt barrier sections whenever effectiveness is reduced due to deterioration.

Remove triangular silt barrier unless the Engineer directs that it be retained. Barriers that have been removed will remain Contractor property and may be used at other locations if its condition is acceptable to the Engineer. When the silt barrier is removed, dress the area to give a pleasing appearance and seed and mulch the area according to Section 700.

720.4 Measurement
The quantity of triangular silt barrier to be paid for will be the actual number of linear feet (meters) of triangular silt barrier, measured in place from end to end of each separate installation, which has been completed and accepted.

720.4.01 Limits
General Provisions 101 through 150.

720.5 Payment
Triangular silt barrier measured as defined above will be paid for at the Contract Unit Price bid per linear foot (meter). Payment shall be full compensation for furnishing all materials; erecting and maintaining the barrier; removing accumulated silt except as described in Subsection 720.3.07; for all dressing and grassing, and for removing the barrier.
Payment for this Item will be made as follows:

- 75% of the Contract Price bid per linear meter will be paid when each barrier is complete in place.
- 25% will be paid at removal or acceptance.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 720.</th>
<th>Triangular silt barrier</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
</table>

720.5.01 Adjustments
General Provisions 101 through 150.

Section 725—Weed Control

725.1 General Description
This work includes furnishing and applying a soil-residual herbicide along shoulders, under base or paving, or in other places to prevent grass and other objectionable vegetation from growing.

725.1.01 Definitions
General Provisions 101 through 150.

725.1.02 Related Specifications
General Provisions 101 through 150.

725.1.03 Submittals
General Provisions 101 through 150.

725.2 Materials
Use any brand of soil-residual herbicide containing liquid or granular Bromacil, Hexazinone, or Prometone.
For sources, see QPL 32.

725.2.01 Delivery, Storage, and Handling
General Provisions 101 through 150.

725.3 Construction Requirements

725.3.01 Personnel
General Provisions 101 through 150.

725.3.02 Equipment
General Provisions 101 through 150.

725.3.03 Preparation
General Provisions 101 through 150.

725.3.04 Fabrication
General Provisions 101 through 150.

725.3.05 Construction
Apply enough soil-residual to provide the active chemical shown below, unless otherwise noted on the Plans or directed by the Engineer.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromacil</td>
<td>6 lbs/acre (6.5 kg/ha) (active)</td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>6 lbs/acre (6.5 kg/ha) (active)</td>
<td></td>
</tr>
<tr>
<td>Prometone</td>
<td>20 lbs/acre (22.5 kg/ha) (active)</td>
<td></td>
</tr>
</tbody>
</table>

Do not spill on slopes or other grassed areas. Repair vegetated areas damaged by careless handling of residual herbicide at no additional cost to the Department.
725.3.06 Quality Acceptance
General Provisions 101 through 150.

725.3.07 Contractor Warranty and Maintenance
General Provisions 101 through 150.

725.4 Measurement
Soil-residual herbicide in place and accepted is measured by the square yard (meter). When weed control is required but not shown on the Plans as a Pay Item, the cost is included in the overall Contract Price.

725.4.01 Limits
General Provisions 101 through 150.

725.5 Payment
Payment when applicable will be made under:

<table>
<thead>
<tr>
<th>Item No. 725</th>
<th>Weed control</th>
<th>Per square yard (meter)</th>
</tr>
</thead>
</table>

725.5.01 Adjustments
General Provisions 101 through 150.

Section 750—Rest Room Building

750.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 751—Water Supply System

751.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 752—Pneumatic Ejector Lift Station

752.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 753—Waste Water Treatment Plant

753.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 754—Outdoor Furniture

754.1 General Description
Specifications for this work will be included elsewhere in the Contract.
Section 755—Electrical Work

755.1 General Description
Only an approved Electrical Contractor may perform this work. This specification describes electrician qualifications, and does not apply to fiber optic cable or connections.

755.1.01 Definitions
Qualified Electrician: Either an electrician with a Class II license, issued by the Georgia State Construction Industry Licensing Board, or an electrician who has completed an approved four-year apprenticeship training program and is classified as a Journeyman Electrician.

755.1.02 Related References
A. Standard Specifications
 Section 529—Navigation Lighting
 Section 631—Permanent Changeable Message Signs
 Section 632—Portable Changeable Message Signs
 Section 637—Illuminated Sign System
 Section 647—Traffic Signal Installation
 Section 670—Water Distribution System
 Section 680—Highway Lighting
 Section 681—Lighting Standards and Luminaires
 Section 682—Electrical Wire, Cable, and Conduit
 Section 683—High Level Lighting Systems
 Section 690—Static Scale System
 Section 691—Weigh-in-Motion Scale System
 Section 750—Rest Room Building
 Section 751—Water Supply System
 Section 752—Pneumatic Ejector Lift Station
 Section 753—Waste Water Treatment Plant
 Section 755—Electrical Work
 Section 757—Well Pumps
 Section 759—Water Storage Tanks Section
 760—Welcome Station Building Section 761—
 Information Center Building Section 762—
 Truck Weighing Station Building Section 766—
 Irrigation System
 Section 768—Truck Weigh Station Control Signs
 Section 770—Truck Weigh Station Height Checking Device
 Section 772—Truck Weigh Station Length Estimating Device
 Section 774—Mobile Operations Office
 Section 776—Check Point Shelter
 Section 777—Truck Weigh Station Communication System
755.1.03

Section 795—Vehicle Maintenance Building
Section 796—Sewage Pumping Station
Section 797—Buildings
Section 936—Traffic Lane Delineator Lighting System

B. Referenced Documents
 General Provisions 101 through 150.

755.1.03 Submittals
 General Provisions 101 through 150.

755.2 Materials
 General Provisions 101 through 150.

755.2.01 Delivery, Storage, and Handling
 General Provisions 101 through 150.

755.3 Construction Requirements

755.3.01 Personnel
 Ensure the qualified electrician carries evidence of classification and presents it to the Engineer in charge of the construction.

 Ensure a qualified electrician is present when any of the sections referred to under Subsection 755.1.02 are part of the Contract. Ensure electrical connections are being made or wire is being pulled.

755.3.02 Equipment
 General Provisions 101 through 150.

755.3.03 Preparation
 General Provisions 101 through 150.

755.3.04 Fabrication
 General Provisions 101 through 150.

755.3.05 Construction
 General Provisions 101 through 150.

755.3.06 Quality Acceptance
 General Provisions 101 through 150.

755.3.07 Contractor Warranty and Maintenance
 General Provisions 101 through 150.

755.4 Measurement
 This work is not measured separately for payment.

755.4.01 Limits
 General Provisions 101 through 150.

755.5 Payment
 This work will not be paid for separately.

755.5.01 Adjustments
 General Provisions 101 through 150.
Section 756—Drilled Wells

756.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 757—Well Pumps

757.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 758—Travel Trailer Sanitary Disposal Station

758.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 759—Water Storage Tanks

759.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 760—Welcome Station Building

760.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 761—Information Center Building

761.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 762—Truck Weighing Station Building

762.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 765—Flag Pole

765.1 General Description
Specifications for this work will be included elsewhere in the Contract.
Section 766—Irrigation System

766.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 768—Truck Weigh Station Traffic Control Signs

768.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 770—Truck Weigh Station Height Checking Device

770.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 772—Truck Weigh Station Length Estimating Device

772.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 774—Mobile Operations Office

774.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 776—Check Point Shelter

776.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 777—Truck Weigh Station Communications System

777.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 778—Solar Application

778.1 General Description
Specifications for this work will be included elsewhere in the Contract.
Section 791—Water Intake Structure

791.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 792—Display and Interior Furnishings

792.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 795—Vehicle Maintenance Building

795.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 796—Sewage Pumping Station

796.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 797—Buildings

797.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 800—Coarse Aggregate

800.1 General Description
This section includes requirements for coarse aggregate. All aggregate shall be the specified type, class, and grade, and shall meet the requirements for the intended use.

800.1.01 Related References
A. Standard Specifications
 Section 424—Bituminous Surface Treatment

B. Referenced Documents

<table>
<thead>
<tr>
<th>AASHTO</th>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 11</td>
<td>C 277</td>
</tr>
<tr>
<td>T 27</td>
<td>C 289</td>
</tr>
<tr>
<td>T 96</td>
<td>C 294</td>
</tr>
<tr>
<td>T 104</td>
<td></td>
</tr>
</tbody>
</table>
800.2

GDT 104
GDT 129
GDT 133
QPL 2

800.2 Materials
800.2.01 Coarse Aggregate

A. Requirements

The Contractor shall use the type, group, class, and grade of coarse aggregate specified. For coarse aggregate sources, see QPL 2.

1. Coarse Aggregate Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushed stone</td>
<td>Sound, durable rock particles.</td>
</tr>
<tr>
<td>Gravel</td>
<td>Sound, durable rock without damaging coatings.</td>
</tr>
<tr>
<td>Air-cooled blast furnace slag</td>
<td>Sound, durable particles with uniform density and quality, or other slags that have a good service record. Dry slag shall weigh at least 70 lb/ft³ (1120 kg/m³) compacted and shall contain less than 30% glassy particles by weight. Do not use slag as aggregate for Portland cement concrete.</td>
</tr>
<tr>
<td>Synthetic aggregate</td>
<td>Sound, durable, expanded clay, shale, or other manufactured product.</td>
</tr>
</tbody>
</table>

2. Coarse Aggregate Groups

a. Group I: Limestone, dolomite, marble, or any combination thereof. Ensure Group I aggregates meet the abrasion requirement for Class A stone when used in Portland cement concrete of any type or class.

b. Group II: Slag, gravel, granitic and gneissic rocks, quartzite, synthetic aggregate, or any combination thereof.

3. Classes

Aggregates are classified by physical properties that determine how they are used.

a. Do not blend aggregates that meet abrasion requirements with aggregates that do not meet requirements.

b. “Class A” and “Class B” aggregate used in Portland cement concrete, asphaltic concrete, and bituminous surface treatment shall meet these limits:

<table>
<thead>
<tr>
<th>Percent Wear AASHTO T 96 (“B” Grading)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Group I Aggregates</td>
</tr>
<tr>
<td>Group II Aggregates</td>
</tr>
</tbody>
</table>

4. Soundness

Test coarse aggregate used in Portland cement concrete, bituminous surfaces, bituminous bases, aggregate bases, or surface treatment with five alternations of the magnesium sulfate soundness test.

a. Use aggregate with a weight loss of less than 15 percent.

b. The 15 percent soundness loss for a Class “CS” concrete is waived if it has a 5-year service record.
c. If the material meets all the requirements except for the 15 percent soundness requirement, the material may be used in Zones 3 and 4 (see Subsection 424.3.05, “Construction Requirements”) under the following conditions:
 1) The aggregate in bituminous courses and in all types and classes of Portland cement concrete construction, except as stated in Group I, has a satisfactory five-year service record under similar service and exposure.
 2) The Engineer’s investigation shows that it equals or exceeds the quality of approved aggregate (in cases where the material’s uniformity changes at the source, or does not have a five-year service record).

5. Grades
 Use coarse aggregate that is well graded within the limits and sizes specified in Table 800.1.

6. Detrimental Substances
 a. Detrimental substances include shale, weathered or decomposed rock, friable particles, or any substance that may be detrimental for the use intended.
 b. Do not use any aggregate that can cause a deleterious reaction.
 c. Do not use aggregates that contain Chrysotile (defined as fibrous serpentine) as a temporary or permanent unbound surfacing for roads, nor as stabilizer for soil used as subgrade, base, or surface course.
 d. Detrimental substances shall not exceed the following limits:
 1) For Portland Cement Concrete:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Max % Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mica schist—Materials defined in ASTM C 294 as phyllite or schist. Use GDT 104 to analyze these materials.</td>
<td>5</td>
</tr>
<tr>
<td>Materials that pass the No. 200 (75 μm) sieve.</td>
<td>1.5</td>
</tr>
<tr>
<td>Flat and elongated pieces (with lengths more than five times the average thickness).</td>
<td>10</td>
</tr>
<tr>
<td>Sulphur content computed as sulfide sulphur (for bridge-type structures)—If the sulphur content exceeds 0.01%, do not use the aggregate unless it passes a petrographic analysis and a weathering test equivalent to 6 months or more of exposure.</td>
<td>0.01</td>
</tr>
<tr>
<td>Other local detrimental substances. (Any Combination)</td>
<td>2.0</td>
</tr>
<tr>
<td>NOTE: Do not use aggregate in Portland Cement concrete that is capable of producing a deleterious reaction when combined with Portland Cement.</td>
<td></td>
</tr>
</tbody>
</table>

 2) For Asphalitc Concrete:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Max. % Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mica schist—Materials defined in ASTM C 294 as phyllite or schist. Use GDT 104 to analyze these materials. (Use this requirement for Interstate Construction only.)</td>
<td>10</td>
</tr>
<tr>
<td>Flat or elongated particles (with lengths more than five times the average thickness).</td>
<td>10</td>
</tr>
<tr>
<td>Glassy particles (slag).</td>
<td>30</td>
</tr>
<tr>
<td>Other local detrimental substances. (Any combination)</td>
<td>2.0</td>
</tr>
</tbody>
</table>
3) For Bituminous Surface Treatment:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Max. % Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mica schist—Materials defined in ASTM C 294 as phyllite or schist. Use GDT 104 to analyze these materials.</td>
<td>10</td>
</tr>
<tr>
<td>Material finer than No. 200 (75 µm) sieve.</td>
<td></td>
</tr>
<tr>
<td>#5 Stone</td>
<td>0.5</td>
</tr>
<tr>
<td>#6 Stone</td>
<td>0.7</td>
</tr>
<tr>
<td>#7 Stone</td>
<td>0.7</td>
</tr>
<tr>
<td>#89 Stone</td>
<td>1.0</td>
</tr>
<tr>
<td>Flat and elongated particles (with lengths more than five times the average thickness).</td>
<td>10</td>
</tr>
<tr>
<td>Glassy particles (slag).</td>
<td>30</td>
</tr>
<tr>
<td>Other local detrimental substances. (Any combination)</td>
<td>2</td>
</tr>
</tbody>
</table>

e. Ensure that gravel used in asphaltic concrete and bituminous surface treatment meets the following additional requirements:
 □ Consists of siliceous particles.
 □ A minimum of 85%, by count, of the material retained on the No. 4 (4.75 mm) sieve has one or more fractured faces.
 □ The fracture is for the approximate average diameter or thickness of the particle.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material that passes the No. 200 (75 µm) sieve</td>
<td>AASHTO T 11</td>
</tr>
<tr>
<td>Sulphur content</td>
<td>ASTM E 30, Leco method</td>
</tr>
<tr>
<td>Weathering</td>
<td>ASTM G 23</td>
</tr>
<tr>
<td>Petrographic analysis</td>
<td>ASTM C 295</td>
</tr>
<tr>
<td>Soundness (magnesium sulfate)</td>
<td>AASHTO T 104</td>
</tr>
<tr>
<td>Percent wear</td>
<td>AASHTO T 96</td>
</tr>
<tr>
<td>Aggregate gradation</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Reactivity</td>
<td>ASTM C 227, C 289, and C 586</td>
</tr>
<tr>
<td>Schist or phyllite</td>
<td>GDT 104</td>
</tr>
<tr>
<td>Flat and elongated particles</td>
<td>GDT 129</td>
</tr>
<tr>
<td>Friable Particles</td>
<td>GDT 133</td>
</tr>
</tbody>
</table>

D. Materials Warranty
 General Provisions 101 through 150.
TABLE 800.1 - SIZES OF COARSE AGGREGATES

<table>
<thead>
<tr>
<th>SIZE NO</th>
<th>NOMINAL SIZE SQUARE OPENINGS</th>
<th>AMOUNTS FINER THAN EACH LABORATORY SIEVE (SQUARE OPENINGS), %, BY WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>2 ⅛"</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>63 mm</td>
</tr>
<tr>
<td>3</td>
<td>2-1</td>
<td>100</td>
</tr>
<tr>
<td>357</td>
<td>2-No. 4</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>1 ½ -3/4</td>
<td>-----</td>
</tr>
<tr>
<td>467</td>
<td>1 ⅞- No. 4</td>
<td>-----</td>
</tr>
<tr>
<td>5</td>
<td>1-1/2</td>
<td>-----</td>
</tr>
<tr>
<td>56</td>
<td>1-3/8</td>
<td>-----</td>
</tr>
<tr>
<td>57</td>
<td>1-No. 4</td>
<td>-----</td>
</tr>
<tr>
<td>6</td>
<td>¾-3/8</td>
<td>-----</td>
</tr>
<tr>
<td>67</td>
<td>¾-No. 4</td>
<td>-----</td>
</tr>
<tr>
<td>68</td>
<td>¾-No. 8</td>
<td>-----</td>
</tr>
<tr>
<td>7</td>
<td>½-No. 4</td>
<td>-----</td>
</tr>
<tr>
<td>78</td>
<td>½-No. 8</td>
<td>-----</td>
</tr>
<tr>
<td>8</td>
<td>3/8-No. 8</td>
<td>-----</td>
</tr>
<tr>
<td>89</td>
<td>3/8-No. 16</td>
<td>-----</td>
</tr>
<tr>
<td>9</td>
<td>No. 4-No. 16</td>
<td>-----</td>
</tr>
</tbody>
</table>

(1) In inches, except where otherwise indicated. Numbered sieves are those of the United States Standard Sieve Series.
Section 801—Fine Aggregate

801.1 General Description
This section includes the requirements for fine aggregate. All aggregate shall be the specified type, class, and grade.

801.1.01 Related References
A. Standard Specifications Section
800—Coarse Aggregate Section 441—
Miscellaneous Concrete
B. Referenced Documents

<table>
<thead>
<tr>
<th>AASHTO</th>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 11</td>
<td>C 295</td>
</tr>
<tr>
<td>T 21</td>
<td></td>
</tr>
<tr>
<td>T 27</td>
<td></td>
</tr>
<tr>
<td>T 112</td>
<td></td>
</tr>
<tr>
<td>T 303</td>
<td></td>
</tr>
</tbody>
</table>

GDT 4
GDT 5
GDT 63
GDT 75
GDT 132

801.2 Materials

801.2.01 Fine Aggregate for Cushion
A. Requirements
Use the type, class, and grade of fine aggregate specified.

1. Types
Use fine aggregate for cushion under granite curb or brick that is natural or manufactured sand with hard, strong, durable particles. Make manufactured sand from crushed gravel or stone meeting the requirements of Section 800. For a list of fine aggregate sources, see QPL 1.

2. Grades
Use fine aggregate for cushion with less than 10 percent total silt and clay. Grade as follows:

<table>
<thead>
<tr>
<th>Size</th>
<th>Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passing No. 4 (4.75 mm) sieve</td>
<td>100</td>
</tr>
<tr>
<td>Passing No. 16 (1.18 mm) sieve</td>
<td>25-75</td>
</tr>
<tr>
<td>Passing No. 100 (150 µm) sieve</td>
<td>0-25</td>
</tr>
</tbody>
</table>

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Test as follows:

- Sieve analysis—AASHTO T 27
D. Materials Warranty

General Provisions 101 through 150.

801.2.02 Fine Aggregate for Portland Cement Concrete of All Types and for Mortar

A. Requirements

1. Concrete and Mortar

 Use fine aggregate for concrete and mortar that consists of natural sand, manufactured sand, or blends of natural and manufactured sands, having hard, clean, strong, durable, uncoated particles, meeting the requirements of the Specifications.

2. Manufactured Sand

 Use manufactured sand made exclusively from crushed stone or gravel that meets Section 800 requirements. Manufactured sand used in concrete for construction of Portland cement concrete pavement, approach slabs, and bridge decks, shall be made from Group II aggregates as specified in Subsection 800.2.01.A.2.

3. Miscellaneous Concrete

 Sand manufactured from synthetic aggregate meeting the requirements of Section 800 may be blended with natural sands or manufactured sands made from crushed stone or gravel for use in miscellaneous concrete as described in Section 441.

 Blend at least 50 percent natural sand or manufactured sand made from crushed stone or gravel.

4. Concrete Sand

 Concrete sand that passes the No. 10 (2 mm) sieve shall have these characteristics:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durability index</td>
<td>70 or greater</td>
</tr>
<tr>
<td>Sand equivalent</td>
<td>70 or greater</td>
</tr>
</tbody>
</table>

5. Detrimental Substances

 Keep detrimental substances within these limits:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Maximum Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay lumps</td>
<td>0.5 maximum in total sample</td>
</tr>
<tr>
<td>Coal and lignite</td>
<td>0.5 maximum in total sample</td>
</tr>
<tr>
<td>All detrimental substances (any combination)</td>
<td>2.0 maximum in total sample</td>
</tr>
</tbody>
</table>

 NOTE: Do not use fine aggregate in Portland cement concrete that is capable of producing a deleterious reaction with Portland cement

 a. Provided the material passing the No. 16 (1.18 mm) sieve is petrographically determined to be essentially free of detrimental substances, test results for coal and lignite and other detrimental substances listed will be based upon a petrographic analysis of material retained on the No. 16 (1.18 mm) sieve.

 b. Calculations will be based upon the weighted average for the total sample.

 c. Other detrimental substances include constituents such as shale, weathered or decomposed rock, soft or friable particles, coated grains, or other substances that might be considered detrimental for the use intended.

6. Organic Impurities (natural sands only)

 Ensure all fine aggregate is free from detrimental amounts of organic impurities.

 Do not use materials that have colorimetric test (AASHTO T 21) results darker than the Reference Standard color plate.
7. Grades

Grade fine aggregates for Portland cement concrete and mortar as follows:

<table>
<thead>
<tr>
<th>Size No.</th>
<th>Description</th>
<th>Total Percent by Weight Passing Each Sieve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3/8 in (9.5 mm)</td>
</tr>
<tr>
<td>10 NS</td>
<td>Natural concrete sand</td>
<td>100</td>
</tr>
<tr>
<td>20 NS</td>
<td>Natural mortar sand</td>
<td>100</td>
</tr>
<tr>
<td>10 SM</td>
<td>Standard manufactured concrete sand</td>
<td>100</td>
</tr>
<tr>
<td>10 FM</td>
<td>Fine manufactured concrete sand</td>
<td>100</td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrographic analysis</td>
<td>ASTM C 295</td>
</tr>
<tr>
<td>Material that passes a No. 200 (75 μm) sieve</td>
<td>AASHTO T 11</td>
</tr>
<tr>
<td>Organic impurities</td>
<td>AASHTO T 21</td>
</tr>
<tr>
<td>Sieve analysis</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Sand equivalent</td>
<td>GDT 63</td>
</tr>
<tr>
<td>Reactivity</td>
<td>AASHTO T 303</td>
</tr>
<tr>
<td>Durability index</td>
<td>GDT 75</td>
</tr>
<tr>
<td>Clay lumps</td>
<td>AASHTO T 112</td>
</tr>
<tr>
<td>Friable Particles</td>
<td>GDT 132</td>
</tr>
</tbody>
</table>

NOTE: The percent passing the No. 200 sieve (75 μm) for size 10FM will be based upon the total percent determined by AASHTO T-11 and AASHTO T-27. The percent passing the No. 200 sieve (75 μm) for sizes 10NS, 20NS and 10SM will be as determined by AASHTO T-11 only.

D. Materials Warranty

General Provisions 101 through 150.

801.2.03 Fine Aggregate for Sand Cement Rip Rap

A. Requirements

1. Make fine aggregate for sand cement rip rap out of hard, durable particles without detrimental amounts of organic impurities.
2. Material that passes the No. 10 (2 mm) sieve shall contain less than 7 percent clay and have less than 20 percent that passes the No. 200 (75 μm) sieve.
3. The Engineer may allow up to 30 percent by weight of the material retained on the No. 4 (4.75 mm) sieve if:
 - The aggregate still meets the intended purpose.
 - All of the particles pass the 3 in (75 mm) sieve.

B. Fabrication

General Provisions 101 through 150.
C. Acceptance

The Department will conduct laboratory tests to determine whether or not the material reacts favorably with Portland cement. If it does not, the Department will reject it, even though it may meet the other requirements.

The Department will use the following tests:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil gradation</td>
<td>GDT 4</td>
</tr>
<tr>
<td>Portland cement reaction</td>
<td>GDT 5</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

Section 802—Aggregates for Asphalitic Concrete

802.1 General Description

This section includes the requirements for fine and coarse aggregates used in asphalitic concrete.

802.1.01 Definitions

Fine Aggregate: All aggregate passing a No. 8 (2.36 mm) sieve

Coarse Aggregate: All aggregate retained on a No. 8 (2.36 mm) sieve

802.1.02 Related References

A. Standard Specifications

Section 800—Coarse Aggregate

Section 828—Hot Mix Asphalitic Concrete Mixtures

B. Referenced Documents

AASHTO T 27
AASHTO T 96
ASTM C 295
GDT 63
GDT 76

802.2 Materials

802.2.01 Fine Aggregate for Asphalitic Concrete

A. Requirements

Use the appropriate type, group, class, and grade of fine aggregate.

1. Types

Use fine aggregate made of sharp, strong, angular material meeting the required performance characteristics when combined into a mixture.

a. Ensure that the aggregate meets the following requirements:

- Does not contain any deleterious substances.
- Natural sand is free of organic matter, roots, or twigs.
- Aggregate is manufactured from Class A or B crushed stone, gravel, slag, or synthetic aggregate that meets the requirements of Section 800.
A combination of natural and manufactured sands meets the requirements in Subsection 802.2.01.A.3 and Subsection 802.2.01.A.4 after being combined.

b. Do not use crushed alluvial gravel as virgin aggregate in any mixture.

2. Groups
Fine aggregate groups include:
 a. Group I—Limestone, dolomite, marble, or combination thereof
 b. Group II—Gravel, slag, granitic and gneissic rocks, quartzite, natural sand, or a combination thereof

3. Sand Equivalent
Use these sand equivalent values:

<table>
<thead>
<tr>
<th>Material</th>
<th>Sand Equivalent Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>At least 28</td>
</tr>
<tr>
<td>Group II</td>
<td>At least 40</td>
</tr>
<tr>
<td>Natural sand</td>
<td>At least 25</td>
</tr>
<tr>
<td>Blended sand*</td>
<td>Natural sand at least 20; combined blend at least 25</td>
</tr>
</tbody>
</table>

*Blended natural sands or natural sand blended with stone screenings that meet the Group I or Group II sand equivalent limits.

4. Mica
 a. Use fine aggregate with no more than 35 percent free mica in asphaltic concrete surface mixes.
 b. When approved by the Engineer, use fine aggregate with more than 35 percent mica if blended with natural sand or sand manufactured from Group II aggregates. Ensure the blend has no more than 35 percent free mica and meets all other requirements of this Section, Section 800 and Section 828.

5. Aggregate for Stone Matrix Asphalt
 Manufactured screenings will be considered as fine aggregate and shall contain no more than 20 percent by weight coarser than a No. 4 (4.75 mm) sieve.

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Test the fine aggregate as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate gradation</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Sand equivalent</td>
<td>GDT 63</td>
</tr>
<tr>
<td>Mica content</td>
<td>GDT 76 or ASTM C 295</td>
</tr>
</tbody>
</table>

D. Materials Warranty
General Provisions 101 through 150.

802.2.02 Coarse Aggregate for Asphaltic Concrete

A. Requirements

1. Types
 Ensure coarse aggregate meets the following requirements:
 - Class A or B crushed stone, gravel, slag, or synthetic aggregate as in Subsection 800.2.
 - Have uniform quality throughout without any deleterious substances.
 - Meet the required performance characteristics when combined into a mixture.

 NOTE: Do not use alluvial gravel as virgin aggregate.
2. Groups
 Coarse aggregate shall be one of either group below as specified in the composition Table in Subsection 828.2.A.2:
 - Group I—Limestone, dolomite, marble, or combination thereof
 - Group II—Gravel, slag, granite and gneissic rocks, quartzite, or combination thereof

3. Aggregate for Stone Matrix Asphalt
 Use coarse aggregate that meets requirements of this Section and Section 800 except as follows:
 - Use Class A aggregate only with percent wear of each individual size not to exceed 45 percent based on the B grading of AASHTO T 96.
 - Use aggregate which contains no more than 20 percent flat and elongated pieces (length greater than three times the average thickness) for that portion of the blend of all aggregate retained on the No. 4 (4.75 mm) sieve.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Aggregate</td>
<td>Subsection 800.2.01.C</td>
</tr>
</tbody>
</table>

D. Materials Warranty
 General Provisions 101 through 150.

Section 803—Stabilizer Aggregate

803.1 General Description
 This section includes the requirements for stabilizer aggregate, Types I through III, and Type IV stabilizer sand.

803.1.01 Related References
 A. Standard Specifications
 Section 800—Coarse Aggregate
 B. Referenced Documents
 AASHTO T 27
 AASHTO T 96
 GDT 63

803.2 Materials

803.2.01 Type I Stabilizer
 A. Requirements
 Use the appropriate type, class, and grade of stabilizer aggregate.
 Use material of uniform quality that meets the requirements of Section 800, Class A or B aggregate. Crushed concrete may be used provided it meets the requirements of Section 800 that are applicable to Group 2 aggregates. Ensure the material meets the following gradation:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2 in (37.5 mm)</td>
<td>100</td>
</tr>
<tr>
<td>1 in (25 mm)</td>
<td>80-100</td>
</tr>
<tr>
<td>No. 8 (2.36 mm)</td>
<td>0-5</td>
</tr>
</tbody>
</table>
B. Fabrication
General Provisions 101 through 150.

C. Acceptance

Use the following test:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve analysis</td>
<td>AASHTO T 27</td>
</tr>
</tbody>
</table>

D. Materials Warranty
General Provisions 101 through 150.

803.2.02 Type II Stabilizer Aggregate

A. Requirements

Use material that meets the requirements of Section 800, Class A or B aggregate. Crushed concrete may be used provided it meets the requirements of Section 800 that are applicable to Group 2 aggregates.

The aggregate shall:

- Not contain overburden soil or disintegrated rock
- Have a sand equivalent value of at least 20 for material passing the No. 10 (2 mm) sieve
- Meet these gradation requirements:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 in (50 mm)</td>
<td>100</td>
</tr>
<tr>
<td>1-1/2 in (37.5 mm)</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 10 (2 mm)</td>
<td>15-45</td>
</tr>
<tr>
<td>No. 200 (75 μm)</td>
<td>0-12</td>
</tr>
</tbody>
</table>

B. Fabrication
General Provisions 101 through 150.

C. Acceptance

Test type II stabilizer as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve analysis</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Sand equivalent</td>
<td>GDT 63</td>
</tr>
</tbody>
</table>

D. Materials Warranty
General Provisions 101 through 150.

803.2.03 Type III Stabilizer Aggregate

A. Requirements

Use material that meets the requirements of Section 800, Class A or B aggregate. Crushed concrete may be used provided it meets the requirements of Section 800 that are applicable to Group 2 aggregates.

Ensure the stabilizer aggregate does not contain soil or decomposed rock and that the Sand Equivalent value of the material passing the No. 10 sieve is not less than 20.

The aggregate shall meet these gradation requirements:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 in (150 mm)</td>
<td>100</td>
</tr>
<tr>
<td>2 in (50 mm)</td>
<td>25-75</td>
</tr>
<tr>
<td>No. 10 (2 mm)</td>
<td>15-35</td>
</tr>
</tbody>
</table>

B. Fabrication
General Provisions 101 through 150.
C. Acceptance
Test Type III stabilizer as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve analysis</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Percent wear</td>
<td>AASHTO T 96</td>
</tr>
</tbody>
</table>

D. Materials Warranty
General Provisions 101 through 150.

803.2.04 Type IV Stabilizer Sand

A. Requirements
Make Type IV stabilizer sand from either natural sand, manufactured sand, or any combination of natural and manufactured sands.

1. If using manufactured sand, make the sand from Class A or B crushed stone, gravel, slag, or synthetic aggregate that meets Section 800 requirements.
2. Type IV stabilizer sand shall have a sand equivalent of at least 35 for material passing the No. 10 (2 mm) sieve and shall also meet these gradation requirements.

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 10 (2 mm)</td>
<td>60-100</td>
</tr>
<tr>
<td>No. 60 (250 µm)</td>
<td>5-40</td>
</tr>
<tr>
<td>No. 200 (75 µm)</td>
<td>0-20</td>
</tr>
</tbody>
</table>

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Test Type IV stabilizer as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve analysis</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Sand equivalent</td>
<td>GDT 63</td>
</tr>
</tbody>
</table>

D. Materials Warranty
General Provisions 101 through 150.

Section 804—Abrasives for Blast Cleaning

804.1 General Description
This section includes the requirements for abrasives used in blast cleaning.

804.1.01 Related References
A. Standard Specifications
General Provisions 101 through 150.

B. Referenced Documents
TCLP-EPA SWD 846-1311
AASHTO T 27 Aggregate Gradation
QPL 68
804.2 Materials

804.2.01 Abrasives

A. Requirements

1. Types
 a. Make the abrasives of low dusting mineral with a minimum of 10 percent by weight G–80 steel grit added, and blended homogeneously throughout the abrasive.
 b. Use a mineral abrasive listed on QPL 68.
 c. If you propose to use an alternative abrasive mixture, submit it to the Office of Materials and Research for approval before use.

2. Detrimental Substances
 Use abrasives that contain less than 100 ppm of any corrosive compound such as sulfate, chloride, or any EPA characteristic compound such as lead, chromium, or arsenic that can be detected by the EPA Toxicity Characteristic Leaching Procedure (TCLP).

3. Grades
 Ensure that the mineral abrasive used to blend with steel grit meets the grade for the sizes in the following table (Size A fits coal and copper slag; Size B fits staurolite abrasive)

<table>
<thead>
<tr>
<th>Size</th>
<th>No. 16 (1.18 mm)</th>
<th>No. 20 (850 μm)</th>
<th>No. 30 (600 μm)</th>
<th>No. 40 (425 μm)</th>
<th>No. 50 (300 μm)</th>
<th>No. 60 (250 μm)</th>
<th>No. 100 (150 μm)</th>
<th>PAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0-10</td>
<td>5-35</td>
<td>25-50</td>
<td>20-45</td>
<td>5-35</td>
<td>0-10</td>
<td>0-10</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0-2</td>
<td>0-2</td>
<td>0-2</td>
<td>0-5</td>
<td>5-25</td>
<td>5-25</td>
<td>0-2</td>
<td></td>
</tr>
</tbody>
</table>

4. Packaging
 a. Furnish abrasives for blasting in moisture-proof and mildew-resistant bags.
 b. Plainly show the size designation, requisition number, and purchase order number on the bags or on tags firmly affixed to each bag.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will take representative samples of the material sent to the Department, and test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate gradation</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Toxicity Characteristic Leaching Procedure (TCLP)</td>
<td>TCLP-EPA SWD 846-1311</td>
</tr>
</tbody>
</table>

D. Materials Warranty
 General Provisions 101 through 150.

Section 805—Rip Rap and Curbing Stone

805.1 General Description

This section includes the requirements for rip rap and curbing stone. Construction and material will be covered under the Special Provisions.
805.1.01 Related References

A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 AASHTO T 96
 AASHTO T 104
 ASTM C 295
 GDT 64

805.2 Materials

805.2.01 Rip Rap

A. Requirements

1. Aggregate Quality
 All rip rap stone shall be made of sound, durable rock pieces that meet these requirements:

<table>
<thead>
<tr>
<th>Aggregate Quality</th>
<th>Maximum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasion loss "B" grading</td>
<td>65</td>
</tr>
<tr>
<td>Soundness loss</td>
<td>15</td>
</tr>
<tr>
<td>Flat and slabby pieces (length five times more than the average thickness)</td>
<td>5</td>
</tr>
<tr>
<td>Weathered and/or decomposed pieces and shale</td>
<td>5</td>
</tr>
</tbody>
</table>

2. Gradation for Stone-Dumped rip rap Type 1 and Type 3:

<table>
<thead>
<tr>
<th>Severe Drainage Conditions or Moderate Wave Action (Type 1)*</th>
<th>Size By Volume</th>
<th>Approx. Weight</th>
<th>Percent Smaller Than</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.2 ft³ (0.12 m³)</td>
<td>700 lbs (320 kg)</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>1.8 ft³ (0.05 m³)</td>
<td>300 lbs (135 kg)</td>
<td>50% - 90%</td>
</tr>
<tr>
<td></td>
<td>0.8 ft³ (0.02 m³)</td>
<td>125 lbs (55 kg)</td>
<td>20% - 65%</td>
</tr>
</tbody>
</table>

 *Between 0% and 15% of the Type 1 rip rap shall pass a 4 in (100 mm) square opening sieve.

<table>
<thead>
<tr>
<th>General Use Normal Drainage Conditions (Type 3)*</th>
<th>Size By Volume</th>
<th>Approx. Weight</th>
<th>Percent Smaller Than</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0 ft³ (0.03 m³)</td>
<td>165 lbs (75 kg)</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>0.1 ft³ (0.003 m³)</td>
<td>15 lbs (7 kg)</td>
<td>10% - 65%</td>
</tr>
</tbody>
</table>

 *Between 0% and 15% of the Type 3 rip rap shall pass a 2 in (50 mm) square opening sieve.

3. Stone for Plain Rip Rap
 The stones shall be clean and free of rock dust and fines.
 a. Process the stone so that the largest pieces have a volume of 2 ft³ (0.06 m³) or less.
 b. Ten percent or less of the total rip rap weight can consist of spalls that pass a 5 in (125 mm) sieve.

B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent wear</td>
<td>AASHTO T 96</td>
</tr>
<tr>
<td>Petrographic analysis</td>
<td>ASTM C 295</td>
</tr>
<tr>
<td>Soundness (magnesium sulfate)</td>
<td>AASHTO T 104</td>
</tr>
</tbody>
</table>

D. Materials Warranty
General Provisions 101 through 150.

805.2.02 Curbing Stone
A. Requirements

1. Type 1:
 Provide Type 1 curb that meets these requirements:
 a. Curb thickness and height as shown on the Plans
 b. Cut in lengths of not less than 5 ft (1.5 m) nor more than 10 ft (3 m)
 c. Tops dressed to an even, smooth surface for the full length
 d. Have straight, even edges
 e. Top sloped ¼ in (6 mm) from back to front
 f. Have squared ends to permit joints to be constructed not more than ½ in (13 mm) wide for the full depth of the curb.
 g. Backface hand dressed at least 4 in (100 mm) below that part of the back that will be exposed
 h. Front face hand dressed to a depth of 1 in (25 mm) below the indicated elevation of the base course, pavement or gutter
 i. Have ends of circular curb sections cut along radial lines to permit joints to be constructed not more than ½ in (13 mm) wide
 j. Circular curb conforms accurately to the required radius
 k. Dressed surfaces do not contain projections or depressions more than 3/8 in (10 mm) from the plane surface of the curb

2. Type 2:
 Provide Type 2 curb that meets these requirements:
 a. Dimensions shall be 5 in (125 mm) thick, 17 in (425 mm) deep, and 5 ft (1.5 m) long, unless otherwise specified.
 b. Front face to have a top margin draught with a smooth face 10 in (250 mm) deep
 c. Have a smooth face (Note: A quarry face may be considered a smooth face if free from holes and all bumps exceeding allowed tolerances are pointed level
 d. Tops of curbs present even, smooth faces for the full length
 e. Have squared joints that when abutted with adjacent sections, present no crack or joint exceeding ½ in (13 mm) in width
 f. Have ends of circular curb sections cut along radial lines to permit joints to be constructed not more than ½ in (13 mm) wide
 g. Circular curb conforms accurately to the required radius
h. The allowable tolerances for Type 2 Curb dimensions are as follows:

<table>
<thead>
<tr>
<th>Measurement Item</th>
<th>Dimension & Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>5 ¼ in (131 mm) +/- ¼ in (6mm)</td>
</tr>
<tr>
<td>Depth</td>
<td>17 in (425 mm) +/- 1 in (25 mm)</td>
</tr>
<tr>
<td>Top Surface</td>
<td>¼ in (6 mm) in 5 ft (1.5 m)</td>
</tr>
<tr>
<td>Side Surface</td>
<td>½ in (13 mm) in 5 ft (1.5 m)</td>
</tr>
</tbody>
</table>

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Test for Percent Wear according to AASHTO T 96

D. Materials Warranty
 General Provisions 101 through 150.

Section 806—Aggregate for Drainage

806.1 General Description
 This section includes the requirements for aggregate used for drainage.

806.1.01 Related References
 A. Standard Specifications
 Section 800 – Coarse Aggregate
 B. Referenced Documents
 AASHTO T 11
 AASHTO T 27
 GDT 4

806.2 Materials

806.2.01 Coarse Aggregate for Underdrains
 A. Requirements
 Use Class A or B coarse aggregate graded for size No. 89 in Table 800.1
 B. Fabrication
 General Provisions 101 through 150.
 C. Acceptance
 Test the aggregate as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve analysis</td>
<td>AASHTO T 27</td>
</tr>
</tbody>
</table>

D. Materials Warranty
 General Provisions 101 through 150.
806.2.02 Crushed Stone Drainage Material

A. Requirements
Use Class A or B coarse aggregate that is graded as follows:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passing 2 in (50 mm)</td>
<td>100</td>
</tr>
<tr>
<td>Passing 1-1/2 in (37.5 mm)</td>
<td>95-100</td>
</tr>
<tr>
<td>Passing No. 10 (2 mm)</td>
<td>10-35</td>
</tr>
<tr>
<td>Passing No. 100 (150 µm)</td>
<td>0-10</td>
</tr>
</tbody>
</table>

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Test the crushed stone as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve analysis</td>
<td>AASHTO T 27</td>
</tr>
</tbody>
</table>

D. Materials Warranty
General Provisions 101 through 150.

806.2.03 Drainage Blanket

A. Requirements
Use Class A or B coarse aggregate that is graded as follows:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passing No. 10 (2 mm)</td>
<td>75-100</td>
</tr>
<tr>
<td>Passing No. 40 (425 µm)</td>
<td>25-50</td>
</tr>
<tr>
<td>Passing No. 60 (250 µm)</td>
<td>0-25</td>
</tr>
<tr>
<td>Passing No. 200 (75 µm)</td>
<td>0-8</td>
</tr>
<tr>
<td>Percent clay</td>
<td>0-5</td>
</tr>
</tbody>
</table>

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Test the aggregate as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve analysis</td>
<td>AASHTO T 11 and AASHTO T 27</td>
</tr>
<tr>
<td>Percent clay (8 minute elutriation test)</td>
<td>GDT 4</td>
</tr>
</tbody>
</table>

D. Material Warranty
General Provisions 101 through 150.
Section 809—Geogrid Materials

809.1 General Description
This Specification includes requirements for geogrid used in reinforced slopes and Mechanically Stabilized Embankment (MSE) Wall backfill.

809.1.01 Definitions
ASTM—American Society for Testing and Materials
GRI—Geosynthetic Research Institute

809.1.02 Related References
A. Standard Specifications
 Section 106—Control of Materials
 Section 626—Mechanically Stabilized Embankment Retaining Walls
 Section 627—Mechanically Stabilized Embankment Retaining Wall—Contractor Design
B. Referenced Documents
 AASHTO Task Force 27 Guidelines
 U. S. Environmental Protection Agency. Method 9090—Chemical Compatibility
 Association of Textile Chemists and Colorists, Method 30—Soil Burial
 American Association of Textile Chemists and Colorists, Method 100—Preparation of Bacterial Broth
 ASTM D 638
 ASTM D 746
 ASTM D 975
 ASTM D 1238
 ASTM D 1505
 ASTM D 1525
 ASTM D 2165
 ASTM O 4335
 ASTM D 4595
 GRI – GG1
 GRI – GG2-87
 GRI – GG3a or GG3b
 GRI – GG5

809.1.03 Submittals
Supply certification from the manufacturer showing the physical properties of the material used and conformance with the Specifications according to Subsection 106.05 of the Specifications.

Provide evidence from the manufacturer that the geogrid has been used successfully in installations with similar environmental and project conditions.

Obtain prior approval from the Office of Materials and Research for all materials before use on construction.

Submit product specifications and test results to the Engineer for review and approval at least 45 days prior to intended use.

Do not begin placement of geogrid until the test results have been reviewed and approved by the Engineer.

809.2 Materials
A. Requirements
Use geogrid that is free of defects, punctures or flaws.
1. Geogrid for Reinforced Slopes
 Use geogrid materials for reinforced slope construction that consist of the following:
 - Either a biaxial or uniaxial grid of polymer tensile elements manufactured into a regular network with apertures of sufficient size to allow for soil interlock.
 - A commercially prepared material of high tenacity polyester, high density polyethylene (HDPE) or polypropylene that is formed by stretching, heat welding, chemical welding, knitting, weaving or combinations of these methods.

Adhere to the following additional requirements:

a. Long Term Design Strengths
 1) Use geogrid that meets the minimum long-term design strengths (TLT) in the machine direction as indicated on the plans.
 2) Provide to the Engineer, in writing, the ultimate tensile strength of the grid (TULT) to verify the calculation in obtaining the long-term design loads (TLT).
 These strengths are required for the Project and are determined based on the AASHTO Task Force 27 guidelines, which incorporates reduction factors to the ultimate strength of the geogrid for creep, site damage and durability.
 3) Calculate the long-term design strength using the following formula:
 \[
 TLT = \frac{TULT \times CRC}{FC \times FD}
 \]
 Where:
 - TLT = Long-term design load—lb/ft (kg/m)
 - TULT = Geogrid ultimate tensile strength—lb/ft (kg/m)
 - CRC = Creep reduction coefficient
 - FC = Factor of safety to account for construction damage
 - FD = Factor of safety to account for product durability

b. Determine TULT
 Determine the TULT based on wide strip tensile testing as noted in Subsection 809.2.02.

c. Determine Reduction Factors
 Determine the reduction factors by the methods described in paragraphs a - e as follows:
 1) Creep
 a) Provide evidence from the manufacturer that the geogrid has been tested in laboratory creep tests according to the following criteria:
 - Conducted for a minimum duration of 10,000 hours
 - Tests were made for a range of load levels, including loads that the geogrid will be subjected to on the Project.
 b) Ensure these tests are conducted as specified in Subsection 809.2.02.
 c) Extrapolate the results extrapolated to a minimum design life of 75 years.
 d) Determine the tension level at which the total strain of the geogrid is not expected to exceed 10% within the design life of 75 years (designated Tw).
 e) Calculate the creep reduction factor as follows:
 \[
 CRC = \frac{Tw}{TULT}
 \]
 In the absence of test data, use the following creep reduction factors for different polymers:

<table>
<thead>
<tr>
<th>Polymer Type</th>
<th>Creep Reduction Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyester</td>
<td>0.40</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>0.20</td>
</tr>
<tr>
<td>Polyamide</td>
<td>0.35</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>0.20</td>
</tr>
</tbody>
</table>
2) **Construction Damage**
 a) Provide evidence from the manufacturer that the geogrid has been subjected to full scale construction damage tests using fill materials and construction procedures which are representative of those on the Project.
 b) Excavate and test the grid according to Subsection 809.2.02.
 c) Calculate the construction damage factor of safety using the following formula:

 \[FC = \frac{TULT}{TC} \]

 Where:
 \[FC = \text{The construction damage factor} \]
 \[TC = \text{The ultimate strength of the excavated grid that has been subjected to construction damage tests.} \]
 \[TULT = \text{Geogrid ultimate tensile strength—lb/ft (kg/m)} \]
 d) If construction damage tests have been made, but with fills or construction procedures other than those represented on the Project, use a minimum value of FC of 1.25. Use a lower value of FC only if substantiated with damage tests using fills and construction procedures specific to the Project.
 e) In the absence of any construction damage tests, use a FC value of 3.0.

3) **Product Durability**
 a) Provide evidence from the manufacturer that the geogrid has been subjected to a series of durability tests to examine the effects of chemical and biological exposure on the grid, as described in the AASHTO Task Force 27 report.
 b) Include the following in the durability studies:
 - Effect on short-term and long-term mechanical properties.
 - Changes to the following:
 - Reinforcement microstructure
 - Dimensions
 - Mass
 - Oxidation
 - Environmental stress cracking
 - Hydrolysis
 - Temperature
 - Plasticization
 - Surface micrology
 - Variations in the infrared spectrum analysis.
 - A full investigation into the synergetic effects of different environments, particularly temperature. Subject the reinforcement to a working stress during the environmental test.
 c) Ensure that geogrid used in the Work has been subjected to the environmental conditioning as outlined by the following, as a minimum:
 - U.S. Environmental Protection Agency, Method 9090 – Chemical Compatibility.
 - Association of Textile Chemists and Colorists, Method 30 – Soil Burial.
 - American Association of Textile Chemists and Colorists, Method 100 – Preparation of Bacterial Broth.
 d) Investigate the full range of soil environments to which the reinforcements may be potentially exposed and shall include as a minimum:
 - pH in the range of 2, 4, 8, 12 – ASTM-D-2165
 - Diesel oil – ASTM-D-975
 - Fungi and Bacteria
 - UV exposure 500 hrs – ASTM-O-4335
 - Solvents and agents that are site specific.
In the performance of this testing the conditioning temperature is laboratory standard plus 1.5 times laboratory standard for the pH environments.

When no conditioning time period is given, use 30 days. Extrapolate results from short-term tests to the required design life of 75 years.

After the geogrid is subjected to these conditions, test the geogrid according to Subsection 809.2.02, and calculate the durability factor of safety by the following formula:

\[
FD = \frac{TULT}{TD}
\]

Where: TD = The ultimate strength of the geogrid subjected to product durability tests.

The minimum allowable value of FD is 1.10. In the absence of any geogrid durability tests, use a Durability Factor (FD) of 2.0.

4) Pullout Resistance:
 a) Provide evidence from the manufacturer that the geogrid has been subjected to full-scale pullout tests using backfill materials representative of those on the Project, as described in the AASHTO Task Force 27 report.
 b) Base pullout resistance for design on a maximum of elongation of the embedded geogrid of 3/4 in (19 mm) as measured at the leading edge of the compressive zone within the soil mass and not the ultimate pullout capacity.
 c) Where insufficient data exists to evaluate the pullout resistance of geogrid as a function of soil type, conduct pullout tests on a project specific basis until the engineering behavior of the soil-reinforcement system is clearly defined.
 d) Perform pullout using vertical stress variations (Sv) and reinforcement element configurations simulating actual project conditions.
 e) Perform pullout tests according to Subsection 809.2.02 on samples with a minimum embedded length of 2 ft (600 mm). Perform the tests on samples with a minimum width of 1 foot (300 mm), or a width equal to a 4 longitudinal grid element, whichever is greater. Conduct the tests at 70 oF ±4 oF (21°C ± 2°C) at constant strain rates of 0.02 in (0.5mm) per minute.

Evaluate the pullout resistance by the following relation:

\[
Tp = (2 \tan P) \times Sv \times Ls \times fd
\]

Where:

\[
Tp = \text{Ultimate pullout capacity of tensile reinforcement—lb/ft (kg/m)}
\]

\[
Sv = \text{Vertical stress—lb/ ft}^2 (kg/m2)
\]

\[
Ls = \text{Total length of geogrid beyond failure plane—ft (m)}
\]

\[
P = \text{Internal angle of friction of select backfill}
\]

\[
fd = \text{Equivalent coefficient of direct sliding derived from pullout tests}
\]

The equivalent coefficient of direct sliding, fd, may be related to the open area of the grid. In the absence of product specific data tested with site-specific granular backfill, estimate the from the following preliminary analysis:

<table>
<thead>
<tr>
<th>% Open Area of Grid</th>
<th>Direct Sliding</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% more</td>
<td>0.5</td>
</tr>
<tr>
<td>51 to 79</td>
<td>0.7</td>
</tr>
<tr>
<td>50 or less</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Ensure the pullout resistance, Tp, meets the following minimum strength requirement:

\[Tp = FPO \times TLT \] with a displacement less than or equal to \(\frac{3}{4} \) in (19 mm)

Where:

- **FPO** = Factor of safety against pullout, equal to 1.5
- **TLT** = Long-term design load—lb/ft (kg/m)

5) Junction Strength:

- a) Ensure that the summation of the shear strength of the joints occurring in a 12 in (300 mm) length of the grid sample is greater than the ultimate tensile strength of the element to which they are attached.
- b) If this condition is not met, reduce the allowable reinforcement tension, Tw, by the ratio of the shear strengths to the ultimate strength.
- c) Determine the ultimate tensile strength according to Subsection 809.2.02 and translate it into an ultimate strength per element by dividing the number of elements per foot (meter) of width.
- d) Measure the junction strength according to Subsection 809.2.02.

2. MSE Wall Backfill Stabilizing Geogrid (SR 3)

Use geogrid materials for MSE wall construction that meets the following requirements:

- Is a biaxial grid of polymer tensile elements manufactured into a regular network with apertures of sufficient size to allow for soil interlock.
- Is a commercially prepared material of copolymerized high density polyethylene (HDPE) that is formed by stretching, heat welding, chemical welding, or combinations of these methods.
- Has the following physical properties:

<table>
<thead>
<tr>
<th>Physical Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
</tr>
<tr>
<td>Melt Index</td>
</tr>
<tr>
<td>Density</td>
</tr>
<tr>
<td>Tensile Strength</td>
</tr>
<tr>
<td>Ultimate Elongation</td>
</tr>
<tr>
<td>Brittleness</td>
</tr>
<tr>
<td>Vicat Softening Point</td>
</tr>
<tr>
<td>Chemical Resistance</td>
</tr>
<tr>
<td>Biological Resistance</td>
</tr>
</tbody>
</table>

- Has the following structural and mechanical properties:

<table>
<thead>
<tr>
<th>MSE Wall Geogrid—Structural and Mechanical Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
</tr>
<tr>
<td>Roll Length</td>
</tr>
<tr>
<td>Roll Width</td>
</tr>
<tr>
<td>Roll Weight</td>
</tr>
<tr>
<td>Grid Pitch</td>
</tr>
<tr>
<td>Color</td>
</tr>
<tr>
<td>Ultimate Tensile Strength</td>
</tr>
<tr>
<td>Extension @ Ulf. Tensile Strength</td>
</tr>
</tbody>
</table>
MSE Wall Geogrid—Structural and Mechanical Properties

<table>
<thead>
<tr>
<th>Extension @ Design Load (0.4 Ult.)</th>
<th>3.0% maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus in Tension</td>
<td>9000 ksi (62 000 MPa)</td>
</tr>
<tr>
<td>Thermal Stability</td>
<td>Stable over a range of -60 °F to 174 °F (-51 °C to 79 °C)</td>
</tr>
</tbody>
</table>

Note: Tests are based on 10 single rib samples extended at a constant rate of 1 inch (25 mm)/min. at a temperature of 68 ± 4 °F (20 ± 2 °C).

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test geogrid according to the following:

<table>
<thead>
<tr>
<th>Test Property</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforced Slopes</td>
<td></td>
</tr>
<tr>
<td>Tensile Strength—Wide Width</td>
<td>ASTM D 4595</td>
</tr>
<tr>
<td>Tensile Strength—Single Rib Strand</td>
<td>GRI – GG1</td>
</tr>
<tr>
<td>Junction Strength</td>
<td>GRI – GG2-87</td>
</tr>
<tr>
<td>Tensile Creep Testing</td>
<td>GRI – GG3a or GG3b</td>
</tr>
<tr>
<td>Geogrid Pullout</td>
<td>GRI – GG5</td>
</tr>
<tr>
<td>MSE Wall Backfill Stabilizing Geogrid (SR 3)</td>
<td></td>
</tr>
<tr>
<td>Melt Index</td>
<td>ASTM D 1238</td>
</tr>
<tr>
<td>Density</td>
<td>ASTM D 1505</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D 638</td>
</tr>
<tr>
<td>Ultimate Elongation</td>
<td>ASTM D 638</td>
</tr>
<tr>
<td>Vicat Softening Point</td>
<td>ASTM D 1525</td>
</tr>
<tr>
<td>Brittleness</td>
<td>ASTM D 746</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

809.2.01 Delivery, Storage, and Handling
During shipment and storage, protect the grid from mud, dirt, dust, debris and exposure to ultraviolet light, including sunlight.

Section 810—Roadway Materials

810.1 General Description
This section includes the requirements for the materials used in roadway construction.

810.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 GDT 4
810.2 Materials

810.2.01 Roadway Materials

A. Requirements

Do not use materials containing logs, stumps, sod, weeds, or other perishable matter.

1. Classes

The materials are divided into six major classes. Classes I, II, and III are further subdivided and identified by description and physical property requirements specified in the table below and in Table I. Classes IV, V, and VI are identified by descriptive requirements.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Medium- to well-graded sand or clayey sand.</td>
</tr>
<tr>
<td>IA1 and IA2</td>
<td>Fine-grained, silty, or clayey sand; usually less dense than IA1 or IA2. These soils have an excellent bearing capacity.</td>
</tr>
<tr>
<td>IA3</td>
<td>Medium- to well-graded sandy clays, sandy silts, and clays with some mica. These soils generally have low volume change properties and good densities that serve well as subgrade material.</td>
</tr>
<tr>
<td>IIB1, IIB2, and IIB3</td>
<td>Similar to IIB1, IIB2, and IIB3, but generally contain more mica and are more sensitive to moisture. The bearing value of these soils is less predictable. The soils may or may not be satisfactory for subgrade material. Analyze field data or run laboratory and/or field tests for Class IIB4 when considering it for a subgrade material.</td>
</tr>
<tr>
<td>IIB4</td>
<td>Medium- to fine-graded micaceous sandy silts, micaceous clayey silts, chert clays, and shaly clays. Undesirable characteristics are high volume change properties and/or low densities. The bearing values are unpredictable. The Department recommends testing these materials in a laboratory, where possible, before use. One exception is District 6, where chert clay soils are prevalent. Chert clay soils (IIC4) with less than 55% passing the No. 10 (2 mm) sieve may be considered suitable for subgrade materials. These soils are found generally in the northwest corner of the state in Dade, Walker, Catosa, Whitfield, Murray, Chattooga, Gordon, and Floyd counties.</td>
</tr>
<tr>
<td>IIIC1, IIIC2, IIIC3 and IIIC4</td>
<td>Highly organic soils or peat, muck, and other unsatisfactory soils generally found in marshy or swampy areas.</td>
</tr>
<tr>
<td>Class IV</td>
<td>Shaly materials that are not only finely laminated but have detrimental weathering properties and tend to disintegrate.</td>
</tr>
<tr>
<td>Class V</td>
<td>Rock or boulders that cannot be readily incorporated into the embankment by layer construction, and that contain insufficient material to fill the interstices when they are placed.</td>
</tr>
</tbody>
</table>
Table 1: Physical Properties (Material Passing No. 10 (2.00 mm) Sieve)

<table>
<thead>
<tr>
<th>Sub-Class</th>
<th>No. 60 (250 μm) Sieve % Passing</th>
<th>No. 200 (75 μm) Sieve % Passing</th>
<th>Clay, %</th>
<th>Volume Change, %</th>
<th>Maximum Dry Density lbs/ft³ (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>15-65</td>
<td>0-25</td>
<td>0-12</td>
<td>0-10</td>
<td>115+ (1840+)</td>
</tr>
<tr>
<td>A2</td>
<td>15-85</td>
<td>0-35</td>
<td>0-16</td>
<td>0-12</td>
<td>110+ (1760+)</td>
</tr>
<tr>
<td>A3</td>
<td>15-100</td>
<td>0-25</td>
<td>0-12</td>
<td>0-18</td>
<td>98+ (1570+)</td>
</tr>
<tr>
<td>Class II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td>0-30</td>
<td>0-20</td>
<td>0-10</td>
<td>120+ (1920+)</td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td>0-45</td>
<td>0-30</td>
<td>0-15</td>
<td>110+ (1760+)</td>
</tr>
<tr>
<td>B3</td>
<td></td>
<td>0-60</td>
<td>0-50</td>
<td>0-20</td>
<td>105+ (1680+)</td>
</tr>
<tr>
<td>B4</td>
<td></td>
<td>0-75</td>
<td>0-25</td>
<td></td>
<td>90+ (1440+)</td>
</tr>
<tr>
<td>Class III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td></td>
<td>0-75</td>
<td>0-30</td>
<td></td>
<td>90+ (1440+)</td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td></td>
<td>0-35</td>
<td></td>
<td>80+ (1280+)</td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td>0-60</td>
<td></td>
<td>80+ (1280+)</td>
</tr>
<tr>
<td>C4*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80- (1280-)</td>
</tr>
</tbody>
</table>

*Chert clay soils in District 6 having less than 55% passing the No. 10 (2.00 mm) sieve may be considered suitable for subgrade material.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil gradation</td>
<td>GDT 4</td>
</tr>
<tr>
<td>Volume change</td>
<td>GDT 6</td>
</tr>
<tr>
<td>Maximum density</td>
<td>GDT 7 or GDT 67</td>
</tr>
</tbody>
</table>

D. Materials Warranty
 General Provisions 101 through 150.

Section 811—Rock Embankment

811.1 General Description
This section includes the requirements for material used in rock embankment.

811.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
AASHTO T 96
AASHTO T 104
ASTM C 295

811.2 Materials

811.2.01 Rock Embankment Material
A. Requirements
1. Use unweathered quarry-run stones, smaller than 4 ft (1.2 m), in any dimension as rock embankment material.
2. Include all other quarry stone sizes in the embankment. Limit rock fines to a maximum of 25 percent passing a 2 in (50 mm) sieve and 10 percent passing a No. 4 (4.75 mm) sieve.
3. Ensure that the material contains 5 percent or less shaly or flaky particles and meets abrasion requirements for a Class A or B coarse aggregate.
4. Ensure that the material has 15 percent or less loss in the magnesium sulfate soundness test.
5. Use the material only when approved by a petrographic rock analysis.

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasion</td>
<td>AASHTO T 96</td>
</tr>
<tr>
<td>Soundness (Magnesium Sulfate)</td>
<td>AASHTO T 104</td>
</tr>
<tr>
<td>Petrographic analysis</td>
<td>ASTM C 295</td>
</tr>
</tbody>
</table>

D. Materials Warranty
General Provisions 101 through 150.

Section 812—Backfill Materials

812.1 General Description
This section includes the requirements for four types of material used as backfill: foundation backfill, Types I and II, imperfect trench backfill, Type III, and mechanically stabilized wall backfill.

812.1.01 Related References
A. Standard Specifications
 Section 810—Roadway Materials
B. Referenced Documents
 AASHTO T 27
 GDT 4
 GDT 6
 GDT 7
 GDT 67
812.2

812.2 Materials

812.2.01 Foundation Backfill, Type I

A. Requirements

1. Use natural or artificial mixtures of materials consisting of hard, durable particles of sand or stone, mixed with silt, clay and/or humus material for Type I backfill.

2. Have the final blend of material meet the requirements of Class I or II soils in Subsection 810.2.01.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil gradation</td>
<td>GDT 4</td>
</tr>
<tr>
<td>Volume change</td>
<td>GDT 6</td>
</tr>
<tr>
<td>Maximum density</td>
<td>GDT 7 or GDT 67</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

812.2.02 Foundation Backfill, Type II

A. Requirements

1. Type

Use material that meets the requirements of Section 800, Class A or B aggregate. Crushed concrete may be used provided it meets the requirements of Section 800 that are applicable to Group 2 Aggregates.

Do not use backfill aggregate containing soil or decomposed rock.

2. Gradation

Use material that meets the following gradation requirements:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2 in (37.5 mm)</td>
<td>100</td>
</tr>
<tr>
<td>1 in (25 mm)</td>
<td>80-100</td>
</tr>
<tr>
<td>No. 8 (2.36 mm)</td>
<td>0-5</td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve analysis</td>
<td>AASHTO T 27</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.
812.2.03 Imperfect Trench Backfill, Type III
A. Requirements
 1. Type
 Use material made from either of the following for Type III backfill:
 - A natural soil with a density of less than 95 lb/ft³ (1520 kg/m³) when tested with GDT 7
 - An artificial mixture of soil and organic material, such as hay, leaves, or straw

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The laboratory will:
 1. Test the soil density with GDT 7.
 2. Review the mixture and the percentages of each material, and approve a mixture suitable for the Project.

D. Materials Warranty
 General Provisions 101 through 150.

812.2.04 Mechanically Stabilized Embankment Backfill
A. Requirements
 Use material comprised of crushed stone, natural sand, or a blend of crushed stone and natural sand free of soils, organic
 or any other deleterious substances that meet the following additional requirements:
 1. Crushed Stone
 Use a material manufactured from Class A or B stone free of soil overburden and having a soundness loss of not
 more than 15 percent.
 2. Natural Sand
 Use material that consists of strong, hard, durable particles, is non-plastic, and has a durability index of at least 70.
 3. Gradation
Sieve Size	% Passing by Weight
4 in (100 mm)	100
2 in (50 mm)	80 - 100
No. 10 (2 mm)	20 - 90
No 200 (75 x mm)	0 - 12
 * Natural Sand may be 20 - 100

 4. Chemical
 Ensure the material meets the following chemical requirements:
Test Method	Requirement
Ph	6.0 – 9.5
Resistivity	>3000 ohms/cm
Chlorides	<100 ppm
Sulfates	<200 ppm
 Note: These chemical requirements are not applicable to MSE
 walls stabilized with an approved extensible reinforcement.

 5. Maximum Dry Density
 Use backfill material with a maximum dry density equal to or greater than the design unit weight shown on the
 plans. If no maximum dry density of the backfill material is shown, use a weight of 125 lb/ft³ (2000 kg/m³).

B. Fabrication
 General Provisions 101 through 150.
813.1

C. Acceptance

Test the material as follows:

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Wear</td>
<td>AASHTO T96 ("A" Grading)</td>
</tr>
<tr>
<td>Sieve Analysis</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Material Passing No. 200 (75 μm) Sieve</td>
<td>AASHTO T 11</td>
</tr>
<tr>
<td>Durability Index</td>
<td>GDT 75</td>
</tr>
<tr>
<td>Maximum Dry Density</td>
<td>GDT 7 or GDT 24a, GDT 24b</td>
</tr>
<tr>
<td>Soundness (Magnesium Sulfate)</td>
<td>AASHTO T 104</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

Section 813—Pond Sand

813.1 General Description

This section includes the requirements for pond sand.

813.1.01 Related References

A. Standard Specifications

General Provisions 101 through 150.

B. Referenced Documents

- GDT 4
- GDT 6
- GDT 7
- GDT 67
- AASHTO T 11 and AASHTO T 27

813.2 Materials

813.2.01 Pond Sand

A. Requirements

Make pond sand exclusively of granular crushed stone fines, relatively free of silt balls, that meet these requirements:

<table>
<thead>
<tr>
<th>Gradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Size</td>
</tr>
<tr>
<td>4 in (100 mm)</td>
</tr>
<tr>
<td>1-1/2 in (37.5 mm)</td>
</tr>
<tr>
<td>No. 200 (75 μm)</td>
</tr>
<tr>
<td>Maximum dry density</td>
</tr>
<tr>
<td>Volume change</td>
</tr>
</tbody>
</table>
814.2.01

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradation</td>
<td>AASHTO T 11 and AASHTO T 27</td>
</tr>
<tr>
<td>Maximum dry density</td>
<td>GDT 7 or GDT 67</td>
</tr>
<tr>
<td>Volume change</td>
<td>GDT 6</td>
</tr>
</tbody>
</table>

D. Materials Warranty
 General Provisions 101 through 150.

Section 814—Soil Base Materials

814.1 General Description
This section includes the requirements for soil base materials, including topsoil or sand-clay, soil-cement, sand for bituminous stabilization, and chert.

814.1.01 Related References
A. Standard Specifications
 Section 301 – Soil-Cement Construction
 Section 800–Coarse Aggregate
 Section 810–Roadway Materials
 Section 831–Admixtures

B. Referenced Documents
 AASHTO T 89
 AASHTO T 90
 GDT 4
 GDT 6
 GDT 7
 GDT 65
 GDT 67

814.2 Materials
814.2.01 Topsoil or Sand-Clay
A. Requirements
 1. Use topsoil or sand-clay that is a natural or artificial mixture of clay or soil binder with sand or other aggregate.
 □ Do not use a mixture that contains substances detrimental to the material.
 □ Obtain the materials from sources approved by the Engineer.
 □ Ensure that the aggregate retained on No. 10 (2 mm) sieve (coarse aggregate) is of hard, durable particles.
 2. Sand and Binder
 Use hard, sharp, durable, siliceous particles. Use binder made from quality clay.
3. Oversize
Remove particles with diameters greater than 2 in (50 mm) before depositing the topsoil or sand-clay on the road. Remove particles with screens or grizzlies, or by hand if few oversized pieces exist. You may crush the oversized pieces and use them.

4. Topsoil
Use a topsoil that is a natural, generally pebbly material occurring in shallow surface deposits on usually elevated areas.

5. Natural Sand-Clay
Use a natural sand-clay that is a mixture of natural material, largely sand and clay in proper proportions, occurring in deposits of considerable depth.

6. Artificial Sand-Clay
Use an artificial sand-clay that is largely a mixture of artificial sand and clay. You may make the mixture by combining clay or soil binder and sand or aggregate in the proper proportions.

7. Topsoil and Sand-Clay
Use topsoil and sand-clay with the following properties:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passing 2 in (50 mm)</td>
<td>100% by weight</td>
</tr>
<tr>
<td>Passing 1-1/2 in (37.5 mm)</td>
<td>80-100% by weight</td>
</tr>
<tr>
<td>Passing No. 40 (425 µm)</td>
<td>Liquid Limit (LL) of 25 or less</td>
</tr>
<tr>
<td></td>
<td>Plastic Index (PI) of 9 or less</td>
</tr>
</tbody>
</table>

8. Ensure that material passing the No. 10 (2 mm) sieve meets the following requirements:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passing No. 10 (2 mm) sieve</td>
<td>100</td>
</tr>
<tr>
<td>Passing No. 60 (250 µm) sieve</td>
<td>15-85</td>
</tr>
<tr>
<td>Passing No. 200 (75 µm) sieve</td>
<td>9-35</td>
</tr>
<tr>
<td>Clay</td>
<td>9-25</td>
</tr>
<tr>
<td>Volume change, max. percent</td>
<td>12</td>
</tr>
<tr>
<td>Maximum density, lb/ft³ (kg/m³)</td>
<td>110+ (1760+)</td>
</tr>
</tbody>
</table>

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
The Department or Producer will test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil gradation</td>
<td>GDT 4</td>
</tr>
<tr>
<td>Volume change</td>
<td>GDT 6</td>
</tr>
<tr>
<td>Maximum density</td>
<td>GDT 7 or GDT 67</td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>AASHTO T 89</td>
</tr>
<tr>
<td>Plastic Limit and Plasticity Index</td>
<td>AASHTO T 90</td>
</tr>
</tbody>
</table>

D. Materials Warranty
General Provisions 101 through 150.
814.2.02 Soil-Cement Material

A. Requirements

1. Ensure that the material for soil-cement base will:
 a. Meet the requirements of Subsection 810.2.01 for Classes IA1, IA2, IA3, or IIB1 with the following modifications:

<table>
<thead>
<tr>
<th>Clay content</th>
<th>4 to 25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume change</td>
<td>18% maximum</td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>25% maximum</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>10% maximum</td>
</tr>
<tr>
<td>Maximum dry density</td>
<td>95 lb/ft³ (1520 kg/m³) minimum</td>
</tr>
</tbody>
</table>

b. Be friable and not contain large amounts of heavy or plastic clay lumps, organic material, roots, or other substances that would interfere with how the Portland cement sets, plant production, or the finished surface of the base and meet the requirements of Subsection 301.3.05.A.2, “Pulverization” or Subsection 301.3.05.B.1, “Soil”.

c. Produce a laboratory unconfined compressive strength of at least 450 psi (3.1 MPa). To make the sample, mix in a maximum of 8 percent Type I Portland cement, moist-cure for 7 days, and test with GDT 65.

2. Analyze the soil-cement design and create a Job Mix Formula for each Project where soil-cement base or subbase is specified. Have the Job Mix Formula approved by the Engineer before starting base or subbase construction.

3. You may use fly ash or slag that meets the requirements of Subsection 831.2.03 as admixtures for poorly reacting soils when the blend of soil and fly ash, or slag, meets the design requirements in this Subsection.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil-Cement Design</td>
<td>GDT 65</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

814.2.03 Sand for Bituminous Stabilization

A. Requirements

1. Submit the bituminous stabilization sand materials to the laboratory in advance. If the laboratory approves the material, use it in constructing the sand-bituminous base course.

2. Use hard, durable particles without organic impurities such as roots or trash that may prevent the bituminous material from bonding with the individual particles.

3. Grade the material as follows:

<table>
<thead>
<tr>
<th>Size</th>
<th>Percent Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passing 1 in (25 mm) sieve</td>
<td>100</td>
</tr>
<tr>
<td>Passing No. 10 (2.00 mm) sieve</td>
<td>80-100</td>
</tr>
<tr>
<td>Passing No. 200 (75 µm) sieve</td>
<td>0-25</td>
</tr>
<tr>
<td>Clay</td>
<td>0-16</td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.
C. Acceptance
Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil gradation</td>
<td>GDT 4</td>
</tr>
</tbody>
</table>

D. Materials Warranty
General Provisions 101 through 150.

814.2.04 Chert
A. Requirements
Use materials that are natural mixtures of binder and chert rock with the following characteristics:
- Ensure that the aggregate retained on the No. 10 (2 mm) sieve (coarse aggregate) is a hard, durable chert rock meeting requirements for Class A or B coarse aggregate (see Subsection 800.2.01).
- Use aggregate sizes in the final mix that can be properly placed, compacted, and finished.
- Ensure that the portion of material passing the No. 10 (2 mm) sieve is sand and clay or another satisfactory bonding material.

1. Gradation
Grade the material as follows:

<table>
<thead>
<tr>
<th>Size</th>
<th>Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passing 1-1/2 in (37.5 mm) sieve</td>
<td>80-100</td>
</tr>
<tr>
<td>Passing No. 10 (2 mm) sieve</td>
<td>30-60</td>
</tr>
<tr>
<td>Material Passing No. 10 (2 mm) Sieve</td>
<td></td>
</tr>
<tr>
<td>Passing No. 10 (2 mm) sieve</td>
<td>100</td>
</tr>
<tr>
<td>Passing No. 60 (250 μm) sieve</td>
<td>20-85</td>
</tr>
<tr>
<td>Passing No. 200 (75 μm) sieve (silt less clay)</td>
<td>5-25</td>
</tr>
<tr>
<td>Clay</td>
<td>15-50</td>
</tr>
</tbody>
</table>

Ensure that the material passing the No. 40 (425 μm) sieve has a Liquid Limit (LL) of 35 or less and a Plasticity Index (PI) of 10 or less.

2. Stockpiles
In all cases, stockpile the end product so that the material will be blended before any of it is loaded and delivered to the job.
 a. Make a stockpile big enough to uniformly blend the workable strata in the pit.
 b. The Engineer will determine the minimum volume of the stockpile. The Engineer will also be the sole authority as to the quality and workability of the various strata occurring in the pit.
 c. Maintain the minimum volume of the stockpile until the suitable material in the pit has all been stockpiled or until the material remaining in the stockpile is enough to complete the operation, as governed by haul limitations.

3. Equipment for Delivery
 Use equipment that will mix the material again while the material is being loaded for delivery.

B. Fabrication
General Provisions 101 through 150.
C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil gradation</td>
<td>GDT 4</td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>AASHTO T 89</td>
</tr>
<tr>
<td>Plastic Limit and Plastic Index</td>
<td>AASHTO T 90</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

Section 815—Graded Aggregate

815.1 General Description

This section includes the requirements for material to be used for base, subbase, or shoulder course material, and includes graded aggregate, unconsolidated limerock base, and crushed concrete base.

815.1.01 Related References

A. Standard Specifications

Section 800—Coarse Aggregate

B. Referenced Documents

AASHTO T 27
ASTM C 295
ASTM D 3042
FL DOT Method FM5-515
SOP–1
GDT 63

815.2 Materials

815.2.01 Graded Aggregate

A. Requirements

1. Type

 Use graded aggregate base, subbase, or shoulder course material of uniform quality.

 a. Obtain the graded aggregate from an approved source or deposit that will yield a satisfactory mixture meeting all requirements of this Specification.

 b. Use material that is crushed or processed as a part of the mining operations, or, mix two grades of material so that when combined in the central mix plant, the mixture meets the specifications.

2. Retained on the No. 10 (2 mm) sieve

 Ensure that the material retained on the No. 10 (2 mm) sieve is Class A or B aggregate that meets the requirements of Section 800.

3. Passing the No. 10 (2 mm) sieve

 Ensure that any material passing the No. 10 (2 mm) sieve is relatively free of detrimental substances, such as soil overburden, decomposed rock, and/or swelling silts.

4. Stabilized Mixtures

 Ensure that mixtures to be stabilized react satisfactorily when mixed with Portland cement. The Engineer will specify the percentage of Portland cement to use.
5. Gradation

Grade the graded aggregate base, subbase, or shoulder material as follows:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing By Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I Aggregates</td>
<td></td>
</tr>
<tr>
<td>2 in (50 mm)</td>
<td>100</td>
</tr>
<tr>
<td>1-1/2 in (37.5 mm)</td>
<td>97-100</td>
</tr>
<tr>
<td>3/4 in (19.0 mm)</td>
<td>60-95</td>
</tr>
<tr>
<td>No. 10 (2 mm)</td>
<td>25-50 (Note 1, 2 and 3)</td>
</tr>
<tr>
<td>No. 60 (250 μm)</td>
<td>10-35</td>
</tr>
<tr>
<td>No. 200 (75 μm)</td>
<td>7-15</td>
</tr>
<tr>
<td>Group II Aggregates</td>
<td></td>
</tr>
<tr>
<td>2 in (50 mm)</td>
<td>100</td>
</tr>
<tr>
<td>1-1/2 in (37.5 mm)</td>
<td>97-100</td>
</tr>
<tr>
<td>3/4 in (19 mm)</td>
<td>60-90</td>
</tr>
<tr>
<td>No. 10 (2 mm)</td>
<td>25-45 (Note 2 and 4)</td>
</tr>
<tr>
<td>No. 60 (250 μm)</td>
<td>5-30</td>
</tr>
<tr>
<td>No. 200 (75 μm)</td>
<td>4-11</td>
</tr>
</tbody>
</table>

NOTE 1: Group I aggregates having less than 37% passing the No. 10 (2 mm) sieve, shall have at least 9 percent passing the No. 200 (75 μm) sieve.

NOTE 2: For graded aggregate stabilized with Portland Cement, 30-50 percent by weight shall pass the No. 10 (2 mm) sieve. All other requirements remain the same.

NOTE 3: Material passing the No. 10 (2 mm) sieve shall have a sand equivalent of at least 20 for Group I aggregates.

NOTE 4: Material passing the No. 10 (2 mm) sieve shall have a sand equivalent of at least 28 for Group II aggregates. Sand Equivalent values as low as 20 will be acceptable provided they are attributed exclusively to rock flour and the percent passing the No. 10 (2 mm) sieve does not exceed 40.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradation</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>GDT 63</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

815.2.02 Unconsolidated Limerock Base

A. Requirements

1. Type

 Use limerock base, subbase, or shoulder course material of uniform quality.

 a. To ensure uniform quality, the Department may restrict approved sources to specific mining areas, mining processes at a specific mining site, or both.

 b. Use a limerock base that yields a mixture to meet these Specifications.
c. Use material that is crushed or processed as a part of the mining operations, or mix two grades of material so that when combined in the central mix plant the mixture meets the specifications.

d. Use limerock base, subbase, or shoulder material that has the following characteristics:

<table>
<thead>
<tr>
<th>Limerock bearing ratio</th>
<th>At least 100.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deleterious substances</td>
<td>Do not allow chert or other extremely hard pieces that will not pass the 2 in (50 mm) sieve.</td>
</tr>
<tr>
<td></td>
<td>Do not allow clay, sand, organics, or other materials in quantities that may damage bonding, finishing, or strength.</td>
</tr>
<tr>
<td></td>
<td>All material passing the No. 40 (425 μm) sieve shall be non-plastic.</td>
</tr>
<tr>
<td>Carbonate content (magnesium or calcium)</td>
<td>At least 90%.</td>
</tr>
</tbody>
</table>

2. Gradation

Grade the limerock base so at least 97 percent by weight passes the 3-1/2 in (90 mm) sieve.

a. Grade the material uniformly to dust. The fine portion passing the No. 10 (2 mm) sieve shall all be dust of fracture.

b. Crush or break the limerock base, if necessary to meet size requirements before placing the material on the road.

c. Ensure that materials having soundness losses of 20% or less, comply with the following gradation requirements:

<table>
<thead>
<tr>
<th>Gradation Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIEVE SIZE</td>
</tr>
<tr>
<td>2" (50 mm)</td>
</tr>
<tr>
<td>1-1/2" (37.5 mm)</td>
</tr>
<tr>
<td>3/4" (19 mm)</td>
</tr>
<tr>
<td>No. 10 (2.00 mm)</td>
</tr>
<tr>
<td>No. 60 (250 μm)</td>
</tr>
<tr>
<td>No. 200 (75 μm)</td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradation</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Limerock bearing ratio</td>
<td>FL DOT Method FM5-515</td>
</tr>
<tr>
<td>Petrographic analysis</td>
<td>ASTM C 295</td>
</tr>
<tr>
<td>Total carbonates (insoluble residue)</td>
<td>ASTM D 3042</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.
815.2.03 Crushed Concrete Base

A. Requirements
1. Sources
 Obtain sources of crushed concrete materials approved by the Office of Materials and Research. The criteria for approval will be as outlined in Standard Operating Procedure No. 1, “Monitoring the Quality of Coarse and Fine Aggregates” except that the raw material will be recyclable concrete as specified herein rather than a geological deposit of aggregate.

2. Type
 Use crushed concrete derived exclusively from Portland cement concrete pavement or structural concrete as a base, subbase, or shoulder course.
 Ensure that the material does not contain delivery unit washout material.

3. Gradation
 Ensure that the finished product meets the quality and gradation requirements of Subsection 815.2.01 for Group II aggregates, except that the aggregate will be recycled concrete.
 Ensure that the finished product is free of foreign materials such as asphaltic concrete, steel reinforcement, clay balls, soils, epoxy expansion material, and miscellaneous paving materials.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradation</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>GDT 63</td>
</tr>
</tbody>
</table>

D. Materials Warranty
 General Provisions 101 through 150.

815.2.04 Inorganic Mineral Ash

A. Requirements
 Inorganic mineral ash base, subbase, or shoulder course material is restricted to use on local roads only and shall not be used on Interstates or State Highway System routes.

1. Sources
 Obtain inorganic mineral ash from an approved source or deposit that will yield a satisfactory mixture meeting all requirements of this Specification after it has been processed or crushed as a part of the mining operations.
 The inorganic mineral ash shall be of uniform quality throughout. To ensure uniformity in quality, approved sources may be restricted to specific mining areas and/or mining processes at a specific mining site.

2. Type
 Ensure inorganic mineral ash base, subbase, or shoulder course material conforms to the following types:
 a. Class C Fly Ash: Class C fly ash is the finely divided residue that results from the combustion of ground or powdered coal and is transported from the boiler by flue gases.
 b. Circulating Fluidized Bed Combustor Ash (CFBC Ash): CFBC ash is the residue that results from the combustion of petroleum coke with the injection of lime or crushed limestone directly into the boiler for sulfur removal and is transported from the boiler by flue gases.
 The CFBC ash shall have a minimum Available Lime Index of 5 percent.

3. Gradation
 Use inorganic mineral ash that has at least 97 percent (by weight) of the material passing a 3 ½-inch (90 mm) sieve and is graded uniformly down to dust.
Perform all crushing or breaking up necessary to meet the size requirements before the material is placed on the road.

A grading range on material being shipped to Department Projects may be established as a guide to verify consistency of the product.

Do not use inorganic mineral ash that contains extremely hard pieces of material retained on the 2-inch (50 mm) sieve when they are considered deleterious to the clipping and finishing of the base material when placed on the roadway.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Analysis</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Class C Fly Ash</td>
<td>AASHTO M 295</td>
</tr>
<tr>
<td>Available Lime Index</td>
<td>ASTM C 25</td>
</tr>
</tbody>
</table>

D. Materials Warranty
 General Provisions 101 through 150.

Section 816—Soil Aggregate Bases

816.1 General Description
This section includes the requirements for material to be used as soil aggregate base.

816.1.01 Related References
A. Standard Specifications
 Section 815–Graded Aggregate

B. Referenced Documents
 AASHTO T 89
 AASHTO T 90
 GDT 4
 GDT 6
 GDT 7
 GDT 13

816.2 Materials

816.2.01 Soil Aggregate
A. Requirements
 1. Type
 Use a soil aggregate base, subbase, or shoulder base course material that is of uniform quality.
 2. Material Retained on No. 10 (2 mm) sieve
 Ensure the material retained on the No. 10 (2 mm) sieve meets the requirements of Subsection 815.2.01.A.

 NOTE: You may substitute Group I graded aggregate base that meets the requirements of Subsection 815.2.01.A for soil aggregate base.
3. Gradation

Ensure the soil aggregate base, subbase, or shoulder material meets the following gradation:

<table>
<thead>
<tr>
<th>Size</th>
<th>Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passing 2 in (50 mm) sieve</td>
<td>100</td>
</tr>
<tr>
<td>Passing 1-1/2 in (37.5 mm) sieve</td>
<td>95-100</td>
</tr>
<tr>
<td>Passing 3/4 in (19 mm) sieve</td>
<td>60-97</td>
</tr>
<tr>
<td>Passing No. 10 (2 mm) sieve</td>
<td>25-55</td>
</tr>
<tr>
<td>Material passing No. 10 (2 mm) sieve</td>
<td></td>
</tr>
<tr>
<td>Passing No. 10 (2 mm) sieve</td>
<td>100</td>
</tr>
<tr>
<td>Passing No. 60 (250 µm) sieve</td>
<td>15-85</td>
</tr>
<tr>
<td>Passing No. 200 (75 µm) sieve (silt less clay)</td>
<td>3-25</td>
</tr>
<tr>
<td>Clay (8 minutes suspension on elutriation test)</td>
<td>10-25</td>
</tr>
</tbody>
</table>

da. Ensure that the material passing the No. 10 (2 mm) sieve has a total volume change of 15 or less.

b. Ensure that the material passing the No. 40 (425 µm) sieve has a Liquid Limit (LL) of 25 or less and a Plasticity Index (PI) of 9 or less.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradation</td>
<td>GDT 4 and GDT 13</td>
</tr>
<tr>
<td>Volume change</td>
<td>GDT 6</td>
</tr>
<tr>
<td>Liquid limit</td>
<td>AASHTO T 89</td>
</tr>
<tr>
<td>Plastic limit and plasticity index</td>
<td>AASHTO T 90</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

816.2.02 Soil Mortar for Soil Aggregate Base

A. Requirements

Use a soil mortar for soil aggregate bases of friable materials meeting these requirements:

Percent passing No. 200 (75 µm) sieve	0-65
Volume change	0-15
Maximum dry density	95 lb/ft³ (1520 kg/m³) +

B. Fabrication

General Provisions 101 through 150.
C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradation</td>
<td>GDT 4</td>
</tr>
<tr>
<td>Volume change</td>
<td>GDT 6</td>
</tr>
<tr>
<td>Maximum dry density</td>
<td>GDT 7</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

Section 817—Shoulder Material

817.1 General Description

This section includes the requirements for material used in shoulder construction.

817.1.01 Related References

A. Standard Specifications
 Section 810—Roadway Materials

B. Referenced Materials
 General Provisions 101 through 150.

817.2 Materials

817.2.01 Select Shoulder Material

A. Requirements
 Unless otherwise shown on the Plans or in the Special Provisions, use shoulder material that meets the requirements in Subsection 810.2.01.A.1 for Class I soil.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 See Subsection 810.2.01.C.

D. Materials Warranty
 General Provisions 101 through 150.

Section 818— Crushed Aggregate Subbase

818.1 General Description

Specifications for this work will be included elsewhere in the Contract.
Section 819—Fiber Stabilizing Additives

819.1 General Description
This Section covers the general requirements for fiber stabilizing additives that are incorporated into asphal tic concrete mixtures. These fibers are generally used to stabilize the asphalt film surrounding aggregate particles to reduce drain-down of the asphalt cement. Use a cellulose or mineral fiber stabilizer listed on QPL 77, Fiber Stabilizing Additives.

819.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 ASTM C612
 GDT 124
 QPL 77

819.2 Materials
The selected fiber shall meet the properties described below. Dosage rates given are typical ranges but the Office of Materials and Research shall approve the actual dosage rate used.

A. Cellulose Fibers
 Add cellulose fibers at a dosage rate between 0.2% and 0.4% by weight of the total mix as approved by the Engineer. Fiber properties shall be as follows:
 1. Fiber length: 0.25 inch (6.35 mm) maximum
 2. Sieve Analysis
 a. Alpine Sieve Method
 Passing No. 100 (150 μm) sieve: 60-80%
 b. Ro-Tap Sieve Method
 Passing No. 20 (850 μm) sieve: 80-95%
 Passing No. 40 (425 μm) sieve: 45-85%
 Passing No. 100 (150 μm) sieve: 5-40%
 3. Ash Content: 18% non-volatiles (±5%)
 4. pH: 7.5 (±1.0)
 5. Oil Absorption: 5.0 (±1.0) (times fiber weight)
 6. Moisture Content: 5.0 % (maximum)

B. Cellulose Pellets
 Use cellulose pellets that are a blend of cellulose fiber and asphalt cement. Add them at a dosage rate between 0.4% and 0.8% by weight of the total mix. The cellulose used shall comply with requirements of Subsection 819.2.A.
 - Pellet size: 1/4 cubic inch (4.093 cubic centimeters) maximum

C. Mineral Fibers
 Use mineral fibers that are made from virgin basalt, diabase, or slag that is treated with a cationic sizing agent to enhance disbursement of the fiber and to increase adhesion of the fiber surface to the bitumen. Add the fiber at a dosage rate between 0.2% to 0.5% by weight of the total mix as approved by the Engineer.
 1. Size Analysis:
 - Average Fiber length: 0.25 inches (6.35 mm) maximum
 - Average Fiber thickness: 0.0002 inches (0.005 mm) maximum
Section 820—Asphalt Cement

820.1 General Description
This Section includes the requirements for asphalt cements prepared from crude petroleum.

820.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 Standard Operating Procedure (SOP 4)
 AASHTO TP 1
 AASHTO TP 3
 AASHTO TP 5
 AASHTO T 48
 AASHTO TP 48
 AASHTO T 179
 AASHTO T 240

820.2 Materials
820.2.01 Asphalt Cement
A. Requirements
 1. Type
 Use a material that is homogenous and water-free and that does not foam when heated to 347 °F (175 °C).
 Ensure that a blend used to produce a specified performance grade meets the following requirements:
 □ Is uniform and homogeneous without separation
 □ Uses PG 64-22 or PG 67-22 described below for the base asphalt
 □ Consists of production materials that have not been “air-blown” to achieve the performance grade
 2. Grade
 Use the various grades of asphalt cement that meet the requirements shown in the test requirements for Petroleum
 Asphalt Cements
 Add only Styrene-Butadiene-Styrene (SBS) or Styrene-Butadiene (SB) to neat asphalt to produce a binder that meets
 requirements for PG 76-22.
821.1 Test Requirements for Petroleum Asphalt Cements

<table>
<thead>
<tr>
<th>Test And Method</th>
<th>Test Temperature</th>
<th>Original Binder</th>
<th>Residue Of Binder After:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PG 58-22</td>
<td>PG 64-22</td>
<td>PG 67-22</td>
</tr>
<tr>
<td>Flash Point, AASHTO: T-48 Min.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity (a), AASHTO:TP-48 Max.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Loss (%), Max. AASHTO: T-240 (b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Shear, G*/sinθ, AASHTO: TP5, 10 Rad/Sec</td>
<td>136 °F (58°C)</td>
<td>147 °F (64°C)</td>
<td>153 °F (67°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissipated Energy, Dynamic Shear, G*/sinθ, AASHTO: TP5, 10 Rad/Sec</td>
<td>77 °F (25 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creep Stiffness (c), 60 sec, AASHTO TP1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 °F (-12 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Tension, 1.0 mm/min. AASHTO: TP3, Failure Strain</td>
<td>10 °F (-12 °C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The Department may waive this requirement if the supplier warrants that the asphalt binder can be adequately pumped and mixed at temperatures that meet all applicable safety standards.
b. Heat loss by AASHTO T 179 may be accepted in lieu of mass loss by AASHTO T 240.
c. If the creep stiffness is below 300 000 kPa, the direct tension test is not required. If the creep stiffness is ≤300 000 kPa, report the Direct Tension Failure Strain value. Satisfy the m-value requirement in either case.

If modification is required, thoroughly blend the composite materials at the supply facility prior to being loaded into the transport vehicle. Ensure all blending procedures, formulation, and operations are approved by the Office of Materials and Research.

3. Certification: Provide certified test results from an approved, certified laboratory of blends for proposed PG asphalt for each specification characteristic of the asphalt cement proposed for shipment. Provide the certified results to the State Materials and Research Engineer as required in Standard Operating Procedure (SOP 4).

In the event there is reason to suspect a sample will be outside specification limits, the State Materials and Research Engineer may interrupt production until test results are known.

B. Materials Warranty
 General Provisions 101 through 150.

Section 821—Cutback Asphalt

821.1 General Description
This section includes the requirements for asphalt cements that have been fluxed with petroleum distillates.

821.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 AASHTO T 44
 AASHTO T 48
AASHTO T 49
AASHTO T 51
AASHTO T 55
AASHTO T 78
AASHTO T 79
AASHTO T 201

821.2 Materials

821.2.01 Cutback Asphalt

A. Requirements
 1. Type: Use an asphalt cement that is uniformly consistent and shows no separation or curbing.
 2. Grade: Use various grades of cutback asphalts that meet the requirements shown in Table 1 and Table 2.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>AASHTO T 55</td>
</tr>
<tr>
<td>Flash point</td>
<td>AASHTO T 79 & T 48</td>
</tr>
<tr>
<td>Viscosity</td>
<td>AASHTO T 201</td>
</tr>
<tr>
<td>Distillation</td>
<td>AASHTO T 78</td>
</tr>
<tr>
<td>Ductility</td>
<td>AASHTO T 51</td>
</tr>
<tr>
<td>Solubility</td>
<td>AASHTO T 44</td>
</tr>
<tr>
<td>Penetration</td>
<td>AASHTO T 49</td>
</tr>
</tbody>
</table>

D. Materials Warranty
 General Provisions 101 through 150.
Table 1—Properties of Medium Curing Cutback Asphalts

<table>
<thead>
<tr>
<th>Requirements</th>
<th>MC-30</th>
<th>MC-70</th>
<th>MC-250</th>
<th>MC-800</th>
<th>MC-3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water percent</td>
<td>0.2</td>
<td></td>
<td>0.2</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Flash point, Cleveland Open Cup, °F (°C)</td>
<td>100 (38)</td>
<td>100 (38)</td>
<td>150 (65)</td>
<td>150 (65)</td>
<td>150 (65)</td>
</tr>
<tr>
<td>Kinematic viscosity at 140 °F, centistokes (60 °C, mPa·s)</td>
<td>30</td>
<td>60</td>
<td>70</td>
<td>140</td>
<td>250</td>
</tr>
<tr>
<td>Distillation test: Distillate, percentage by volume of total distillate to 680 °F (360 °C)</td>
<td>25</td>
<td>20</td>
<td>10</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>to 437 °F (225 °C)</td>
<td>40</td>
<td>70</td>
<td>20</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>to 500 °F (260 °C)</td>
<td>75</td>
<td>93</td>
<td>65</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>to 600 °F (315 °C)</td>
<td>50</td>
<td>55</td>
<td>67</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Residue from distillation to 680 °F (360 °C)</td>
<td>80</td>
<td>250</td>
<td>80</td>
<td>250</td>
<td>80</td>
</tr>
<tr>
<td>Tests on residue from distillation:</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Penetration, 100g, 5 sec., at 77 °F (25 °C), (dmm)</td>
<td>99.5</td>
<td>99.5</td>
<td>99.5</td>
<td>99.5</td>
<td>99.5</td>
</tr>
</tbody>
</table>
Table 2—Properties of Rapid Curing Cutback Asphalts

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Viscosity Grade</th>
<th>RC-30</th>
<th>RC-70</th>
<th>RC-250</th>
<th>RC-800</th>
<th>RC-3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water percent</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Flash point, Tagliabue Open Cup, °F (°C)</td>
<td>80 (25)</td>
<td>80 (25)</td>
<td>80 (25)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinematic viscosity at 140 °F (60 °C, mPa·s)</td>
<td>30</td>
<td>60</td>
<td>70</td>
<td>140</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>Distillation test: Distillate, percentage by volume of total distillate to 680 °F (360 °C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to 374 °F (190 °C)</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to 437 °F (225 °C)</td>
<td>55</td>
<td>50</td>
<td>35</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>to 500 °F (260 °C)</td>
<td>75</td>
<td>70</td>
<td>60</td>
<td>45</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>to 600 °F (315 °C)</td>
<td>90</td>
<td>85</td>
<td>80</td>
<td>75</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Residue from distillation to 680 °F (360 °C): Volume percentages of sample by difference</td>
<td>50</td>
<td>55</td>
<td>65</td>
<td>75</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Tests on residue from distillation: Penetration, 100g, 5 sec., at 77 °F (25 °C), (dmm)</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Ductility at 77 °F (25 °C), at 5 cm per min., (cm)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>Solubility in trichloroethylene, percent by weight</td>
<td>99.5</td>
<td>99.5</td>
<td>99.5</td>
<td>99.5</td>
<td>99.5</td>
<td>99.5</td>
</tr>
</tbody>
</table>
Section 822—Emulsified Asphalt

822.1 General Description
This section includes the requirements for homogenous emulsions of asphalt, water, and emulsifying agents.

822.1.01 Related References
A. Standard Specifications
Section 820—Asphalt Cement
B. Referenced Documents
AASHTO T 50
AASHTO T 59

822.2 Materials
822.2.01 Emulsified Asphalt
A. Requirements
1. Type
Use materials that do not contain lumps and that do not show separation during handling or storage of up to 30 days.
2. Grade
Use the various grades of emulsified asphalts that meet the requirements in Table 1.

Table 1—Requirements for Emulsified Asphalt

<table>
<thead>
<tr>
<th>Type</th>
<th>Rapid Setting</th>
<th>Slow Setting</th>
<th>Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tests on Emulsion: Viscosity Saybolt Furol at 77 °F (25 °C), (Sec.)</td>
<td>20</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Viscosity Saybolt Furol at 122 °F (50 °C), (Sec.)</td>
<td>75</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>(a).Settlement 5 Days, (Percent)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>(b).Storage Stability Test 1 Day, (Percent)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(c).Demulsibility, 35 ml, 0.02N. CaCl₂ (Percent)</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d).Cement Mixing Test, (Percent)</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Sieve Test, (Percent)</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Oil Distillate by Volume (Percent)</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Residue by Distillation (Percent AC)</td>
<td>63</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>Type</td>
<td>Rapid Setting</td>
<td>Slow Setting</td>
<td>Prime</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS-2h Min.</td>
<td>SS-1h Min.</td>
<td>SS-1h</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>Max.</td>
<td>Max.</td>
</tr>
<tr>
<td>Residue by Distillation (Percent AC)</td>
<td>63</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>Tests on Residue from Distillation Test:</td>
<td>80</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Penetration 77 °F (25 °C) 100 gm/5 Sec. (dmm)</td>
<td>140</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Ductility at 77 °F (25 °C) 5 cm/min. (cm)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Solubility in Trichloroethylene (Percent)</td>
<td>97.5</td>
<td>97.5</td>
<td>97.5</td>
</tr>
<tr>
<td>Float at 140 °F (60 °C), (Sec.)</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

(a) The test requirement for settlement may be waived when the emulsified asphalt is used in less than five (5) days; or the purchaser may require that the settlement test be run from the time the sample is received until it is used, if the elapsed time is less than five (5) days.

(b) The 24-hour (1 day) storage stability test may be used but does not predict that the 5 day settlement test will pass.

(c) The demulsibility test shall be made within 30 days from date of shipment.

(d) The cement mixing test shall be applicable only if material is used in Asphalt Slurry Seal.

B. Fabrications
 General Provisions 101 through 150.

C. Acceptance
 Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing emulsified asphalts</td>
<td>AASHTO T 59</td>
</tr>
<tr>
<td>Float test</td>
<td>AASHTO T 50</td>
</tr>
</tbody>
</table>

D. Materials Warranty
 General Provisions 101 through 150.

Section 823—Cutback Asphalt Emulsion

823.1 General Description
This section includes the requirements for cutback asphalt emulsions.

823.1.01 Related References
A. Standard Specifications
 Section 820—Asphalt Cement
823.2

B. Referenced Documents

AASHTO:
T 44
T 49
T 51
T 55
T 72
T 111
GDT 11

823.2 Materials

823.2.01 Cutback Emulsion

A. Requirements

Use the various grades of cutback asphalt emulsions that meet the requirements shown in Table 1.

Table 1—Properties of Cutback Asphalt Emulsions

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CBAE-2</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>Viscosity, Furol at 140° F (60 °C), in seconds</td>
<td>100</td>
</tr>
<tr>
<td>Distillation:</td>
<td></td>
</tr>
<tr>
<td>Residue (asphalt cement) percent by weight</td>
<td>67</td>
</tr>
<tr>
<td>Water content percent by weight</td>
<td>4</td>
</tr>
<tr>
<td>Naphtha content (by difference) percent by weight</td>
<td>12</td>
</tr>
<tr>
<td>Naphtha content (by difference) percent by weight</td>
<td></td>
</tr>
</tbody>
</table>

Values in Table 1 are minimum and maximum limits for various properties of cutback asphalt emulsions. Tests on residue from distillation:

Penetration at 77 °F (25 °C), 100 g, 5 seconds	60	150
Ductility at 77° F (25 °C), 5 cm per min., (cm)	100	100
Solubility in trichloroethylene, percent by weight	99	99
Ash, percent by weight	1.0	1.0

B. Fabrication

1. Prepare the cutback asphalt emulsions by compounding a suitable volatile naphtha, emulsifying agent, and water with asphalt cement.

2. Mechanically invert 100 percent of the cutback emulsions before shipping.

C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity</td>
<td>AASHTO T 72</td>
</tr>
<tr>
<td>Distillation</td>
<td>GDT 11</td>
</tr>
<tr>
<td>Water</td>
<td>AASHTO T 55</td>
</tr>
</tbody>
</table>
Penetration | AASHTO T 49
Ductility | AASHTO T 51
Solubility | AASHTO T 44
Ash | AASHTO T 111

D. Materials Warranty
 General Provisions 101 through 150.

Section 824—Cationic Asphalt Emulsion

824.1 General Description
This section includes the requirements for cationic asphalt emulsions.

824.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 AASHTO T 59
 GDT 44

824.2 Materials
824.2.01 Cationic Asphalt Emulsion
A. Requirements
 1. Use a homogenous emulsion. After thorough mixing, the emulsion cannot show signs of separation within 30 days.
 2. Use cationic emulsion grades that meet the requirements in Table 1 (metric).
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
</table>
| Testing emulsified asphalts (with the following exception): Frictional value | AASHTO T 59
 GDT 44 |

D. Materials Warranty
 General Provisions 101 through 150.

Table 1—Requirements for Cationic Emulsified Asphalt (Notes)

1. The Engineer may waive the settlement test requirement if the emulsified asphalt is used in less than 5 days. However, the Department may still require that the settlement test be run from the time the sample is received until it is used.
2. The 24-hour storage stability test may be used. However, this test does not predict whether the 5-day settlement test will pass.
3. Perform the demulsibility test within 30 days from date of shipment.
4. The cement mixing test applies only if material is used in Asphalt Slurry Seal.
5. Slurry Seal containing CQS-1h must set sufficiently within 2 hours to allow traffic to resume.
6. In the Laboratory, Slurry Seal containing CQS-1h shall not set while being mixed according to GDT 91 for a minimum of 90 seconds.
7. Use ECR-1 in cold mix recycling of reclaimed pavements.
Table 1—Requirements for Cationic Emulsified Asphalt

<table>
<thead>
<tr>
<th>Type</th>
<th>Rapid Setting</th>
<th>Medium Setting</th>
<th>Slow Setting</th>
<th>Cationic Quick Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests</td>
<td>CRS-2h</td>
<td>CRS-3</td>
<td>CMS-2</td>
<td>CSS-1h</td>
</tr>
<tr>
<td>Vis. Saybolt Furol at 77 °F (25 °C), sec.</td>
<td></td>
<td>100</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Vis. Saybolt Furol at 122 °F (50 °C), sec.</td>
<td>100</td>
<td>400</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Storage stability test, (Note 2) 24 hours, percent</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Settlement (Note 1) 5 days, percent</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Demulsibility (Note 3) 35 ml, 0.8% dioctyl sodium sulfosuccinate, percent</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating Ability and Water Resistance:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating, dry aggregate</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Coating, after spraying</td>
<td>Fair</td>
<td>Fair</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Coating, wet aggregate</td>
<td>Fair</td>
<td>Fair</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Coating, after spraying</td>
<td>Fair</td>
<td>Fair</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Particle charge test</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Sieve test, percent</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Cement mixing test, percent (Note 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil distillate by volume of emulsion, percent</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Residue, percent</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Test on Residue from Distillation Test: Penetration, 77 °F (25 °C), 100 g, 5 sec., (dmm)</td>
<td>80</td>
<td>140</td>
<td>60</td>
<td>110</td>
</tr>
<tr>
<td>Ductility, 77 °F (25 °C), 5 cm/min., (cm)</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Solubility in trichloroethylene, per cent</td>
<td>97.5</td>
<td>97.5</td>
<td>97.5</td>
<td>97.5</td>
</tr>
</tbody>
</table>
Section 825—Asphalt Plank

825.1 General Description
This section includes the requirements for pre-molded asphalt plank.

825.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 AASHTO M 46

825.2 Materials
825.2.01 Premolded Asphalt Plank
A. Requirements
 Use premolded asphalt plank that meets the AASHTO M 46 requirements.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 General Provisions 101 through 150.

Section 826—Dampproofing or Waterproofing Material

826.1 General Description
This section includes the requirements for material used as a mopping coat in dampproofing or as mopping cement for a waterproof membrane system.

826.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 AASHTO M 118
 AASHTO M 121

826.2 Materials
826.2.01 Bituminous Material for Dampproofing or Waterproofing
A. Requirements
 Use a bituminous material that contains a primer coat and a sealer or mopping coat.
 1. Primer
 Use a primer coat that meets the requirements of AASHTO M 121.
2. Sealer or Mopping Coat
 Use a coal-tar pitch that meets the requirements of AASHTO M 118.

3. Coal-Tar Pitch Types
 Unless otherwise specified, use pitch Type I or Type II, as defined below, only when required by the Contract. Use
 Type I on vertical surfaces and Type II on flat surfaces.

a. Type I Pitch
 A mopping coat for built-up roofs surfaced with slag or gravel. If the roof has nails, use the coat on inclines not
 exceeding 3 in/ft (75 mm/300 mm). If the roof does not have nails, use the coat on inclines not exceeding 1 in/ft
 (25 mm/300 mm).
 A mopping coat for dampproofing or a plying cement for building a membrane system of waterproofing above
 ground level. Do not use this material if it will be exposed to temperatures over 125 °F (52 °C).

 NOTE: This type of coal-tar pitch is suitable on railroad bridges, tanks, retaining walls, culverts, dams, conduit, etc.

b. Type II Pitch
 A mopping coat for dampproofing or a plying cement in building a membrane system of waterproofing below
 ground level. Use this material for roofs exposed to moderate temperatures during installation and service.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 See the requirements in AASHTO M 118 and M 121.

D. Materials Warranty
 General Provisions 101 through 150.

Section 828—Hot Mix Asphaltic Concrete Mixtures

828.1 General Description
This specification includes the requirements for hot mix asphaltic concrete mixtures, including:

- Open-graded surface mixtures
- Stone Matrix Asphalt mixtures
- Superpave asphaltic concrete mixtures
- Fine-graded mixtures

828.1.01 Definitions
Nominal Maximum Sieve Size: One standard sieve size larger than the first sieve to retain more than ten percent.

828.1.02 Related References
A. Standard Specifications
 - Section 800–Coarse Aggregate
 - Section 802–Aggregates for Asphaltic Concrete
 - Section 820–Asphalt Cement
 - Section 831–Admixtures

B. Referenced Documents
 - AASHTO TP 4
 - AASHTO PP 2

989
828.2

AASHTO TP 8-94
AASHTO T 112
AASHTO T 209
AASHTO T 305

Standard Operating Procedure (SOP) 2 SP–Control of Superpave Bituminous Mixture Designs

GDT 2
GDT 56
GDT 66
GDT 115
GDT 125
QPL 26
QPL 41

828.2 Materials

A. Requirements

All mixtures are designated based on the Nominal Maximum Sieve Size. Determine the amount finer than No. 200 (75 μm) by washing (See GDT 2, Alternate A or B) or by the correlation procedure described in GDT 125.

Use hot mix asphaltic concrete mixtures that meet the following requirements:

1. Ensure the materials used to prepare the mixtures are approved by the Engineer before incorporating into the Work.
2. Use aggregate groups and blends that meet the following pay item designations, as indicated in the Proposal and Plans:

<table>
<thead>
<tr>
<th>Pay Item Designation</th>
<th>Allowable Aggregate Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I or II</td>
<td>100% of Group I, Group II, or Blend I.</td>
</tr>
<tr>
<td>Group II only</td>
<td>Only 100% Group II.</td>
</tr>
<tr>
<td>Blend I</td>
<td>Either 100% Group II material or a blend of Group I and Group II. Do not use Group I material for more than 60% by weight of the total aggregates, nor more than 50% by weight of the coarse aggregate portion.</td>
</tr>
</tbody>
</table>

3. Use Group I, Group II, or a blend of both aggregate groups, for patching or leveling. Mixes are listed in Subsection 828.2.03 and Subsection 828.2.04.
4. Design mixes using the Superpave System for Volumetric Design (AASHTO TP 4 and AASHTO PP 2) unless stated otherwise. Designs shall be performed by qualified and approved laboratories and technicians as specified in SOP-2 SP - Control of Superpave Bituminous Mixture Designs.
5. Ensure individual test results meet Mixtures Control Tolerances
6. Include hydrated lime in all paving courses except where noted. For a list of hydrated lime sources, see QPL 41.
 a. Add lime to virgin aggregate mixtures at a minimum rate of 1 percent of the total dry aggregate weight.
 b. Add lime to recycled mixtures at a minimum rate of 1 percent of the virgin aggregate portion, plus a minimum of 0.5 percent of the aggregate in the reclaimed asphalt pavement (RAP) portion.
 c. Add more lime and an approved heat-stable, anti-stripping additive that meets the requirements of Subsection 831.2.04, “Heat Stable Anti-Stripping Additive,” if necessary, to meet requirements for mixture properties. However, the Department will not pay for the additional required materials. For a list of Heat Stable Anti-Stripping Additive sources, please see QPL 26.
 d. On PR, LARP, airport, bridge replacement, and parking lot projects designated at Mix Design Level A, asphalt cement may include an approved, heat-stable, anti-stripping additive that meets the requirements of Subsection 831.2.04, “Heat Stable Anti-Stripping Additive” instead of hydrated lime, unless specified in the Pay Item.
1) Add at a minimum rate of 0.5 percent of the AC portion.
2) Ensure the additive treated mix meets the minimum tensile splitting ratio:

<table>
<thead>
<tr>
<th>Tensile Splitting Ratio</th>
<th>Type of Asphaltic Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>4.75 mm mix</td>
</tr>
<tr>
<td>0.6</td>
<td>All other mixes</td>
</tr>
</tbody>
</table>

7. Use performance grade PG 67-22 asphalt cement in all mixtures except as follows:
 a. For RAP mixtures, the Engineer will determine the performance grade to be used.
 b. On PR, LARP, airport, bridge replacement, and parking lot projects, PG 64-22 may be substituted for PG 67-22.
 c. Use only performance grade PG 76-22 for all mixtures that specify polymer-modified asphalt in the pay item designation.

8. Use of local sand is restricted as follows:
 a. No more than 20 percent, based on total aggregate weight, may be used in mixtures for shoulder construction and on projects designed at Mix Design Level A.
 b. For mixtures placed on the mainline traveled way of projects designed at Mix Design Level B, C, or D (except interstate projects), local sand may be used only in the 25 mm Superpave and shall not exceed 20 percent based on total aggregate weight.
 c. Do not use local sand in any mixture placed on the traveled way of Interstate mainline or ramps. No more than 20 percent local sand, based on total aggregate weight, may be used in mixtures for shoulder construction.
 d. Do not use local sand that contains more than 7 percent clay.
 e. Do not use local sand that contains any clay lumps as determined by AASHTO T 112.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Ensure the mix design has been reviewed and approved by the Department prior to beginning production.

 1. Rutting Susceptibility Testing
 a. Fabricate three beams or six cylindrical specimens from each asphalt mix for the test using GDT 115.
 b. Design mixtures which meet the following criteria for rutting where tested using GDT 115:
 - Mix Design Level A – 0.3 in (7 mm) maximum
 - Mix Design Level B – 0.25 in (6 mm) maximum
 - Mix Design Level C & D – 0.2 in. (5 mm) maximum
 Mixtures designed prior to July 1, 2001 which do not exceed 0.2 in (5 mm) rutting when tested at 120 °F (49 °C) using GDT 115 may be acceptable.
 Tests will not be required for mixtures designed exclusively for trench widening nor for the 4.75 mm mix, nor for open-graded surface mixtures.

 2. Fatigue Testing
 The Department may perform the test according to AASHTO TP 8-94 or other Department approved procedure.

D. Materials Warranty
 General Provisions 101 through 150.
828.2.01 Open-Graded Surface Mixture

A. Requirements

1. Use the information in the following table for job mix formulas and design limits:

<table>
<thead>
<tr>
<th>Mixture Control Tolerance</th>
<th>Asphalitic Concrete</th>
<th>9.5 mm OGFC</th>
<th>12.5 mm OGFC</th>
<th>12.5 mm PEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading Requirements</td>
<td>Percent Passing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±0.0</td>
<td>3/4 in (19 mm) sieve</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>±6.1</td>
<td>1/2 in (12.5 mm)</td>
<td>100*</td>
<td>85-100</td>
<td>80-100</td>
</tr>
<tr>
<td>±5.6</td>
<td>3/8 in (9.5 mm)</td>
<td>85-100</td>
<td>55-75</td>
<td>35-60</td>
</tr>
<tr>
<td>±5.7</td>
<td>No. 4 (4.75 mm)</td>
<td>20-40</td>
<td>15-25</td>
<td>10-25</td>
</tr>
<tr>
<td>±4.6</td>
<td>No. 8 (2.36 mm)</td>
<td>5-10</td>
<td>5-10</td>
<td>5-10</td>
</tr>
<tr>
<td>±2.0</td>
<td>No. 200 (75 µm)</td>
<td>2-4</td>
<td>2-4</td>
<td>1-4</td>
</tr>
</tbody>
</table>

Design Requirements

±0.4	Range for % AC	6.0-7.25	5.75-7.25	5.5-7.0
Class of stone (Section 800)	“A” only	“A” only	“A” only	
Coating retention (GDT-56)	95	95	95	
Drain-down, AASHTO T 305 (%)	<0.3	<0.3	<0.3	

* Mixture control tolerance not applicable to this sieve for this mix.

2. Use only PG 76-22 (specified in Section 820) in the 12.5 mm OGFC and 12.5 mm PEM mixtures.

3. Use a stabilizing fiber, which meets the requirements of Section 819 in 12.5 mm OGFC and 12.5 mm PEM mixtures. The dosage rate will be as recommended by the Engineer and shall be sufficient to prevent excessive drain-down.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

General Provisions 101 through 150.

D. Materials Warranty

General Provisions 101 through 150.

828.2.02 Stone Matrix Asphalt Mixtures

A. Requirements

Use the information in the following table for the job mix formula and design limits.

<table>
<thead>
<tr>
<th>Mixture Control Tolerance</th>
<th>Asphalitic Concrete</th>
<th>9.5 mm SMA</th>
<th>12.5 mm SMA</th>
<th>19 mm SMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading Requirements</td>
<td>Percent Passing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±0.0</td>
<td>1- in (25 mm) sieve</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>±7.0</td>
<td>3/4 in (19 mm) sieve</td>
<td></td>
<td>100*</td>
<td>90-100</td>
</tr>
<tr>
<td>±6.1</td>
<td>1/2 in (12.5 mm)</td>
<td></td>
<td>100*</td>
<td>85-100</td>
</tr>
<tr>
<td>±5.6</td>
<td>3/8 in (9.5 mm)</td>
<td>70-100</td>
<td>50-75</td>
<td>25-60</td>
</tr>
</tbody>
</table>
Design Requirements

<table>
<thead>
<tr>
<th>Mixture Control Tolerance</th>
<th>Asphalitic Concrete</th>
<th>9.5 mm SMA</th>
<th>12.5 mm SMA</th>
<th>19 mm SMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>±5.7</td>
<td>No. 4 (4.75 mm sieve)</td>
<td>28-50</td>
<td>20-28</td>
<td>20-28</td>
</tr>
<tr>
<td>±4.6</td>
<td>No. 8 (2.36 mm sieve)</td>
<td>15-30</td>
<td>16-24</td>
<td>15-22</td>
</tr>
<tr>
<td>±3.8</td>
<td>No. 50 (300 μm sieve)</td>
<td>10-17</td>
<td>10-20</td>
<td>10-20</td>
</tr>
<tr>
<td>±2.0</td>
<td>No. 200 (75 μm sieve)</td>
<td>8-13</td>
<td>8-12</td>
<td>8-12</td>
</tr>
</tbody>
</table>

* Mixture control tolerance not applicable to this sieve for this mix.

1. Compact SMA mixtures at 50 gyrations with the Superpave Gyratory compactor or 50 blows with the Marshall compactor.
2. A Tensile splitting ratio of no less than 70% may be acceptable so long as all individual test values exceed 100 psi (690 kPa).
3. Stone Matrix Asphalt mixtures shall contain asphalt cement, mineral filler, and fiber stabilizing additives which meet the following requirements:
 a. Use asphalt cement that meets requirements of PG 76-22 of Section 820.
 b. Use mineral filler that meets requirements of Section 883 and has been approved by the Engineer. Local sand shall not be used in lieu of mineral filler.
 c. Treat these mixes with a fiber-stabilizing additive, which meets the requirements of Section 819. The dosage rate will be as recommended by the Engineer and shall be sufficient to prevent excessive drain-down.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

See Subsection 828.2.C.

D. Materials Warranty

General Provisions 101 through 150.

828.2.03 Superpave Asphalitic Concrete Mixtures

A. Requirements

Use the information in the following table for job mix formula and design limits:

<table>
<thead>
<tr>
<th>Mixture Control Tolerance</th>
<th>Asphalitic Concrete</th>
<th>9.5 mm Superpave Level A</th>
<th>9.5 mm Superpave Level B,C,D</th>
<th>12.5 mm Superpave</th>
<th>19 mm Superpave</th>
<th>25 mm Superpave</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grading Requirements</td>
<td>Percent Passing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±8.0</td>
<td>1-1/2 in (37.5 mm sieve)</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±8.0</td>
<td>1- in (25.0 mm sieve)</td>
<td>100*</td>
<td>90-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±8.0</td>
<td>3/4 in (19.0 mm sieve)</td>
<td>100*</td>
<td>90-100</td>
<td>55-89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
828.2.03

<table>
<thead>
<tr>
<th>Mixture Control Tolerance</th>
<th>Asphalitic Concrete</th>
<th>9.5 mm Superpave Level A</th>
<th>9.5 mm Superpave Level B,C,D</th>
<th>12.5 mm Superpave</th>
<th>19 mm Superpave</th>
<th>25 mm Superpave</th>
</tr>
</thead>
<tbody>
<tr>
<td>±6.0**</td>
<td>1/2 in (12.5 mm) sieve</td>
<td>100*</td>
<td>100*</td>
<td>90-100</td>
<td>60-89</td>
<td>50-70</td>
</tr>
<tr>
<td>±5.6</td>
<td>3/8 in (9.5 mm) sieve</td>
<td>90-100</td>
<td>90-100</td>
<td>70-85</td>
<td>55-75</td>
<td></td>
</tr>
<tr>
<td>±5.6</td>
<td>No. 4 (4.75 mm) sieve</td>
<td>65-85</td>
<td>55-75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±4.6</td>
<td>No. 8 (2.36 mm) sieve</td>
<td>53-58</td>
<td>42-47</td>
<td>34-39</td>
<td>29-34</td>
<td>25-30</td>
</tr>
<tr>
<td>±2.0</td>
<td>No. 200 (75 µm) sieve</td>
<td>4.0-7.0</td>
<td>4.0-7.0</td>
<td>3.5-7.0</td>
<td>3.5-6.0</td>
<td>3.0-6.0</td>
</tr>
</tbody>
</table>

* Mixture control tolerance not applicable to this sieve for this mix.

** Mixture control tolerance shall be ± 8.0% for this sieve for 19 mm Superpave.

Superpave mixtures shall also meet the following requirements:
1. The Mixture Control Tolerance for asphalt cement shall be ±0.4%.
2. Volumetric Criteria

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Design Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Percent of Maximum Specific Gravity (%G<sub>mm</sub>) at the design number of gyrations, (N<sub>d</sub>) (See Note 1)</td>
<td>96%</td>
</tr>
</tbody>
</table>
| b. % G_{mm} at the initial number of gyrations, (N_i) | Level A <91.5%
Level B <90.5%
Level C & D <89%
| c. Percent voids in mineral aggregate (VMA) at N_d | See Table 828.2.03.A.3 |
| d. Percent voids filled with asphalt (VFA) at N_d | See Table 828.2.03.A.4 |
| e. Fines to effective asphalt binder ratio (F/P_{min}) | |
| 1) Asphalitic concrete 9.5 mm Superpave (Level A) | 0.6-1.2 |
| 2) All Superpave mixtures excluded in Item 1 | 0.8-1.6 |
| f. Tensile strength (GDT 66) | |
| 1) Ratio (See Note 2) | 80% min. |
| 2) Stress | 60 psi (414 kPa) min. |
| g. Retention of Coating (GDT 56) | 95% min. |

Note 1: Maximum specific gravity (G_{mm}) determined in accordance with AASHTO T 209.
Note 2: A tensile splitting ratio of no less than 70% may be acceptable so long as all individual test values exceed 100 psi (690 kPa).

3. VMA Criteria

<table>
<thead>
<tr>
<th>Nominal Maximum Sieve Size</th>
<th>Minimum % VMA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in (25 mm)</td>
<td>12</td>
</tr>
<tr>
<td>3/4 in (19 mm)</td>
<td>13</td>
</tr>
<tr>
<td>½ in (12.5 mm)</td>
<td>14</td>
</tr>
<tr>
<td>3/8 in (9.5)</td>
<td>15</td>
</tr>
</tbody>
</table>

* VMA is to be determined based on effective specific gravity of the aggregate (G_{ve}).
4. VFA Criteria

<table>
<thead>
<tr>
<th>MIX DESIGN LEVEL</th>
<th>RANGE % VFA</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>67</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>65</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>65</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>65</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

5. Superpave Gyratory Compaction Criteria

<table>
<thead>
<tr>
<th>MIX DESIGN LEVEL</th>
<th>NUMBER OF GYRATIONS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N_l</td>
<td>N_d</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>9</td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

Use mix Design Level A for all Superpave mixes used as shoulder surface mixture, trench widening, temporary detour, or sub-base mixture under Portland cement concrete pavement unless specified otherwise in the plans.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 See Subsection 828.2.C.

D. Materials Warranty
 General Provisions 101 through 150.

828.2.04 Fine Graded Mixtures

A. Requirements
 Use the following table for the job mix formula and design limits:

<table>
<thead>
<tr>
<th>ASPHALTIC CONCRETE - 4.75 mm Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIXTURE CONTROL TOLERANCE</td>
</tr>
<tr>
<td>±0.0</td>
</tr>
<tr>
<td>±5.6</td>
</tr>
<tr>
<td>±5.7</td>
</tr>
<tr>
<td>±4.6</td>
</tr>
<tr>
<td>±3.8</td>
</tr>
<tr>
<td>±2.0</td>
</tr>
</tbody>
</table>
Section 830—Portland Cement

830.1 General Description
This section includes the requirements for Portland cement, including Portland blast-furnace slag cement and Portland-Pozzolan cement.

830.1.01 Related References
A. Standard Specifications
 Section 831–Admixtures

B. Referenced Documents
 AASHTO M 85
 AASHTO M 240
 QPL 3

830.2 Materials

830.2.01 Portland Cement

A. Requirements
 Use only Portland cements that are listed in QPL 3.
 1. Types
 Use Portland cement that meets the requirements in AASHTO M 85. Portland cement types include:

Use	High Early Strength Concrete	Remaining Portland Cement Concrete
Portland cement	Types I or III	Types I or II

 2. Ensure that the Portland cement concrete meets the low alkali and the false set requirements of AASHTO M 85.
3. Do not use cement that is damaged, partially set, lumpy, or caked.
4. Mixing and Storing
 Do not mix or store different brands or types of cement in the same bin. Do not mix or store the same brand of cement from different mills in the same bin.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 See the requirements in AASHTO M 85.

D. Materials Warranty
 General Provisions 101 through 150.

830.2.02 Portland Blast-Furnace Slag Cement

A. Requirements
 Use Portland blast-furnace slag cement in cement stabilization that meets the requirements of AASHTO M 240, Type IS.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 See requirements of AASHTO M 240, Type IS.

D. Materials Warranty
 General Provisions 101 through 150.

830.2.03 Portland-Pozzolan Cement

A. Requirements
 Use Portland-Pozzolan cement that meets the requirements of AASHTO M 240, Type IP, with the following modifications:
 1. Limit the fly ash content to a maximum of 25 percent by weight.
 2. Limit the Pozzolan to fly ash that meets the requirements of Subsection 831.2.03.
 3. If grinding fly ash with Portland cement clinker to produce Portland-Pozzolan cement, do the following:
 a. Exclude the fineness and the loss-on-ignition requirements of Subsection 831.2.03.
 b. Ensure that the final blend of Portland-Pozzolan cement meets AASHTO M 240, Type IP requirements.
 4. Wherever the Standard Specifications allow or specify Portland cement that meets the requirements of Subsection 830.2.01, you may substitute Portland-Pozzolan cement that meets the requirements of this Subsection.
 5. If the substitute cement results in a higher cement factor than required for Type I cement, the cost of the additional cement will be borne by the Contractor.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 See the requirements of AASHTO M 240, Type IP.

D. Materials Warranty
 General Provisions 101 through 150.
Section 831—Admixtures

831.1 General Description
This section includes the requirements for the following Portland cement concrete and bituminous concrete admixtures:

- Air-entraining admixtures
- Chemical admixtures
- Fly ash, raw or calcined natural pozzolan, slag, and microsilica
- Heat-stable, anti-stripping additive
- Silicone fluid

831.1.01 Related References
A. Standard Specifications
 - Section 500—Concrete Structures
 - Section 828—Hot Mix Asphaltic Concrete Mixtures
 - Section 830—Portland Cement
B. Referenced Documents
 - AASHTO M 154
 - AASHTO M 194
 - AASHTO M 295
 - AASHTO M 302
 - AASHTO M 307
 - Federal Specification VV-D-1078B
 - GDT 56
 - GDT 66
 - QPL 13
 - QPL 14
 - QPL 26
 - QPL 30
 - QPL 40

831.2 Materials
Use only admixtures that are listed on the specific Georgia Department of Transportation Qualified Products List (QPL). For a list of Heat Stable Anti-Stripping Additives sources, see QPL 26.

831.2.01 Air-Entraining Admixtures
A. Requirements
 1. Use only air-entraining admixtures that are listed in QPL 13.
 2. Use air-entraining admixture materials that meet AASHTO M 154 requirements.
 3. Test compression and flexure strengths at 7 and 28 days.
B. Fabrication
 - General Provisions 101 through 150.
C. Acceptance
 - See requirements of AASHTO M 154.
D. Material Warranty
 General Provisions 101 through 150.

831.2.02 Chemical Admixtures for Concrete
A. Requirements
 1. Use only chemical admixtures that are described in QPL 14.
 2. Use chemical admixture materials that meet AASHTO M 194 requirements for Types A, B, C, D, E, F, or G, unless otherwise specified.
 a. Waive the length change requirements.
 b. Ensure that the admixtures contain no more than 0.8 percent chloride, calculated as calcium chloride.
 c. Ensure that the air content does not exceed 4 percent when prepared in a standard batch without an added air-entraining agent.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 See the requirements of AASHTO M 194 for chemical admixtures.
D. Material Warranty
 General Provisions 101 through 150.

831.2.03 Fly Ash, Raw or Calcined Natural Pozzolan, Slag, and Microsilica
A. Requirements
 1. Fly Ash
 Fly ash is finely divided residue from the combustion of ground or powdered coal that is transported from the boiler by flue gases.
 Use fly ash that meets the requirements of AASHTO M 295, Class F or C and that are listed in QPL-30.
 2. Raw or Calcined Natural Pozzolan
 This is a siliceous or siliceous and aluminous material.
 Use Pozzolan that meets the requirements of AASHTO M 295, Class N and that are listed in QPL-30.
 3. Granulated Iron Blast-Furnace Slag
 This is a glassy granular material formed when molten blast-furnace slag is rapidly chilled and then finely ground.
 Use slag that meets the requirements of AASHTO M 302, Grade 100 or 120 and that are listed in QPL-30.
 4. Microsilica (Silica Fume)
 This is an amorphous material with high silica content and purity, made as a by-product of high purity quartz that is reduced with other ingredients in an electric-arc furnace.
 Use microsilica that meets the requirements of AASHTO M 307.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 The Engineer will select the laboratory tests for acceptance and project control.
D. Material Warranty
 General Provisions 101 through 150.

831.2.04 Heat-Stable Anti-Stripping Additive
A. Requirements
 2. Submit samples of the proposed heat-stable, anti-stripping additive, asphalt cement, and aggregates to the laboratory for approval before use.
831.2.05

3. Ensure that materials meet the requirements of Section 828 for retained coating and tensile strength ratio when tested with GDT 56 and GDT 66, respectively.

4. Do not use an additive that contains harmful ingredients or adversely alters the specified characteristics of the bituminous material when added in the recommended proportions.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retained coating</td>
<td>GDT 56</td>
</tr>
<tr>
<td>Tensile strength ratio</td>
<td>GDT 66</td>
</tr>
</tbody>
</table>

D. Material Warranty
 General Provisions 101 through 150.

831.2.05 Silicone Fluid

A. Requirements
 Use silicone fluid that meets Federal Specification VV-D-1078B, Viscosity Grade 1,000. For a list of sources, see QPL 40.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 See Federal Specification VV-D-1078B.

D. Material Warranty
 General Provisions 101 through 150.

Section 832—Curing Agents

832.1 General Description
This section includes the requirements for the following curing agents:

- Burlap or cotton fabric
- Sheet materials
- Membrane curing compound

832.1.01 Related References

A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 AASHTO M 148
 AASHTO M 171
 QPL 16
832.2 Materials

832.2.01 Burlap or Cotton Fabric

A. Requirements

1. Use burlap or cotton fabric that meets these requirements:
 - Burlap that is 10 to 18 oz./yd² (340 to 610 g/m²) or two layers of 6 or 7 oz/yd² (200 or 235 g/m²)
 - Cotton fabric that is white, loosely woven, and not less than 7 oz/yd² (235 g/m²)
 - Strips of burlap or cotton fabric that are between 3 and 6 ft (0.9 and 1.8 m) wide and 3 ft (1 m) longer than the width of the slab to be covered

2. Use burlap and cotton fabrics that do not contain starch or other material that could stain the concrete. If the fabric is new, soak and dry it before use.
 - For a list of sources, see QPL 16.

B. Fabrication
 - General Provisions 101 through 150.

C. Acceptance
 - General Provisions 101 through 150.

D. Materials Warranty
 - General Provisions 101 through 150.

832.2.02 Sheet Materials

A. Requirements

1. Use sheet material for curing concrete that meets AASHTO M 171 requirements.
2. Use waterproof paper that is white.
3. Use polyethylene film that is white opaque.
4. For curing bridge decks, use sheet material that is either a white burlap polyethylene sheet or a white co-polymer material coated over a layer of absorbent, non-woven, synthetic fabric.
 - Use sheet material that meets Specification reflection and moisture retention requirements.

B. Fabrication
 - General Provisions 101 through 150.

C. Acceptance
 - See the requirements under AASHTO M 171.

D. Materials Warranty
 - General Provisions 101 through 150.

832.2.03 Membrane Curing Compound

A. Requirements

 Use liquid membrane-forming compounds that meet AASHTO M 148 requirements.

B. Fabrication
 - General Provisions 101 through 150.

C. Acceptance
 - See the requirements under AASHTO M 148.

D. Materials Warranty
 - General Provisions 101 through 150.
Section 833—Joint Fillers and Sealers

833.1 General Description
This section includes the requirements for joint fillers and sealers, as follows:

<table>
<thead>
<tr>
<th>Joint Sealers</th>
<th>Joint Fillers</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Hot-poured</td>
<td>□ Preformed</td>
</tr>
<tr>
<td>□ Preformed elastic</td>
<td>□ Preformed foam</td>
</tr>
<tr>
<td>□ Silicone sealant and bond breaker</td>
<td>□ Water-blown urethane</td>
</tr>
</tbody>
</table>

For bridge decks:
- □ Neoprene
- □ Ethylene propylene diene monomer

For inductive loops:
- □ Polyurethane sealant

833.1.01 Related References
A. Standard Specifications
 Section 106—Control of Materials
 Section 461—Sealing Roadway and Bridge Joints and Cracks
B. Referenced Documents

<table>
<thead>
<tr>
<th>AASHTO</th>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 153</td>
<td>D 471</td>
</tr>
<tr>
<td>M 213</td>
<td>D 573</td>
</tr>
<tr>
<td>M 220</td>
<td>D 746</td>
</tr>
<tr>
<td>T 42</td>
<td>D 792</td>
</tr>
</tbody>
</table>

GDT 15
GDT 47
GDT 62
GDT 70
GDT 106
QPL 20
QPL 66
QPL 75

833.2 Materials

833.2.01 Preformed Joint Filler
A. Requirements
 General Provisions 101 through 150.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 Use preformed joint filler that meets either AASHTO M 153 or AASHTO M 213 requirements. For a list of sources, see QPL 20.
Ensure that cellulose fiber types meet the requirements of AASHTO M 213 (except for the asphalt content) and contain minimums of 0.2 percent zinc borate as a preservative and 1.5 percent waterproofing wax.

D. Materials Warranty

General Provisions 101 through 150.

833.2.02 Hot-Poured Joint Sealers

A. Requirements

1. Type

Use a hot-poured joint sealer that is a mixture of materials compatible with asphalt, with or without rubber. The sealer shall have the following characteristics:

- Forms a resilient and adhesive compound
- Effectively seals joints and cracks in pavements against moisture during repeated cycles of expansion and contraction
- Does not flow from the joint and cannot be picked up by vehicle tires at an ambient temperature of 125 °F (50 °C)

2. Compound Characteristics

Use a compound that has a uniform pouring consistency capable of completely filling joints without forming large air holes or discontinuities.

a. Do not pour if the compound temperature is above 450 °F (230 °C).

b. Follow the pouring temperature and safe heating temperature set by the compound manufacturer for each lot or batch.

c. Be sure the temperatures are shown on the label. The safe heating temperature is defined as the highest temperature to which the sealing compound can be heated and still meet all the requirements.

3. Physical Characteristics

Use a hot-poured joint sealer that has the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Required Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetration</td>
<td>Less than 0.35 in (9 mm.)</td>
</tr>
<tr>
<td>Flow</td>
<td>Less than 0.12 in (3 mm).</td>
</tr>
<tr>
<td>Resilience</td>
<td>Minimum recovery of 60%.</td>
</tr>
<tr>
<td>Bond to concrete 0 °F, ± 2 °F (-18 °C, ± 1 °C)</td>
<td>The compound does not separate or have gaps within or between the compound and the blocks.</td>
</tr>
<tr>
<td>Compatibility (with asphaltic concrete)</td>
<td>Adhesion does not fail. Oily exudate does not form at the interface between the sealing compound and the asphaltic concrete. The sealant does not soften or have deleterious effects on the asphaltic concrete.</td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

The Department will test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot-poured joint sealers</td>
<td>GDT 62</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.
833.2.03 Elastomeric Polymer Type Joint Compound

A. Requirements

1. Type

Furnish elastomeric polymer-type joint sealing compound in two components—a base compound and a curing agent.

a. Base compound: A gasoline-resistant elastomeric polymer modified with plasticizers, activators, and inert fillers.

b. Curing agent: A blend of accelerators and extenders.

2. Compound Characteristics

Use a sealing compound that can be mixed to a homogenous consistency at the site and applied by an approved mechanical device or poured and troweled manually.

a. If a compound is to be machine-mixed and applied, it shall have a minimum work life of 5 minutes at 80 °F, ± 5 °F (27 °C, ± 3 °C).

b. If a compound is to be manually mixed and applied, it shall have a minimum work life of 30 minutes at 80 °F, ± 5 °F (27 °C, ± 3 °C).

c. Use a mixture that completely fills the joints without forming air holes or discontinuities, when mixed according to the manufacturer’s instructions.

d. Use a compound that is self-leveling when placed in the joint, but that does not show appreciable flow or movement along a superelevated joint.

e. Use material that does not soften or show any apparent defect after being immersed in water for 7 days.

f. Use a material that forms a tack-free, rubber-like compound that seals pavement or bridge joints within 24 hours of application.

3. Physical Properties

Use material that has the following physical properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Required Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cone penetration</td>
<td>Between 0.1 in (2.5 mm) and 0.39 in (10 mm)</td>
</tr>
<tr>
<td>Flow</td>
<td>No appreciable flow</td>
</tr>
<tr>
<td>Resilience (air- and oven-cured samples)</td>
<td>Minimum recovery of 75%</td>
</tr>
<tr>
<td>Bond</td>
<td>No cracks, separation, or other opening over 1/4 in. (6 mm) deep in the sealer or between the sealer and block</td>
</tr>
<tr>
<td>Solubility</td>
<td>Not to exceed 2 percent; no apparent defects that affect the material as a sealant</td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

The Department will test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastomeric joint compound</td>
<td>GDT 15</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.
833.2.04 Preformed Elastic Joint Sealer

A. Requirements

This section also covers adhesives and lubricants for the sealers.

1. Type

Use a preformed elastic joint sealer that is a vulcanized elastomeric compound using polymerized chloroprene as the only basic elastomer. The joint sealers include both open and closed cell sealers.

2. Certification

a. Submit certified test results of each lot of the joint sealer materials furnished to each Project, either from your tests or from the manufacturer of the preformed joint sealer.

b. The Department will conduct the joint sealer recovery test on random samples from each shipment received or each manufacturer’s lot.

c. Submit certified test results of each lot of the lubricant furnished to each Project, either from your tests or from the manufacturer of the joint sealer lubricant/adhesive or adhesive.

3. Preformed Open Cell Joint Sealer

a. Bridge and Roadway Seals: Use sealer that meets the following physical requirements:

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>Min. 2,000 psi (14 MPa)</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>Min. 250%</td>
</tr>
<tr>
<td>Hardness, Type A durometer</td>
<td>55±5</td>
</tr>
<tr>
<td>Oven aging, 70 hours @ 212 °F (100 °C)</td>
<td></td>
</tr>
<tr>
<td>Tensile strength, change</td>
<td>Max. -30%</td>
</tr>
<tr>
<td>Elongation, change</td>
<td>Max. -40%</td>
</tr>
<tr>
<td>Hardness, change</td>
<td>+10 points</td>
</tr>
<tr>
<td>Oil swell, ASTM oil No. 3:</td>
<td></td>
</tr>
<tr>
<td>Volume change, 70 hrs. @ 212 °F (100 °C)</td>
<td>Max. 80%</td>
</tr>
<tr>
<td>Ozone resistance, 20% strain:</td>
<td></td>
</tr>
<tr>
<td>300 ppm in air, 70 hrs. @ 100 °F (38 °C) (wipe with solvent to remove surface contaminants)</td>
<td>No cracks</td>
</tr>
<tr>
<td>Joint sealer recovery under 50% deflection:</td>
<td></td>
</tr>
<tr>
<td>Recovery after 70 hrs. @ 212 °F (100 °C) Recovery after 72 hrs. @ 14 °F (-10 °C)</td>
<td>Min. 85%</td>
</tr>
<tr>
<td>Recovery after 22 hrs. @ -20 °F (-29 °C)</td>
<td>Min. 88%</td>
</tr>
<tr>
<td></td>
<td>Min. 83%</td>
</tr>
</tbody>
</table>

b. Bridge Seals: Use a sealer that meets the following compression/deflection requirements:

<table>
<thead>
<tr>
<th>Nominal Size, in (mm)</th>
<th>Movement Capability*, ln (mm)</th>
<th>Min. Force 4 lb. per linear inch (18 N per 25 mm) @ Width, in (mm)</th>
<th>Min. Force–30 lb per linear inch (133 N per 25 mm) @ Width, in (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (50)</td>
<td>13/16 (20)</td>
<td>1-7/8 (47)</td>
<td>1-1/16 (27)</td>
</tr>
<tr>
<td>2-1/2 (63)</td>
<td>1-1/8 (28)</td>
<td>2-3/8 (60)</td>
<td>1-1/4 (32)</td>
</tr>
<tr>
<td>3 (75)</td>
<td>1-3/8 (34)</td>
<td>2-7/8 (73)</td>
<td>1-1/2 (38)</td>
</tr>
<tr>
<td>3-1/2 (88)</td>
<td>1-5/8 (40)</td>
<td>3-3/8 (86)</td>
<td>1-3/8 (34)</td>
</tr>
<tr>
<td>4 (100)</td>
<td>1-3/4 (43)</td>
<td>3-7/8 (98)</td>
<td>2-1/8 (54)</td>
</tr>
</tbody>
</table>

*Movement capability is the movement allowed within the widths of the specified maximum and minimum forces. The design maximum and minimum joint width is based on these widths. The installation width depends on the temperature at the time of installation.
c. Roadway Seals: Use a compression/deflection sealer that accommodates the movement specified on the Plans with a minimum force of 4 lbs per linear inch (18 N per linear 25 mm), not exceeding 20 lbs per linear inch (89 N per linear 25 mm), exerted on the joint faces.

4. Preformed Closed Cell Joint Sealer for Roadways
a. Use a preclosed cell polychloroprene joint sealer that meets the following physical requirements:

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>Meet Plan requirements for movement and depth</td>
</tr>
<tr>
<td>Surfaces</td>
<td>Smooth and clean</td>
</tr>
<tr>
<td>Compression/deflection</td>
<td>Allow movement specified on the Plans with a minimum force of 4 lbs per linear inch (18 N per linear 25 mm) exerted on the joint faces and maximum deflection equal to 50% of the original width</td>
</tr>
<tr>
<td>Joint sealer recovery under 50% deflection</td>
<td>85% recovery (compressed to half original thickness for 22 hours @ 158 °F (70 °C), then compression removed for 48 hours at room temperature)</td>
</tr>
<tr>
<td>Water absorption</td>
<td>Maximum 5% weight increase</td>
</tr>
<tr>
<td>Ozone resistance</td>
<td>No cracking after exposure of sample at 20% strain to 100 pphm ozone for 70 hours at 100 °F (38 °C)</td>
</tr>
</tbody>
</table>

5. Joint Sealer Lubricants/Adhesives
a. Lubricant/Adhesive for Preformed Roadway Seals: Use a lubricant/adhesive with the joint sealer that is a one-component polychloroprene compound, containing only soluble phenolic resins blended with antioxidants and acid acceptors in an aromatic, hydrocarbon solvent mixture. The lubricant shall have the following physical properties:

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average net weight per gallon (liter)</td>
<td>7.84 lbs (940 grams)</td>
</tr>
<tr>
<td>Solid content</td>
<td>22-28% by weight</td>
</tr>
<tr>
<td>Film strength</td>
<td></td>
</tr>
<tr>
<td>Tensile strength</td>
<td>Min. 2,300 psi (16 MPa)</td>
</tr>
<tr>
<td>Elongation before breaking</td>
<td>Min. 750%</td>
</tr>
</tbody>
</table>

b. Adhesive for Preformed Bridge or Roadway Seals: Use an adhesive that is a one-part moisture curing polyurethane and hydrocarbon solvent mixture with the following physical properties:

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average net weight per gallon (liter)</td>
<td>Min. 8 lbs (960 grams)</td>
</tr>
<tr>
<td>Solids content</td>
<td>Min. 72% by weight</td>
</tr>
<tr>
<td>Film strength (ASTM D 412)</td>
<td>1,200 psi (8 MPa)</td>
</tr>
<tr>
<td>Elongation before breaking</td>
<td>350%</td>
</tr>
<tr>
<td>Viscosity</td>
<td>Perform suitably with the installation equipment</td>
</tr>
<tr>
<td></td>
<td>Remain fluid from 5 to 120 °F (-15 to 49 °C)</td>
</tr>
</tbody>
</table>

6. Product Delivery
Deliver each lot of the lubricant/adhesive in containers plainly marked with the manufacturer’s name or trademark, lot number, and date of manufacture.

B. Fabrication

General Provisions 101 through 150.
C. Acceptance

Test as follows:

1. Preformed Open Cell Joint Sealer

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength and elongation</td>
<td>ASTM D 412</td>
</tr>
<tr>
<td>Hardness</td>
<td>ASTM D 2240</td>
</tr>
<tr>
<td>Oven-aging</td>
<td>ASTM D 573</td>
</tr>
<tr>
<td>Oil swell</td>
<td>ASTM D 471</td>
</tr>
<tr>
<td>Ozone Resistance</td>
<td>ASTM D 1149</td>
</tr>
<tr>
<td>Joint sealer recovery</td>
<td>GDT 47</td>
</tr>
<tr>
<td>Compression/Deflection</td>
<td>GDT 70</td>
</tr>
</tbody>
</table>

2. Preformed Closed Cell Joint Seals for Roadway

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression/Deflection</td>
<td>GDT 70</td>
</tr>
<tr>
<td>Joint sealer recovery (Run the hot recovery at 158 °F (70 °C) instead of 212 °F (100 °C). Allow seals to recover for 48 hours at room temperature before measuring.)</td>
<td>GDT 47</td>
</tr>
<tr>
<td>Water Absorption</td>
<td>ASTM D 1056</td>
</tr>
<tr>
<td>Ozone Resistance</td>
<td>ASTM D 471</td>
</tr>
</tbody>
</table>

3. Joint Sealer Lubricants/Adhesives

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film Strength</td>
<td>ASTM D 412</td>
</tr>
</tbody>
</table>

D. Materials Warranty

For joint sealer lubricants/adhesives:

1. Store the lubricant/adhesive at 50 ° to 80 °F (10 ° to 27 °C).
2. Retest any lubricant/adhesive not used within 270 days of its manufacture.

833.2.05 Water-Blown Urethane Joint Filler

A. Requirements

1. Type

 Furnish water-blown urethane joint filler in two components.
 a. Mix according to the manufacturer’s recommendations and use in pressure relief joints and regular expansion joints.
 b. Mix the material at the site and foam it in the joint. Use closed-cell material.

2. Physical Requirements
 a. Use the material that meets the following requirements after mixing:

<table>
<thead>
<tr>
<th>Times at 80 °F, ± 5 °F (27 °C, ± 3 °C)</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cream time (interval after mixing the two components and before the material begins to expand).</td>
<td>1 minute</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Expansion time (interval between when the material starts and stops expanding).</td>
<td>10 minutes</td>
<td></td>
</tr>
<tr>
<td>Tack free time (Determine whether the material is tack free by touching lightly. Begin the time requirement for tack free time when the expansion time ends.)</td>
<td>10 minutes</td>
<td></td>
</tr>
</tbody>
</table>
b. Use material that meets the following requirements after curing:

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight per cubic foot (meter)</td>
<td>4lbs, ± 0.4 lbs (64 kg, ± 6 kg)</td>
</tr>
<tr>
<td>Compression to 50% thickness</td>
<td>40 to 130 psi (275 to 895 kPa)</td>
</tr>
<tr>
<td>Recovery (compressed to 50% thickness, released, then tested 10 minutes later)</td>
<td>Min. 65%</td>
</tr>
<tr>
<td>Extrusion when compressed 50%</td>
<td>Max. 0.125 ln (3 mm)</td>
</tr>
<tr>
<td>Moisture absorption</td>
<td>Max. 0.10 lb/ft.² (490 g/m²) of exposed area</td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight per cubic foot (meter)</td>
<td>AASHTO T 42 [omit drying at 220 °F (104 °C)]</td>
</tr>
<tr>
<td>Compression to 50% thickness</td>
<td>AASHTO T 42</td>
</tr>
<tr>
<td>Recovery after compression</td>
<td>AASHTO M 213</td>
</tr>
<tr>
<td>Extrusion</td>
<td>AASHTO T 42</td>
</tr>
<tr>
<td>Moisture absorption</td>
<td>AASHTO T 42 (calculate absorption based on exposed area)</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

833.2.06 Silicone Sealants and Bond Breakers

Prepare and install silicone and bond breakers according to Section 461.

A. Requirements

1. Silicone

 Furnish silicone sealant in a one-part or two part silicone formulation. Use sealant that is compatible with the surface to which it is applied. Do not use acid-cure sealants on Portland cement concrete.

 a. Use silicone that meets the physical requirements in Table 1. For a list of silicone joint sealant sources, please see QPL 66. Identify silicones as the following types:

 1) Type A—one part, low modulus, non-sag silicone. Used to seal horizontal and vertical joints in Portland cement concrete pavements and bridges. Tooling is required.

 2) Type B—one part, very low modulus, self-leveling silicone. Used to seal horizontal joints in Portland cement concrete pavements and bridges. Tooling is not normally required.

 3) Type C—one part, ultra-low modulus, self-leveling silicone. Used to seal horizontal joints in Portland cement concrete pavements and bridges and joints between Portland cement concrete pavement and asphaltic concrete shoulders. Tooling is not normally required.

 4) Type D—two part, ultra low modulus, self-leveling, rapid cure silicone. Used to seal horizontal joints in Portland cement concrete pavements and bridges and joints between Portland cement concrete pavement and asphaltic concrete shoulders. Tooling is not required.

 b. Use sealant that is compatible with the surface to which it is applied. Do not use acid-cure sealants on Portland cement concrete.
c. Use silicone that meets the following physical requirements:

<table>
<thead>
<tr>
<th>Table 1—Physical Requirements for Silicone Sealants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Silicone</td>
</tr>
<tr>
<td>Tensile Stress at 150% Strain, Max. psi (kPa) (Note 1)</td>
</tr>
<tr>
<td>Durometer Hardness, Shore [0 °F and 77 °F ± 3 °F (-18 °C and 25 °C ± 2 °C)] (Note 1)</td>
</tr>
<tr>
<td>Bond to Concrete Mortar, Min. psi (kPa) (Note 1) (Note 3)</td>
</tr>
<tr>
<td>Tack Free Time (Skin-over) (Max. Minutes) (Note 2)</td>
</tr>
<tr>
<td>Extrusion Rate (Min. Grams/Minute) (Note 4)</td>
</tr>
<tr>
<td>Non-volatile (Min. %)</td>
</tr>
<tr>
<td>Specific Gravity</td>
</tr>
<tr>
<td>Shelf Life (from date of shipment)</td>
</tr>
<tr>
<td>Movement Capability & Adhesion (Note 1)</td>
</tr>
<tr>
<td>Ozone and U.V. Resistance (Note 1)</td>
</tr>
</tbody>
</table>

Note 1: The cure time for these specimens shall be 21 days for Type A and 28 days for Type B, C and D. Specimens shall be cured at 77 °F ± 3 °F (25 °C ± 2 °C) and 50±5% relative humidity.

Note 2: At conditions of 77 °F ± 3 °F (25 °C ± 2 °C) and 50±5% relative humidity.

Note 3: Type C and D silicone shall also meet its bond strength requirement to asphalt concrete.

Note 4: Type D extrusion rate shall be within the range specified.

2. Bond Breakers

Bond breakers shall be chemically inert and resistant to oils, gasoline, solvents, and primer, if one is required. Install silicone sealants over a bond breaker to prevent the sealant from bonding to the bottom of the joint.

a. Use bond breakers that are chemically inert and resistant to oils, gasoline, solvents, and primer, if one is required.

b. Do not use bond breaker that will stain or adhere to the sealant.

c. Use either a backer rod or tape bond breaker.

1) Backer Rods

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Closed-cell, expanded polyethylene foam</td>
</tr>
<tr>
<td>M</td>
<td>Closed-cell, polyolefin foam with a closed-cell skin over an open-cell core</td>
</tr>
</tbody>
</table>

Use backer rods that meet the following physical requirements:

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>2 lb/ft³ (30 kg/m³) min.</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>25 psi (170 kPa) min.</td>
</tr>
<tr>
<td>Water absorption</td>
<td>0.02 g/cm³ max.</td>
</tr>
</tbody>
</table>

2) Bond Breaking Tapes

Type N bond breaking tapes are made from extruded polyethylene with a pressure-sensitive adhesive on one side. Bond breaking tapes may be used with all three types of silicone, but is suitable for bridge joints only. Bond breaking tapes shall have a minimum thickness of .005 in (0.13 mm.).
3. Joint Sealant Certification
 Submit, at no cost to the Department, a minimum of 30 gal (100 L) of material and certified test results on each lot of joint sealant furnished to a Project.
 Submit a certification that verifies the sealant meets all the test requirements of this Specification, except the Bond to Concrete Mortar and Shore Durometer Hardness at 0 °F (-18 °C).

B. Fabrication
 Prepare and install silicone and bond breakers according to Section 461.

C. Acceptance
 1. Silicone
 Test the silicone as follows:

Test	Method
Tensile stress	ASTM D 412 (die C)
Durometer hardness	ASTM D 2240
Bond to concrete mortar	GDT 106
Tack free time (skin-over)	GDT 106*
Extrusion rate	GDT 106
Non-volatile	GDT 106
Specific gravity	ASTM D 792 (Method A)
Movement capability and adhesion	GDT 106
Ozone and UV resistance	ASTM C 793
	*In cases of dispute, use ASTM C 679 as a referee test.

 2. Bond Breakers
 Test the bond breaker backer rods as follows:

Test	Method
Density	ASTM D 1622
Tensile strength	ASTM D 1623
Water absorption	ASTM C 1016

3. Department Responsibility
 The Department will:
 a. Evaluate the sealant in the field before accepting any silicone sealants that meet the requirements of this Specification.
 b. Install the material submitted by the Contractor in roadway and/or bridge joints. The material shall be in place for two winters without failure before being accepted.
 c. Reject any sealant or bond breaker that is evaluated and approved, yet fails in actual use.

D. Materials Warranty
 General Provisions 101 through 150.

833.2.07 Neoprene for Bridge Deck Joint Seals
A. Requirements
 1. Type
 Use a neoprene material for bridge deck joint seals that is a vulcanized elastomeric compound with polymerized chloroprene as the only basic elastomer.
 a. Ensure the neoprene meets the physical requirements in Table 2.
Table 2—Physical Requirements for Neoprene

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirements</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength before aging</td>
<td>1500 psi (10 MPa) min.</td>
<td>ASTM D 412</td>
</tr>
<tr>
<td>After oven-aging for 70 hrs. @ 212°F (100°C)</td>
<td>30% max. loss</td>
<td>ASTM D 573</td>
</tr>
<tr>
<td>Elongation at breaks before aging</td>
<td>250% min.</td>
<td>ASTM D 412</td>
</tr>
<tr>
<td>After oven aging for 70 hrs. @ 212°F (100°C)</td>
<td>40% max.</td>
<td>ASTM D 573</td>
</tr>
<tr>
<td>Hardness Type A Durometer before aging</td>
<td>63 ± 10 points</td>
<td>ASTM D 2240</td>
</tr>
<tr>
<td>After oven-aging for 70 hrs. @ 212°F (100°C)</td>
<td>0 to +15 points change</td>
<td>ASTM D 2240</td>
</tr>
<tr>
<td>After aging for 70 hrs. @ 14°F (-10°C)</td>
<td>0 to +15 points change</td>
<td>ASTM D 2240</td>
</tr>
<tr>
<td>Ozone Resistance: After 70 hrs. @ 104°F (40°C), under 20% strain in 300 ppm in air (Wipe specimens with toluene before test to remove surface contaminants)</td>
<td>No cracks</td>
<td>ASTM D 1149</td>
</tr>
<tr>
<td>Weight change in oil after 22 hrs. in oil No. 2 [ASTM D 471]</td>
<td>45% max.</td>
<td>AASHTO M 220</td>
</tr>
<tr>
<td>Recover under 50% deflection (type II only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After 70 hrs. @ 212°F (100°C)</td>
<td>85% min.</td>
<td>AASHTO M 220</td>
</tr>
<tr>
<td>After 72 hrs. @ 14°F (-10°C)</td>
<td>88% min.</td>
<td>AASHTO M 220</td>
</tr>
<tr>
<td>After 22 hrs. @ -22°F (-30°C)</td>
<td>85% min.</td>
<td>AASHTO M 220</td>
</tr>
</tbody>
</table>

2. Certification
Submit certified test results on the joint seal system according to Subsection 106.05, “Materials Certification.”

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Test according to the methods indicated in Table 2.

D. Materials Warranty
General Provisions 101 through 150.

833.2.08 Ethylene Propylene Diene Monomer for Bridge Deck Joint Seals
A. Submittals
1. Type
Use an ethylene propylene diene monomer (EPDM) material for bridge deck joint seals that is 100 percent EPDM compound.

Ensure the compound shall meet the following physical requirements:

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness, Type A Durometer</td>
<td>80 ± 5</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>Min. 2,000 psi (14 MPa)</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>200%</td>
</tr>
</tbody>
</table>
Physical Property | Requirement
---|---
Low temperature | Not brittle at -67 °F (-55 °C)
Weather resistance | No cracks
Ozone resistance (70 hours, 100 °F (38 °C), under 20% strain, 100 pphm in air) | No cracks

2. Certification
Submit certified test results of the joint seal system according to Subsection 106.05, “Materials Certification.”

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Test the EPDM as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness, Type A Durometer</td>
<td>ASTM D 2240</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>ASTM D 412</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>ASTM D 412</td>
</tr>
<tr>
<td>Low temperature</td>
<td>ASTM D 746</td>
</tr>
<tr>
<td>Weather resistance</td>
<td>ASTM D 1171</td>
</tr>
<tr>
<td>Ozone resistance (70 hours, 100 °F (38 °C) under 20% strain, 100 pphm in air)</td>
<td>ASTM D 1149</td>
</tr>
</tbody>
</table>

D. Materials Warranty
General Provisions 101 through 150.

833.2.09 Polyurethane Sealant for Inductive Loops

A. Requirements

1. Type
Use polyurethane sealant that is a one component, moisture-curing, flexible sealant formulated to encapsulate inductive detector loop wires and heads embedded in asphaltic or Portland cement concrete. For a list of sources, see QPL 75.

2. Submit, at no cost to the Department, at least 12, 29 oz. (857 mL) cartridges of the material.

3. Physical Characteristics
Use a sealant that will:
- Remain flexible to −20 °F (-30 °C) (necessary to protect the wire from the stress of pavement movement).
- Fully encapsulate the wire but resist flowing out on inclined or crowned roads.
- Be compatible with asphaltic concrete.
- Not soften the asphaltic concrete to a degree that would cause widening of the joint, when installed in a simulated joint in the laboratory.

4. Use a cured polyurethane sealant that meets the following physical requirements:

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness, Type A Durometer</td>
<td>35-85</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>Min. 150 psi (1035 kPa)</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>Min. 200%</td>
</tr>
<tr>
<td>Flexibility 20 °F (30 °C)</td>
<td>No cracks</td>
</tr>
<tr>
<td>Weathering resistance</td>
<td>Slight chalking</td>
</tr>
</tbody>
</table>
5. Furnish certified test results of the loop sealant according to Subsection 106.05, “Materials Certification.”

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
1. Test the polyurethane sealant for inductive loops as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness, Type A Durometer</td>
<td>ASTM D 2240</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>ASTM D 412 [die C pulled at 20 in (500 mm)/min]</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>ASTM D 412 [die C pulled at 20 in (500 mm)/min]</td>
</tr>
<tr>
<td>Flexibility –20 °F (-30 °C)</td>
<td>25 mil (0.64 mm) free film bend (180°) over a 1/2 in (13 mm) mandrel</td>
</tr>
<tr>
<td>Weathering resistance</td>
<td>ASTM D 822: Weatherometer 350 hrs., cured 7 days, 77 °F (25 °C), 50% relative humidity</td>
</tr>
</tbody>
</table>

2. Department Responsibility
The Department will:
 a. Evaluate the polyurethane sealant for inductive loops in the field before approving it for use. The material also must meet the requirements of this Specification.
 b. Install the material in asphaltic inductive loops. The material shall be in place for one winter without failure before being accepted.
 c. Reject any sealant that is evaluated and approved, yet fails in actual use.

D. Materials Warranty
General Provisions 101 through 150.

833.2.10 Preformed Foam Joint Filler
A. Requirements
1. Type
 Use a preformed foam joint filler consisting of polyethylene, polyurethane, neoprene, natural rubber, or isomeric polymer closed-cell foam and ultraviolet, stable resistant to oils, chemicals, ozone, and weathering. Ensure the joint filler conforms to the following physical requirements:

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Structure (Compression—Deflection to 50% of original thickness)</td>
<td>Closed Cell 10 – 20 psi (70-140 kPa)</td>
</tr>
<tr>
<td>Recovery (After 50% compression of original thickness)</td>
<td>95% min.</td>
</tr>
<tr>
<td>Water Absorption</td>
<td>1% volume max.</td>
</tr>
<tr>
<td>Extrusion at 50% compression of original thickness</td>
<td>0.25 in (6 mm)</td>
</tr>
</tbody>
</table>

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Test according to ASTM D 1752.

D. Materials Warranty
General Provisions 101 through 150.
Section 834—Masonry Materials

834.1 General Description
This section includes the requirements for masonry materials, including brick; clay or shale brick; masonry stone; and mortar and grout.

834.1.01 Related References
A. Standard Specifications
 Section 801—Fine Aggregate
 Section 830—Portland Cement
B. Referenced Documents
 AASHTO M 91
 AASHTO M 240
 AASHTO T 96
 AASHTO T 104
 ASTM C 5
 ASTM C 55
 ASTM C 109 (ASTM C 109M)

834.2 Materials

834.2.01 Brick
A. Requirements
 1. Use bricks of the following sizes for masonry catch basins, inlets, and manholes. Use other sizes only if approved by the Office of Materials and Research.
 - 8 x 3½ x 2¾ in (190 x 90 x 57 mm)
 - 7½ x 3½ x 3½ in (178 x 90 x 90 mm)
 - 11½ x 3½ x 3½ in (273 x 90 x 90 mm)
 2. Use bricks that are relatively straight, sound, and uniform in quality.
 3. Clay or Shale Brick: Use clay or shale bricks that meet the requirements of AASHTO M 91.
 a. Ensure that the maximum absorption of any individual clay or shale brick is less than 16 percent when submersed in cold water for 24 hours.
 b. Use only clay bricks that give a clear ringing sound when struck together.
 4. Concrete Brick: Use concrete bricks that meet the requirements of ASTM C 55.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 General Provisions 101 through 150.

834.2.02 Masonry Stone
A. Requirements
 1. Type: Use stone for rubble masonry that is sound, durable, and does not contain segregations, seams, cracks, pyrite intrusions, or other structural defects or imperfections that affect weather resistance.
a. Do not use stone with rounded, worn, or weathered surfaces. Exposed faces cannot show scars caused by quarrying. Weathered stone will be rejected.

b. Ensure that the stone has no more than 65 percent wear and no more than 15 percent loss after the magnesium sulfate soundness test.

c. Use stone that can be wrought truly to lines and surfaces (curved or plain).

d. Ensure that each stone is at least 6 in (150 mm) thick and 1 ft (300 mm) wide, except for fill stones used in wall interiors.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Wear</td>
<td>AASHTO T 96</td>
</tr>
<tr>
<td>Soundness</td>
<td>AASHTO T 104</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

834.2.03 Mortar and Grout

A. Requirements

1. Use mortar and grout that consists of fresh mixtures of one part Portland or masonry cement and three parts mortar sand and water.

 You may add hydrated lime when using Portland cement in amounts not exceeding 10 percent of the weight of cement.

 a. Cement: Use Portland cement that meets the requirements of Subsection 830.2.01 or masonry cement that meets the requirements of ASTM C 91.

 b. Mortar Sand: Use mortar sand that meets the requirements of Subsection 801.2.02.

 c. Mixing: Mix dry in a mixer or in a clean, tight box, until a uniform mixture is produced. Then add enough water to produce the desired consistency.

 Do not use mortar and grout that has been mixed for more than 45 minutes.

 Retempering of mortar is not permitted.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

General Provisions 101 through 150.

D. Materials Warranty

General Provisions 101 through 150.

Section 835—Aluminum Powder

835.1 General Description

This section includes the requirements for aluminum powder.
Section 836—Special Surface Coating for Concrete

836.1 General Description
This section includes the requirements for products used to produce a decorative, protective, water-repellent, masonry-like textured finish on specified surfaces.

836.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 Interim Federal Specification TT-P-0035
 Federal Specification TT-C-555B
 GDT 71
 QPL 17
836.2 Materials

836.2.01 Surface Coatings

A. Requirements

1. Type

Use a surface coating material that is fine- to heavy-textured and forms a tough adhesive bond to the concrete. For a list of sources, see QPL 17.

 a. Use material that has the following characteristics:

```
<table>
<thead>
<tr>
<th>Application rate</th>
<th>50 (± 10) ft²/gal [1.25 (± 0.25) m²/L] without run or sag on vertical surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry film thickness (minimum)</td>
<td>15 mils (0.38 mm) at application rate of 50 ft²/gal (1.25 m²/L)</td>
</tr>
<tr>
<td>Color</td>
<td>Lusterless gray that matches Federal Standard color No. 36622 (unless specified otherwise on the Plans)</td>
</tr>
</tbody>
</table>
```

 b. Use grout-type coatings that meet the requirements of Interim Federal Specification TT-P-0035.

 c. Use paint-type coatings that meet the requirements of Federal Specification TT-C-555B.

2. Classification

Classify special surface coatings as either Class A or B with these compositional characteristics.

 Add acrylic polymer modifiers to the cement grout in the form of an emulsion.

b. Class B—Organic Resin Binder-Type Coating: Pigmented organic binders with suitable texturing agents. Further classify the coatings by solvent/thinner type and resin type.

 1) Type 1—Acrylic Emulsion: A pigmented, 100 percent acrylic polymer with suitable texturing aggregate additions. Do not use polyvinyl acetate and styrene butadiene polymers as modifying agents.

 2) Type 2—Organic Solvent Thinned Vinyl toluene/acylate copolymer: Pigmented binder in compatible organic solvents with suitable texturing aggregate additions. Use an emulsion polymerization process to form the resinous binder.

3. Submit certified test reports of coating materials from an approved independent laboratory. Submit the results of tests required in this Section and in the referenced Federal Specification.

 a. If the manufacturer that produces the coating changes the formula, submit new certified test reports.

 b. Certify to the following quantitative characteristics:

 - Total solids, percent by weight of the paint
 - Vehicle, percent by weight of the paint
 - Vehicle solids, percent by weight of the vehicle
 - Unit weight

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Submit to the Engineer the manufacturer’s certified test results meeting the applicable Federal Specification and the following requirements when tested according to GDT 71:

1. Freeze-Thaw Resistance: No evidence of cracking, checking, pitting, or adhesion loss after 50 freeze-thaw cycles.

2. Accelerated Weathering: No evidence of cracking, checking, or adhesion loss; no more than slight discoloration after 5000 hours of exposure in a Twin Arc Weatherometer. Use the Weatherometer procedure in GDT 71.

In addition to the previous requirements, no coating will be approved before it completes a two-year field test installation.
Section 837—Polymer Concrete

837.1 General Description
This section includes the requirements for polymer concrete.

837.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 AASHTO T 97
 ASTM C 109 or C 31
 ASTM C 140
 ASTM C 531
 ASTM C 807

837.2 Materials
837.2.01 Polymer Concrete
A. Requirements
 1. Type
 Use a methyl methacrylate (MMA) or polyester polymer concrete that bonds to the substrate with the manufacturer’s recommended primer.
 a. Use a polymer concrete that combines a two-component, solvent-free resin and selected clean, dry aggregate.
 b. Use a primer that is a two-component system recommended by the polymer concrete manufacturer. After mixing, apply it with brushes or another suitable method.
 c. Use a primer that is tack-free within one hour of mixing.
 d. Before adding dry aggregate at the job site to increase yield, get approval from the Office of Materials and Research.
 2. Physical Characteristics
 Use a polymer concrete similar in color to Portland cement concrete.
 a. Use a polymer that can be mixed and placed like Portland cement concrete.
 b. Ensure that the polymer concrete meets the following requirements:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial setting time</td>
<td>12 minutes minimum</td>
</tr>
<tr>
<td>Final setting time</td>
<td>60 minutes maximum</td>
</tr>
<tr>
<td>Flexural strength</td>
<td>1,100 psi (7.5 MPa) minimum in 24 hours</td>
</tr>
<tr>
<td>Minimum compressive strength, 75 °F, ±5 °F (25 °C, ±3 °C), at:</td>
<td>Compressive Strength—psi (MPa)</td>
</tr>
<tr>
<td>2 hours</td>
<td>2,000 psi (15 MPa)</td>
</tr>
<tr>
<td>24 hours</td>
<td>5,000 psi (35 MPa)</td>
</tr>
<tr>
<td>7 days (air cure)</td>
<td>6,000 psi (40 MPa)</td>
</tr>
<tr>
<td>7 days (moist cure)</td>
<td>6,000 psi (40 MPa)</td>
</tr>
</tbody>
</table>
B. Fabrication

1. Packaging and Storage
 a. Package polymer concrete in strong, moisture-proof paper bags or other suitable containers capable of withstanding shipping, normal handling, and storage without breakage.
 b. Clearly label each container of the components of the polymer concrete system with the following information:
 - Component designation
 - Manufacturer’s batch number
 - Mixing instructions
 c. Display potential hazards and precautions according to the Federal Hazardous Products Labeling Act.

C. Acceptance

The tests below include procedures to create specimens for the shear bond strength test.

1. When performing acceptance tests, follow the mixing instructions of the manufacturer.
2. Air-cure all test specimens except for the 7-day moist-cure compressive strength cubes.
3. Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting time</td>
<td>ASTM C 807</td>
</tr>
<tr>
<td>Flexural strength</td>
<td>AASHTO T 97 [3 x 3 x 16 in (75 x 75 x 400 mm)] specimens</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>ASTM C 109 or C 31, whichever is applicable</td>
</tr>
<tr>
<td>Shear bond strength</td>
<td>See procedures below</td>
</tr>
<tr>
<td>Absorption</td>
<td>ASTM C 140</td>
</tr>
<tr>
<td>Shrinkage</td>
<td>ASTM C 531</td>
</tr>
</tbody>
</table>

4. Shear Bond Strength Procedures

 The shear bond strength in psi (MPa) equals the load in pounds (newtons) divided by the interfacial area of the patch in square inches (square millimeters). Test as follows:
 a. Cast a 8 x 2 x ½ in (200 x 50 x 13 mm) polymer patch on an air-cured 3 x 3 x 8 in (75 x 75 x 200 mm) concrete mortar base.
 b. Saw the base and polymer patch into 2 in (50 mm) segments for testing.
 c. Use a holding device and plunger to apply a load at a rate of 0.05 in (1.3 mm) per minute to the patch until failure occurs.

D. Materials Warranty

Use a polymer concrete with a minimum storage life of 6 months under storage conditions of 40 °F to 100 °F (4 °C to 38 °C) and a maximum relative humidity of 90 percent.
838.1 General Description
This section includes the requirements for products that make graffiti-proof coatings and an effective graffiti removal system over specified surfaces.

838.1.01 Related References
A. Standard Specifications
 Section 836—Special Surface Coating for Concrete
B. Referenced Documents
 QPL 42

838.2 Materials
838.2.01 Graffiti Proof Coating
A. Requirements
 1. Type
 Select an approved graffiti guard from QPL 42. When using special surface coatings as base coats, ensure the special surface coatings meet Section 836 requirements and the two coatings are compatible.
 2. Certification
 Submit a sample and an annual warranty for evaluation each year, or whenever product formulation changes, whichever comes first.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 1. The Department will evaluate the compatibility of the graffiti-proof coating and the special surface coating as a graffiti guard system.
 2. The manufacturer will submit test results from an Independent Laboratory showing that the coating meets the following requirements:
 a. Freeze-Thaw Resistance
 1) No evidence of cracking or adhesive loss after 100 freeze-thaw cycles
 2) Easy to remove dried paint using a cleaner supplied by the producer or a commercial paint stripper
 b. Accelerated Weathering
 No evidence of cracking or adhesive loss and no discoloration after 1,500 hours of exposure in a Twin Arc Weatherometer.
D. Materials Warranty
 General Provisions 101 through 150.

Section 839—Corrugated Polyethylene Underdrain Pipe

839.1 General Description
This section includes the requirements for corrugated polyethylene underdrain pipe and fittings used primarily as highway underdrain and temporary slope drains.

839.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents

AASHTO M 252

839.2 Materials

839.2.01 Corrugated Polyethylene Underdrain Pipe

A. Requirements

1. Type
 Use corrugated polyethylene underdrain pipe and fittings that meet the requirements of AASHTO M 252, with the following exceptions:
 - A maximum elongation of 10 percent
 - A gage length to determine percent elongation of 3 ft, ± 1/8 in (900 mm, ± 3 mm)

2. Obtain pipe from an approved source or follow the acceptance process described in Subsection 839.2.01.C, “Acceptance” below.

3. Unless specified otherwise, pipe must be supplied in individual lengths not shorter than 10 ft. (3 m) Coils are not permitted for pipe 6 in (150 mm) or larger in diameter.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

1. You may use pipe in construction supplied from plants operating on certified acceptance status without prior evaluation by lots.

2. Test any approved or untested material prior to use that has been directly exposed to sunlight for more than 6 months.

3. Pipe lengths that have developed bends that cannot be sufficiently straightened will be rejected.
 - Straightening of individual pipe lengths by force will be permitted provided that no stress cracking occurs in the process.
 - Any pipe length that develops stress cracks will be rejected.

4. Certification Process
 - To qualify as an approved source, the manufacturer must present the following:
 1) Evidence that the manufacturer has an acceptable quality control procedure for raw materials and manufacturing processes
 2) A yearly notarized certification stating that all pipe furnished is manufactured to meet this Specification
 - The Department will conduct random plant inspections and take random samples at the plant or at the project site for testing.
 - The Department will remove plants from certified acceptance status when, at any time, they demonstrate inadequate quality control or non-compliance of the pipe material specifications.

D. Materials Warranty

1. Store and use polyethylene tubing properly. It will melt and burn when exposed to flame.

2. This product is flexible, thin-walled, and will temporarily weaken when heated. Be careful to avoid crushing or stretching the pipe on hot days with bright sunlight.

Section 840—Corrugated Aluminum Alloy Pipe

840.1 General Description

This section includes the requirements for the following types of corrugated aluminum alloy pipe:

- Culvert
- Underdrain
840.1.01

☐ Slope drain
☐ Structural plate for pipe, pipe arches, and arches

840.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 AASHTO M 190M
 AASHTO M 196M
 AASHTO M 219M
 GDT 17

840.2 Materials

840.2.01 Corrugated Aluminum Alloy Culvert and Underdrain Pipe
A. Requirements
 Use corrugated aluminum alloy pipe that meets the requirements of AASHTO M 196M.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will inspect corrugated aluminum alloy pipe according to GDT 17.

D. Materials Warranty
 General Provisions 101 through 150.

840.2.02 Corrugated Aluminum Alloy Slope Drain Pipe
A. Requirements
 Use corrugated aluminum alloy slope drain pipe that meets AASHTO M 196M requirements, with the exception that the pipe is not perforated.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will inspect the pipe according to GDT 17.

D. Materials Warranty
 General Provisions 101 through 150.

840.2.03 Bituminous Coated Corrugated Aluminum Alloy Culvert Pipe
A. Requirements
 1. Use bituminous-coated corrugated aluminum culvert pipe that meets AASHTO M 196M requirements.
 2. Use pipe that has a bituminous coat that meets the requirements of AASHTO M 190M for the type of coating specified.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will inspect the pipe according to GDT 17.
D. Materials Warranty
 General Provisions 101 through 150.

840.2.04 Corrugated Aluminum Alloy Structural Plate for Pipe, Pipe Arches, and Arches
A. Requirements
 Use corrugated aluminum alloy structural plate for pipe, pipe arches, and arches that meet the requirements of AASHTO M 219M.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.

Section 841—Iron Pipe

841.1 General Description
This section includes the requirements for iron pipe, including cast iron soil pipe and fittings, and ductile iron pipe and appurtenances.

841.1.01 Related References
A. Standard Specifications
 Section 106—Control of Materials
 Section 848—Pipe Appurtenances

B. Referenced Documents
 ASTM A 74
 ASTM B 29
 ASTM C 564
 ANSI/AWWA A 21.4
 ANSI/AWWA A 21.10
 ANSI/AWWA A 21.11
 ANSI/AWWA A 21.50
 ANSI/AWWA A 21.51

841.2 Materials
For each item in this Section, submit a certification from the manufacturer as per the requirements in Subsection 106.05, “Materials Certification.”

Include the chemical and physical properties of the materials and their conformance with this Specification on the certification.

841.2.01 Cast Iron Soil Pipe and Fittings
A. Requirements
 1. Type
 Use cast iron soil pipe and fittings that meet the requirements of ASTM A 74, including the inside and outside coatings.
841.2.02

a. Rubber Gasket Joints: Use rubber gasket joints for cast iron soil pipes that meet the requirements of ASTM C 564.

b. Lead Joints: Use refined lead that meets the requirements of ASTM B 29. Do not use reclaimed lead.

c. Plain End Cast Iron Soil Pipe: Plain end cast iron soil pipe may be joined with steel bolted couplings if they meet the requirements of Subsection 848.2.02.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

The Department accepts material that is properly certified by the manufacturer.

D. Materials Warranty

General Provisions 101 through 150.

841.2.02 Ductile Iron Pipe and Appurtenances

A. Requirements

Use ductile iron pipe that meets the requirements of ANSI/AWWA A 21.50 and A 21.51 for the class and joint specified.

1. Fittings

Use fittings that meet the requirements of ANSI/AWWA A 21.10 for the class and joint specified.

2. Rubber Gasket Joints

Use rubber gasket joints that meet the requirements of ANSI/AWWA A 21.11.

3. Flanges

Use flanges that meet the requirements of ANSI/AWWA A 21.11.

4. Plain End Ductile Iron Pipe

Plain end ductile iron pipe may be joined with steel-bolted couplings if they meet the requirements of Subsection 848.2.02.

5. Cement Mortar Linings

Use cement mortar linings that meet the requirements of ANSI/AWWA A 21.4. Line all ductile iron pipe and fittings with cement mortar unless specified otherwise.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

The Department accepts material that is properly certified by the manufacturer.

D. Materials Warranty

General Provisions 101 through 150.

Section 842—Clay Pipe

842.1 General Description

Specifications for this work will be included elsewhere in the Contract.

Section 843—Concrete Pipe

843.1 General Description

This section includes the requirements for reinforced concrete pipe, nonreinforced concrete pipe, and concrete underdrain pipe.
843.1.01 Related References
A. Standard Specifications
 Section 800—Coarse Aggregate
 Section 801—Fine Aggregate
 Section 831—Admixtures
 Section 880—Water
B. Referenced Documents
 AASHTO M 86 (M 86M), Class II
 AASHTO M 170 (M 170M)
 AASHTO M 175 (M 175M) or AASHTO M 176 (M 176M)
 QPL 4
 GDT 16

843.2 Materials
843.2.01 Reinforced Concrete Pipe
A. Requirements
 1. Type
 Use reinforced concrete pipe that meets the requirements of AASHTO M 170 (M 170M), with the changes described in the following table. For a list of sources, see QPL 4.

<table>
<thead>
<tr>
<th>Material</th>
<th>Requirements</th>
<th>Other Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse aggregate</td>
<td>Subsection 800.2.01</td>
<td>Gradation requirements do not apply</td>
</tr>
<tr>
<td>Fine aggregate</td>
<td>Subsection 801.2.02</td>
<td>Gradation requirements do not apply</td>
</tr>
<tr>
<td>Fly ash</td>
<td>Subsection 831.2.03.A</td>
<td>None</td>
</tr>
<tr>
<td>Water</td>
<td>Subsection 880.2.01</td>
<td>None</td>
</tr>
</tbody>
</table>

NOTE: Before manufacture, you may request approval of modified designs that differ from the Specifications.

2. Certification
 a. File a certificate with the Engineer stating that the concrete pipe manufactured for Department use meets the requirements of reinforcement steel specified in this Section.
 A bonded legal authority of the manufacturing company shall endorse the requirements certification.
 b. Submit a guarantee with the certificate stating that concrete pipe will be replaced, without cost to the purchaser, if the reinforcement steel does not meet these Specifications.
 c. Ensure that the guarantee remains in effect as long as the manufacturer furnishes concrete pipe for Department use.
 d. This guarantee does not limit the right of the Department to inspect and check the materials in manufactured concrete pipe prior to and during pipeline construction.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 The Department will test and inspect using GDT 16.
D. Materials Warranty
 See the Certification requirements under Subsection 843.2.01.A.2.
843.2.02 Nonreinforced Concrete Pipe

A. Requirements

1. Type

Use nonreinforced concrete pipe to convey sewage, industrial waste, and storm water that meets the requirements of AASHTO M 86 (M 86M), Class II, with the following changes:

<table>
<thead>
<tr>
<th>Material</th>
<th>Requirements</th>
<th>Other Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse aggregate</td>
<td>Subsection 800.2.01</td>
<td>Gradation requirements do not apply</td>
</tr>
<tr>
<td>Fine aggregate</td>
<td>Subsection 801.2.02</td>
<td>Gradation requirements do not apply</td>
</tr>
<tr>
<td>Fly ash</td>
<td>Subsection 831.2.03.A</td>
<td>None</td>
</tr>
<tr>
<td>Water</td>
<td>Subsection 880.2.01</td>
<td>None</td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test and inspect with GDT 16.

D. Materials Warranty

General Provisions 101 through 150.

843.2.03 Concrete Underdrain Pipe

A. Requirements

1. Type

Use concrete underdrain pipe that meets the requirements of AASHTO M 175 (M 175M) or AASHTO M 176 (M 176M), with the following changes unless the Plans state otherwise:

<table>
<thead>
<tr>
<th>Material</th>
<th>Requirements</th>
<th>Other Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse aggregate</td>
<td>Subsection 800.2.01</td>
<td>Gradation requirements do not apply</td>
</tr>
<tr>
<td>Fine aggregate</td>
<td>Subsection 801.2.02</td>
<td>Gradation requirements do not apply</td>
</tr>
<tr>
<td>Fly ash</td>
<td>Subsection 831.2.03.A</td>
<td>None</td>
</tr>
<tr>
<td>Water</td>
<td>Subsection 880.2.01</td>
<td>None</td>
</tr>
</tbody>
</table>

*Use fine aggregate in standard strength, perforated, nonreinforced concrete underdrain pipe.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test and inspect with GDT 16.

D. Materials Warranty

General Provisions 101 through 150.

Section 844—Steel Pipe

844.1 General Description

This section includes the requirements for the following types of steel pipe and related materials:

- Corrugated steel culvert pipe and pipe arches

1026
Bituminous-coated corrugated steel culvert
Steel structural plate for pipe arches and arches
Corrugated steel underdrain
Precoated, galvanized, steel culvert
Aluminum-coated (Type 2) corrugated steel

844.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 - AASHTO M 36M
 - AASHTO M 167M
 - AASHTO M 190M
 - AASHTO M 243M
 - AASHTO M 245M
 - AASHTO M 274M
 - ASTM A849
 - ASTM A862/A862M

844.2 Materials
Repair any damaged coatings on the steel pipe according to AASHTO M 243M.

844.2.01 Corrugated Steel Culvert Pipe and Pipe Arches
A. Requirements
 1. Type
 Use corrugated steel culvert pipe and pipe arches that meet the requirements of AASHTO M 36M, Type I or II culvert pipe for dimensions and thicknesses, except as follows:
 a. Modify AASHTO M 36M, Section 9 to connect all slope drain pipe (except temporary slope drain pipe) with standard one- or two-piece bands. Use bands that completely engage at least one corrugation on each side of the joint or elbow section.
 b. Use connecting bands with projections as described in AASHTO M 36M, Section 9, for temporary slope drain, storm drain, and side drain pipe.
 c. Use special sections for these conduits, such as elbows and flared ends, that are of the same plate thickness as the conduit to which they are joined, and meet the applicable requirements of AASHTO M 36M, as modified.
B. Fabrication
 Furnish shop-formed elliptical pipe and shop-strutted pipe where specified.
C. Acceptance
 See the requirements of AASHTO M 36M.
D. Materials Warranty
 General Provisions 101 through 150.

844.2.02 Bituminous Coated Corrugated Steel Culvert Pipe
A. Requirements
 1. Type
 Use bituminous-coated corrugated steel pipe that meets the requirements of AASHTO M 190M, ASTM A849, and ASTM A862/A862M for the sectional dimensions, plate thickness, and type of bituminous coating.
a. Use special sections for these conduits, such as elbows and flared ends, that are the same plate thickness as the conduit to which they are joined and meet the applicable requirements of AASHTO M 190M, ASTM A849, and ASTM A862/A862M.

b. Provide paved inverts (when required) that conform to the listed specifications.

c. AASHTO M190M and ASTM A849 both contain bituminous material specifications, coating types and coating thickness requirements. Use the requirements of AASHTO M190M when there are discrepancies between the specification requirements.

d. Use the ASTM 862/A862M requirements for post application of coatings.

B. Fabrication

1. Fully coat coupling bands and special sections, such as elbows, flared end sections and safety end sections with bituminous material.

2. Furnish shop-formed elliptical pipe and shop-strutted pipe where specified.

C. Acceptance

See the requirements of AASHTO M 190M.

D. Materials Warranty

General Provisions 101 through 150.

844.2.03 Steel Structural Plate for Pipe Arches and Arches

A. Requirements

1. Type

Use structural plates and galvanized corrugated steel for the corrugated steel plate pipe, pipe arches, and arches that meet the requirements of AASHTO M 167M, AASHTO M 36M, and the following requirements, when applicable:

a. Bituminous Coating: When bituminous coating is specified, use a coating that meets the requirements of AASHTO M 190M for the type specified.

b. Galvanized Corrugated Plates for Pipe: Pipe, pipe arch, and arches may be constructed from corrugated galvanized sheets or plates.

B. Fabrication

1. Bituminous Coating

After erecting the structure, but before placing any backfill, replace any coating that was removed or damaged during erection, either inside or outside, with bituminous material meeting Subsection 844.2.02.

2. Galvanized Corrugated Plates for Pipe

No further galvanizing is required after fabrication if the spelter coating was not injured during shipping or erection.

C. Acceptance

See the requirements of AASHTO M 167M and M 36M.

D. Materials Warranty

General Provisions 101 through 150.

844.2.04 Corrugated Steel Underdrain Pipe

A. Requirements

1. Type

For underdrains, use full-circle, galvanized, corrugated steel pipe that meets the requirements of AASHTO M 36M, Type III, or IIIA for the specified diameters.

Determine the metal thickness according to the following table:

<table>
<thead>
<tr>
<th>Nominal Inside Diameter inches (mm)</th>
<th>Thickness inches (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (150)</td>
<td>.052 (1.320)</td>
</tr>
<tr>
<td>8 (200)</td>
<td>.064 (1.630)</td>
</tr>
</tbody>
</table>
B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 See the requirements of AASHTO M 36M.

D. Materials Warranty
 General Provisions 101 through 150.

844.2.05 Precoated, Galvanized Steel Culvert Pipe

A. Requirements
1. Type
 Use precoated, galvanized steel pipe that meets the requirements of AASHTO M 245M for the specified sectional dimensions, plate thickness, and type of coating.
 a. Use special sections for these conduits, such as elbows and flared ends, that are the same plate thickness as the conduit to which they are joined and that meet the applicable requirements of AASHTO M 190M.
 b. Use the specified coating and invert paving.

B. Fabrication
1. Fully precut or coat the coupling bands with bituminous material according to Subsection 844.2.02.
2. Furnish shop-formed elliptical pipe and shop-strutted pipe where specified.

C. Acceptance
 See the requirements of AASHTO M 190M.

D. Materials Warranty
 General Provisions 101 through 150.

844.2.06 Aluminum-Coated (Type 2) Corrugated Steel Pipe

A. Requirements
 Use steel sheet for corrugated steel pipe that meets AASHTO M 274M requirements.

B. Fabrication
 Fabricate corrugated steel pipe to the requirements of AASHTO M 36M.

C. Acceptance
 See the requirements of AASHTO M 274M.

D. Materials Warranty
 General Provisions 101 through 150.

Nominal Inside Diameter, Thickness inches (mm)

<table>
<thead>
<tr>
<th>Nominal Inside Diameter (inches)</th>
<th>Thickness inches (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 (250)</td>
<td>.064 (1.630)</td>
</tr>
<tr>
<td>12 (300)</td>
<td>.064 (1.630)</td>
</tr>
<tr>
<td>15 (375)</td>
<td>.064 (1.630)</td>
</tr>
<tr>
<td>18 (450)</td>
<td>.064 (1.630)</td>
</tr>
<tr>
<td>21 (525)</td>
<td>.064 (1.630)</td>
</tr>
<tr>
<td>24 (600)</td>
<td>.079 (2.000)</td>
</tr>
</tbody>
</table>

1029
Section 845—Smooth Lined Corrugated Polyethylene (PE) Culvert Pipe

845.1 General Description
This section includes the requirements for smooth-lined, corrugated polyethylene culvert pipe.

845.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 AASHTO M 294
 AASHTO Standard Specifications for Highway Bridges, Division II

845.2 Materials
845.2.01 Smooth-lined, Corrugated Polyethylene (PE) Culvert Pipe
A. Requirements
 Use pipe that meets the requirements of AASHTO M 294M, Type S.
 Use fittings and couplings as recommended by the manufacturer and approved by the Office of Materials and Research. The fittings and couplings shall comply with the joint performance criteria of AASHTO Standard Specifications for Highway Bridges, Division II. Ensure that the joints are “soiltight” per the AASHTO bridge specifications.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 General Provisions 101 through 150.

Section 846—Polyvinyl Chloride (PVC) Profile Wall Drain Pipe

846.1 General Description
This section includes the requirements for Polyvinyl Chloride (PVC) Profile Wall Drain Pipe.

846.1.01 Related References
A. Standard Specifications
 Section 106—Control of Materials
B. Referenced Documents
 AASHTO M 304
 ASTM F 477
 ASTM D 3212

846.2 Materials
846.2.01 Polyvinyl Chloride (PVC) Profile Wall Drain Pipe
A. Requirements
 Use pipe that meets the requirements of AASHTO M 304.
 Ensure joints are watertight and have elastomeric seals that meet the requirements of ASTM F 477.
Assemble the joints according to the manufacturer’s recommendations.

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Have the manufacturer test the joint tightness according to ASTM D 3212 and certify the results according to Subsection 106.05.

D. Materials Warranty
General Provisions 101 through 150.

Section 847—Miscellaneous Pipe

847.1 General Description
This section includes the requirements for water, storm drain, and sewer pipes. The pipe types are:
- Galvanized steel pipe and fittings
- Steel water pipe
- Copper pipe tubing
- Steel sewer pipe and casing pipe
- Plastic water pipe
- Plastic truss sewer pipe
- Polyvinyl chloride (PVC) sewer pipe and fittings

847.1.01 Related References
A. Standard Specifications
Section 106—Control of Materials
Section 848—Pipe Appurtenances

B. Referenced Documents

<table>
<thead>
<tr>
<th>ANSI B 16.3</th>
<th>ASTM</th>
<th>ANSI B 16.3</th>
<th>ASTM</th>
<th>ANSI B 16.3</th>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWWA</td>
<td>A 53/A53M</td>
<td>D 2239</td>
<td>F 477</td>
<td>A 139</td>
<td>D 2241</td>
</tr>
<tr>
<td>C 201</td>
<td>B 88 (B 88M)</td>
<td>D 2680</td>
<td>F 794</td>
<td>C 202</td>
<td>D 3034</td>
</tr>
<tr>
<td>C 203</td>
<td>D 1248</td>
<td>D 3212</td>
<td>F 1483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 205</td>
<td>D 1784</td>
<td>D 3350</td>
<td>F 1483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 301</td>
<td>D 1785</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

847.2 Materials
Each item under this section requires a certification from the manufacturer according to Subsection 106.05, “Materials Certification.”

847.2.01 Galvanized Steel Pipe and Fittings
A. Requirements
1. Type
 Use galvanized steel pipe that meets the requirements of ASTM A 53/A 53M. Use standard weight pipe unless otherwise specified.
2. Use fittings of malleable iron that meets the requirements of ANSI B 16.3, except the nipples and couplings shall be the same material as the pipe.

B. Fabrication

Hot-dip galvanize all fittings, nipples, and couplings according to ASTM A 53/A 53M.

C. Acceptance

The Department will accept the pipe and fittings based on the certification or on the results of tests conducted by the Department.

D. Materials Warranty

General Provisions 101 through 150.

847.2.02 Steel Water Pipe

A. Requirements

1. Type

Use materials and requirements indicated in the table:

<table>
<thead>
<tr>
<th>Material</th>
<th>Meet Requirements of:</th>
<th>Other Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe and fittings</td>
<td>AWWA C 201 or C 202</td>
<td>Use Grade B steel plate. Designate the pipe by operating pressure class.</td>
</tr>
<tr>
<td>Bell and spigot joints</td>
<td>AWWA C 202</td>
<td></td>
</tr>
<tr>
<td>Rubber gasket material</td>
<td>AWWA C 301</td>
<td></td>
</tr>
<tr>
<td>Steel-bolted couplings</td>
<td>Subsection 848.2.02</td>
<td>You may join plain-end steel pipe with steel-bolted couplings.</td>
</tr>
<tr>
<td>Cement mortar linings</td>
<td>AWWA C 205</td>
<td></td>
</tr>
<tr>
<td>Coal-tar enamel lining and coating</td>
<td>AWWA C 203</td>
<td></td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

The Department will accept the pipe based on the certification.

D. Materials Warranty

General Provisions 101 through 150.

847.2.03 Copper Pipe Tubing

A. Requirements

Use pipe or tubing that meets the requirements of ASTM B 88 (B 88M), Type K.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

The Department will accept the tubing based on the certification.

D. Materials Warranty

General Provisions 101 through 150.
847.2.04 Steel Sewer Pipe and Casing Pipe
A. Requirements
 Type: Use the material and requirements indicated in the table:

<table>
<thead>
<tr>
<th>Material</th>
<th>Meet Requirements of:</th>
<th>Other Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel sewer pipe and casing pipe</td>
<td>ASTM A 53/A 53M or</td>
<td>The hydrostatic test is not required.</td>
</tr>
<tr>
<td></td>
<td>ASTM A 139</td>
<td></td>
</tr>
<tr>
<td>Bell and spigot joints</td>
<td>AWWA C 202</td>
<td></td>
</tr>
<tr>
<td>Rubber gasket material</td>
<td>AWWA C 301</td>
<td></td>
</tr>
<tr>
<td>Steel-bolted couplings</td>
<td>Subsection 848.2.02</td>
<td>You may join plain-end steel pipe with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>steel-bolted couplings.</td>
</tr>
<tr>
<td>Cement mortar linings</td>
<td>AWWA C 205</td>
<td></td>
</tr>
<tr>
<td>Coal-tar enamel lining and coating</td>
<td>AWWA C 203</td>
<td></td>
</tr>
</tbody>
</table>

 Unless the Plans specify otherwise, use standard weight pipe.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the pipe based on the certification or on the results of tests conducted by the Department.

D. Materials Warranty
 General Provisions 101 through 150.

847.2.05 Plastic Water Pipe
A. Requirements
 Type: Use polyethylene (PE) pipe and tubing that meet the requirements of ASTM D 2239 and ASTM F 714, as they apply to PE3408. Use the following pipe sizes and standards:

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>Pressure Rating</th>
<th>Other Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 to 3 in (15 to 80 mm) meets ASTM D 2239</td>
<td>200 psi (1.4 MPa) or as</td>
<td>SIDR (standard thermoplastic pipe</td>
</tr>
<tr>
<td></td>
<td>specified by Engineer</td>
<td>dimension ratio) = 7</td>
</tr>
<tr>
<td>3 to 42 in (*80 to 1050 mm) meets ASTM F 714</td>
<td>As specified by Engineer</td>
<td>SDR (standard dimension ratio) as</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specified by Engineer. Use the Iron</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pipe Size system.</td>
</tr>
<tr>
<td>*Use 3 to 42 in (80 to 1050 mm) pipe for new</td>
<td></td>
<td></td>
</tr>
<tr>
<td>construction and for replacing old piping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>systems used to transport water, municipal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sewage, industrial process liquids, effluents,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slurries, etc., in both pressure and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-pressure systems.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Water Service Line Pipe: Use polyvinyl chloride (PVC) pipe that meets the requirements of ASTM D 2241, SDR 21, ASTM D 1785 Schedule 40, or ASTM F 1483, Class 200, (PVCO). Use a PVC compound that meets or exceeds the requirements of ASTM D 1784, Class 12454 B.
2. Water Main Pipe: Use 4 to 12 in (100 to 300 mm) diameter PVC pipe that meets the requirements of AWWA C 900. See the Plans for the designated dimension ratio (DR).

B. Fabrication
 Extrude the pipe from resin that meets the requirements of ASTM D 3350 with a cell classification of PE345434 C, and ASTM D 1248 pipe-grade resin Type III, Class C, Category 5, Grade P 34.

C. Acceptance
 The Department will accept the pipe based on the certification or on the results of tests conducted by the Department.
847.2.06

D. Materials Warranty
 General Provisions 101 through 150.

847.2.06 Plastic Truss Sewer Pipe

A. Requirements
 Type: Use plastic truss sewer pipe, couplings, and fittings that meet the requirements of ASTM D 2680, acrylonitrile butadiene-styrene (ABS), and polyvinyl chloride (PVC) composite sewer piping.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the pipe based on the certification.

D. Materials Warranty
 General Provisions 101 through 150.

847.2.07 Polyvinyl Chloride (PVC) Sewer Pipe and Fittings

A. Requirements
 1. Type
 Use PVC sewer pipe, couplings, and fittings that meet the requirements of ASTM D 3034 (SDR 35), ASTM F 949, or ASTM F 794 (min. pipe stiffness series 46). Ensure that the joints have elastomeric seals that meet the requirements of ASTM F 477.
 2. Certification
 Certify the joint tightness according to ASTM D 3212 and submit a certification according to Subsection 106.05, “Materials Certification.”

B. Fabrication
 Assemble the pipe according to the manufacturer’s recommendations.

C. Acceptance
 The Department will accept the pipe based on the certification.

D. Materials Warranty
 General Provisions 101 through 150.

Section 848—Pipe Appurtenances

848.1 General Description
This section includes the requirements for all pipe appurtenances, such as:

- Rubber gaskets
- Steel-bolted couplings
- Gate valves
- Sterilizing agents
- Bituminous plastic cement

848.1.01 Related References
A. Standard Specifications
 Section 106—Control of Materials
 Section 843—Concrete Pipe
848.2 Materials

848.2.01 Rubber Gaskets for Concrete Pipe

A. Requirements
 1. Type
 Use rubber-type gaskets and o-rings that meet the requirements of AASHTO M 198, Type A. However, pipe used in culvert construction does not need a hydrostatic pressure test.
 a. Ensure that pipe meets the applicable requirements of Section 843. If Section 843 and AASHTO M 198 differ, AASHTO M 198 governs.
 b. Use approved gaskets and o-rings listed in QPL 21

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept gaskets from approved QPL sources only.

D. Materials Warranty
 General Provisions 101 through 150.

848.2.02 Steel-Bolted Couplings

A. Requirements
 1. Coupling Types
 Use steel-bolted couplings for joining all types of plain end pipe. Ensure the couplings have the following characteristics:
 - Wedge gasket and flared sleeve
 - One steel middle ring, two steel followers, two wedge-shaped rubber-compounded gaskets, and steel bolts
 - Dimensions and type for the size and kind of pipe to be joined, including reducers if required
 2. Middle Rings
 a. Ensure that middle rings size 0.375 in (10 mm) through 3 in (80 mm) are fabricated from tubing and cold-formed to provide proper flare at each end and to receive the wedge portion of the gasket.
 b. Ensure that middle rings size 4 in (100 mm) and larger are made from either bar or plate-flash-welded, cold-formed, cold-expanded beyond the yield point of the steel to size the ring and proof-test the weld.
 c. Air-test all welded rings to ensure the weld is porous-free.
 d. Use middle rings that have a bellowed portion between the flares provided for the gaskets to accommodate pipe deflection.
3. Followers
 a. Ensure the followers meet these requirements:

<table>
<thead>
<tr>
<th>Size</th>
<th>Fabrication</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375 in (10 mm) through 1.5 in (40 mm)</td>
<td>One piece steel forgings.</td>
</tr>
<tr>
<td>Above 1.5 in (40 mm) through 5 ¼ in (130 mm)</td>
<td>Cold-formed, two-piece construction.</td>
</tr>
<tr>
<td>5 ¼ in (140 mm) through 20 in (500 mm)</td>
<td>Hot forged from a single piece circular plate & water quenched after forging for maximum strength.</td>
</tr>
<tr>
<td>Above 20 in (500 mm)</td>
<td>Use a special contoured mill section - circle-rolled, flash-welded and cold-expanded beyond the yield point of the steel to size the ring and proof-test the weld.</td>
</tr>
<tr>
<td>All followers</td>
<td>Have solid formed gasket recess, free of seams or breaks, to confine the gasket.</td>
</tr>
</tbody>
</table>

4. Gaskets
 Use gaskets that meet the requirements of ASTM D 2000 3AA708Z-B-13, with the following exceptions:

<table>
<thead>
<tr>
<th>Color</th>
<th>Jet black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>Nonblooming</td>
</tr>
<tr>
<td>Shore “A” Durometer hardness</td>
<td>75 ± 5</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>800 psi (5.5 MPa) minimum</td>
</tr>
<tr>
<td>Elongation</td>
<td>175% minimum</td>
</tr>
</tbody>
</table>

 a. Use a rubber compound that will not deteriorate from age or exposure to air under normal storage or use conditions. Use natural or synthetic rubber that does not contain reclaimed rubber.
 b. Use gaskets that are immune to impurities such as odorants, liquid hydrocarbons, carbon dioxide, and water normally found in natural gas.
 c. To electrically bond the pipe ends to the center ring, make a permanent bond from material that cannot corrode or deteriorate and is molded into the tip of the gasket.

5. Bolts
 Use bolts that have elliptical necks and track heads. Align the elliptical neck and the elliptical hole in the follower so the bolt will not turn.
 a. Ensure that the shank of the bolts has enough threads to compress the gasket.
 b. Submit to the Engineer the manufacturer’s recommended torque for tightening the bolts.

6. Coating
 a. Unless otherwise specified, coat all metal parts in the shop to protect them during shipping and storage.
 b. After installation, apply a coat of coal-tar enamel to the coupling and uncoated ends of the pipe, according to AWWA M 11.

7. Certification
 Submit a certification from the pipe, gasket, or joint manufacturer to the Engineer, according to Subsection 106.05, “Materials Certification.” The certificate shall describe the physical properties of the rubber gasket and show the results on hydrostatic tests of the gasket and pipe used in the Work.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based on the certification.
D. Materials Warranty
General Provisions 101 through 150.

848.2.03 Gate Valves
A. Requirements
Use gate valves that meet the requirements of AWWA C 500.
B. Fabrication
General Provisions 101 through 150.
C. Acceptance
The Department will accept the material based on the certification.
D. Materials Warranty
General Provisions 101 through 150.

848.2.04 Sterilizing Agents
A. Requirements
Use hypochlorites that meet the requirements of AWWA B 300 for sterilizing water systems.
B. Fabrication
General Provisions 101 through 150.
C. Acceptance
General Provisions 101 through 150.
D. Materials Warranty
General Provisions 101 through 150.

848.2.05 Bituminous Plastic Cement
A. Requirements
1. Type
 Use a bituminous compound composed of steam-refined petroleum asphalt or refined coal tar that is dissolved in a suitable solvent and stiffened with a mineral filler with short mineral fibers.
 a. Ensure that the material is smooth and uniform, not thick, livered, or separating to a degree that it cannot be remixed by stirring.
 b. Ensure that the material can be applied with a trowel, putty knife, or caulking gun without pulling or drawing and has good adhesive and cohesive properties when applied to joint surfaces.
 c. You may apply the material cold to seal the joints of bell-and-spigot or tongue-and-groove storm or culvert pipe.
 d. Ensure that the bituminous plastic cement sets to a tough, plastic coating, without blistering when applied 1/16 to 1/8 in (2 to 3 mm) thick on a tinned metal panel and cured at room temperature for 24 hours.
 e. Use bituminous plastic cement with these characteristics:

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease cone penetration</td>
<td>175.00</td>
<td>250</td>
</tr>
<tr>
<td>Weight, lbs/gal (kg/L)</td>
<td>9.75 (1.2)</td>
<td>—</td>
</tr>
<tr>
<td>Non-volatile, percent</td>
<td>75.00</td>
<td>—</td>
</tr>
<tr>
<td>Ash, by ignition, percent by weight</td>
<td>25.00</td>
<td>45</td>
</tr>
</tbody>
</table>

2. Use approved materials from those listed on QPL-21.
B. Fabrication
General Provisions 101 through 150.
C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease cone penetration</td>
<td>AASHTO T 187</td>
</tr>
<tr>
<td>Non-Volatile</td>
<td>ASTM D 2939</td>
</tr>
<tr>
<td>Ash</td>
<td>ASTM D 128</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

848.2.06 Preformed Plastic Gaskets

A. Requirements

1. Use cold-applied plastic gaskets that meet the requirements of AASHTO M 198, Type B to seal tongue-and-groove concrete culverts, precast manhole, and sewer pipes. However, do not perform the Flash Point COC and Fire Point COC tests.

2. Use approved materials from those listed in QPL 21

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

The Department will accept materials only from facilities listed in QPL 21.

D. Materials Warranty

General Provisions 101 through 150.

Section 850—Aluminum Alloy Metals

850.1 General Description

This section includes the requirements for all types of aluminum alloy materials, including:

- Sheet and plate
- Bars, rods, shapes, and wire
- Bolts, nuts, and set screws
- Washers
- Rivets
- Shims
- Extruded tubing
- Pipe

850.1.01 Related References

A. Standard Specifications

Section 106—Control of Materials

B. Referenced Documents

1. ASTM

 - B 209/B 209M, Alloy 1100, Temper 0
 - B 209/B 209M, Alloy 6061, Temper T 6
 - B 209/B 209M, Alclad Alloy 2024, Temper T 4
850.2.03

- B 211/B 211M, Alloy 2024, Temper T 4
- B 221/B 221M, Alloy 6061, Temper T 6
- B 221/B 221M, Alloy 6061, Temper 6
- B 241/B 241M, Alloy 6061, Temper T 6
- B 316/B 316M, Alloy 6061, Temper 6

2. ANSI
 - B 18.2
 - B 1.1M

850.2 Materials
Submit a certification from the manufacturer for each item in this Section, according to Subsection 106.05, “Materials Certification.”

850.2.01 Aluminum Alloy Sheet and Plate
A. Requirements
 Use aluminum alloy sheet and plate that meets the requirements of ASTM B 209/B 209M, Alloy 6061, Temper T 6.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 The Department will accept the material based either on the certification or on the results of tests conducted by the Department.
D. Materials Warranty
 General Provisions 101 through 150.

850.2.02 Aluminum Alloy Bars, Rods, Shapes, and Wire
A. Requirements
 Use aluminum alloy extruded bars, rods, shapes, and wire that meet the requirements of ASTM B 221/B 221M, Alloy 6061, Temper T 6.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 The Department will accept the material based either on the certification or on the results of tests conducted by the Department.
D. Materials Warranty
 General Provisions 101 through 150.

850.2.03 Aluminum Alloy Bolts, Nuts, and Set Screws
A. Requirements
 Use aluminum alloy bolts, nuts, and set screws made from rod that meets the requirements of ASTM B 211/B 211M, Alloy 2024, Temper T 4.
 1. Use bolt heads and nuts of heavy hexagon that meet the requirements of ANSI B 18.2.
 2. Use coarse series, Class 6 fit threads that meet the requirements of ANSI B 1.1M.
B. Fabrication
 1. Heat-treat the finished bolts, nuts, and set screws to the T 4 temper.
 2. Coat each bolt, nut, or set screw with an anodic coating of at least 0.0002 in (5 µm).
 3. Seal the anodic coating with chromate.
C. Acceptance
 The Department will accept the material based either on the certification or on the results of tests conducted by the Department.

D. Materials Warranty
 General Provisions 101 through 150.

850.2.04 Aluminum Alloy Washers
A. Requirements
 Use aluminum alloy washers made from aluminum alloy sheet or plate that meet the requirements of ASTM B 209/ B 209M, Alclad Alloy 2024, Temper T 4.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based either on the certification or on the results of tests conducted by the Department.

D. Materials Warranty
 General Provisions 101 through 150.

850.2.05 Aluminum Alloy Rivets
A. Requirements
 Use aluminum alloy rivets that meet the requirements of ASTM B 316/B 316M, Alloy 6061, Temper 6.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based either on the certification or on the results of tests conducted by the Department.

D. Materials Warranty
 General Provisions 101 through 150.

850.2.06 Aluminum Alloy Shims
A. Requirements
 Use aluminum alloy shims made from aluminum alloy sheet or plate that meet the requirements of ASTM B 209/B209M, Alloy 1100, Temper 0.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based either on the certification or on the results of tests conducted by the Department.

D. Materials Warranty
 General Provisions 101 through 150.

850.2.07 Aluminum Alloy Extruded Tubing
A. Requirements
 Use aluminum alloy extruded tubes that meet the requirements of ASTM B 221/B 221M, Alloy 6061, Temper 6.
B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based either on the certification or on the results of tests conducted by the Department.

D. Materials Warranty
 General Provisions 101 through 150.

850.2.08 Aluminum Alloy Pipe
A. Requirements
 Use aluminum alloy pipe that meets the requirements of ASTM B 241/B 241M, Alloy 6061, Temper T 6, unless otherwise specified.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based either on the certification or on the results of tests conducted by the Department.

D. Materials Warranty
 General Provisions 101 through 150.

Section 851—Structural Steel

851.1 General Description
This section includes the requirements for the grade and toughness of structural steel.

851.1.01 Related References
A. Standard Specifications
 Section 106—Control of Materials

B. Referenced Documents
 ASTM A 673/A 673M
 ASTM A 709 (ASTM A 709M)
 ASTM E 23

851.2 Materials

851.2.01 Structural Steel
A. Requirements
 1. Type
 Use the structural steel grade specified in the Plans. Ensure the steel meets all requirements of the governing ASTM or AASHTO specification, this Specification, and Plan requirements.
 Ensure that all steel submitted as main load-carrying member components subject to tensile stress meets either S83 or S84 of ASTM A 709 (ASTM A 709M).
 2. Certification
 Certify that the steel meets the requirements according to Subsection 106.05, “Materials Certification.”

B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 1. Toughness Tests
 Charpy V-Notch tests are mandatory for materials designated on the Plans as main load-carrying member components subject to tensile stress.
 a. Sample the steel according to ASTM A 673/A 673M.
 b. Perform the Charpy V-Notch test according to ASTM E 23.

D. Materials Warranty
 General Provisions 101 through 150.

Section 852—Miscellaneous Steel Materials

852.1 General Description
This section includes the requirements for miscellaneous materials, such as:
- Steel bolts, nuts, and washers
- Anchor bolts, nuts, and washers
- High tensile strength bolts, nuts, and washers
- Corrugated steel plank for bridges
- Steel grid for bridge floors

852.1.01 Related References
A. Standard Specifications
 Section 106—Control of Materials

B. Referenced Documents

<table>
<thead>
<tr>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 123/A 123M</td>
</tr>
<tr>
<td>A 153M/A 153M</td>
</tr>
<tr>
<td>A 325/A 325M</td>
</tr>
<tr>
<td>A 490/A 490M</td>
</tr>
<tr>
<td>A 563/A 563M</td>
</tr>
<tr>
<td>A 570/A 570M</td>
</tr>
<tr>
<td>A 653/A 653M</td>
</tr>
<tr>
<td>A 709/A 709M</td>
</tr>
<tr>
<td>A 924/A 924M</td>
</tr>
<tr>
<td>B 695</td>
</tr>
<tr>
<td>E 376</td>
</tr>
<tr>
<td>F 436</td>
</tr>
<tr>
<td>F 568M</td>
</tr>
<tr>
<td>F 606 (F 606M)</td>
</tr>
<tr>
<td>F 844</td>
</tr>
<tr>
<td>Recommended Practice E376</td>
</tr>
</tbody>
</table>

ANSI B 1.1M
AASHTO M 314

852.2 Materials

852.2.01 Steel Bolts, Nuts, and Washers
A. Requirements
 1. Bolts and Nuts
 a. Use bolts and nuts, hex or heavy hex as required, that meet the applicable requirements of ASTM F 568M.
 b. Ensure all threads meet the requirements of the latest issue of ANSI B 1.1(B 1.1M).
 c. Use bolts that have Class 2A (6H) threads.
 d. Use nuts that have Class 2 B (6G) threads.
 e. Ensure bolts that transmit shear are threaded so that no more than one thread will be within the grip of the metal.
 f. Use bolts long enough to extend entirely through the nut but no more than 1/4 in (6 mm) beyond them.
2. Washers
 Use washers that meet the requirements of ASTM F 844 unless otherwise specified.

B. Fabrication
 Galvanizing: When galvanized materials are specified, galvanize all bolts, nuts, and washers by either the hot-dip method in ASTM A 153/A 153M, Class C, or the mechanical deposit method in ASTM B 695, Class 50.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.

852.2.02 Anchor Bolts, Nuts, and Washers
A. Requirements
 1. Use anchor bolts, nuts, and washers for structural supports that meet the requirements of AASHTO M 314 Grade 55 (379) unless otherwise shown on the Plans. Supports include those for highway signs, street lighting, traffic signals, bridge bearing plates, and other similar applications.
 Apply Supplementary Requirement S1 of AASHTO M 314 to these materials.
 2. Use the grade, shape, and dimensions designated on the Plans.

 [NOTE: The Department will not accept Grade 105 (724).]

B. Fabrication
 Galvanizing: Where galvanized materials are specified, galvanize all bolts, nuts, and washers by the hot-dip method in ASTM A 153/A 153M and according to the Plans.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.

852.2.03 High Tensile Strength Bolts
A. Requirements
 1. Bolt Type
 Use high tensile strength bolts that meet the requirements of ASTM A325 (A 325M) or ASTM A 490 (A 490M), as specified on the Plans.
 2. Nut Type
 Apply these changes to ASTM A 325 (A 325M) and/or ASTM A 490 (A 490M):
 a. Use only the following nuts for the listed high tensile-strength bolts:

Bolt Spec., Type and Finish	Nut Spec., Grade and Finish
A 325 (A 325M), 1 or 2, plain	A 563—DH or DH 3, plain, A194, 2H, plain (A 563M—8S or 8S3, plain)
A 325 (A 325M), 1 or 2, zinc coated	A 563—DH, zinc coated, A194, 2H, zinc coated (A 563M—8S, zinc coated)
A 325 (A 325M), 3, plain	A 563—DH 3 plain (A 563M—8S3, plain)
A 490 (A 490M), 1 or 2, plain	A 563—DH or DH3, plain, A 194, 2 H, plain (A 563M—10S or 10S3, plain)
A 490 (A 490M), 3, plain	A 563—DH 3, plain (A 563M—10S3, plain)

 b. Ensure all galvanized nuts meet the Supplementary Requirements of ASTM A 563 (A 563M).
3. Washer Type
 Apply these changes to ASTM A 325 (A 325M) and/or ASTM A 490 (A 490M):
 a. For bolts that meet ASTM A 325 (A 325M) or ASTM A 490 (A 490M), use washers that meet the requirements of ASTM F 436.
 b. Use washers that have the same coating or surface finish as the bolts and nuts.
4. Fastener Assemblies
 Provide the Office of Materials and Research at least three samples per lot of each material type furnished to project.
5. Certification Test Reports
 Supply certifications on each item according to Subsection 106.05, “Materials Certification.” Include on all certifications the item specification number, type or grade, finish, and manufacturer’s product-marking symbol. Also, supply the required Mill Test Reports, Manufacturer Certified Test Reports, and Distributor Certified Test Reports with each shipment, as follows:
 a. Mill Test Reports (MTR): Provide an MTR for all mill steel used to manufacture bolts, nuts, and washers. Indicate where the material was melted and manufactured.
 b. Manufacturer Certified Test Reports (MCTR): Supply the MCTR to the Department from the manufacturer of the bolts, nuts, or washers. Each MCTR shall:
 1) Show relevant information required by ASTM A 325 (A 325M) or ASTM A 490 (A 490M), and this Specification, including test results for any required coating.
 2) Include the lot number and location where the bolts, nuts, or washers were manufactured.
 3) If the manufacturer furnished the entire assembly (bolts, nuts, and washers), have the manufacturer perform the rotational capacity tests.
 4) Furnish the results and when and where all testing was performed.
 c. Distributor Certified Test Reports (DCTR): If a distributor purchases the various assembly components from different manufacturers, the distributor may run the rotational-capacity test in lieu of a manufacturer. In this case show test results, manufacturer’s component lot numbers, and assigned rotational capacity lot numbers for each combination on the DCTR.
 d. The distributor is responsible for furnishing the required MTR, MCTR, and DCTR with each shipment.

B. Fabrication
1. Bolts
 a. If coating ASTM A 325 (A 325M) bolts with zinc, use either the hot-dip or mechanically deposited process.
 b. Do not hot-dip or electroplate ASTM A 490 (A 490M) bolts with any metallic coating. The bolts become brittle in hydrogen and subsequently crack due to stress corrosion and delayed brittle failure.
 c. Apply these changes to ASTM A 325 (A 325M) and/or ASTM A 490 (A 490M) for bolts:
 1) Test ASTM A 325 (A 325M) galvanized bolts for embrittlement according to ASTM F 606/F 606M, Section 7.
 2) Perform proof load tests (ASTM F 606/F 606 Method 1) for all ASTM A 325 (A 325M) and ASTM A 490 (A 490M) bolts.
2. Nuts
 a. Lubricate galvanized nuts with a lubricant that is clean and dry to the touch. Use a lubricant that has a color that contrasts with the zinc coating so that you can obviously see the coating at the job site.
 b. Perform proof load tests for all nuts, plain and zinc coated, using the method described in ASTM F 606/F 606M Section 4.2.
 c. If you use the nuts with galvanized bolts, run the proof load test after the nut is galvanized, overtapped, and lubricated.
3. Fastener Assemblies (Bolt, Nut, and Washer)
 a. Unless otherwise approved by the Engineer, coat the assemblies with a zinc coating according to ASTM A 153/A 153M.
 b. Take coating thickness measurements on the wrench flats.
 c. No single spot coating thickness measurement shall be less than the required individual specimen value shown on Table 1 of ASTM A 153/A 153M, when taken according to ASTM Recommended Practice E 376.
C. Acceptance

1. Fastener Assemblies (Bolt, Nut, and Washer)
 a. Take coating thickness measurements on the wrench flats according to ASTM Recommended Practice E 376.
 b. Ensure no single coating thickness measurement is less than the required individual Specimen value shown on Table 1 of ASTM A 153/A 153M.

2. Hardness Test
 Perform hardness tests on galvanized components after galvanizing the item and removing the coating.

3. Rotational Capacity Test
 Rotational capacity tests are required on all black or galvanized (after galvanizing) assemblies prior to shipping. The following directions are for Department personnel:
 a. Test each combination of bolt production lot, nut lot, and washer lot as an assembly.
 b. The Project Engineer may require additional rotational-capacity tests on assemblies covered by Subsections 852.2.03.C.4.b.7 and 852.2.03.C.4.b.9.

4. Rotational Capacity Test: Bolts Too Short to Fit in Tension Calibrator
 a. Equipment Required:
 - Calibrated manual torque wrench and a 1 ft (300 mm) long wrench.
 - Spacers and/or washers with holes that do not exceed the bolt diameter by 1/16 in (2 mm) for bolts equal to or less than 1 inch (24 mm) in diameter. The hole size for larger bolts shall not exceed the bolt diameter by 1/8 in (3 mm).
 - Steel section with holes to match bolt sizes.

 NOTE: Use a plate thick enough to accomplish Step 1 in the procedure without spacers. However, spacers are acceptable.
 b. Procedure:
 1) Mark off a vertical line and lines one-third of a turn, 120 degrees; half of a turn 180 degrees; and two-thirds of a turn, 240 degrees from vertical in a clockwise direction on the plate.
 2) Measure the bolt length, the distance from the underside of the bolt head to the end of the bolt.
 3) Install a nut on the bolt and measure the stick-out of the bolt when three to five full threads of the bolt are located between the bearing face of the nut and the bolt head.
 4) Install the bolt in the appropriate size hole and, if necessary, install the required number of spacers to produce the thread stick-out measured in step 1 (always use at least one washer under the nut).
 5) Snug the nut with the hand wrench. Snug should be the normal effort applied to a 12 in (300 mm) long wrench. Do not exceed 20 percent of the torque determined in step 7.
 6) Align the nut with the vertical (0 degree) stripe on the test frame plate. This is for reference after you rotate the nut during testing.
 7) Tighten the bolt by turning the nut with the torque wrench to the rotation in the table.

<table>
<thead>
<tr>
<th>Bolt Length (Step 1)</th>
<th>4 bolt dia. or less</th>
<th>4 to 8 bolt dia.</th>
<th>More than 8 bolt dia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required rotation</td>
<td>1/3</td>
<td>1/2</td>
<td>2/3</td>
</tr>
</tbody>
</table>

Use a second wrench to prevent the bolt from turning.

8) Measure and record the torque required to reach this rotation. Measure torque with the nut in motion. Ensure the torque in foot-pounds (newton-meters) does not exceed the values in the table. Reject any assemblies that exceed the listed torques.
9) Continue tightening the nut as follows:

<table>
<thead>
<tr>
<th>Bolt Length (Step 1)</th>
<th>4 bolt dia. or less</th>
<th>4 to 8 bolt dia.</th>
<th>More than 8 bolt dia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Rotation</td>
<td>2/3</td>
<td>1</td>
<td>1-1/3</td>
</tr>
</tbody>
</table>

10) Measure the rotation from the initial marking in Step 6.

11) Loosen and remove the nut and examine the bolt and nut threads. Reject any assembly that shows evidence of thread shear, stripping, or torsional failure.

NOTE: Reject any assemblies that fracture or are stripped before reaching the required rotation.

5. Rotational Capacity Test: Long Bolts in Tension Calibrator

a. Equipment required:
 - Calibrated, measuring device to measure tension for the bolts. Mark off a vertical line and lines one-third of a turn, 120 degrees; and two-thirds of a turn, 240 degrees, from vertical in a clockwise direction on the face plate of the calibrator.
 - Calibrated manual torque wrench.
 - Spacers and/or washers meeting the requirements of Subsection 852.2.03.C.4.a, bullet 2.
 - Steel section to mount the bolt calibrator.

b. Procedure
 1) Measure the bolt length, the distance from the underside of the bolt head to the end of the bolt.
 2) Put the nut on the bolt and measure the stick-out of the bolt when three to five full threads of the bolt show between the bearing face of the nut and the bolt head.
 3) Install the bolt in the tension calibrator. If necessary, install the required number of spacers to produce the thread stick-out measured in step 1 (always use at least one washer under the nut).
 4) Tighten the bolt by turning the nut with a hand wrench to the snug tensions listed below [−0 +2 kips (−0 +9 kN)].
<table>
<thead>
<tr>
<th>Nominal Bolt Dia., in (mm)</th>
<th>Tension, kips (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTM A 325 (A 325M)</td>
</tr>
<tr>
<td>7/8 (M24)</td>
<td>4 (21)</td>
</tr>
<tr>
<td>1 (M27)</td>
<td>5 (27)</td>
</tr>
<tr>
<td>1-1/8 (M30)</td>
<td>6 (33)</td>
</tr>
<tr>
<td>1-1/4 (M36)</td>
<td>7 (47)</td>
</tr>
<tr>
<td>1-3/8</td>
<td>9</td>
</tr>
<tr>
<td>1-1/2</td>
<td>10</td>
</tr>
</tbody>
</table>

5) Align the nut to the vertical (0 degree) stripe on the face plate of the bolt calibrator.
6) Use the calibrated manual torque wrench to turn the nut to at least the tension in kips (kN) listed below.

<table>
<thead>
<tr>
<th>Nominal Bolt Dia., in (mm)</th>
<th>Tension, kips (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTM A 325 (A 325M)</td>
</tr>
<tr>
<td>1/2 (M16)</td>
<td>12 (91)</td>
</tr>
<tr>
<td>5/8 (M20)</td>
<td>19 (142)</td>
</tr>
<tr>
<td>3/4 (M22)</td>
<td>28 (176)</td>
</tr>
<tr>
<td>7/8 (M24)</td>
<td>39 (205)</td>
</tr>
<tr>
<td>1 (M27)</td>
<td>51 (267)</td>
</tr>
<tr>
<td>1-1/8 (M30)</td>
<td>56 (326)</td>
</tr>
<tr>
<td>1-1/4 (M36)</td>
<td>71 (475)</td>
</tr>
<tr>
<td>1-3/8</td>
<td>85</td>
</tr>
<tr>
<td>1-1/2</td>
<td>103</td>
</tr>
</tbody>
</table>

7) Record both the torque required to reach the tension and the bolt tension value from the calibrator.
 Measure torque with the nut in motion. The torque cannot be greater than 0.25 x the developed tension in lbf (newtons) x the bolt diameter in feet (meters).
8) Reject assemblies with torque values that exceed the calculated value.
9) Further tighten the nut as follows.

<table>
<thead>
<tr>
<th>Bolt Length (Step 1)</th>
<th>4 bolt dia. or less</th>
<th>4 to 8 bolt dia.</th>
<th>More than 8 bolt dia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Rotation</td>
<td>2/3</td>
<td>1</td>
<td>1-1/3</td>
</tr>
</tbody>
</table>

10) Measure the rotation from the initial marking in step 5.
11) Record the bolt tension. Reject assemblies that fail prior to this rotation either by stripping or fracture.
12) After the required rotation, the bolt tension in kips (kN) must equal or exceed the values shown in the table.
 Reject assemblies that do not meet the tension.

<table>
<thead>
<tr>
<th>Nominal Bolt Dia., in (mm)</th>
<th>Tension, kips (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTM A 325 (A 325M)</td>
</tr>
<tr>
<td>1/2 (M16)</td>
<td>14 (105)</td>
</tr>
<tr>
<td>5/8 (M20)</td>
<td>22 (163)</td>
</tr>
<tr>
<td>3/4 (M22)</td>
<td>32 (202)</td>
</tr>
<tr>
<td>Nominal Bolt Dia., in (mm)</td>
<td>Tension, kips (kN)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>ASTM A 325 (A 325M)</td>
</tr>
<tr>
<td>7/8 (M24)</td>
<td>45 (236)</td>
</tr>
<tr>
<td>1 (M27)</td>
<td>59 (307)</td>
</tr>
<tr>
<td>1-1/8 (M30)</td>
<td>64 (375)</td>
</tr>
<tr>
<td>1-1/4 (M36)</td>
<td>82 (546)</td>
</tr>
<tr>
<td>1-3/8</td>
<td>98</td>
</tr>
<tr>
<td>1-1/2</td>
<td>118</td>
</tr>
</tbody>
</table>

13) Loosen and remove nut and examine the bolt and nut threads. Reject any assembly with any evidence of thread shear, stripping, or torsional failure.

D. Materials Warranty

1. Ship bolts, nuts, and washers from each rotational-capacity lot in the same container.
 a. If shipping only one production lot number for each size nut and washer, you may ship the nuts and washers in the same container.
 b. Permanently mark each container with the rotational-capacity lot number so that identification will be possible at any stage before installation.
2. Black bolts, nuts and washers must be “oily” to the touch when installed. Clean and re-lubricate weathered or rusted bolts, nuts, and washers before installing them.
3. Improperly stored galvanized assemblies will develop white rust. Clean and re-lubricate as in Subsection 852.2.03.B.2.a any bolts, nuts, and washers that show evidence of white rust.

852.2.04 Corrugated Steel Plank for Bridges

A. Requirements

1. Type
 Use steel that meets ASTM A 570/A 570M Grade 33/230 or ASTM A 653/A 653M Grade 37/255 and ASTM A 924/A 924M.
2. Furnish copper steel when specified.
3. Submit a certification according to Subsection 106.05, “Materials Certification.”

B. Fabrication

1. Make corrugated steel bridge plank of shop-fabricated steel plate. Use the gauge shown on the Plans.
2. Form the steel into plank at least 13 in (325 mm) wide and between 2 to 4 in (50 and 100 mm) deep, with at least two complete corrugations.
3. Galvanizing
 When galvanized plank is specified, galvanize the plank as in ASTM A 123/A 123M or ASTM A 653/A 653M Class G210.

C. Acceptance

Acceptance is based on the certification.

D. Materials Warranty

General Provisions 101 through 150.

852.2.05 Steel Grid for Bridge Floors

A. Requirements

1. Use steel that meets ASTM A 709/A 709M Grade 36/250, and has the specified copper content.
2. Submit a certification according to Subsection 106.05, “Materials Certification.”

1048
B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Acceptance is based on the certification.

D. Materials Warranty
General Provisions 101 through 150.

Section 853—Reinforcement and Tensioning Steel

853.1 General Description
This section includes the requirements for reinforcement and tensioning steel, including:

- Steel bars
- Pretensioning steel wire strand
- Post-tensioning steel wire
- Post-tensioning steel bars
- Plain steel bars with threaded ends
- Steel wire
- Welded steel wire fabric
- Dowel bars
- Dowel (tie) bars
- Bar supports
- Epoxy coating

853.1.01 Related References
A. Standard Specifications
Section 514—Epoxy Coated Steel Reinforcement

B. Referenced Documents

<table>
<thead>
<tr>
<th>AASHTO</th>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 32/ M 32M</td>
<td>A 153/ A 153 M</td>
</tr>
<tr>
<td>M 55/ M55M</td>
<td>A 416/ A 416M</td>
</tr>
<tr>
<td>M 284/ M284M</td>
<td>A 421/ A 421M</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QPL 12
QPL 55
QPL 61
CRSI Manual of Standard Practices

853.2 Materials
A. Requirements

NOTE: Notify the Office of Materials and Research at least two weeks before blast cleaning the steel reinforcement bars and applying the epoxy coating. This time will allow the Department to schedule an inspection.
853.2.01

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

853.2.01 Steel Bars for Concrete Reinforcement

A. Requirements
 1. Type
 a. Use deformed billet steel bars from rolling mills listed on QPL 61 and from fabricators listed on QPL 12
 b. Use deformed billet steel bars that meet the requirements of ASTM A 615/ A 615M for bar reinforcement in concrete, unless otherwise designated.
 c. Use deformed billet steel for longitudinal bars in continuously reinforced concrete pavement that meet the requirements of ASTM A 615/ A 615M, Grade 60 (420).

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based on either QPL approval or on tests conducted by the Department.
 The Department will not accept bent bars that have been straightened and rebent.

D. Materials Warranty
 General Provisions 101 through 150.

853.2.02 Pretensioning Steel Wire Strand

A. Requirements
 1. Type
 Use steel wire that meets all the requirements of ASTM A 416/A 416M. Use Grade 270 for prestressed concrete bridge members.
 a. If you plan to use strands that differ in size from those covered in ASTM A 416/A 416M submit to the Engineer complete data on the proposed strands, as stated below.
 2. Certification
 Submit a certification from the manufacturer that shows the results of the required tests, including stress-strain curves, and conformance to these Specifications.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the steel based on the results of tests made by the Department and the certification from the manufacturer.

D. Materials Warranty
 General Provisions 101 through 150.

853.2.03 Post-tensioning Steel Wire

A. Requirements
 1. Type
 Use steel cable for post-tensioning that meets ASTM A 421/ A 421M, Type BA or WA, as specified.
 2. Certification
 Submit a certification from the manufacturer that shows the results of the required tests, including stress-strain curves, and conformance to these Specifications.
B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the steel based on the results of tests made by the Department and the certification from the manufacturer.

D. Materials Warranty
 General Provisions 101 through 150.

853.2.04 Post-tensioning Steel Bars

A. Requirements
 1. Type
 Use high-strength steel bars for post-tensioning that meet the requirements of ASTM A 722/ A 722M, Type II.
 2. Drawings
 a. Show all appurtenances to be used with the bars on shop drawings.
 b. Show all dimensions and steel requirements on the drawings.
 c. Use the appropriate ASTM designation for the steel, if possible.
 3. Certification
 Submit a certification that shows the results of the required tests, including stress-strain curves, and conformance to this Specification.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the steel based on the results of the tests made by the Department and on the certification from the manufacturer.

D. Materials Warranty
 General Provisions 101 through 150.

853.2.05 Plain Steel Bars—Threaded Ends

A. Requirements
 Use plain steel bars with threaded ends that meet the requirements of ASTM A 709/ A 709M, Grade 36 (250), 50(345), or 70W(485W).

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the steel based on the certification from the manufacturer.

D. Materials Warranty
 General Provisions 101 through 150.

853.2.06 Steel Wire for Concrete Reinforcement

A. Requirements
 Use steel wire that meets the requirements of AASHTO M 32/ M 32M and is the size shown on the Plans.

B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
The Department will accept the steel based on the results of the tests made by the Department or on the certification from the manufacturer.

D. Materials Warranty
General Provisions 101 through 150.

853.2.07 Welded Steel Wire Fabric for Concrete Reinforcement
A. Requirements
1. Use welded steel wire fabric of the size and dimension shown on the Plans and that meets the requirements of AASHTO M 55/ M 55M.
2. Use a vendor listed on QPL 55.
B. Fabrication
General Provisions 101 through 150.
C. Acceptance
The Department will accept the steel based on the results of the tests made by the Department or on a certification from the manufacturer.

853.2.08 Dowel Bars
A. Requirements
Type: Use dowel bars for concrete pavement that are plain, round steel bars that meet or exceed the tensile requirements of Table 2–Tensile Requirements for Deformed Bars, ASTM A 615/ A 615M, Grade 40 (300).
B. Fabrication
Coat dowel bars with either high density polyethylene or epoxy, as follows:
1. High Density Polyethylene
 Use polyethylene with the following characteristics

 | Thickness | 12 to 20 mils (0.30 to 0.51 mm) |
 | Texture | Smooth and dense enough to provide adequate bond-breaking characteristics |
 | Undercoating (adhesive) | Modified rubber blend; 2 to 7 mils (0.05 to 0.18 mm) thick |

 Ensure that the undercoating retains its elasticity and effectively seals small cuts or abrasions from moisture migrating under the polyethylene plastic outer coating.

2. Epoxy
 Prepare the dowels for coating, select the epoxy material, apply the epoxy, and sample and test the properties of coated bars according to the requirements of Section 514.
 a. Apply a uniform, smooth coating to the bars that results in a film 12 mils, ± 2 mils (0.30mm, ± 0.05 mm) thick after curing.
 b. Do not coat the cut ends.
 c. Handle the coated dowels carefully to prevent damage to the coating or bar. However, bars can be welded through the epoxy to one side of the supportive basket.
C. Acceptance
The Department will accept the steel based on the results of the tests made by the Department or on the certification of the manufacturer.
The Department will reject dowel bars with burred or deformed ends.
D. Materials Warranty
General Provisions 101 through 150.

853.2.09 Dowel (Tie) Bars
A. Requirements
Use uncoated, plain or deformed billet-steel bars that meet the requirements of ASTM A 615/ M, Grade 40 (300) for dowel bars or tie bars in curbs, concrete medians, and other areas specified on the Plans.

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
The Department will accept the steel based on the results of the tests made by the Department or on the certification of the manufacturer.

D. Materials Warranty
General Provisions 101 through 150.

Section 854—Castings and Forgings

854.1 General Description
This section includes the requirements for the following castings and forgings:

- Gray iron drainage castings
- Cast aluminum alloy railing posts
- Aluminum alloy sand mold castings
- Steel castings
- Steel forgings
- Cold-finished carbon shafting
- Steel castings for bridges

854.1.01 Related References
A. Standard Specifications
Section 501—Steel Structures

B. Referenced Documents

<table>
<thead>
<tr>
<th>AASHTO</th>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 102/ M 102M</td>
<td>ASTM A 27/ A 27M</td>
</tr>
<tr>
<td>M 169</td>
<td>ASTM B 26/ B 26 M, Alloy UNS A03560</td>
</tr>
<tr>
<td>M 306</td>
<td>ASTM B 108</td>
</tr>
</tbody>
</table>

QPL 11
ANSI 356 Temper T 6

854.2 Materials

854.2.01 Gray Iron Drainage Castings
A. Requirements
Each foundry shall conform to Standard Operating Procedure 18 (SOP 18), “Inspection of Gray Iron Drainage Castings”.
1. Type
 Use gray iron drainage castings that meet the requirements of AASHTO M 306, Class 35B. Proof load testing as described in AASHTO M 306, Section 7, will not be required. Use foundries listed on QPL 11.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the castings based on the following:
 - Quality of work and conformance to dimension and shape requirements
 - Transverse or tension bar test results

D. Materials Warranty
 General Provisions 101 through 150.

854.2.02 Cast Aluminum Alloy Railing Posts
A. Requirements
 1. Type
 Use permanent mold types of cast-aluminum alloy roadway railing post that meet ASTM B 108 requirements. Ensure that the finish on the castings meets the specifications on the Plans.
 2. Certification
 Submit a report with each shipment of castings that includes test results and certifies compliance with this Specification.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the castings based on the following:
 - Quality of work and conformance to dimension and shape requirements
 - Certification that the physical and chemical properties of the material meet these Specifications

D. Materials Warranty
 General Provisions 101 through 150.

854.2.03 Aluminum Alloy Sand Mold Castings
A. Requirements
 1. Type
 Use aluminum base alloy and castings that meet the requirements of ASTM B 26/ B 26M, Alloy UNS A03560 or ANSI 356 Temper T 6.
 2. Certification
 Submit a report with each shipment of castings that includes test results and certifies compliance with this Specification.

B. Fabrication
 Sandblast or otherwise clean the scale and sand off the castings to produce a smooth and uniform surface.

C. Acceptance
 The Department will accept the castings based on the following:
 - Quality of work and conformance to the dimension and shape requirements, as inspected when received
 - Certification that the physical and chemical properties of the material meet these Specifications
D. Materials Warranty

General Provisions 101 through 150.

854.2.04 Steel Castings

A. Requirements

1. Type
 Use carbon steel castings that meet the requirements of ASTM A 27/ A 27M, Grade 65-35 (450-240). Ensure that the form and dimensions of the steel castings are true to pattern.

2. Certification
 Submit a report with each castings shipment that includes test results and certifies compliance with this Specification.

B. Fabrication

1. If the Plans require large castings, suspend and hammer them all over. Ensure that no cracks, flaws, or other defects appear after this treatment. The Department will not accept sharp unfilled angles or corners.

2. Coat surfaces marked “Finished” as soon as practical after finishing with a corrosion-resistant grease before removing them from the shop.

3. Apply a shop coat of paint to casting surfaces milled for removing scale, scabs, fins, blisters, or other surface deformations. Ensure that the shop coat of paint meets the requirements of Subsection 501.3.04.D.10, “Shop Painting.”

C. Acceptance

The Department will accept the castings based on the following:

- Quality of work and conformance to the dimension and shape requirements, as inspected when received
- Certification that the physical and chemical properties of the material meet these Specifications

D. Materials Warranty

General Provisions 101 through 150.

854.2.05 Steel Forgings

A. Requirements

1. Type
 Use steel forgings that meet the requirements of AASHTO M 102/M 102M for the class shown on the Plans.

2. Certifications
 a. Submit a record to the Engineer of the annealing charges that show the forgings in each charge, the melt or melts from which they were secured, and the treatment they received.
 b. Submit a report with each castings shipment that includes test results and certifies compliance with this Specification.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

The Department will accept the castings based on the following:

1. Quality of work and conformance to the dimension and shape requirements, as inspected when received
2. Certification that the physical and chemical properties of the material meet these Specifications

D. Materials Warranty

General Provisions 101 through 150.

854.2.06 Cold-finished Carbon Shafting

A. Requirements

1. Type
 Use cold-finished carbon steel bars that meet the requirements of AASHTO M 169 for the grade shown on Plans.
2. Certification
 Submit a certification to the Engineer that shows the chemical properties of the material and conformance to the Specifications.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based on favorable review of the certification.

D. Materials Warranty
 General Provisions 101 through 150.

854.2.07 Steel Castings for Bridges

A. Requirements
 1. Type
 Use steel castings for bridge components that meet the requirements of ASTM A 27/ A 27M for the class shown on the Plans.
 2. Certification
 Submit a certification to the Engineer that shows the physical and chemical properties of the material and conformance to the Specifications.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based on favorable review of the certification.

D. Materials Warranty
 General Provisions 101 through 150.

Section 855—Steel Pile

855.1 General Description
This section includes the requirements for the following types of steel pile:

- Welded and seamless steel pile
- Fluted steel shell pile
- Steel H-pile

855.1.01 Related References

A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 ASTM A 27/ A 27M
 ASTM A 252
 ASTM A 709/ A 709M
 QPL 37
 QPL 44
855.2 Materials

855.2.01 Welded and Seamless Steel Pile

A. Requirements

1. Type
 Use welded and seamless steel pile of the specified dimensions that meets ASTM A 252 requirements. However, use a minimum wall thickness of 1/8 in (3 mm).
 a. Ensure that the pile can be driven to the capacity shown on the Plans without crimping, buckling, or otherwise distorting.
 b. Mark each pile with the heat number or a lot number corresponding to a heat.

2. Certification
 Furnish all certified mill test reports or inspection reports done by an approved testing laboratory to the Engineer. The reports must certify that the pile conforms to these Specifications and show the physical and chemical properties of each heat or lot of materials.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based on the certifications or on the results of tests conducted by the Department.

D. Materials Warranty
 General Provisions 101 through 150.

855.2.02 Fluted Steel Shell Pile

A. Requirements

1. Type
 Use fluted steel shells made of basic open hearth steel that meets the specified dimensions. Use one of the suppliers listed on QPL 44.
 a. Use steel with a minimum tensile yield strength of 50,000 psi (345 MPa).
 b. Use shells with a uniformly tapered lower section, with or without extensions of the same diameter.
 c. Reinforce the driving ends of the shells with a collar big enough to withstand being driven without injuring the shell.
 d. Weld cast steel driving points to the tips of the shells.

2. Certification
 Furnish all certified mill test reports or inspection reports done by an approved testing laboratory to the Engineer. The reports must certify that the pile conforms to these Specifications and show the physical and chemical properties of each heat or lot of materials.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based on the certifications or on the results of tests conducted by the Department.

D. Materials Warranty
 General Provisions 101 through 150.
855.2.03 Steel H-Pile

A. Requirements
 1. Type
 Use steel for H-pile that meets the requirements of ASTM A 709/A 709M, Grade 36/250. Use one of the suppliers listed on QPL 44.
 2. Cast Steel H-pile Points
 For each shipment of cast steel H-pile points, submit to the Engineer a report that includes results of tests to certify compliance with ASTM A 27/ A 27M.
 Use only the H-pile points shown on QPL 37.
 3. Certification
 Submit certified mill test reports to the Engineer that show the physical and chemical properties of each heat or lot of materials and compliance with these Specifications.

B. Fabrication
 1. Make cast steel H-pile points from cast steel that meets ASTM A 27/ A 27M Grade 65-35 (450-240).
 2. Ensure that the points give the maximum protection to the outer corners of the H-pile and have a wide surface area to support the pile flanges.
 3. Ensure that the manufacturer’s name or identification mark, pattern number, and heat number are cast or stamped on all castings.

C. Acceptance
 1. The Department will accept the material based on the certifications or on the results of tests conducted by the Department.
 2. The Geotechnical Bureau of the Office of Materials and Research will evaluate cast steel pile points.

D. Materials Warranty
 General Provisions 101 through 150.

Section 857—Bronze Bushings, Bearings, and Expansion Plates

857.1 General Description
This section includes the requirements for the following:
- Bronze bearings and expansion plates
- Bronze bushings
- Self-lubricating bronze bearings, expansion plates, and bushings

857.1.01 Related References

A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 ANSI B 46.1
 ASTM B 22, Alloy UNS91100
 ASTM B 100, Alloy UNS 51000
 ASTM B 584 Alloy UNS C86200

1058
857.2 Materials

857.2.01 Bronze Bearings and Expansion Plates
A. Requirements
 1. Type
 Use bearings and expansion plates that meet the following requirements:
 b. Rolled Bronze: ASTM B 100, Alloy UNS 51000.
 2. Certification
 Furnish certification to the Engineer showing physical and chemical properties of the material and conformance to these Specifications.

B. Fabrication
 Finish contact surfaces of plates in the direction of motion specified by ANSI B 46.1, No. 125 (No. 3.2 μm).

C. Acceptance
 The Department will accept the material based on the certifications.

D. Materials Warranty
 General Provisions 101 through 150.

857.2.02 Bronze Bushings
A. Requirements
 1. Type
 Use bronze bushings that meet ASTM B 584, Alloy UNS C86200 requirements.
 2. Certification
 Furnish a certification to the Engineer showing physical and chemical properties of the material and conformance to these Specifications.

B. Fabrication
 Finish contact surfaces of bushings in the direction of motion specified by ANSI B 46.1, Nos. 63 to 125 (1.6 to 3.2 μm).

C. Acceptance
 The Department will accept the material based on the certifications.

D. Materials Warranty
 General Provisions 101 through 150.

857.2.03 Self-lubricating Bronze Bearings, Expansion Plates, and Bushings
A. Requirements
 1. Type
 Use self-lubricating bronze bearings, expansion plates, and bushings that meet Subsection 857.2.01 or 857.2.02.
 a. Ensure that the surfaces of self-lubricating bronze bearings, expansion plates, and bushings are bored in a geometric, recessed pattern. Use a lubricating material in the bearing areas that has a long service life.
 b. Lubricate approximately 25 percent of the bearing face.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based on the certifications.

D. Materials Warranty
 General Provisions 101 through 150.
Section 858—Miscellaneous Metals

858.1 General Description
This section includes the requirements for miscellaneous metals, such as lead for plates, pipes, and other uses, and miscellaneous bridge hardware.

858.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 ASTM A 123/ A 123M
 ASTM A 153/ A 153M
 ASTM B 29
 ASTM F 568M

858.2 Materials
858.2.01 Lead for Plates, Pipe, and Other Uses
A. Requirements
 1. Use lead for plates, sheet, pipe, and other uses that meets the requirements of ASTM B 29, pig lead.
 2. Use common, desilverized lead.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 General Provisions 101 through 150.

858.2.02 Miscellaneous Bridge Hardware
A. Requirements
 For miscellaneous hardware, use the design, size, and kind shown on the Plans or as directed by the Engineer.
 1. Bolts and Dowels
 Use machine bolts, drift bolts, and dowels that meet the requirements of ASTM F 568M, Class 4.6. Ensure that machine bolts have square heads and nuts and that the screw threads fit closely.
 2. Nails and Spikes
 Use steel wire nails and circular, cross-section spikes without taper.
 Use steel boat spikes with forged heads and wedge-shaped shanks and points.
B. Fabrication
 Galvanize hardware according to ASTM A 123/ A 123M or ASTM A 153/ A 153M, as applicable if the Plans specify galvanized hardware.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 General Provisions 101 through 150.
Section 859—Guard Rail

859.1 General Description
This section includes the requirements for guard rail components, such as:

- Guard rail elements, terminal sections, and fittings
- Cable end anchor assemblies
- Steel guard rail posts and offset blocks
- Wood guard rail posts and offset blocks

859.1.01 Related References
A. Standard Specifications
 Section 106—Control of Materials
 Section 863—Preservative Treatment of Timber Products
B. Referenced Documents

<table>
<thead>
<tr>
<th>ASTM</th>
<th>AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 123/ A 123M</td>
<td>A 741</td>
</tr>
<tr>
<td>A 153/ A 153 M</td>
<td>A 769/A 769M B</td>
</tr>
<tr>
<td>A 449</td>
<td>209 (B 209M) B</td>
</tr>
<tr>
<td>A 575</td>
<td>211 (B 211M) F</td>
</tr>
<tr>
<td>A 576</td>
<td>568</td>
</tr>
<tr>
<td>A 709/A 709M</td>
<td>M 180</td>
</tr>
</tbody>
</table>

1994 SPIB rules, paragraph 402
QPL 8

859.2 Materials

859.2.01 Guard Rail Elements, Terminal Sections, and Fittings
A. Requirements
 1. Steel Guard Rail
 Use guard rail parts that meet AASHTO M 180 requirements and are composed of the following elements:

 | Bridge railing | Class B, Type II beams |
 | Roadway guard rail | Class A, Type II beams |

 Use guard rail from suppliers found on QPL 8.

 2. Aluminum Guard Rail
 Use rail elements made from aluminum alloy alclad 2024-T3 sheet that meets ASTM B 209 (B 209M) requirements. Use the following fittings:

Fittings	Material Requirements
Aluminum bolts	Alloy 2024-T4 [ASTM B 211(B 211M)] with 30-minute anodize and 30-minute seal
Hex nuts	Aluminum alloy 6061-T6, not anodized
Washers	May meet ASTM B 209 (B 209M) Alclad 2024-T4, not anodized

 3. Certification
 Submit a certification as in Subsection 106.05, “Materials Certification.”
B. Fabrication

1. General
 a. Make highway guard rail elements according to the Plans.
 b. Ensure that all guard rail elements, terminal sections, and fittings are interchangeable with similar parts, regardless of the source or manufacturer.
 c. If constructing guard rail on curves with a radius of 150 ft (45 m) or less, curve the rail elements in the shop to the radius on the road side of the rail, either concave or convex, as required.

2. Aluminum Guard Rail Elements
 a. Form the rail elements into beams at least 1 ft (300 mm) wide and 3 in (75 mm) deep, and at least 0.156 in (3.96 mm) thick.
 b. Form the terminal ends from the same material as the beams or from Alclad 2024-T42.

C. Acceptance

1. Steel Guard Rail
 The Department will accept the material based on the provisions of AASHTO M 180 or ASTM B 209 (B 209M).

2. Aluminum Guard Rail
 The Department will accept the material based on the manufacturer’s QPL status or on tests conducted by the Department.

D. Materials Warranty

Steel Guard Rail: Ensure that the manufacturer’s logo and heat numbers remain legible for at least 5 years after galvanizing.

859.2.02 Cable and Anchor Assembly

A. Requirements

1. Type

 Ensure that the cable and anchor materials meet the following requirements, unless shown otherwise on the Plans:

<table>
<thead>
<tr>
<th>Material</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchor and metal plates</td>
<td>Steel, ASTM A 709 (A 709M), Grade 36 (250)</td>
</tr>
<tr>
<td>Anchor rod</td>
<td>Steel, ASTM A 575 or A 576, Grade 1020</td>
</tr>
<tr>
<td>Anchor cable</td>
<td>Preformed, galvanized wire rope, ASTM A 741, Type II, 3/4 in (19 mm), 6 x 19, with right regular lay</td>
</tr>
<tr>
<td>Cable clips and cable thimble</td>
<td>Commercial quality, galvanized, drop-forged steel</td>
</tr>
<tr>
<td>Bolts and nuts</td>
<td>ASTM F 568</td>
</tr>
<tr>
<td>Swaged fittings</td>
<td>Steel, ASTM A 576, Grade 1035; annealed, galvanized, suitable for cold swaging</td>
</tr>
<tr>
<td></td>
<td>Ensure the swaged fittings and stud assembly develop at least 100% of the breaking strength of the cable.</td>
</tr>
<tr>
<td>Galvanized stud</td>
<td>Steel, ASTM A 449</td>
</tr>
<tr>
<td>Concrete deadman</td>
<td>Precast Class A concrete, according to the Plans</td>
</tr>
</tbody>
</table>

2. Certification

 Submit a certification for these materials according to Subsection 106.05, “Materials Certification.”

B. Fabrication

Fabricate and assemble according to the Plans.

1. Anchor/Metal Plates

 Build up anchor plates and other metal plates, as shown on the Plans, or form them on a press, with or without welded seams.
2. Anchor Rod
 Drop-forged or form the eye of the anchor rod with a full penetration weld that develops 100 percent of the rod strength.
3. Metal Components:
 a. Galvanize all metal components of the assembly, except the anchor cable, according to ASTM A 123/A 123M.
 b. Galvanize bolts, washers, etc., as stated in ASTM A 153/A 153M.
C. Acceptance
 The Department will accept material based on the certification.
D. Materials Warranty
 General Provisions 101 through 150.

859.2.03 Steel Guard Rail Posts and Offset Blocks
A. Requirements
 1. Type
 Use steel posts of the dimensions and shapes shown on the Plans for guard rails. Unless the Plans show otherwise, use posts that meet the requirements of ASTM A 709 (A 709M), Grade 36 (250) or ASTM A 769 (A 769M) Class I, Grade 40 (380), and found in QPL 8.
 2. Certification
 Submit a certification according to Subsection 106.05, “Materials Certification.”
B. Fabrication
 Galvanize steel posts and offset blocks according to ASTM A 123/ A 123M.
C. Acceptance
 The Department will accept the material based on the certification.
D. Materials Warranty
 General Provisions 101 through 150.

859.2.04 Wood Guard Rail Posts and Offset Blocks
A. Requirements
 1. Grade
 Use posts and offset blocks that meet the requirements for No. 1 timbers, paragraph 402, of the 1994 SPIB rules. Do not use offset blocks with splits longer than 3 in (75 mm).
B. Fabrication
 1. Tolerances
 Ensure that the posts do not vary from the specified length by more than ±1 in (±25 mm). If the Plans specify a slope for the top, ensure that the slope does not vary more than ±1/4 in (±6 mm).
 2. Seasoning and Preservative Treatment
 Bore and frame posts, then treat the posts and offset blocks according to the requirements of Section 863.
C. Acceptance
 The Department will accept the material based on tests conducted by the Department or on the manufacturer’s QPL status.
D. Materials Warranty
 General Provisions 101 through 150.

859.2.05 Plastic Offset Blocks
A. Requirements
 1. Type
 Use only plastic offset blocks that are listed on QPL 8.
Use plastic offset blocks that consist of 70 percent low density polyethylene and approximately 30 percent high density polyethylene with a trace of other plastic.

Other compositions may be used if approved by the Office of Materials and Research.

2. Certification
 Submit a certification according to Subsection 106.05, “Materials Certification.”

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based on the manufacturer’s certification.

D. Materials Warranty
 General Provisions 101 through 150.

Section 860—Lumber and Timber

860.1 General Description
This section includes the requirements for lumber and timber.

860.1.01 Related References
A. Standard Specifications
 Section 502, “Timber structures”
 Section 863—Preservative Treatment of Timber Products
B. Referenced Documents
 American Softwood Lumber Standard PS 20-70, US Department of Commerce or the National Hardwood Association
 ASTM D 245

860.2 Materials
For the definition and limitations of defects, use the current manufacturing association grade rules applicable for the species specified.

860.2.01 Lumber and Timber
A. Requirements
 1. Saw or finish all lumber and timber as specified from the plants listed in QPL 50.
 2. Grades
 Use grade rules from an agency that follows the basic provisions of American Softwood Lumber Standard PS 20-70, US Department of Commerce or the National Hardwood Association.
 a. Furnish all structural timber in the grades, sizes, and finish shown in the Plans and these Specifications, or as directed by the Engineer.
 b. Unless otherwise specified, use No. 2 or higher grade Southern Pine to construct buildings, shelving, and forms.
 c. Mark the grade on the lumber or timber according to the current manufacturing grade rules for the species.
 3. Uses
 Refer to Table 1 below for the working stress requirements for various structural uses of lumber and timber.
 a. The numerical stress values in the table are based upon stress-graded material meeting the requirements of grading rules for the indicated stress, developed from the ASTM D 245, “Methods for Establishing Structural Grades of Lumber.”
 b. You may use commercial stress grades of lumber and timber with grade descriptions if the materials will meet the stress requirements under rules developed from ASTM D 245.
B. Fabrication
 1. Seasoning and Preservation: Season and treat according to the requirements of Section 863, except use an assay zone for marine lumber timber of .01 to 1 in (0.25 to 25 mm)
C. Acceptance
 The Department will accept the material based on inspection certification or on the results of tests conducted by the Department.
D. Materials Warranty
 General Provisions 101 through 150.
Table 1: Working Stress Requirements Based on Structural Uses of Timber

<table>
<thead>
<tr>
<th>Structural Purpose</th>
<th>Sizes of Members</th>
<th>Extreme Fiber in Bending "f" and Tension Parallel to Grain "t"</th>
<th>Compression Across Grain "C"</th>
<th>Horizontal Shear "H"</th>
<th>Compression Parallel to Grain "C"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truss members, tension—floor beams and stringers—other floor members.</td>
<td>5x8 in (125 x 200 mm) and larger</td>
<td>1800 (12.41)</td>
<td>455 (3.14)</td>
<td>120 (0.83)</td>
<td>1400 (9.65)</td>
</tr>
<tr>
<td>Caps—posts, bridge and guardrail—sills—mud sills, nailing strips—truss members, compression—timbers, culvert—fender wales—hub guards.</td>
<td>6 x 6 in (150 x 150 mm) and larger</td>
<td>1400 (9.65)</td>
<td>455 (3.14)</td>
<td>105 (0.72)</td>
<td>1050 (7.24)</td>
</tr>
<tr>
<td>Joists—decking, wearing—other floor members—rails—rail posts—nailing strips—truss members, compression and tension—guard rail.</td>
<td>4 in (100 mm) and thinner</td>
<td>2050 (14.13)</td>
<td>455 (3.14)</td>
<td>120 (0.83)</td>
<td>1600 (11.03)</td>
</tr>
<tr>
<td>Sub-decking, flat—Sub-decking, laminated—bracing, Sway, sash and longitudinal—girts—bulkhead plank—scupper blocks—cleats—grillage.</td>
<td>4 in (100 mm) and thinner</td>
<td>2050 (14.13)</td>
<td>455 (3.14)</td>
<td>120 (0.83)</td>
<td>1600 (11.03)</td>
</tr>
<tr>
<td>Cross bridge—sidewalks—fire stops.</td>
<td>2 in and 3 in (50 mm and 75 mm) thick</td>
<td>1500 (10.34)</td>
<td>390 (2.69)</td>
<td>120 (0.83)</td>
<td>1350 (9.31)</td>
</tr>
</tbody>
</table>

Note: Stresses are given in psi (MPa)
Section 861—Piling and Round Timber

861.1 General Description
This section includes the requirements for timber piles and timber poles.

861.1.01 Related References
A. Standard Specifications
 Section 863–Preservative Treatment of Timber Products
B. Referenced Documents
 ANSI 05.1
 National Electrical Safety Code (National Institute of Standards and Technology)
 QPL 50

861.2 Materials
A. Definition and Limitation of Defects
 Decay: Disintegration of the wood substance due to wood-destroying fungi. The words “dote” and “rot” mean the same as decay. Red heart is a form of decay.
 Compression Wood: An abnormal, dense, hard growth frequently occurring on the underside of limbs and leaning trunks of coniferous trees. It is characterized by very wide and eccentric annual growth rings and includes what appears to be an exceptional proportion of summerwood growth.
 The contrast in color between springwood and summerwood, however, is usually less in compression wood than in normal wood.
 Turpentine Butt: A scar caused from bleeding the trees to obtain turpentine.
 Scar: A damaged surface caused from injury to the tree during growth.
 Sweep: Deviation of a piece or stick from a straight line measured from the center of one end to the center of the other end. A straight line from the center of the butt to the center of the tip shall lie entirely within the body of the pile.
 Short Crook: A crook in which the direction of the piece or stick changes in a very short distance measured lengthwise.
 Burst Check: A crack approximately at right angles to the annual rings, usually radial cracks in sticks from the center or from near the center to the outside, or a combination of this crack and a ring shake caused through either seasoning, exposure to high temperature, or the process of preservative treatment.
 Unsound Knot: A knot solid across the face, but containing incipient decay.
 Cluster Knot: Two or more knots grouped together, the fibers of the wood being deflected around the entire unit.
 A group of single knots with fibers deflected around each knot separately is not a cluster, even though the knots may be close together.
 Punk Knot: A fungus decay that extends from the interior of the piece of pile to the outside, which when prodded is usually found to contain a snuff-like substance.
 Ring Knots: Three or more knots appearing in the same line of circumference, or any foot of length.

861.2.01 Timber Piles
A. Requirements
 1. Use round timber piles of any species of wood that will withstand driving and support the load specified. Use plants listed on QPL 50.
 2. Soundness
 Use piles of sound wood, free from decay, red heart, or insect attack.
 a. Cedar and Cypress: The butt ends may have a pipe or stump rot hole not more than 1-1/2 in (40 mm) in diameter. Cypress piles may have peck aggregating not more than 1-1/2 in (40 mm) in diameter.
b. Southern Pine: Piles may have unsound knots less than half the permitted size of a sound knot, providing that the unsoundness does not extend more than 1-1/2 in (40 mm) deep and that the adjacent areas of the trunk are not affected.

3. Density
a. All piles shall be dense with at least 6 annual rings per 1 in (25 mm) and 1-1/2 in (40 mm) or more of summerwood (the darker, harder portion of the annual ring), as measured over the outer 3 in (75 mm) of butt diameter on a radial line from the pith.
 The contrast in color between summerwood and springwood shall be sharp and the summerwood shall be darker in color.
b. Piles excluded by the above rule may be accepted provided they have at least four annual rings per 1 in (25 mm) and 1/3 or more summerwood, as measured over the outer 3 in (75 mm) of butt diameter on a radial line from the pith.

4. Knots
a. Sound knots:

<table>
<thead>
<tr>
<th>For piles 50 ft (15 m) long or less, and in 3/4 of the length of piles over 50 ft (15 m), measured from the butt</th>
<th>Sound knots less than 4 in (100 mm) or 1/3 the diameter of the pile, whichever is smaller.</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the top 1/4 length of piles over 50 ft (15 m) long</td>
<td>Sound knots less than 5 in (125 mm) or 1/2 the diameter of the pile, whichever is smaller</td>
</tr>
<tr>
<td>The size of a knot shall be its diameter measured at right angles to the length of the pile.</td>
<td></td>
</tr>
</tbody>
</table>

b. Unsound knots are not permitted except in Southern Pine piles as specified in Subsection 861.2.01.A.2.b.
c. The sum of sizes of all knots in any 12 in (300 mm) of the pile shall not exceed twice the size of the largest permitted single knot.

5. Holes
 Allow holes that average less than 1/2 inch (15 mm) in diameter if the sum of the average diameter of all holes in any 1 ft² (0.1m²) of pile surface is less than 1-1/2 in (40 mm).

6. Splits and Shakes
 Splits shall not be longer than the butt diameter of the pile.
 The length of any shake or combination of shakes in the outer half of the radius of butt of the pile, when measured along the curve of the annual ring, shall not exceed 1/3 the circumference of the butt of the pile.

7. Sapwood
 Piles to be treated with preservative shall have at least 1 in (25 mm) of sapwood at the butt end.

8. Heartwood
a. In untreated piles for use in exposed work, the diameter of the heartwood at the butt shall be at least 8/10 of the diameter of the pile at the butt.
b. If high heartwood content is required for untreated foundation piles, the Plans will specify the ratio of heartwood to total diameter.

9. Peeling
a. Peel piles by removing all of the outer bark and at least 80 percent of the inner bark, well distributed over the surface of the pile.
b. If piles will be treated with preservative, do not leave inner bark wider than 1/2 in (15 mm).
c. Do not remove more than three annual rings of the solid wood.

10. Cutting and Trimming
a. Saw butts and tips square with the axis of the pile.
b. Trim or smoothly cut all knots and limbs flush with the surface of the pile or the surface of the swell surrounding the knot.
11. Straightness
In general, a straight line from the center of the butt to the center of the tip shall lie entirely within the body of the pile.
If specified, the Department can accept long piles for foundations (but not for trestles) if the straight line lies partly outside the body of the pile. The maximum distance between the line and the pile shall not exceed 0.5 percent of the length of the pile or 3 in (75 mm), whichever is smaller.

12. Taper
Cut piles above the butt swell so it has a continuous taper from the point of butt measurement to the tip.

13. Twist of Grain
Do not allow spiral grain to exceed 180 degrees of twist when measured over any 20 ft (6 m) section of the pile.

14. Limits of Defects
 a. Piles shall not have short crooks that deviate more than 2-1/2 in (65 mm) from straightness in any 5 ft (1.5 m) length.
 b. Burst checks in piles shall be less than 1 in (25 mm) wide, measured at the outside, and shall not extend over 12 in (300 mm) long.

15. Circumferences, Diameters, and Lengths
 a. The circumferences of piles measured under the bark shall have the minimum and maximum values in Table 1 (metric Table 1) for the class specified. No more than 10 percent of the piles in any shipment may have circumferences 2 in (50 mm) less than the tabulated minimum values.

 | NOTE: Requirements for tip circumference of piles that are longer than the required length may be applied at the tip end of the required length. |

 b. The ratio of the maximum to the minimum diameter at the butt of any pile shall not exceed 1.2.
 c. Individual piles may vary from the length specified by ± 12 in (300 mm) in piles shorter than 40 ft (12 m), and ± 2 ft (600 mm) in piles 40 ft (12 m) or longer.
 d. The average length of all piles of a specified length in each lot shall not be less than the length specified.

16. Branding and Inspection
 a. Ensure the pile length and the diameter of the butt and tip are branded in the butts of the piles.
 b. Legibly brand the Preliminary inspection date in the tips.

B. Fabrication
Seasoning and Preservative Treatment: Where required, season and treat according to Section 863.

C. Acceptance
The Department will reject the pile based on any of the following defects:
 - Decay
 - Deep scars
 - Unsound knots
 - Punk knots
 - Ring knots
 - Cluster knots
 - Compression wood (if readily identifiable based on ordinary visual inspection)

The Department may accept piles with sound turpentine scars undamaged by insects, provided they meet all other requirements.

D. Materials Warranty
General Provisions 101 through 150.
861.2.02 Timber Poles

A. Requirements
 1. Select timber poles from plants listed on QPL 50.
 2. Ensure that the poles that meet the requirements of the latest revision of ANSI 05.1, in the National Electrical Safety Code published by the National Institute of Standards and Technology, with the following exceptions:
 a. Section 2 Definitions—Modify the “Short Crook” definition as follows:
 “Any localized deviation from straightness within any section 5 ft (1.5 m) or less in length shall not be more than 1 in (25 mm) when measured with a straightedge parallel to the long axis of the pole.”
 b. Section 4 Material Requirements, 4.4.9 Shape (1), (a)—shall read as follows:
 “For poles 50 ft (15 m) and shorter, of all species except northern white cedar, a straight line joining the edge of the pole at the butt and the edge of the pole at the top, in 90 percent or more of those poles supplied, shall not be distant from the surface of the pole at any point by more than 1 in (25 mm) for each 10 ft (3 m) of length between these points. In the remainder of those poles supplied (10 percent), the poles may have a deviation of 1 in (25 mm) for each 6 ft (1.8 m) of length when measured as above.”
 c. Section 4 Material Requirements, 4.4.9 Shape (2)—shall read as follows:
 “Sweep in two planes (double sweep) - NOT PERMITTED.”
 3. Use the class and length specified on the Plans.
 4. You may peel poles by machine, except that poles more than 55 ft (17 m) long may be debarked and trimmed by hand in lieu of machine peeling. Trim so that you preserve the buttressing effects of all overgrown knots.
 5. Unless otherwise specified or indicated on the Plans, frame poles with flat roofs and slab grains.
 6. Frame, drill, and machine poles as necessary before preservative treatment.

B. Fabrication

Seasoning and Preservative Treatment: Where required, season and treat according to Section 863.

C. Acceptance

General Provisions 101 through 150.

D. Materials Warranty

General Provisions 101 through 150.

Section 862—Wood Posts And Bracing

862.1 General Description

This section includes the requirements for wood fence posts and bracing, and wood sign posts.

862.1.01 Related References

A. Standard Specifications
 Section 859—Guard Rail Components
 Section 863—Preservative Treatment of Timber Products

B. Referenced Documents

ASTM A 525M
QPL 50
862.2 Materials

862.2.01 Wood Fence Posts and Bracing

A. Requirements

1. Type
 Use Southern Pine for wood posts and bracing. Use the dimensions specified on the Plans.

2. Physical Characteristics
 Use posts and bracing that have the following characteristics:
 - Be round or sawed, but all posts on a single Project shall be the same.
 - Be cut from sound and solid trees and contain no unsound knots. Accept sound knots if the diameter of the knot does not exceed 1/3 of the diameter of the piece at the point where it occurs.
 - Be free from decayed wood, rot, and red heart, and a ring shake and season checks that penetrate at any point more than 1/4 the diameter of the piece, or are greater than 1/4 in (6 mm) wide.
 - Show at least four annual rings per 1 in (25 mm), and at least 1/3 summerwood unless using Southern Pine veneer cores.
 - Have no short or reverse bends.

3. Draw a line from the center of the top to the center of the butt. The line shall not fall outside the body of the post, nor be more than 2 in (50 mm) from the geometric center of the post at any point.

4. The maximum allowable change in diameter of the post shall not exceed 1-1/2 in (38 mm) in 10 ft (3 m).

5. Accessories
 Use metal caps to cover the tops of the posts. Use caps that are at least 0.008 in (0.20 mm) thick.
 Use material that is aluminum or galvanized steel with 1.25 oz/ft² (380 g/m²) coating according to ASTM A 525M.
 Use caps only when required by the Plans.

B. Fabrication

1. Peel all posts and bracing for their full length. Remove all bark and inner skin.

2. Trim knots close to the body of the post before treatment.

3. Saw all butts and tips square. For posts that will be driven, you may make the butt end pointed before treatment.

4. Seasoning and Preservative Treatment
 Treat all posts according to the requirements of Section 863.

C. Acceptance

Check QPL 50 for pre-approved manufacturers that supply materials compliant with this Specification.

D. Materials Warranty

General Provisions 101 through 150.

862.2.02 Wood Sign Posts

A. Requirements

1. Unless otherwise specified, surface wood sign posts on all four sides to the dimensions specified.
 a. Ensure wood sign posts meet the same quality requirements as wood guard rail posts in Subsection 859.2.04, "Wood Guard Rail Posts and Offset Blocks."
 b. Ensure posts do not vary from the specified length by more than ± 1 in (25 mm).
 c. Trim both ends of the posts.

2. Accessories
 Use metal caps to cover the tops of the posts. Use caps that are at least 0.008 in (0.20 mm) thick.
 Use material that is aluminum or galvanized steel with 1.25 oz/ft² (380 g/m²) coating according to ASTM A 525M.
 Use caps only when required by the Plans.

B. Fabrication

1. Seasoning and Preservative Treatment
 Bore and frame posts before treating them. Treat the posts according to the requirements of Section 863.
Section 863—Preservative Treatment of Timber Products

863.1 General Description
This section includes the requirements for applying preservatives, conditioning, treating, inspecting, marking, testing, and documenting the necessary information for treated timber used in Department Work.

863.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 American Wood Preservers Association (AWPA), C14, “Wood for Highway Construction—Preservative Treatment by Pressure Method”
 AWPA C2
 AWPA M2
 AWPA M3
 AWPA P9
 AASHTO M 133
 QPL 50

863.2 Materials
863.2.01 Conditioning and Preservative Treatment
A. Requirements
 1. Condition and preservative treat all timber products to meet the requirements of American Wood Preservers Association (AWPA) Standard C14, “Wood for Highway Construction—Preservative Treatment by Pressure Method,” except as described in this Section.
 2. Treatment Plants
 Ensure treatment plants comply with quality control procedures in AWPA M3.
 a. To expedite the work, the Department or its inspection agency will inspect timber at the treatment plant.
 b. Before requesting an inspection, the authorities of the treatment plant shall acquaint themselves with the timber specification requirements and shall segregate the material to be inspected for Department work from other stock.
 3. Preservatives
 Use preservatives that meet the requirements in the AWPA Standard, unless otherwise specified in the Plans or the Specifications.
 a. You may select one of three preservatives (creosote, pentachlorophenol, Chromated Copper Arsenate (CCA)) from the Materials and Usage Table in AWPA C14.
 b. Ensure pentachlorophenol solutions have at least 5 percent pentachlorophenol, by weight, dissolved in the petroleum solvents specified or pentachlorophenol in AWPA P9, Type “A.”

B. Fabrication
 1. As practicable, cut, frame, and bore timber before treatment.
2. Condition the timber first. For Southern Pine species, use the following treatment:

<table>
<thead>
<tr>
<th>Preservative Type</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penta-petroleum</td>
<td>Dry in kiln to 30% average moisture content or less or condition in steam</td>
</tr>
<tr>
<td>Chromated Copper Arsenate (CCA)</td>
<td>Dry in kiln to 25% average moisture content or less</td>
</tr>
</tbody>
</table>

NOTE: Do not heat the wood in the preservative, and do not use Boulton drying.

3. Preservative Penetration
 Ensure the preservative penetrates at least 3 in (75 mm) or 90 percent of the sapwood for all lumber, timber, wood fence posts, and ties in contact with the ground.
 a. Ensure lumber, timber, and ties that do not contact the ground meet AWPA C2 requirements.
 b. Ensure preservative penetrates all other materials, piles, and poles according to applicable AWPA requirements.

4. Preservative Retention
 Treat guard rail posts and offset blocks with pentachlorophenol or CCA with a minimum 0.6 lb/ft³ (9.6 kg/ m³) retained in the outer 0.6 in (15 mm), as required in AWPA C14 and C2.

5. Retreatment:
 You may retreat a charge of material, or a portion of it, if the initial treatment does not meet requirements for retention, penetration, or appearance. The Department will allow only one retreatment.

NOTE: The Department will reject any damage due to retreatment.

6. Conditioning after Treatment
 a. Condition material that is dust-free.
 b. For lumber or timber that is treated with water-borne preservative and is to be painted, dry by air, kiln, or some method of artificial conditioning, to a moisture content of not more than 19 percent of the weight of the oven-dry wood.
 c. Protect the treated lumber from the elements with a prime coat of paint or other approved means.
 d. Ensure the moisture content does not rise above 19 percent before applying the first coat of paint.
 e. Dry material treated with water-borne preservative that will not be painted to surface dryness in air or otherwise before installing it.

C. Acceptance

1. Inspection
 The Department will sample and test preservatives according to the requirements of AASHTO M 133.

NOTE: Check QPL 50 for pre-approved manufacturers that supply material compliant with this specification.

 a. The Department will determine the level of preservative retention by testing the 0.6 to 1.5 in (15 to 38 mm) assay zone.
 b. Unless otherwise provided, either the Office of Materials and Research or an authorized inspection agency will inspect treated timber products according to AWPA M2.
 c. The Inspector will test before, during, and after treating.

2. Marking
 The Inspector will mark each acceptable piece with a hammer stamp before and after treatment.
 a. Stamp only 25 percent of the offset blocks after treatment.
 b. Ensure that both inspection stamps identify the Inspector. Ensure that the before-treatment stamp is clearly distinguished from the after-treatment stamp.

3. Reporting
 The Inspector, whether from the Office of Materials and Research or an approved laboratory, shall:
 a. Prepare reports of the treating process and results of the inspection that confirm treatment was completed according to these Specifications.
b. Furnish these reports to the Office of Materials and Research.

c. Report according to AWPA M2.

d. Get a shipping report from the treatment plant showing the project number, purchaser, sizes and amounts of materials, and preservative type for each shipment for Department Work.

e. Furnish the shipment report and the treatment report to the Office of Materials and Research.

D. Materials Warranty

1. Retest treated material that has been in stock for two years before using.

2. The Department will reject any materials that fail to meet specifications unless they are retreated to meet all applicable requirements.

Section 865—Manufacture of Prestressed Concrete Bridge Members

865.1 General Description

This section includes the following requirements for precast-prestressed concrete bridge members and piling:

- Manufacturing
- Inspecting
- Testing
- Marking
- Painting
- Rubbing as specified
- Plant handling
- Storing
- Shipping

The term “precast-prestressed concrete” is referred to as “prestressed concrete” in the rest of this Section.

865.1.01 Related References

A. Standard Specifications

- Section 106—Control of Materials
- Section 152—Field Laboratory Building
- Section 500—Concrete Structures
- Section 511—Reinforcement Steel
- Section 514—Epoxy Coated Steel Reinforcement
- Section 801—Fine Aggregates
- Section 830—Portland Cement
- Section 831—Admixtures
- Section 853—Reinforcement and Tensioning Steel
- Section 857—Bronze Bushings, Bearings, and Expansion Plates
- Section 870—Paint
- Section 885—Elastomeric Bearing Pads
- Section 886—Epoxy Resin Adhesives

B. Referenced Documents

AASHTO M 55
AASHTO M 85
AASHTO M 221
AASHTO T 22
AASHTO T 27
ASTM A 123/A 123M
ASTM A 153/A 153M
ASTM A 185
ASTM A 416
ASTM A 497
AASHTO Specification for Highway Bridges
Laboratory SOP-3, Standard Operating Procedures for Precast/Prestressed Concrete
QPL 9
GDT 35

865.2 Materials

Use materials that meet the specifications as follows:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete, Class AAA (except as noted)</td>
<td>500</td>
</tr>
<tr>
<td>Steel Bars for Reinforcement</td>
<td>853.2.01</td>
</tr>
<tr>
<td>Pretensioning Steel Wire Strand</td>
<td>853.2.02</td>
</tr>
<tr>
<td>Post-Tensioning Steel Wire</td>
<td>853.2.03</td>
</tr>
<tr>
<td>Post-Tensioning Steel Bars</td>
<td>853.2.04</td>
</tr>
<tr>
<td>Plain Steel Bars—Threaded Ends</td>
<td>853.2.05</td>
</tr>
<tr>
<td>Portland Cement</td>
<td>830.2.01</td>
</tr>
<tr>
<td>Fine Aggregate for Mortar</td>
<td>801.2.02</td>
</tr>
<tr>
<td>Aluminum Powder</td>
<td>835.2.01</td>
</tr>
<tr>
<td>Self-Lubricating Bronze Bearing and Expansion Plates and Bushings</td>
<td>857.2.03</td>
</tr>
<tr>
<td>Primer Coats</td>
<td>870</td>
</tr>
<tr>
<td>Elastomeric Pads</td>
<td>885.2.01</td>
</tr>
<tr>
<td>Epoxy Resin Adhesive</td>
<td>886</td>
</tr>
<tr>
<td>Microsilica (Silica Fume)</td>
<td>831.2.03</td>
</tr>
</tbody>
</table>

NOTE: Do not use accelerators (24-hour accelerated strength concrete) that contain chlorides in any prestressed concrete.

865.2.01 Prestressed Concrete Bridge Members

A. Requirements

1. **Portland Cement**

 Use Type I, Type II, or Type III cement that meets requirements of AASHTO M 85 for low alkali cement.

 a. Use Type II cement in concrete to cast pile for specific locations noted on the Plans.

2. **Coarse Aggregate**

 a. Use the size specified and approved for prestressed concrete products.
b. Do not use unconsolidated limerock coarse aggregate in prestressed concrete piling or in any structure that has direct contact with water.

3. Microsilica (Silica Fume)
 The Department may approve silica fume as an additive to concrete. If approved, add the silica fume at a rate not to exceed 10 percent of the cement content.

4. Epoxy-coated Reinforcement Steel and Wire:
 If top steel mat of the bridge deck is epoxy-coated, the shear steel in the prestressed concrete beams will be epoxy-coated in accordance with Section 514.

5. Welded Wire Fabric
 Use welded wire fabric that meets the following requirements:
 a. Use smooth wire fabric that meets the material requirements of AASHTO M 55 (ASTM A 185) and this Section.
 b. Use deformed wire fabric that meets the requirements of AASHTO M 221 (ASTM A 497) and this Section.

6. Pretensioning Steel Wire Strand
 Use strands that meet all the requirements of ASTM A 416, Grade 270.

7. Slump Limitation
 Ensure the slump meets Subsection 500.1.03.A Table 1 – Concrete Mix Table , except when Type F high range water reducers (HRWR) are added. With HRWR, you may increase the slump value from 4 in to 6 in (100 mm to 150 mm) with a maximum slump value not to exceed 7 in (175 mm), provided the concrete mix does not segregate.

8. Facilities and Equipment Plans
 Facilities are approved according to Laboratory SOP-3, Standard Operating Procedures for Precast/Prestressed Concrete. See QPL 9 for a list of approved facilities.
 Submit a complete set of plans and an itemized equipment list of the prestressing facilities to the Engineer.
 a. For established plants already approved by the Department, the Department will send a written notice about approval. The plant need not comply with the requirements concerning Plans and equipment listing.
 b. The Department may withdraw the waiver at its discretion if the plant changes the facilities, equipment, production methods, types of products, or for any other reason.

B. Fabrication

1. General Plant Requirements
 Furnish erection drawings to the Engineer that show the placement of superstructure units, especially when the units are not interchangeable with respect to transverse placement within a span or with respect to the reversal of ends within a span.

2. Manufacturing Facilities and Equipment
 Ensure that the prestressed concrete bridge members are made at a plant that has as a minimum the facilities and equipment specified as follows:
 a. Do not start manufacturing until the Engineer approves the facilities and equipment.

 NOTE: Regardless of approval, the Contractor is responsible for the facilities’ performance and obtaining additional equipment as needed.

 b. Beds: Construct beds for casting prestressed concrete of concrete; these shall be level or on a grade acceptable to the Engineer.
 c. Anchorages: Design and construct anchorages so they will not yield under 150 percent of the maximum design load.
 d. Forms: Construct steel side and bottom forms unless the Department allows other materials.
 1) Design the forms so the bridge members will be well within the tolerances specified in Subsection 865.2.01.B.11.
 2) Anchor the forms to prevent movement.
 e. Stressing Equipment
 1) Jacks: Use jacks in good repair that do not leak. Calibrate them with the actual gauge or gauges that you will be using. You may use pressure gauges, load cells, or dynamometers.
Ensure all jack systems have devices that prevent the gauge pointer from fluctuating.

2) Calibration: Calibrate all devices to a reading accuracy of 2 percent within the proposed stressing range. Use an approved testing laboratory to calibrate the devices. Have the laboratory furnish at least five copies of the calibration chart for each device to the Engineer. Recalibrate all stressing systems at least every 6 months and as required by the Engineer. Use gauges that you can read from 6 ft (2 m) and have a capacity of twice the maximum load.

f. Elongation Measurement: Use a system approved by the Engineer and isolated from any movement in the bed or anchorages.

g. Curing Systems Equipment: Use one of the curing methods listed below. Do not use curing compounds on prestressed concrete units unless the Engineer gives written permission.

1) Water Curing: Use equipment that consists of a clean, non-deleterious water source, a method of application, and enough burlap or other means of moisture retention that will keep all surfaces of the concrete wet during the curing cycle, except those in contact with the forms.

2) Steam Curing: Use the following minimum basic equipment:
 - An enclosure tight enough to maintain a uniform atmospheric temperature around the concrete units.
 - A steam system that distributes live steam uniformly through nozzles, capable of maintaining a temperature of at least 120 °F (50 °C) in all weather. Do not eject steam directly against concrete or forms.
 - A controlling device installed in the steam line that helps maintain a constant temperature.
 - A recording thermometer for each 200 ft (60 m) of bed length.

3) Heated Forms: Uniformly heat the forms with a recirculating system that distributes the heat evenly. Use a system that includes:
 - A means of retaining moisture on concrete surfaces, except those in contact with the forms.
 - A recording thermometer for each 200 ft (60 m) of bed length.
 - A weathertight covering for each bed to ensure uniform heating throughout the bed.

h. Vibrators: Use internal vibrators with at least 4,500 impulses per minute. Ensure the vibrator heads are small enough to reach through the prestressing and reinforcing steel to all portions of the form.

1) Use enough vibrators to properly compact the concrete. Have an additional stand-by vibrator in good operating condition for each concrete placing operation.

2) Get the Engineer’s approval of the vibration procedure and of the number and types of vibrators before pouring.

3) You may use external vibration in conjunction with internal vibration when the Engineer so approves.

i. Grout Pump: Use grout pumps that can pump the fluid grout and maintain a uniform pressure of 75 lbs/in² (520 kPa) for at least 15 seconds.

j. Storage Areas: Use plant storage areas that have surfaces capable of supporting the prestressed concrete bridge members without settlement. Ensure the storage area has blocks to support the units properly at the required points.

3. Substitution of Reinforcement
You may substitute welded wire fabric for the bar reinforcement shown on the Plans. The Department will not pay extra for the substitution.

The substitution is subject to the following:

a. Design Notes: Submit detailed shop drawings and design notes, including any changes, to the Engineer for approval before using welded wire fabric.

b. Indicate on the design notes that the welded wire fabric will provide the same or greater strength as that provided by the bar reinforcing shown on the Plans.

c. Design fabric use according to the latest AASHTO Specification for Highway Bridges. Prepare the drawings on 22 x 36-in (550 x 990 mm) sheets.

d. Have an Engineer registered in the State of Georgia stamp both drawings and notes.

e. Design the yield strength for the wire fabric not to exceed 60,000 psi (415 MPa) but not be less than 40,000 psi (275 MPa). Do not splice by welding or mechanical coupling.
f. If using welded wire fabric for stirrups of bar reinforcement, embed the wires perpendicular to the axis of the beam at least 6 in (150 mm) into the slab. Leave at most a clearance of 4 in (100 mm) from the top of slab to the welded wire fabric.

g. Embed at least two cross wires (wires parallel to the longitudinal axis of the beam) in the slab, with the closer cross wire clearing the top of the beam by at least 2 in (50 mm).

h. You may use welded wire fabric in the anchorage zone at the ends of the beam to replace the stirrups that enclose the prestressing steel in the bottom flange, and the vertical stirrups that do not protrude beyond the top of the beam.

i. Ensure that the wires perpendicular to the longitudinal axis of the beam have the same steel area as that of the bar reinforcing.

j. Use either smooth or deformed wires for welded wire fabric. Use the AASHTO Specification for Highway Bridges for the proper methods to embed and splice the fabric.

4. Substitution of Strands

You may use strands of different arrangement, size, or arrangement and size. The Department will not pay extra for the substitution.

The substitution is subject to the following structural and physical requirements:

a. Ensure that the net prestressed force of the strands after losses equals that shown on the Plans.

b. Ensure that the ultimate strength of the member meets the applicable requirements of AASHTO Specification for Highway Bridges.

c. Ensure that the eccentricity pattern of the substituted strands is about the same as the pattern shown on the Plans.

d. Before substituting strands, submit to the Engineer all changes and detailed shop drawings, with design notes. Ensure that the design notes indicate compliance with the requirements. Prepare drawings on 22 x 36-in (550 x 900 mm) sheets.

NOTE: If you propose to use strands that differ in size from those covered in ASTM A 416, submit complete data on the strands to the Engineer for approval.

Do not use individual strand couplings.

e. Have an Engineer registered in the State of Georgia stamp both drawings and notes.

5. Concrete Manufacture and Mixing

a. Manufacture and place concrete according to the requirements of Section 500.

b. Mix the concrete according to Subsection 500.3.04.E and Subsection 500.3.02.D.2 except when adding HRWR.

 1) When adding HRWR, dose the HRWR at the casting yard under the direct supervision of the producer’s Quality Control. Do not exceed the HRWR manufacturer’s recommended dosage.

 2) After dosing, mix the concrete at mixing speed for at least 70 revolutions.

NOTE: Do not exceed 360 total revolutions at mixing and agitating speeds.

3) After adding the plasticizer, no additional mixing water will be permitted.

6. Concrete Pouring

Fabricate the ends of all beams and girders to be vertical in the final erected position.

a. Rough-float the tops of beams at approximately the initial set.

b. All nominal lengths shown on the plans are horizontal dimensions.

c. Ensure that the Fabricator adjusts the lengths, as necessary, to account for the final erected position of the member.

d. Slope bearing assemblies to accommodate the erected position of the member.

7. Methods of Prestressing

You may either pretension, post-tension, or combine these methods to prestress concrete bridge members.

a. Pretensioning: You may pretension with either the single-strand or the multi-strand jacking method.

NOTE: Do not use strands from more than one source in any one tensioning operation.
Ensure the method used meets these requirements:

1) Strand Splices: Get approval from the Engineer for splicing methods and devices.

<table>
<thead>
<tr>
<th>Jacking Method</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-strand</td>
<td>Use only one splice per strand.</td>
</tr>
<tr>
<td>Multi-strand</td>
<td>Splice all strands or no more than 10% of the strands.</td>
</tr>
</tbody>
</table>

Ensure that the spliced strands have similar physical properties, are from the same source, and have the same “twist” or “lay.” Locate splices outside the prestressed units.

2) Wire Failures: The Engineer may accept wire failures if the area of broken wires does not exceed 2 percent of the total area of the strands.

3) Stressing Preparations: Prepare the members as follows:
 a) Carefully place and thread all strands in the bed.
 b) Avoid contaminating the strand with oil, grease, or other bond breaking material. If any strand is contaminated, clean the strand with a suitable solvent or replace the strand.
 c) After final stressing, position all strands within the location tolerances specified in Subsection 865.2.01.B.11.
 d) Use strand vises designed for the size of pretensioning strand to anchor the strand.
 e) After anchoring, ensure that the vises sustain the pretensioning force without slipping until the release of stress. Ensure that the vise grips seat no more than 1/4 in (6 mm) each.
 f) To prevent strands from bonding together, encase the strand in a conduit that can resist the pressure exerted by the concrete.
 g) Use conduit with an ID allowing free movement of the encased strand, but no greater than the diameter of the strand plus 1/8 in (3 mm).
 h) Secure the conduit to prevent both longitudinal movement along the strand and bonding at the location shown on the Plans, ± 1 in (25 mm).
 i) Tape the conduit to keep concrete out. Use tape and conduit manufactured from a non-corrosive material compatible with both the concrete and steel. Do not debond the strand for the full length of members.

4) Pretensioning Operation: Use elongation to control this operation. Ensure that the hydraulic pressure gauge readings at the time of the measured net elongation are within 5 percent of the calculated gauge reading for that particular elongation.

Ensure that the net elongation and final gauge measurements agree within ± 5 percent of their computed theoretical values.

The measurements of force and elongation shall algebraically agree with each other within a 5% tolerance. If any measurement varies by more than 5 percent, the Department will stop all work. Correct the defect before proceeding.

Pretension the members as follows:
 a) Initial Tension: After threading the strand in the bed, apply an initial tensioning force to each strand.
 Do not use elongation to measure the amount of initial tension, but use a dynamometer, hydraulic jack gauge, or dead weight.
 b) Final Tension: Calculate the final stress from the final elongation measured between established reference points. Use points that are independent of any movement in the bed or anchorages that might occur during the pretensioning operation.

Calculate the design elongation as follows:
 \[D = \frac{PL}{AE} \]
 D = Design elongation in inches (millimeters).
 P = Tensioning force, in pounds (kilonewtons); subtract the initial tensioning force from P.
 L = Distance from dead end anchorage to reference point, measured in inches (millimeters)
A = Cross-sectional area of strand, in square inches (millimeters).
E = Modulus of elasticity of strand, in pounds per square inch (MPa).
c) Add correction factors to the design elongation for strand anchorage slip and temperature. Correct any
movement in the anchorage abutments or in the overall anchorage system. Use the final elongation
figure as the net elongation in jacking the strand.
d) Single-Strand Jacking: Do not let the jack ram rotate more than one revolution while stressing any
strand.
e) Draped Strand Jacking: Partially jack draped strands from the end of the bed to add tension. Raise or
lower the strands to their final position to get the final tension.
Ensure that the strands have no more than four points where the strand changes slope, two of which
shall be at each anchorage.
Use approved, low friction devices at pick-up and hold-down points. Make the devices maintain the
desired vertical and horizontal positioning of the strand.
After partial jacking, deflect the strands to their final position in a sequence approved by the Engineer.
f) Final Readings: After final stressing, position all strands within the location tolerances specified in
Subsection 865.2.01.B.11.
g) Calculate the final elongation according to Subsection 865.2.01.B.7.a4).b).
Uniformly distribute stress in the strands throughout the bed length.
5) Detensioning Operation: Before detensioning, submit the pattern and schedule for releasing the strands to
the Engineer for advance approval.
Detension the members as follows:
a) Strip or loosen forms that tend to restrict the horizontal or vertical movement of the member prior to
releasing the stress.
b) If curing with steam, carefully release the strand because of dimensional changes due to temperature
and shrinkage changes. Where possible, release the pretensioned strand while the units are moist and
warm.
c) In deflected strand construction, immediately release the hold down devices within the member or
members after curing with steam.
6) Stress Release Strength: You may transfer stress to the concrete, unless otherwise specified on the Plans or
in the Special Provisions, based on the following requirements (minimum strength determined by cylinders
cast of the same concrete):

<table>
<thead>
<tr>
<th>Section</th>
<th>Minimum Strength</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete I-beams, box beams, flat slab deck sections, or tee slab deck sections</td>
<td>4500 psi (30 MPa)</td>
<td>18 hrs</td>
</tr>
<tr>
<td>Piling</td>
<td>4000 psi (28 MPa)</td>
<td></td>
</tr>
<tr>
<td>Other members</td>
<td>As specified on the Plans</td>
<td></td>
</tr>
</tbody>
</table>

7) Strand Release: Use the following table for each type of strand:

<table>
<thead>
<tr>
<th>Type of Strand</th>
<th>Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single strand</td>
<td>Heat each strand and allow it to pull itself apart in the sequence of the approved pattern and schedule of release. Do not cut the strands.</td>
</tr>
<tr>
<td>Multiple strand</td>
<td>Release either a symmetrical group of strands or all of the strands simultaneously. Remove the load on the strands from the anchorage and place it on the jacking system. Gradually release the jack or jacks until the strands are relaxed.</td>
</tr>
<tr>
<td>Draped strand</td>
<td>Release according to a method where the weight of the beam is compared with twice the total amount of the vertical components of the hold-down forces.*</td>
</tr>
</tbody>
</table>
*Use one of the following two methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Release as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method I (beam weight less than twice the total amount and vertical restraints cannot counteract the vertical components of the hold-down forces)</td>
<td>Heat each draped strand at the end of each member to failure in the sequence of the approved pattern and schedule of release. Release hold-downs and remove hold-down bolts. Release straight strands as noted in Subsection 865.2.01.B.7.a.(7)</td>
</tr>
<tr>
<td>Method II (beam weight more than twice the total amount)</td>
<td>Release hold-down devices within the beam. Release the strands from the top to the bottom by either heating or jacking in the sequence of the approved pattern and schedule of release.</td>
</tr>
</tbody>
</table>

b. Post-tensioning: Use either the system required by the Plans or an approved alternate system. Alternate systems may include the post-tensioning of both straight and draped tendons. Ensure that the system meets the appropriate requirements that follow:

1) Tendons: Do not splice post-tensioning tendons.
2) Ducts: Accurately position the ducts in which post-tensioning tendons are placed and securely fasten them to prevent movement during concrete placement. Use flexible metal conduit, metal tubing, or other acceptable material for the ducts.
3) Stressing Requirements: Prepare the members as follows:
 a) Carefully thread tendons into the ducts.
 b) Avoid contaminating the strand with oil, grease, or other bond breaking material. If any strand is contaminated, clean the strand with a suitable solvent or replace the strand.
 c) Follow the stressing procedures and sequences approved by the Engineer.
 d) After stressing, anchor the tendons against the ends of the members and fill the ducts with grout.
4) Concrete Strength: Stress the post-tensioning tendons after the concrete in the member has reached the minimum strength and age requirements, as follows:

<table>
<thead>
<tr>
<th>Minimum Strength</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>4500 psi (30 MPa)</td>
<td>3 days</td>
</tr>
<tr>
<td>4000 psi (28 MPa)</td>
<td>5 days</td>
</tr>
</tbody>
</table>

c. Post-tensioning Operation: In general, tension straight tendons from one end. Simultaneously tension draped tendons from each end.

Pretension the members as follows:

1) Initial Tension: After threading the tendon in the duct, apply an initial tensioning force of up to 5 percent of the final tensioning force with a jack.
 Determine the initial tension by reading the gauge. Do not use elongation to measure the amount of initial tension.
2) Final Tension: Compute the final stress on tendons from the amount of the final elongation measurement, checked by the jack pressure gauge reading.
3) Gauge Reading: Ensure that the pressure gauge reading at the time of the measured elongation is within 5 percent of the calculated gauge reading for that particular elongation.
 If the gauge pressure reading varies by more than 5 percent from the calculated reading, stop the stressing operation and correct the defect before proceeding.
4) Jacking: While jacking draped tendons, ensure that jack pressures and elongations are kept as near equal as is possible at each of the two jacks so the elongation measurements and jack pressures remain proportional.
5) Anchor Devices: Design anchor devices that secure the tendon for the size of post-tensioning tendon used. After anchoring, ensure that the devices can maintain a prestressed load of 150 percent of the maximum design load and do not slip more than 1/8 in (3 mm) after anchoring.
Place anchor devices exactly at right angles to the axes of the post-tensioned tendons. Carefully note anchorage losses and take the proper corrective measures to ensure that the tendon has the final design stress.

8. Grouting
 a. Time Limitations: Complete all grouting within 48 hours after post-tensioning.
 b. Grout: Make grout to a consistency of thick paint.
 1) Mix, by volume, 1 part Portland cement, 0.75 part (max.) sand passing a No. 30 (600 µm) sieve, and 0.75 part (max.) water.
 2) Within the limit specified, vary the proportions of sand and water as required by the Engineer.
 3) If you need to fill enclosures as hereinafter specified, you may eliminate sand and use a neat cement grout in the mix.
 4) After adding all ingredients, mix the batch for three minutes.
 5) Make batches of grout small enough so that the batch may all be used up in less than 45 minutes.
 6) Immediately before grouting, blow out tendon ducts with compressed air. Ensure that the compressed air does not contain oil.
 7) Vent each duct at each end. Ensure the vent has the means for positive closure when subjected to a minimum pressure of 75 psi (515 kPa).
 8) Pump the grout into the duct towards an exit vent.
 9) After the grout has expelled all entrapped air and is flowing in a solid stream, close the exit vent and build the pumping pressure to a minimum of 75 psi (515 kPa). Hold it at that level for a minimum of 15 seconds.
 10) Close the grout entrance vent.
 11) Do not move or disturb the member at all for at least 48 hours after grouting.

9. Concrete Finish
 a. Beams
 1) Finish the outside face of certain exterior beams specified in the Table of "Bridge Areas Requiring a Type III Finish" in Subsection 500.3.05.AB with the Type III Special Surface Coating Finish.
 2) Finish all other beams with a steel form finish.
 3) Score the surfaces of the top flanges of all beams with a stiff wire brush or equivalent. Score the beams transverse to the longitudinal axis of the beams.
 4) Transversely scrub the entire beam top with a coarse brush to remove all laitance and to produce a roughened surface for bonding to the slab. Remove all concrete fins or projections to produce a vertical face at the edge of the beam.
 5) If using prestressed concrete deck panels, finish both sides of the beam’s top flange with a trowel for 2 in (50 mm) from each panel edge to ensure a smooth and level bearing area.
 b. Superstructure Deck Units: Finish the riding surface of superstructure deck units—flat slabs, channels, double tees, etc.—as specified in Subsection 500.3.05.T.9 and the Plans.
 Finish the traffic face and top face of curbs on exterior units and the outside face of certain exterior beams as specified in the Table of "Bridge Areas Requiring a Type III Finish" in Subsection 500.3.05.AB.
 c. Substructure Units: Finish the top surfaces of caps and piling with the Type IV—Float Surface Finish specified in Subsection 500.3.05.AB.5.
 d. Patching: The Engineer will inspect all honeycombed areas. The Engineer may reject bridge members with extensive honeycombs within bearing areas.
 1) Patch as directed by the Engineer, as soon as possible after form stripping.
 2) The Engineer may require that you use an epoxy bonding compound.
 3) Remove hold-down devices from the bottoms of the beams.
 4) Coat the resulting holes with an epoxy bonding compound and plug them with grout.

10. Concrete Curing
 Cure concrete with one of the methods listed below. Provide means for keeping the temperature of bridge members above the freezing point for 6 days after concrete placement, except for steam curing. The Department may reject bridge members based on improper curing.
a. Water Curing: Cover all concrete surfaces that are not in contact with the forms with wet burlap or other suitable material.
Keep the member wet for 7 days or until the concrete has reached the stress release strength specified in Subsection 865.2.01.B.7.a.(6).
b. Steam Curing: Do not begin steam curing for at least four hours after final placement of concrete.
 1) The Engineer may delay the start longer if the concrete has not taken its initial set. You may use sufficient heat during the delay to maintain the temperature of the concrete between 50 ° and 70 °F (10 ° and 21 °C).
 2) Ensure the steam curing enclosures retain moisture and heat.
 3) After steaming begins, you may raise the enclosure temperature at a maximum rate of 80 °F (27 °C) per hour until the surface temperature of the concrete reaches an optimum temperature, not to exceed 190 °F (88 °C).
 4) Ensure that the differential surface temperature of the concrete within a member does not exceed 40 °F (4 °C) during the curing period.
 5) Continue steaming until reaching the stress release strength.
 6) Lower the enclosure temperature at a maximum rate of 40 °F (4 °C) per hour.
 7) Maintain a film of water on all exposed surfaces of the concrete during the steam curing cycle.
 8) Do not exceed the maximum temperatures.
 9) The Department may reject bridge members based on excessive temperature.
c. Heated Forms: When using approved heated forms, keep the exposed surfaces of the concrete wet at all times.
 1) Enclose the beds with a suitable weather-tight covering supported to uniformly heat throughout the bed.
 2) Apply the requirements stated in Subsection 865.2.01.B.10.b concerning the delay period, temperature control, curing duration, and basis of rejection.

11. Tolerances
a. Manufacture prestressed concrete bridge members within the dimensional tolerances listed in SOP-3, “Standard Operating Procedures for Precast/Prestressed Concrete”. These tolerances generally will be the maximum deviation allowed, although normal manufacturing tolerances will be well within those listed.
b. The Department may reject bridge members based on excessive deviations.

12. Galvanized Coatings
a. Before shipping beams, galvanize the exposed surfaces and edges of embedded structural steel bearing components and all exposed surfaces of attached structural steel bearing components according to ASTM A 123/ A 123M or A 153/ A 153M.
b. Touch up all areas to be welded after the welded area has cooled, and the weld is completed and cleaned.
c. Galvanize miscellaneous structural steel, hardware, bolts, and washers prior to storage at the casting yard or jobsite.

13. Marking

NOTE: This requirement does not apply to single point pick-up locations placed on piling.

a. With the exception of the Department’s inspection stamp, the Contractor is responsible for the placement and accuracy of all markings on bridge members according to these Specifications.
b. The Inspector will not act for the manufacturer with respect to marking, but will cooperate with the plant personnel to ensure that the work is properly done with respect to time of marking, accuracy of description, and accuracy of location of marks and lettering.
c. Locate the markings so they are hidden after completing Project construction.
d. Do not ship any unit from the plant until it carries the official GDT stamp and number assigned by the Department to the Inspector at the plant, nor until the Inspector checks and approves the markings required by these Specifications.
e. Required Markings: Clearly mark bridge members to indicate the Project identification, date of manufacture, beam identification number (properly located to coordinate with the erection drawing), pile length, and location of pile single-point pick up.
f. Time of Marking
 1) Before Stress Transfer: Immediately after forms are removed and before transferring stress, individually identify and date members. This helps keep accurate records on each member’s bed location and date of concrete placement.
 2) Before Shipping: Give the Inspector advance notice of shipping. After securing members for shipment, apply marking consisting of the Project identification to each member.

g. The Inspector will place the GDT stamp and number on each member. The Inspector will not use the GDT stamp until after the members have been satisfactorily finished and stored.

14. Handling and Storing
a. Prestressing Steel: Protect all prestressing steel from contact with dissimilar metals to prevent galvanic action and excessive rusting.
 1) The Department will not consider light rust that does not visibly etch the steel as detrimental.
 2) Keep prestressing steel free of harmful materials, such as grease, oil, wax, clay, dirt, paint, and loose rust.
 3) Use special care to keep prestressing steel free of form oil and other bond-reducing material that may be used on the forms.
 4) Handle prestressing steel at all times in such manner as to prevent kinks and nicks. The Department will not allow prestressing tendons that have kinks, nicks, bends, or other defects.
 5) Do not use torches or welding equipment adjacent to tensioned strand unless the strand is insulated against heating or burning.

b. Reinforcement Steel: Handle, place, and support all reinforcement steel according to the requirements of Section 511.

c. Prestressed Concrete Bridge Members: Handle, store, and ship prestressed concrete bridge members in a way to eliminate the danger of cracks, fractures, and excessive bending stresses. Handle members by the two embedded pick-up points, unless the Engineer approves other methods.
 1) Except for piling, handle members so their vertical axes remain plumb at all times.
 2) Support members in storage on firm blocking located immediately below the two embedded pick up points. In multiple layer storage, support members in the stack with blocks of uniform thicknesses and in a vertical line.
 3) Set all blocking at right angles to the longitudinal axis of the member, and the longitudinal axis of the blocking shall be horizontal. Do not ship members until the concrete reaches its ultimate design strength.

NOTE: Replace members that were damaged in handling or storage at no additional expense to the Department. However, the Engineer may determine that the damage is minor and may approve use of the member.

d. Piling: Handle, store, and ship piling after stress release.
 1) The Department may reject any piling cracked in handling, storing, or loading if the crack warrants.
 2) The Department will reject any cracked piling destined for locations involving sea water or alkali soils.
 3) Mark rejected pile as rejected.
 4) Store piling in groups with the same length.
 5) Transport piling in a manner approved by the Engineer. Upon request, the Engineer will furnish drawings giving the limits of truck bolster spacing for various sizes and lengths of piling.

e. Beams: Handle or store fully pretensioned beams after stress release.
 1) Use pick-up and support points within 3 ft (900 mm) of the beam ends.
 2) Support beams on firm blocking located within 3 ft (900 mm) of the permanent bearing area of the beam.
 3) You may handle or store fully post-tensioned beams 48 hours after the grout has been placed in the tendon ducts.
 4) For beams manufactured by the combined method of pretensioning and post-tensioning, you may handle and store them after the pretensioning phase is completed. Do not handle again until 48 hours after grout placement.
5) Do not ship beams and other superstructure units until after their strength reaches the required minimum 28-day design strength.

6) Store beams in single layers, not in stacks. Support beams so they meet the following requirements concerning warp and sweep:

<table>
<thead>
<tr>
<th>Twist of vertical axes of the ends of beams due to misalignment of blocking</th>
<th>The maximum deviation between the vertical axes of the ends of beams shall be 1/4 in/ft (20 mm/m) of beam height.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt of vertical axis of an end of beam from the vertical due to deviation of blocking from the horizontal</td>
<td>The maximum deviation of the vertical axis of an end of a beam shall be 1/4 in/ft (20 mm/m) of beam height.</td>
</tr>
<tr>
<td>Lateral sweep due to manner of storage</td>
<td>There shall be no discernible sweep induced by the manner in which a beam is stored.</td>
</tr>
</tbody>
</table>

C. Acceptance

1. Plant Inspection
 a. Give Notice to the Engineer: Give the Engineer ample notice before starting work so that the Engineer can inspect all plant facilities involved in the production. Do not manufacture anything until the Engineer approves all facilities.
 b. Facilities for Inspection: Allow free access to the Inspector to all parts of the plant involved in the production process.
 c. Inspector Authority: The Inspector has the authority to reject materials or quality of work that do not meet the Specifications. In cases of dispute, the Contractor may appeal to the Engineer, whose decision will be final.

2. Rejections
 If any material or finished members are defective, they will be rejected, even though the Inspector may have accepted them.
 a. Promptly replace rejected material or quality of work or make it good at your own expense.

3. Provisions for Testing
 Furnish and maintain sufficient testing equipment so that the Inspector can conduct the following tests at the casting yard:

<table>
<thead>
<tr>
<th>Material</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Aggregate</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Coarse Aggregate</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Hardened Concrete</td>
<td>GDT 35</td>
</tr>
</tbody>
</table>

 a. Hardened Concrete: Make cylindrical molds available for use on each casting bed.
 b. Provide and maintain a machine and other accessories, such as capping molds, heating pots, and capping compound, sufficient to test compression specimens according to AASHTO T 22.
 c. Furnish all testing materials, without cost to the Department, well in advance of the anticipated time of use. The Department will not compensate the Contractor if the work is delayed waiting for approval of the materials furnished for testing.

4. Facilities for the Inspector: Furnish for the sole use of the Inspector a suitable field laboratory according to Subsection 106.04, Subsection 106.11, and Subsection 152.

D. Materials Warranty

 General Provisions 101 through 150.
Section 866—Precast Concrete Catch Basin, Drop Inlet, and Manhole Units

866.1 General Description
This section includes the requirements for manufacturing the following to the dimensions shown on the Plans:

- Precast reinforced concrete catch basins
- Drop inlets
- Manhole units

866.1.01 Related References
A. Standard Specifications
 - Section 500—Concrete Structures
 - Section 853—Reinforcement and Tensioning Steel

B. Referenced Documents
 - AASHTO T 22
 - AASHTO T 24
 - QPL 4
 - GDT 16

866.2 Materials
The materials to be used shall meet the following requirements:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete, Class AA-1, Vibrated, Air Entrained</td>
<td>500*</td>
</tr>
<tr>
<td>Reinforcement for Concrete</td>
<td></td>
</tr>
<tr>
<td>Steel Bars</td>
<td>853.2.01</td>
</tr>
<tr>
<td>Steel Wire</td>
<td>853.2.06</td>
</tr>
<tr>
<td>Welded Steel Fabric</td>
<td>853.2.07</td>
</tr>
</tbody>
</table>

*Ensure that the concrete compressive strength is at least 4,000 psi (28 MPa). Do not use the gradation requirements.

For a list of sources, see QPL 4.

866.2.01 Precast Concrete Catch Basin, Drop Inlet, and Manhole Units
A. Requirements
 1. Reinforcement
 Follow the Plans, except as follows:
 a. Do not let reinforcement vary by more than 1/4 in (5 mm) from the position shown in the design, except at pipe connections.
 b. Ensure the cover on the reinforcement is not less than that shown on the Plans.
 2. Ensure all precast concrete units are true to shape with smooth, dense, and uniform surfaces.

B. Fabrication
 1. Casting
 a. Place the concrete in each unit without interruption.
 b. Consolidate the concrete with an approved vibrator and hand-tamping as necessary. Force the concrete into the corners of the forms to prevent stone pockets or cleavage planes.
2. Holes for Pipes
Make each hole about 4 in (100 mm) larger than the outside diameter of the appropriate pipe.

3. Curing:
Cure the units with one of the following methods until the minimum compressive strength has been achieved, or for 24 hours, whichever comes first.
 a. Method 1
 1) Place the units in a curing chamber, free from outside drafts, and cure them in a moist atmosphere not exceeding 160 °F (70 °C).
 2) Use steam injection for the time and temperature needed to obtain proper curing.
 3) Construct the curing chamber and place the units so that steam may fully circulate around the entire unit.
 b. Method 2
 1) Keep the units wet by covering the concrete not in contact with the forms with wet burlap or other suitable material.
 2) Protect the units from freezing between when you place the concrete until curing is complete.

4. Removing the Forms
Leave the forms in place until you can remove them without damaging the unit.

5. Quality of Work
 a. Correct minor surface cavities or irregularities that do not impair the service value of the unit, that can be corrected with marring the surface by pointing with an approved mortar. Apply the mortar immediately after removing the forms.
 b. Minor defects will not be cause for rejection.

C. Acceptance
 1. Testing Facilities
 Ensure that the manufacturer to furnish facilities and assistance as required to let the Inspector sample and test quickly and efficiently.

 NOTE: Check QPL 4 for pre-approved manufacturers that supply material compliant with this Specification.

2. The Department will accept the units based on the results of compressive tests on concrete cylinders and on inspection during manufacture. The tests will determine the unit’s conformance with the design and quality of work prescribed in these Specifications and on the Plans.

3. The Department will accept any unit that meets the test requirements, regardless of age.

4. Rejection
 The Inspector will reject units if they fail to meet any requirements in this Specification, and for any of the following defects:
 - Imperfect mixing and molding
 - Honeycombed or open texture
 - Exposure of the reinforcement that indicates the reinforcement is misplaced

5. Marking
 Ensure that each approved unit is marked with the name or trademark of the manufacturer and the date it was cast. The mark will be stenciled or otherwise placed so it is clearly legible at time of delivery.
 a. When approved by the Inspector, each unit will be stamped with the official mark of the Department or Certified Pipe Technician number (CPT).
 b. Accepted units or finished units will be rejected at any time if found to be defective.

6. Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive strength</td>
<td>AASHTO T 22 and AASHTO T 24</td>
</tr>
</tbody>
</table>
7. Compressive Strength Test
 The Inspector shall do the following:
 a. Make compression tests on cylinders to satisfy the minimum strength requirements.
 b. Make at least three cylinders from each day’s pour and cure them in the same manner as the precast units.

D. Materials Warranty
 1. Shipping
 Do not ship or transport any unit to the installation site unless it bears the required markings, stated in Subsection 866.2.01.C.5.

Section 867—Epoxy Coated Reinforcement Strips

867.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 868—Bituminous Adhesive For Raised Pavement Markers

868.1 General Description
This section includes the requirements for bituminous hot-melt adhesive used to place raised pavement markers.

868.1.01 Related References
A. Standard Specifications
 Section 106—Certification of Materials
B. Referenced Documents

<table>
<thead>
<tr>
<th>AASHTO</th>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 48</td>
<td>C 430</td>
</tr>
<tr>
<td>T 49</td>
<td>D 70</td>
</tr>
<tr>
<td>T 53</td>
<td>D 1754</td>
</tr>
<tr>
<td>T 202</td>
<td>D 1796</td>
</tr>
</tbody>
</table>

868.2 Materials
868.2.01 Bituminous Adhesive
A. Requirements
 1. Adhesive
 Use an adhesive made of asphaltic material and a homogeneously mixed filler that meets the following physical requirements:
 a. Adhesive Properties: Use the asphaltic material with filler.

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softening point</td>
<td>200°F (95 °C)</td>
<td>—</td>
<td>AASHTO T 53</td>
</tr>
<tr>
<td>Penetration, mm 3.5 oz (100 g), 5 sec., 77 °F (25 °C)</td>
<td>10</td>
<td>20</td>
<td>AASHTO T 49</td>
</tr>
</tbody>
</table>
b. Asphalt Properties: Use the filler-free material derived from the extraction and Abson recovery process explained in Subsection 868.2.01.C.

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td></td>
<td>0.2 in (5 mm)</td>
<td>ASTM D 3407 (modified in Subsection 868.2.01.C)</td>
</tr>
<tr>
<td>Viscosity, 400 °F (204 °C)</td>
<td></td>
<td>75 Poises (7.5 Pa-s)</td>
<td>ASTM D 2669 (modified in Subsection 868.2.01.C)</td>
</tr>
<tr>
<td>Flash point, C.O.C.</td>
<td>550 °F (285 °C)</td>
<td></td>
<td>AASHTO T 48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetration, mm 3.5 oz (100 g), 5 sec., 77 °F (25 °C)</td>
<td>25</td>
<td></td>
<td>AASHTO T 49</td>
</tr>
<tr>
<td>Viscosity, 275 °F (135 °C)</td>
<td>12 Poises (1.2 Pa-s)</td>
<td></td>
<td>AASHTO T 202</td>
</tr>
<tr>
<td>Viscosity ratio, 275 °F (135 °C)</td>
<td></td>
<td>2.2</td>
<td>See Subsection 868.2.01.C</td>
</tr>
</tbody>
</table>

c. Filler Properties: Use the filler separation techniques described in Subsection 868.2.01.C.

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filler content, percent by weight</td>
<td>50</td>
<td>75</td>
<td>See Subsection 868.2.01.C</td>
</tr>
<tr>
<td>Filler fineness, percent passing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 325 (45 μm)</td>
<td>75</td>
<td>95</td>
<td>ASTM C 430 (modified in Subsection 868.2.01.C)</td>
</tr>
<tr>
<td>No. 200 (75 μm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 100 (150 μm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| |
| d. Certification: Submit a certification from the manufacturer that includes the physical properties of the bituminous adhesives and that the material conforms with this Specification, as stated in Subsection 106.05, “Materials Certification.” |

2. Packaging and Labeling
 a. Pack the adhesive in a self-releasing cardboard container of approximately 10 in (250 mm) that can be stacked properly.
 b. Fill the containers with two 30 lb (13.5 kg) cubes that have a net weight of 60 lbs (27 kg).
 c. Put the manufacturer, quantity, and batch number on the label.
 d. Print “Bituminous Adhesive for Pavement Markers” on the label.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 1. Flow
 Determine flow according to Section 6, Flow, of ASTM D 3407.
 a. Set the oven temperature at 158 ° ± 2 °F (70 ° ± 1 °C).
 b. Prepare samples according to Subsection 7.1 of AASHTO T 49.
2. Viscosity
 Determine viscosity according to ASTM D 2669 using a spindle speed of 10 rpm.
 a. Heat the adhesive to approximately 410 °F (210 °C) and then let cool.
 b. Determine viscosity at 400 ° ± 1°F (204 ° ± 0.6 °C).

3. Asphalt Properties
 Determine the base asphalt properties based on the material obtained from the following extraction and Abson recovery methods:
 a. Extract the asphalt by heating the adhesive to the point where it will easily flow.
 b. Add 125 to 150 g of adhesive to 400 mL of trichloroethylene that has a temperature of 125 ° to 150 °F (51 ° to 66 °C).
 c. Stir the mixture to dissolve the asphalt.
 d. Decant the trichloroethylene-asphalt mixture.
 e. Recover the asphalt using the Abson recovery method described in ASTM D 1856, except do not use the extraction methods of ASTM D 2712, and do not filter the solvent-asphalt mixture.
 f. Centrifuge the extraction solution of trichloroethylene and asphalt for at least 30 minutes at 770 times gravity in a batch centrifuge.
 g. Decant the solution into a distillation flask. Do not include any filler sediment.
 h. Apply heat and bubble carbon dioxide slowly until the solution reaches a temperature of 300 °F (149 °C).
 i. Increase the carbon dioxide flow to between 800 to 900 mL per minute.
 j. Maintain the decanted solution temperature between 320 ° and 335 °F (160 ° and 168 °C) with this carbon dioxide flow for at least 20 minutes and until the trichloroethylene vapors are completely removed from the distillation flask.
 k. Repeat the extraction-recovery method as necessary to obtain the desired quantity of asphalt.
 l. Determine penetration, 275 °F (135 °C) viscosity, and viscosity ratio with the recovered asphalt.

4. Viscosity Ratio
 Determine the 275 °F (135 °C) viscosity ratio by comparing the 275 °F (135 °C) viscosity on the base asphalt before and after the Thin-Film Oven Test.
 a. Perform the Thin-Film Oven Test as described in ASTM D 1754.
 b. Determine the specific gravity with a pycnometer as described in ASTM D 70 for use in the Thin-Film Oven Test.
 c. Calculate the 275 °F (135 °C) viscosity ratio by dividing the viscosity after the Thin-Film Oven Test by the original 275 °F (135 °C) viscosity.

5. Filler Material
 Separate the filler material from the asphalt to determine filler content and filler fineness.
 a. Filler Content

 1) Determine the portion by weight of the adhesive that is insoluble in 1, 1, 1-trichloroethane by weighing 10.00 ± 0.01 g of solid adhesive into a centrifuge flask with a volume of approximately 100 mL, as specified in ASTM D 1796.

 2) Add 50 mL of 1, 1, 1-trichloroethane to the adhesive.

 3) Break the adhesive into small pieces to dissolve the solids.

 4) Place the sample flask in a balanced centrifuge and spin with a minimum relative centrifugal force of 150 (as determined in Section 6 of ASTM D 1796) for 10 minutes.

 5) Remove the sample flask and decant the solvent, without losing any solids.

 6) Repeat the application of solvent and centrifuging until the solvent is clear and the filler is visually free of asphalt.

 7) Dry the filler at 160 °, ± 5 °F (71 °, ± 3 °C) to remove solvent and weigh the resulting filler.

 8) Filter the decanted solvent to verify that no filler was lost.
9) Calculate the percent filler content as follows:

\[
\text{Filler Content, \% by weight (g)} = \frac{\text{Filler Wt. (g)}}{\text{Original Adhesive Wt. (g)}} \times 100
\]

b. Filler Fineness

1) Determine filler fineness according to ASTM C 430, using No. 325 (45 \(\mu\)m), No. 200 (75 \(\mu\)m), and No. 100 (150 \(\mu\)m) sieves.

2) Modify this method by using a water-soluble, non-ionic wetting agent, such as Triton X-100, to aid the wetting action. Use a surfactant solution that is approximately 1 percent by weight.

3) Thoroughly wet the 1-gram dry sample in the surfactant solution.

4) Soak the sample for 30 minutes.

5) Transfer the filler to the sieve cup.

6) Spray water on the filler for two minutes.

7) Add surfactant solution as needed and physically disperse clumped particles.

8) Dry the sample and handle as directed in ASTM C 430.

The Department will reject any bituminous adhesive if it meets all requirements of this Specification but fails in actual use.

D. Materials Warranty

General Provisions 101 through 150.

Section 870—Paint

870.1 General Description

This section includes the requirements for all paints, including pigments, vehicles, and the compositions of prepared paints for all purposes specified.

870.1.01 Related References

A. Standard Specifications

General Provisions 101 through 150

B. Referenced Documents

QPL 46

SOP 14

AASHTO M 69

Military Specifications MIL-E-698 B

MIL-P-23236 or US Corps of Engineers Specification C-200

Federal Test Methods, Standard No. 141

<table>
<thead>
<tr>
<th>Federal Specifications</th>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT-E-489</td>
<td>D 209</td>
</tr>
<tr>
<td>TT-P-103b</td>
<td>D 211</td>
</tr>
<tr>
<td>TT-P-104b</td>
<td>D 234</td>
</tr>
<tr>
<td>TT-P-320c</td>
<td>D 235</td>
</tr>
<tr>
<td>TT-P-460</td>
<td>D 263</td>
</tr>
<tr>
<td>TT-791a</td>
<td>D 476</td>
</tr>
<tr>
<td>TT-P-1952B</td>
<td>D 600</td>
</tr>
<tr>
<td>TT-R-266</td>
<td>D 602</td>
</tr>
<tr>
<td>TT-T-291</td>
<td>D 604</td>
</tr>
<tr>
<td>TT-V-119</td>
<td>D 605</td>
</tr>
<tr>
<td>D 3021</td>
<td>D 768</td>
</tr>
<tr>
<td>D 3721</td>
<td>D 822</td>
</tr>
<tr>
<td>D 4462</td>
<td>D 1199</td>
</tr>
<tr>
<td>E 97</td>
<td>D 1648</td>
</tr>
<tr>
<td>G 23</td>
<td>D 2805</td>
</tr>
</tbody>
</table>
870.2 Materials

A. Requirements

1. Ingredients
 The Engineer shall approve all paint ingredients. Mix the paints in the proportions specified in this section for each kind of paint. The formulas given represent the proportions by weight of the materials to be used.

2. Condition of Mixed Paints
 Ensure that mixed paints do not liver or curdle, and that the pigments remain in suspension to a reasonable degree satisfactory to the Engineer.

3. Filling and Packaging
 The manufacturer shall strain paints before filling the containers. The manufacturer also shall ship paints in strong, substantial containers (according to QPL 46) plainly marked with the paint name and number, color, volume, manufacturer name and address, date of manufacture, and the manufacturer’s lot number on every package. The inspection stamp on the paint container will be evidence of approval.
 Traffic line paint manufactured for the Department shall be delivered in 55 gallon (208 L) drums. The manufacturer shall stencil on the head of each drum the kind of paint, requisition number, purchase order number, and gross and net weights. Ensure that the drums are the removable head types.

4. Finished Paints
 Unless otherwise specified, deliver paints to the Project or the Department completely mixed and ready for use without adding oils or thinner. Use well ground paints that do not settle or badly cake in the container, and can readily be broken up to a smooth, uniform paint with good brushing consistency.
 When brushed or rolled on a smooth, vertical surface, the paint shall dry hard and elastic without running, streaking, sagging, or spotting. Use paint for spray application that sprays satisfactorily and does not run, sag, or streak.
 The first coat of paint applied in the shop or in the field to uncoated structural steel or wood is called the primer coat. The paint covering the primer coat is called the second coat, and the paint covering the second coat is called the third coat.

B. Fabrication
 The formulas given in this specification represent proportions by weight.

C. Acceptance

1. Testing
 Test methods for paint analyses shall be according to the Federal Test Methods, Standard No. 141 or the ASTM standard methods of tests for paint.

2. Color
 Match color visually by comparing with standard color chips obtained from the Office of Materials and Research.

3. Inspection
 Inspection and analysis will be made at the point of manufacture according to SOP 14. The manufacturer shall assist as necessary, permit the Inspector to test the ingredients before the paint is made, and witness the paint grinding.
 The Department reserves the right to sample and test all paint at any time before it is used.

4. Tolerances
 The Department will accept a tolerance of 1 percent of the required value for the paint formulation and property requirements.

 EXCEPTION: This tolerance does not apply where maximum and minimum values are noted.

D. Materials Warranty

The following people shall furnish the Department a certificate of analysis and manufacturer’s guarantee:

☐ The manufacturer of each brand of paint submitted for acceptance under these Specifications
☐ All Contractors proposing to use any paint specified in this Section

Ensure that the certificate of analysis shows the paint trade name to be furnished, including a facsimile of the label if the paint is ready-mixed, and an analysis showing the percentage of each of the chemical elements and compounds in the pigment and vehicle. The guarantee shall assert that all paint furnished conforms to the analysis shown on the certificate.

1092
filed and to the statement of percentages of ingredients shown on the labels, which are required to be on each container.
The guarantee shall be sworn to by a person having authority to bind the manufacturer into an agreement.

870.2.01 Paints for Structural Steel

A. Requirements

1. Use structural steel paint that meets the applicable requirements of Subsection 870.2 and the following:
 - No. 1A, Red Primer (see Table 1). Apply this paint with brush, roller, or airless spray.
 - No. 1W, Waterborne Red Primer (see Table 2).
 - No. 1 Z, Inorganic Zinc Rich Primer (See Table 3)
 - No. 2A, Buff (see Table 4). Apply this paint with brush, roller, or airless spray.
 - No. 2B, Aluminum (See Table 5 and Subsection 870.201.B, “Fabrication”).
 - No. 2W, Waterborne Intermediate Coat (see Table 6).
 - No. 3A, Brown (see Table 7). Apply this paint with brush, roller, or airless spray.
 - No. 3B, Green (see Table 8). Apply this paint with brush, roller, or airless spray.
 - No. 3W, Waterborne Green (see Table 9).

Table 1—No. 1A, Red Primer, Brushing, Roller, or Airless Spray Type

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment</td>
<td>—</td>
<td>53</td>
</tr>
<tr>
<td>Vehicle</td>
<td>47</td>
<td>—</td>
</tr>
<tr>
<td>Coarse Particles, total residue retained on No. 325 sieve, based on paint, percent by weight</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>Fineness of Grind, North Standard</td>
<td>—</td>
<td>4.5</td>
</tr>
<tr>
<td>Viscosity, Krebs Units</td>
<td>81</td>
<td>75</td>
</tr>
<tr>
<td>Moisture Content, percent by weight</td>
<td>0.5</td>
<td>—</td>
</tr>
<tr>
<td>Drying Time, hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set to touch</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>Dry through</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Weight, lbs/gal (kg/L)</td>
<td>—</td>
<td>12.7 (1.52)</td>
</tr>
<tr>
<td>Pigment Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc Hydroxy Phosphite, ASTM D 4462</td>
<td>—</td>
<td>73</td>
</tr>
<tr>
<td>Red Iron Oxide ASTM D 3721</td>
<td>—</td>
<td>24</td>
</tr>
<tr>
<td>Organo Montmorillonite¹</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Vehicle Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Volatile²</td>
<td>—</td>
<td>66</td>
</tr>
<tr>
<td>Raw Linseed Oil, ASTM D 234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkyd Resin Solution, Federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification TT-R-266, Type I,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class “A”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement</td>
<td>Maximum</td>
<td>Minimum</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Thinners and Driers</td>
<td>34</td>
<td>—</td>
</tr>
<tr>
<td>Thinners, Federal Specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT-T-291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driers, ASTM D 600 Class “C”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: ¹ Prewet Organo Montmorillonite with 20-30% (95%) methyl alcohol by weight. ² Ensure that the non-volatile vehicle is composed of 1:1 proportions by weight of raw linseed oil and alkyd resin, respectively.

Table 2—No. 1W, Waterborne Red Primer

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment</td>
<td>—</td>
<td>24</td>
</tr>
<tr>
<td>Vehicle</td>
<td>76</td>
<td>—</td>
</tr>
<tr>
<td>Coarse Particles, total residue retained on 60 μm sieve, based on paint, percent by weight</td>
<td>0.5</td>
<td>—</td>
</tr>
<tr>
<td>Fineness of Grind, North Standard</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>Viscosity, Krebs Units</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Drying Time, hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set to touch</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Dry through</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Weight, lbs/gal (kg/L)</td>
<td>—</td>
<td>9.85 (1.18)</td>
</tr>
<tr>
<td>Pigment Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Iron Oxide</td>
<td>—</td>
<td>45</td>
</tr>
<tr>
<td>Zinc Phosphate</td>
<td>—</td>
<td>15</td>
</tr>
<tr>
<td>Vehicle Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Volatile Binder Solids, HG-54 or HG-56¹</td>
<td>—</td>
<td>30</td>
</tr>
<tr>
<td>Methyl Carbitol</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td>Texanol</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Dibutyl Phthalate</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Other Additives</td>
<td>5</td>
<td>—</td>
</tr>
</tbody>
</table>

NOTE: ¹or approved equivalent
Table 3—No. 1Z, Inorganic Zinc Rich Primer

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc dust, percent by weight</td>
<td>—</td>
<td>99.00</td>
</tr>
<tr>
<td>Zinc</td>
<td>—</td>
<td>99.00</td>
</tr>
<tr>
<td>Lead</td>
<td>0.6</td>
<td>—</td>
</tr>
<tr>
<td>Percent by weight of zinc in dried paint film</td>
<td>—</td>
<td>85</td>
</tr>
<tr>
<td>Elcometer Adhesion of dried paints, psi (MPa)</td>
<td>—</td>
<td>300 (2.1)</td>
</tr>
</tbody>
</table>

Note: The primer shall be self-curing and shall consist of two components, Zinc dust and Ethyl Silicate vehicle. A manufacturer’s product data sheet and a material safety data sheet (MSDS) shall accompany each shipment of Inorganic Zinc Rich Primer. The product data sheet shall contain the following information for the mixed primer: Unit Weight, Viscosity, Volatile Organic Content (VOC), Pot Life, Percent Solids by Volume.

Table 4—No. 2A, Buff, Brushing, Roller, or Airless Spray Type

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Max.</th>
<th>Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment</td>
<td>—</td>
<td>52</td>
</tr>
<tr>
<td>Vehicle</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>Coarse particles, total residue retained on</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>No. 325 (45 µm) sieve, based on paint, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fineness of grind, North Standard</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>Viscosity, Krebs units</td>
<td>82</td>
<td>75</td>
</tr>
<tr>
<td>Moisture content, percent by weight</td>
<td>0.5</td>
<td>—</td>
</tr>
<tr>
<td>Drying time, hours</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Weight, lbs/gal (kg/L)</td>
<td>—</td>
<td>12.5 (1.50)</td>
</tr>
<tr>
<td>Color: Match the Department’s Standard Color Chip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc Hydroxy Phosphate, ASTM D 4462</td>
<td>—</td>
<td>75</td>
</tr>
<tr>
<td>Titanium Dioxide ASTM D 476 Type IV</td>
<td>—</td>
<td>19</td>
</tr>
<tr>
<td>Organo Montmorillonite—prewet with 20-30% (95%) (95%)</td>
<td>1.0</td>
<td>0.75</td>
</tr>
<tr>
<td>methyl alcohol by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinting Pigments (may be added as predispersed pigments):</td>
<td>3.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Yellow Oxide ASTM D 768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Iron Oxide ASTM D 3721</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lampblack ASTM D 209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Volatile, 1:1 proportions by weight, of:</td>
<td>—</td>
<td>66</td>
</tr>
<tr>
<td>Raw Linseed Oil, ASTM D 234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkyd Resin Solution, Federal Specification TT-R-266, Type I, Class "A"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thinners and Driers</td>
<td>34</td>
<td>—</td>
</tr>
<tr>
<td>Thinners, Federal Specification TT-T-291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driers, ASTM D 600 Class "C"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: For the greatest effectiveness, the Organo Montmorillonite should be prewetted with 20 – 30% (95%) methyl alcohol by weight.

Note 2: The non-volatile vehicle shall be composed of 1:1 proportions by weight of raw linseed oil and alkyd resin, respectively.
Table 5—No 2B, Aluminum

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint Composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum Paste, AASHTO M 69, lbs (kg)</td>
<td>—</td>
<td>2 (0.24)</td>
</tr>
<tr>
<td>Aluminum Vehicle, AASHTO M 69, gal (L)</td>
<td>1 (1)</td>
<td></td>
</tr>
<tr>
<td>Drying Time, hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set to touch</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Dry through</td>
<td>24</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: Refer to Subsection 870.2.01.B, “Fabrication”, for additional requirements.

Table 6—No. 2W, Waterborne Intermediate Coat

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment</td>
<td>—</td>
<td>38</td>
</tr>
<tr>
<td>Vehicle</td>
<td>62</td>
<td>—</td>
</tr>
<tr>
<td>Coarse Particles, total residue retained on 60 µm sieve, based on paint, percent by weight</td>
<td>0.5</td>
<td>—</td>
</tr>
<tr>
<td>Fineness of Grind, North Standard</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>Viscosity, Krebs Units</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Drying Time, hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set to touch</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Dry through</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Weight, lbs/gal (kg/L)</td>
<td>—</td>
<td>11.0 (1.32)</td>
</tr>
<tr>
<td>Pigment Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc Phosphate</td>
<td>—</td>
<td>10</td>
</tr>
<tr>
<td>Calcium Carbonate</td>
<td>—</td>
<td>30</td>
</tr>
<tr>
<td>Magnesium Silicate ASTM D 605</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Titanium Dioxide ASTM D 476 Type IV</td>
<td>—</td>
<td>40</td>
</tr>
<tr>
<td>Vehicle Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Volatile Binder Solid, HG-54 or HG-56¹</td>
<td>—</td>
<td>30</td>
</tr>
<tr>
<td>Methyl Carbitol</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td>Texanol</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Dibutyl Phthalate</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Other Additives</td>
<td>5</td>
<td>—</td>
</tr>
</tbody>
</table>

Notes: ¹or approved equivalent
Table 7—No. 3A, Brown, Brush, Roller, or Airless Spray Type

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment</td>
<td>47.0</td>
<td>45.0</td>
</tr>
<tr>
<td>Vehicle</td>
<td>55.0</td>
<td>53.0</td>
</tr>
<tr>
<td>Pigment composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Lead Silico Chromate, ASTM D 1648</td>
<td>38.0</td>
<td>36.0</td>
</tr>
<tr>
<td>Red Iron Oxide—85%, ASTM D 3721</td>
<td>28.0</td>
<td>27.0</td>
</tr>
<tr>
<td>Titanium Dioxide, Rutile, Chalk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistant, ASTM D 476, Type IV</td>
<td>16.5</td>
<td>15.5</td>
</tr>
<tr>
<td>Barium Sulfate, ASTM D 602</td>
<td>—</td>
<td>14.5</td>
</tr>
<tr>
<td>Organo Montmorillonite</td>
<td>—</td>
<td>0.6</td>
</tr>
<tr>
<td>Tinting Colors (Phthalocyanine blue, Lampblack, and Yellow Iron Oxide)</td>
<td>Remainder</td>
<td></td>
</tr>
<tr>
<td>Vehicle composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkyd Resin, TT-R-266, Type I, Class A</td>
<td>—</td>
<td>57.0</td>
</tr>
<tr>
<td>Raw Linseed Oil, ASTM D 234</td>
<td>—</td>
<td>20.0</td>
</tr>
<tr>
<td>Mineral spirits, driers, antiskinning agents and methanol/water</td>
<td>23.0</td>
<td>—</td>
</tr>
<tr>
<td>95/5—priet Organo Montmorillonite with 95/5 methanol/ water before adding to grind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent non-volatile vehicle</td>
<td>—</td>
<td>59.0</td>
</tr>
<tr>
<td>Color: Match Federal Standard Colors No. 595-30111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Properties of finished paint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight, lbs/gal (kg/L)</td>
<td>—</td>
<td>11.5 (1.38)</td>
</tr>
<tr>
<td>Viscosity, Krebs units</td>
<td>75</td>
<td>68</td>
</tr>
<tr>
<td>Fineness of grind, North Standard</td>
<td>—</td>
<td>4.0</td>
</tr>
<tr>
<td>Requirement</td>
<td>Maximum</td>
<td>Minimum</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Paint Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment</td>
<td>—</td>
<td>40</td>
</tr>
<tr>
<td>Vehicle</td>
<td>60</td>
<td>—</td>
</tr>
<tr>
<td>Coarse Particles, total residue retained on No. 325 sieve, based on paint, percent by weight</td>
<td>0.5</td>
<td>—</td>
</tr>
<tr>
<td>Fineness of Grind, North Standard</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>Viscosity, Krebs Units</td>
<td>85</td>
<td>75</td>
</tr>
<tr>
<td>Moisture Content, percent by weight</td>
<td>0.5</td>
<td>—</td>
</tr>
<tr>
<td>Drying Time, hours</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>Weight, lbs/gal (kg/L)</td>
<td>—</td>
<td>10.1(1.21)</td>
</tr>
<tr>
<td>Color: Shall match the Department’s Standard Color Chip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc Hydroxy Phosphite, ASTM D 4462</td>
<td>—</td>
<td>25</td>
</tr>
<tr>
<td>Titanium Dioxide, ASTM D 476, Type IV</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Magnesium Silicate, ASTM D 605</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>Organo Montmorillonite¹</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Chromium Oxide, ASTM D 263</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Pure Tinting Colors (No chrome green allowed)</td>
<td>Remainder</td>
<td></td>
</tr>
<tr>
<td>Yellow Iron Oxide, ASTM D 768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Iron Oxide, ASTM D 3721</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamp Black, ASTM D 209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phthalocyanine Green,² ASTM D 3021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Volatile</td>
<td>—</td>
<td>55</td>
</tr>
<tr>
<td>Alkyd Resin Solution, Federal Specification TT-R-266, Type I, Class “A”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thinners and Driers</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>Thinners, Federal Specifications, TT-T-291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driers, ASTM D 600 Class “C”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: ¹ Prewet Organo Montmorillonite with 20-30% (95%) methyl alcohol by weight.
² Chlorinated Copper Phthalocyanine, full strength, oil dispersable.
Table 9—No. 3W, Waterborne Green

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment</td>
<td>—</td>
<td>15</td>
</tr>
<tr>
<td>Vehicle</td>
<td>85</td>
<td>—</td>
</tr>
<tr>
<td>Coarse Particles, total residue retained on 60 µm sieve, based on paint, percent by weight</td>
<td>0.5</td>
<td>—</td>
</tr>
<tr>
<td>Fineness of Grind, North Standard</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>Viscosity, Krebs Units</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Drying time, hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set to touch</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Dry through</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Weight, lbs/gal (kg/L)</td>
<td>—</td>
<td>9.35 (1.12)</td>
</tr>
</tbody>
</table>

Color: Shall match the Department's standard color chip

Pigment Composition, percent by weight		
Zinc Phosphatian	—	10
Titanium Dioxide, ASTM D 476, Type IV	—	5
Magnesium Silicate ASTM D 605	25	—
Calcium Carbonate	35	—
Pure Tinting Colors (No chrome green allowed)	Remainder	
Yellow Iron Oxide ASTM D 768		
Red Iron Oxide ASTM D 3721		
Lamp Black ASTM D 209		
Phthalocyanine Green ASTM D 3021		

Vehicle Composition, percent by weight		
Non-Volatile Binder Solids, HG-54 or HG-56¹	—	30
Methyl Carbitol	—	5
Texanol	—	4
Other Additives	5	—

NOTE: ¹or approved equivalent

B. Fabrication

1. No. 2B, Aluminum
 Prepare the aluminum paint by thoroughly mixing aluminum paste with mixing vehicle.
 a. Ensure the paints are well ground, do not settle or cake badly in the container, and are readily broken up to a smooth, uniform paint of good brushing consistency.
 b. Use 2 lbs (0.24 kg) of paste to 1.0 gal (1.0 L) of vehicle. Mix this at the factory.
 c. Ensure a thorough mix with a minimum of stirring. Ensure that the paint shows satisfactory leafing qualities and solidly covers in one coat without running, streaking, or sagging.
 d. If applying two coats of aluminum paint, tint the first coat with iron blue paste to help distinguish the two coats.

C. Acceptance

See Subsection 870.2.C.
D. Materials Warranty
 General Provisions 101 through 150.

870.2.02 Traffic Line Paints
A. Requirements

 Use traffic line paints that meet the applicable requirements of Subsection 870.2 and the following:

 1. No. 4C, Black Traffic Line Paint
 a. Paint Composition: (See Table 10).
 b. Finished Paint:
 1) Flexibility: Ensure paint flexibility by following this procedure:
 a) Use a doctor blade or other suitable means to apply the paint to a 30-guage (0.39 mm) clean tin plate
 panel. Apply to a wet film thickness of approximately 2 mils (0.05 mm).
 b) Dry the panel in a horizontal position for 18 hours, and then bake it for 5 hours at 220 °F to 225 °F
 (105 °C to 110 °C).
 c) Cool the panel to approximately 77 °F (25 °C) and bend double over a ½ inch rod (13 mm rod). Ensure
 that the film does not show cracking or flaking upon bending or straightening.
 2) Color: Ensure that the paint dries to a pure, flat black and furnishes the maximum amount of opacity and
 visibility under both daylight and artificial light.
 Ensure that the paint does not discolor when exposed to weather or traffic and does not appreciably discolor
 with stains during service life on either concrete or bituminous surfaces.
 3) Weight per gallon (liter): Use paint weighing at least 14.0 lb/gal (67 kg/L) at 77 °F (25 °C).
 4) Consistency: The paint viscosity when measured at 77 °F shall be 85 to 100 Krebs Units.
 5) Moisture content: The paint shall contain no more than 0.5% water.
 6) Drying: The paint shall dry to no pickup within 45 minutes when tested according to ASTM D 711.
 7) Spraying: The paint shall be factory-mixed ready for application through spray machines without using
 thinners.
 8) Storage: The paint shall not cake, liver, thicken, curdle, gel, or show other objectionable properties after
 storage for 6 months.
 9) Coarse particles and skins: The paint shall not contain more than 1.0 percent of coarse particles and skins.
 10) Fineness of Grind: The paint shall have a grind of 3 to 5 Hegman scale.
 11) Packaging: The finished paint shall be passed through a No. 40 mesh screen while filling the containers.
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment</td>
<td>43.0</td>
<td>41.0</td>
</tr>
<tr>
<td>Vehicle</td>
<td>59.0</td>
<td>57.0</td>
</tr>
<tr>
<td>Non-volatile vehicle, percent by weight of vehicle</td>
<td></td>
<td>42.0</td>
</tr>
<tr>
<td>Pigment composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamp Black, ASTM D 209</td>
<td>—</td>
<td>3.0</td>
</tr>
<tr>
<td>Calcium Carbonate, ASTM D 1199, Type GC (Note 1), Grade 1</td>
<td>34.0</td>
<td>32.0</td>
</tr>
<tr>
<td>Diatomaceous Silica, ASTM D 604, Type B</td>
<td>23.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Magnesium Silicate, ASTM D 605</td>
<td>44.0</td>
<td>42.0</td>
</tr>
<tr>
<td>Organo Montmorillonite (Note 2)</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Vehicle Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkyd resin solution</td>
<td>—</td>
<td>70.0</td>
</tr>
<tr>
<td>Petroleum thinner, driers, and other additives</td>
<td>30.0</td>
<td>—</td>
</tr>
<tr>
<td>Alkyd Resin Solution Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Pure Drying Alkyd</td>
<td></td>
</tr>
<tr>
<td>Type of oil</td>
<td>Soya, Linseed, or a mixture of the two</td>
<td></td>
</tr>
<tr>
<td>Non-volatile, percent by weight</td>
<td>61</td>
<td>59</td>
</tr>
<tr>
<td>Volatile type</td>
<td>VM & P Naphtha</td>
<td></td>
</tr>
<tr>
<td>Viscosity, Gardner-Holdt</td>
<td>Z^2</td>
<td>Z^3</td>
</tr>
<tr>
<td>Viscosity, at 45% solids</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>Color, Gardner—1953</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Acid number, solids basis</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>Alkyd Resin Solution Characteristics,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lbs/gal (kg/L) solution</td>
<td>7.75 (0.93)</td>
<td>7.66 (0.92)</td>
</tr>
<tr>
<td>Modifying oil iodine number (Note 3)</td>
<td>—</td>
<td>115</td>
</tr>
<tr>
<td>Phthalic Anhydride, percent by weight of non-volatile</td>
<td>—</td>
<td>33</td>
</tr>
<tr>
<td>Oil Acids, percent</td>
<td>55</td>
<td>48</td>
</tr>
<tr>
<td>Compatibility</td>
<td>500% in VM & P Naphtha</td>
<td></td>
</tr>
<tr>
<td>Resin and/or Derivatives</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Phenolic Resin Modifiers</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Notes for Table 10:

1. You may use the following chemical composition requirements for calcium carbonate in lieu of those for Type GC. However, all physical properties prescribed for Type GC, Grade 1, are required.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture and other volatile matter, percent by weight</td>
<td>0.2</td>
<td>—</td>
</tr>
<tr>
<td>Total Calcium and Magnesium Carbonates, percent by weight</td>
<td>— 3</td>
<td>95</td>
</tr>
</tbody>
</table>

2. Prewet Organo Montmorillonite with 20-30% (95%) methyl alcohol by weight.

3. Use modifying oil acids, isolated by Federal Test Method No. 141, Method 7031 that have an Iodine Number as specified in Table 870.8, Alkyd Resin Solution Characteristics.
2. No. 5A, Waterborne White Traffic Line Paint
 a. Paint Composition: (See Table 11).
 b. Finished Paint
 1) Flexibility: Apply the paint to a 30 gauge (0.39 mm), clean tin plate panel, to a wet film thickness of approximately 2 mils (0.05 mm). Use a doctor blade or other suitable means.
 a) Dry the panel horizontally for 18 hours.
 b) Bake the panel for 5 hours at 220 °C to 230 °F (105 °C to 110 °C).
 c) Cool the panel to about 77 °F (25 °C) and bend it double over a 1/2 in (13 mm) rod. Ensure that the film does not crack or flake when bent or straightened.
 2) Bleeding: Ensure that the paint does not bleed over a bituminous surface type used in Georgia.
 3) Color: Ensure that the paint dries to a pure, intense white and furnishes the maximum amount of opacity and visibility under both daylight and artificial light.
 Ensure that the paint does not discolor when exposed to weather or traffic and does not appreciably discolor with stains during service life on either concrete or bituminous surfaces.
 4) Consistency: Use paint with a viscosity of 80 - 100 Krebs units at 77 °F (25 °C).
 5) Drying: Ensure that the paint dries to no-pick-up within six minutes when tested according to ASTM D 711.
 Ensure that the paint dries through within 20 minutes when applied at 15 mils (0.38 mm) wet thickness at 77 °F (25 °C).
 6) Spraying: Mix the paint at the factory so it can be applied by spray machines without adding thinners.
 7) Storage: Ensure that the paint does not cake, liver, thicken, curdle, gel, or show any other objectionable properties after storage for six months.
 8) Coarse Particles and Skins: Ensure that the paint contains less than 1 percent of coarse particles and skins.
 9) Fineness of Grind: Ensure that the paint has a grind of 2 to 5 Hegman scale.
 10) Weight per liter gallon: Use paint weighing at least 14.00 lb/gal. at 77 °F (1.68 kg/L at 25 °C).
 11) Packaging: Pass the finished paint through a No. 40 (425 μm) screen while filling the containers.
 12) Freeze-Thaw and Heat Stability: Ensure that the paint shows no coagulation, discoloration, or change in consistency greater than 10 Krebs units, when tested according to TT-P-1952B.
 13) pH: Ensure that the pH is greater than 9.5.

Table 11—No. 5A Waterborne White Traffic Line Paint

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment</td>
<td>63.0</td>
<td>60.0</td>
</tr>
<tr>
<td>Vehicle</td>
<td>40.0</td>
<td>37.0</td>
</tr>
<tr>
<td>Non-Volatile Vehicle, percent by weight of vehicle</td>
<td>50.0</td>
<td>42.0</td>
</tr>
<tr>
<td>Pigment Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium Dioxide, ASTM D 476</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type II, Rutile</td>
<td></td>
<td>13.0</td>
</tr>
<tr>
<td>Calcium Carbonate, ASTM A 1199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type GC Grade 1</td>
<td>87.0</td>
<td>—</td>
</tr>
<tr>
<td>Vehicle Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylic Emulsion E-2706 or DT211NA (50% NV)</td>
<td>90.0</td>
<td>85.0</td>
</tr>
<tr>
<td>Methanol</td>
<td>3.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
3. No. 5B, Waterborne Yellow Traffic Line Paint
 a. Paint Composition: (See Table 12).
 b. Finished Paint:
 1) Flexibility: Apply the paint with a doctor blade to a 30 gauge (0.39 mm), clean tin plate panel, to a wet film thickness of approximately 2 mils (0.05 mm).
 a) Dry the panel horizontally for 12 hours.
 b) Bake the panel for 5 hours at 220 ° to 230 °F (105 ° to 110 °C).
 c) Cool the panel to about 77 °F (25 °C) and bend it double over a 1/2 in (13 mm) rod. Ensure that the film does not crack or flake when bent or straightened.

 2) Bleeding: Ensure that the paint does not bleed on any bituminous surface type used in Georgia.
 3) Color: Ensure that the paint dries to a bright yellow that matches color chip #33538 of Federal Color Standard #595B, within the limits of the Highway Yellow Color Tolerance Chart.
 Ensure that the paint does not discolor when exposed to weather or traffic and does not appreciably discolor from stains during service life on either concrete or bituminous surfaces.
 4) Consistency: Ensure a viscosity of 80 - 100 Krebs units at 77 °F (25 °C).
 5) Drying: Ensure that the paint dries to no-pick-up within 6 minutes when tested according to ASTM D 711.
 Ensure that the paint dries through within 20 minutes when applied at 15 mils (0.38 mm) wet thickness at
 77 °F (25 °C).
 6) Spraying: Mix the paint at the factory so it can be applied by spray machines without adding thinners.
 7) Storage: Ensure that the paint does not cake, liver, thicken, curdle, gel, or show any other objectionable properties after storage for 6 months.
 8) Coarse Particles and Skins: Ensure that the paint contains less than 1 percent of coarse particles and skins.
 9) Fineness of Grind: Ensure that the paint has a grind of 3 to 5 Hegman scale.
 10) Weight per Gallon (Liter): Use paint weighing at least 13 lb/gal (1.56 kg/L) at 77 °F (25 °C).
 11) Packaging: Pass the finished paint through a No. 40 (425 μm) screen while filling the containers.
 12) Freeze-Thaw and Heat Stability: Ensure that the paint shows no coagulation, discoloration, or change in consistency greater than 10 Krebs units, when tested according to TT-P-1952B.
 13) pH: Ensure that the pH is greater than 9.5.

Table 12—No. 5B, Waterborne Yellow Traffic Line Paint

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigment, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>63.0</td>
<td>60.0</td>
</tr>
<tr>
<td>Non-Volatile Vehicle, percent by weight of vehicle</td>
<td>40.0</td>
<td>37.0</td>
</tr>
<tr>
<td>Pigment Composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium Dioxide, ASTM D 476 Type II, Rutile</td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Requirement</td>
<td>Maximum</td>
<td>Minimum</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Lead-free organic yellow No. 65</td>
<td>—</td>
<td>5.0</td>
</tr>
<tr>
<td>Calcium Carbonate, ASTM D 1199 Type GC Grade 1</td>
<td>91.0</td>
<td>—</td>
</tr>
</tbody>
</table>

Vehicle Composition, percent by weight

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylic Emulsion E-2706 or DT211NA (50% NV)¹</td>
<td>90.0</td>
<td>85.0</td>
</tr>
<tr>
<td>Methanol</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Texanol Coalsecent</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Other Additives</td>
<td>5.0</td>
<td>—</td>
</tr>
<tr>
<td>Propylene Glycol</td>
<td>—</td>
<td>3.0</td>
</tr>
</tbody>
</table>

NOTE: ¹or approved equivalent

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

See Subsection 870.2.C.

D. Materials Warranty

General Provisions 101 through 150.

870.2.03 Sign Enamel

A. Requirements

1. Ensure that sign enamels, either baking or air-drying, except black, meet the requirements of Federal Specifications TT-E-489 and Subsection 870.2.

2. Use the identified class shown in Table 13 for the respective types. Also, ensure that each color matches Federal Standard 595A as designated.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class</td>
<td>Type</td>
</tr>
<tr>
<td>Yellow</td>
<td>13538</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>White</td>
<td>17875</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Red</td>
<td>11105</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Blue</td>
<td>15090</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Green</td>
<td>14109</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

3. For a black sign enamel, use a semi-gloss enamel that matches Federal Standard Number 595 A, Color 27038 and meets the requirements of Military Specifications MIL-E-698 B and Subsection 870.2.

B. Fabrication

Prepare the surface and use a primer recommended by the manufacturer of the sign enamel.
C. Acceptance
 See Subsection 870.2.C.

D. Materials Warranty
 General Provisions 101 through 150.

870.2.04 Paint for Timber
A. Requirements
 Ensure that paints for timber meet the requirements of Subsection 870.2 and Federal Specification TT-P-104b, unless otherwise specified.
 1. If lead-free, fume-resistant paint is specified, ensure that it meets the requirements of Federal Specification TT-P-103b.
 2. If chalking is a specified requirement, ensure that the paint meets Federal Specification TT-T-103b modified to require that the percentage of anatase be equal to that specified in TT-P-103b for both rutile and anatase.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 See Subsection 870.2.C.

D. Materials Warranty
 General Provisions 101 through 150.

870.2.05 Miscellaneous Paints
A. Requirements
 1. Paint for Steel Piling and Sway Bracing
 Use paint for steel piling and sway bracing that meets the requirements of Subsection 870.2 and the following:
 a. No. 1P, General: Ensure that materials used as a primer and/or finish coat are formulated from either a coal tar pitch or a native pyrobitumen resin. You may use other types of material if they meet the requirements in Table 14, below.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Black</td>
</tr>
<tr>
<td>Odor</td>
<td>Ensure coal tar materials have no pyridine, pyridine base, or tar acid odor.</td>
</tr>
<tr>
<td>Consistency</td>
<td>Easily applied by brush or spray to a coverage of 60 ft²/gal (1.5 m²/L), without sagging, yielding film thicknesses of about 26 mils (0.66 mm) wet and 13 mils (0.33 mm) dry.</td>
</tr>
<tr>
<td>Drying time</td>
<td>Apply at a rate of 60 ft²/gal (1.5 m²/L). Ensure that the material dries to a firm film within 24 hours at 70 ° - 80 °F (21 ° - 27 °C) and can receive a second coat.</td>
</tr>
</tbody>
</table>
| Chemical resistance | Ensure that the material remains intact and in good condition when immersed for 30 days in each of the following inorganic acids, alkalis, and salts:
 - 5% sulfuric acid
 - 5% hydrochloric acid
 - 2% phosphoric acid
 - 5% sodium hydroxide
 - 25% sodium chloride
 - 25% calcium chloride |

1) Durability: Before initially accepting a product to be supplied under this Specification, the complete system—from primer, when required, to finish coat(s)—shall be subjected to accelerated weathering and atmospheric exposure tests according to ASTM D 822 and ASTM G 23, Type D.
2) Ensure that the system remains intact without cracking, and prevents significant steel corrosion for at least 1,500 hours exposure in the accelerated weathering test, and 5 years atmospheric exposure in a coastal environment.

3) The State Materials and Research Engineer may approve systems that perform satisfactorily for up to 3,000 hours of accelerated weathering pending completion of the 5-year atmospheric exposure tests.

4) After the Department initially accepts the material, you do not need to test each lot of material. However, the Department will conduct other durability tests at its discretion.

b. No. 2P, Special Provisions Coating: Use special protective coatings instead of any other coating required by the Specifications for steel-H piling, steel sway bracing, metal shells for cast-in-place concrete piling, or prestressed concrete piling in all intermediate bents of the cap and pile trestle-type.

1) Get approval from the Laboratory for the protective coating material.

2) Use a two-component, chemically cured, coal-tar epoxy that meets the requirements of either Type I, Class 2, Military Specification MIL-P-23236 (Ships) or U.S. Corps of Engineers Specification C-200.

3) Ensure that the coating exhibits optimum chemical and physical resistance to alkalies and mineral acids under continuous immersion service.

4) Ensure that the cured coating withstands considerable physical abuse such as direct impact, abrasion, and flexing.

5) Furnish a written certification to the Engineer that the material meets the requirements of these Specifications.

2. Galvanizing Repair Compound

Use a compound that meets the general requirements of Subsection 870.2 and Table 15.

<table>
<thead>
<tr>
<th>Table 15—Galvanizing Repair Compound Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint Composition, percent by weight</td>
</tr>
<tr>
<td>Pigment</td>
</tr>
<tr>
<td>Vehicle</td>
</tr>
</tbody>
</table>

| Pigment Composition, percent by weight |
Zinc dust, Federal Specification TT-P-460	99	95
Dust (Metallic Zinc Powder), Type 1 Lead Suboxide Stabilizer	0.15	—
Suspending Agent	1.85	—

| Vehicle Composition, percent by weight |
| Non-Volatile Vehicle | — | 18 |
| Volatile Vehicle | 82 | — |

a. Non-volatile Vehicle: Use chlorinated rubber and a suitable plasticizer for the non-volatile portion of the vehicle. Ensure that the chlorine content, based on the non-volatile vehicle, is at least 60 percent by weight.

b. Volatile Vehicle: Use a volatile vehicle that is completely compatible with the other ingredients of the finished product. Ensure that the vehicle meets all the physical and chemical requirements of the end product.

c. Finished Compound: Ensure that the finished compound meets the requirements of Table 16.
Table 16—Finished Compound Requirements

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition in the container</td>
<td>No pigment component of the ready-mixed compound settles. When the package remains unopened for one year, you can readily disperse the pigment by hand mixing. The vehicle does not liver, curdle, or show excessive bodying.</td>
</tr>
<tr>
<td>Application</td>
<td>The material to repair galvanizing and to galvanize welds in the field shall be such that when applied, there is no unusual difficulty in horizontal, vertical, or overhead positions.</td>
</tr>
<tr>
<td>Adhesion</td>
<td>Expose test panels coated according to field application specifications to weather for at least 3 months in a position 45 degrees vertical, facing south. After this time, ensure that the test panels show no visible signs of peeling or flaking.</td>
</tr>
<tr>
<td>Gassing</td>
<td>No build up of gas or excessive pressure in the container when stored at room temperature for 3 months.</td>
</tr>
<tr>
<td>Dry film thickness</td>
<td>The compound leaves a dry film between 2 - 2.1/2 mils (0.051 - 0.064 mm) thick, when applied according to field application specifications.</td>
</tr>
<tr>
<td>Drying time</td>
<td>The compound is set to touch in 30 minutes and is dry to recoat in 4 hours. The material is thoroughly hard within 48 hours after application.</td>
</tr>
<tr>
<td>Hardness</td>
<td>Dry and cure the test panels coated under these Specifications for at least 48 hours. Brush a section by hand with a wire brush. Continue brushing until you see bright metal. Measure the dry film thickness. Accept the material if the brushing does not reduce the film below the specified thickness.</td>
</tr>
<tr>
<td>Consistency</td>
<td>Viscosity at 77 °F (25 °C) is 123 ± 7 Krebs units, as measured by the Stormer Viscometer.</td>
</tr>
<tr>
<td>Weight per lb (liter)</td>
<td>22 ± 10% lbs (2.64 ± 10% kg) at 77 °F (25 °C).</td>
</tr>
<tr>
<td>Packaging</td>
<td>Commercial paint packaging is acceptable for containers smaller than 1 gal (3.8 L). For 1 gal (3.8 L) packages, use No. 26 gauge steel pails. Do not pack more than 1 gal (3.8 L) of compound in a single container.</td>
</tr>
<tr>
<td>Storage</td>
<td>Store the compound where the temperature stays above 45 °F (7 °C).</td>
</tr>
</tbody>
</table>

3. **Aluminum Caulking Compound**
 Use a compound that meets the requirements of Subsection 870.2, third bullet, and Table 17.

Table 17—Aluminum Caulking Compound Requirements

<table>
<thead>
<tr>
<th>Properties</th>
<th>Max.</th>
<th>Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment</td>
<td>—</td>
<td>72</td>
</tr>
<tr>
<td>Vehicle</td>
<td>28</td>
<td>—</td>
</tr>
<tr>
<td>Pigment composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium carbonate, ASTM D 1199, Type GC</td>
<td>—</td>
<td>72</td>
</tr>
<tr>
<td>Mineral filler</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>Aluminum paste, Federal Specification TT-P-320c, Type II, Class III</td>
<td>—</td>
<td>10</td>
</tr>
<tr>
<td>Titanium Dioxide ASTM D 476, Type II, Class II</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Vehicle composition, percent by weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-volatile</td>
<td>—</td>
<td>78.5</td>
</tr>
</tbody>
</table>
870.2.06 Miscellaneous Paint Materials

A. Requirements

Use other paint materials that meet the following requirements:

1. **Raw Linseed Oil**: Use oil that meets the requirements of ASTM D 234.
2. **Boiled Linseed Oil**: Use oil that meets the requirements of ASTM D260.
3. **Turpentine**: Use turpentine that meets the requirements of ASTM D 13.
4. **Mineral Spirits**: Use petroleum spirits (mineral spirits) that meet the requirements of ASTM D 235.
5. **Spar Varnish**: Use Varnish, Spar Phenolic Resin, as per Federal Specification TT-V-119.
6. **Tinting Pigment Paste**: Use lampblack, venetian blue, or iron blue as tinting pigments.
 - The Engineer may approve other tinting pigments, subject to limitations.
 - Add all tinting pigments in paste form.
7. **Putty**: Use putty that meets the requirements of Federal Specifications TT-P-791a, Type II.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

General Provisions 101 through 150.

D. Materials Warranty

General Provisions 101 through 150.

Properties Table

<table>
<thead>
<tr>
<th>Property</th>
<th>Max.</th>
<th>Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refined vegetable oil</td>
<td>—</td>
<td>54</td>
</tr>
<tr>
<td>Polybutene oil</td>
<td>—</td>
<td>24.5</td>
</tr>
<tr>
<td>Fatty acid</td>
<td>—</td>
<td>3.5</td>
</tr>
<tr>
<td>Thinner and drier</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Color: aluminum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency</td>
<td>Can be applied by hand caulking gun, knife, or trowel.</td>
</tr>
<tr>
<td>Adhesion</td>
<td>Good adhesion to any dry, dust-free, or oil-free surface.</td>
</tr>
<tr>
<td>Curing</td>
<td>A light film forms in 48 to 72 hours. A tough metallic film develops in 2 to 3 weeks.</td>
</tr>
<tr>
<td>Exposure</td>
<td>Good resistance to water and weather.</td>
</tr>
</tbody>
</table>
Section 880—Water

880.1 General Description
This section includes the requirements for water used in Portland cement mixtures.

880.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 AASHTO T 26
 AASHTO T 71
 ASTM C 403
 GDT 26

880.2 Materials

880.2.01 Water for Portland Cement Mixtures
A. Requirements
 1. Use water that is reasonably clear without oil, salt, acid, alkali, organic, and other injurious substances.
 2. The Department may allow drinking water that is used for ordinary household use without testing it.
 3. Do not use water from shallow, muddy, or marshy surfaces. Test and approve all other sources before using them.
 4. When the source of water is relatively shallow, ensure that the source depth and intake exclude silt, mud, grass, and all other foreign material.
 5. Do not use water with detergents that will entrain air in Portland cement concrete.
 6. Do not use water with impurities above the following limits:

<table>
<thead>
<tr>
<th>Impurity</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidity or alkalinity calculated in terms of calcium carbonate</td>
<td>0.05%</td>
</tr>
<tr>
<td>Total organic solids</td>
<td>0.05%</td>
</tr>
<tr>
<td>Total inorganic solids</td>
<td>0.05%</td>
</tr>
<tr>
<td>Sulfate (SO₄)</td>
<td>0.05%</td>
</tr>
<tr>
<td>Chloride</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will reject any water that, when compared with accepted water, shows any indication of unsoundness, marked change in time of set, or reduction of more than 10 percent in mortar strength.
 Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality of water, solids ppm</td>
<td>AASHTO T 26</td>
</tr>
<tr>
<td>Setting time of concrete mixtures</td>
<td>ASTM C 403</td>
</tr>
<tr>
<td>Mortar making properties</td>
<td>AASHTO T 71</td>
</tr>
</tbody>
</table>
880.2.02

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air content of concrete</td>
<td>GDT 26</td>
</tr>
<tr>
<td>SO₄ ppm, Alkalis, ppm</td>
<td>ASTM D 516</td>
</tr>
<tr>
<td>Cl, ppm</td>
<td>AASHTO T 260</td>
</tr>
</tbody>
</table>

D. Materials Warranty

General Provisions 101 through 150.

880.2.02 Recycled Wash Water

A. Requirements

Recycled Wash Water shall conform to AASHTO M 157 and meet the following requirements:

<table>
<thead>
<tr>
<th>Chemical Designation</th>
<th>Limits</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄, ppm</td>
<td>3000 ppm</td>
<td>ASTM D 516</td>
</tr>
<tr>
<td>Alkalis, ppm</td>
<td>600 ppm</td>
<td>ASTM D 516</td>
</tr>
<tr>
<td>Total Solids, ppm</td>
<td>50,000 ppm</td>
<td>AASHTO T 26</td>
</tr>
<tr>
<td>Cl, ppm</td>
<td>600 ppm</td>
<td>AASHTO T 260</td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Conduct test methods according to the following:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality of Water, Solids, ppm</td>
<td>AASHTO: T26</td>
</tr>
<tr>
<td>Setting Time of Concrete Mixtures</td>
<td>ASTM: C 403</td>
</tr>
<tr>
<td>Mortar Making Properties</td>
<td>AASHTO: T 71</td>
</tr>
<tr>
<td>Air Content of Concrete</td>
<td>GDT: 26</td>
</tr>
<tr>
<td>SO₄, ppm, Alkalis, ppm</td>
<td>ASTM D 516</td>
</tr>
<tr>
<td>Cl, ppm</td>
<td>AASHTO T 260</td>
</tr>
</tbody>
</table>

Section 881—Fabrics

881.1 General Description

This section includes the requirements for the following fabrics:

- Plain cotton duck
- Rubber-impregnated cotton duck
- Burlap and cotton bags
- Plastic filter fabric
- Pavement reinforcement fabric
- Silt fence filter fabric
881.1.01 Related References
A. Standard Specifications
 Section 106—Materials Certification
B. Referenced Documents
 Federal Specification CCC-C 419 Type III
 ASTM D 36
 ASTM D 146
 ASTM D 412
 ASTM D 1777
 ASTM D 3786
 ASTM D 4355
 ASTM D 4632, GRAB
 ASTM D 4751
 ASTM D 4833
 GDT 87
 GDT 88
 GDT 95
 QPL 28
 QPL 36
 QPL 40
 QPL 47

881.2 Materials
881.2.01 Plain Cotton Duck
A. Requirements
 1. Use plain cotton duck that meets the requirements of Federal Specification CCC-C 419 Type III.
 2. Ensure that the duck weighs at least 8 oz./yd² (270 g/m²).
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 General Provisions 101 through 150.

881.2.02 Rubber-Impregnated Cotton Duck
A. Requirements
 1. Use preformed rubber-impregnated fabric pads made of multiple layers of 8 oz (270 g) cotton duck, impregnated and bound with high quality natural rubber, or made of equivalent materials compressed into resilient pads of uniform thickness.
 2. Use enough plies to reach the specified thickness after compression and vulcanizing.
 3. Ensure that the finished pad withstands compression loads of not less than 10,000 psi (70 MPa) when applied perpendicular to the plane of the laminations. Ensure that the pad does not extrude or harmfully reduce in thickness.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 General Provisions 101 through 150.

881.2.03 Burlap Bags
A. Requirements
 1. Use burlap bags made of at least 95 percent jute and manila fibers.
 2. Use burlap that weighs 8 to 18 oz/10 ft² (250 to 550 g/m²).
 3. Use bags with a capacity of 1 to 2 ft³ (0.03 to 0.06 m³).
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 General Provisions 101 through 150.

881.2.04 Cotton Bags
A. Requirements
 1. Use cotton bags with Osnaburg 40 x 26 thread count and a nominal fabric weight of 6.8 oz/yd² (230 g/m²).
 2. Use bags that have 1/2 in (13 mm) sewn seams with at least 1 stitch per 1/5 in (5 mm).
 3. Use 4 or 5 ply, 12 cotton yarn or equivalent for the stitches.
 4. Ensure that seam efficiency is at least 80 percent. Ensure that the inside measurements tolerance is ± 1/2 in (13 mm).
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 General Provisions 101 through 150.

881.2.05 Plastic Filter Fabric
A. Requirements
 1. Use pervious sheets of plastic yarn made from a long-chain synthetic polymer. Use polymer composes of at least 85 percent by weight of propylene, ethylene, amide, ester, or vinylidene chloride.
 Use a sheet of plastic yarn that contains stabilizers and/or inhibitors added to the base plastic to make the filaments resistant to deterioration due to ultra-violet and/or heat exposure.
 2. Ensure that the fabric is finished so that the filaments will retain their relative position with respect to each other.
 3. Use fabric without defects, rips, holes, or flaws.
4. Use fabric that meets the following physical requirements for woven and non-woven fabric:

<table>
<thead>
<tr>
<th></th>
<th>Woven Fabrics</th>
<th>Non-woven Fabrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength (any direction)</td>
<td>200 lbs (890 N) minimum</td>
<td></td>
</tr>
<tr>
<td>Bursting strength</td>
<td>500 psi (3.5 MPa) minimum</td>
<td></td>
</tr>
<tr>
<td>Elongation before breaking</td>
<td>10% to 35%</td>
<td></td>
</tr>
<tr>
<td>Percent open area</td>
<td>4.0% to 6.5%</td>
<td></td>
</tr>
<tr>
<td>Puncture resistance</td>
<td>30 lbs (135 N) minimum</td>
<td></td>
</tr>
<tr>
<td>Grab tensile strength</td>
<td>65 lbs (290 N) minimum</td>
<td></td>
</tr>
<tr>
<td>Grab elongation</td>
<td>40% minimum</td>
<td></td>
</tr>
<tr>
<td>Flow rate [H from 3 to 1 in (75 to 25 mm)]</td>
<td>50 gal/min/ ft² (34 liters/second/m²) (minimum)</td>
<td>350 gal/ min/ft² (240 liters/second/m²) (maximum)</td>
</tr>
</tbody>
</table>

5. Seams
 a. Get approval on the seams from the Engineer before use on a Project.
 b. Use fabric that is sewn with thread of the same chemical requirements as the fabric, or use fabric bound with cement or heat. Either have the fabric bound or sewn at the point of manufacture or at a location approved by the Engineer.
 c. Seam Uses: You may use one seam in edge drain and underdrain applications.
 You may bond or sew fabric together to form sections at least 6 ft (1.8 m) wide for use under rip rap or behind retaining walls.

6. Fabric Use
 a. Use woven fabrics beneath rip rap when dropping stone from 3 ft (1 m) or less.
 b. You may use woven fabrics that meet the flow rate for edge drains.
 c. Use non-woven fabrics to line edge drains, underdrains, or behind retaining walls, where specified.
 d. Do not use non-woven fabrics for filter beneath rip rap.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Test according to the following:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puncture resistance</td>
<td>ASTM D 4833</td>
</tr>
<tr>
<td>Tensile strength, elongation, grab strength</td>
<td>ASTM D 4632</td>
</tr>
<tr>
<td>Bursting strength</td>
<td>ASTM D 3786</td>
</tr>
<tr>
<td>Percent open area</td>
<td>GDT 88</td>
</tr>
<tr>
<td>Flow rate</td>
<td>GDT 87</td>
</tr>
</tbody>
</table>

1. See QPL 28 for acceptable woven and non-woven fabrics that meet the requirements of this Specification. See QPL 47 for acceptable Geocomposite wall drains.
2. The Department will reject any fabrics that meet this Specification but fail to perform in actual use.
D. Materials Care and Warranty

Wrap fabric in burlap or similar heavy duty protection during shipment and storage to protect it from mud, dirt, dust, and debris.

881.2.06 Pavement Reinforcement Fabric

A. Requirements

Type I and Type II Pavement Reinforcement Fabric

1. Use pavement reinforcement fabric that has the following properties:

- Is non-woven, heat-resistant material composed of polypropylene or polyester fibers
- Can be saturated with asphalt cement
- Can be placed smooth with mechanical devices and be without wrinkles
- Can withstand the heat of asphaltic concrete mixes during paving operations
- Can withstand normal field handling and construction operations without damage

For a list of sources, see QPL 40.

- Meets the following physical requirements. The bid item or Plans will indicate which type of fabric is required for a Project.

<table>
<thead>
<tr>
<th></th>
<th>Type I</th>
<th>Type II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength, minimum</td>
<td>90 lbs (400 N)</td>
<td>125 lbs (555 N)</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>40% min., 100% max.</td>
<td>40% min., 100% max.</td>
</tr>
<tr>
<td>Asphalt retention, minimum</td>
<td>0.18 gal/yd² (0.8 L/m²)</td>
<td>0.28 gal/yd² (1.3 L/m²)</td>
</tr>
</tbody>
</table>

2. Submit a certificate from the manufacturer that shows the physical properties of the material used and how it meets this Specification. Submit the certificate according to Subsection 106.05, “Materials Certification.”

3. Demonstrate to the Department that fabric meeting the physical properties requirements of this Specification has been used successfully in installations with similar environmental and Project conditions.

High Strength Pavement Reinforcement Fabric

1. Use pavement reinforcement fabric that has the following properties:

- Is a flexible, water-resistant, high-density asphaltic membrane laminated between two layers of high strength, heat resistant polypropylene or polyester fabric.
- Can be placed smooth with mechanical devices and be without wrinkles.
- Can withstand the heat of asphaltic concrete mixes during paving operations.
- Can withstand normal field handling and construction operations without damage.
- May have a self-adhesive backing adhered to a film release liner.

For a list of sources, see QPL 40.

- Meets the following physical requirements. The bid item or Plans will indicate which type of fabric is required for a Project.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Width, minimum</td>
<td>18 in (450 mm)</td>
</tr>
<tr>
<td>Tensile strength, minimum</td>
<td>1,800 lbs/in² (12 MPa)</td>
</tr>
<tr>
<td>Elongation</td>
<td>20% to 50%</td>
</tr>
<tr>
<td>Softening Point (Asphaltic membrane), minimum</td>
<td>190 °F (87 °C)</td>
</tr>
</tbody>
</table>
2. Submit a certificate from the manufacturer that shows the physical properties of the material used and how it meets this Specification. Submit the certificate according to Subsection 106.05, “Materials Certification.”
3. Demonstrate to the Department that fabric meeting the physical properties requirements of this Specification has been used successfully in installations with similar environmental and Project conditions.

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Type I and Type II Pavement Reinforcement Fabric
Test according to the following:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>ASTM D 4632 Grab</td>
</tr>
<tr>
<td>Elongation</td>
<td>ASTM D 4632 Grab</td>
</tr>
<tr>
<td>Asphalt retention</td>
<td>GDT 95</td>
</tr>
</tbody>
</table>

High Strength Pavement Reinforcement Fabric
Test according to the following:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>ASTM D 412</td>
</tr>
<tr>
<td>Elongation</td>
<td>ASTM D 412</td>
</tr>
<tr>
<td>Softening Point</td>
<td>ASTM D 36</td>
</tr>
<tr>
<td>Caliper</td>
<td>ASTM D 1777</td>
</tr>
<tr>
<td>Pliability (Cold Flex)</td>
<td>ASTM D 146</td>
</tr>
</tbody>
</table>

D. Materials Warranty
General Provisions 101 through 150.

881.2.07 Silt Fence Filter Fabric
A. Requirements
1. Use approved silt fence from QPL 36.
 a. Type “A” and “B” Fences: Use either woven or nonwoven filter fabric for Type “A” and “B” fences. If using woven fabric, the fabric may have slit tape yarns in one direction (warp or fill) only.
 b. Type “C” Fences: Use non-calendered woven fabric constructed with monofilament yarns only.

NOTE: Approved fabrics must consistently exceed the minimum requirements of this Specification as verified by the Office of Materials and Research. If a fabric is removed from the Qualified Products List, do not use it in the work until the Department has reestablished the product’s acceptability.
2. Ensure that silt fence filter fabrics have the following characteristics:
 - Has strong rot-proof synthetic fibers formed into either a woven or non-woven fabric
 - Has no treatment or coating that might significantly alter its physical properties after installation
 - Contains stabilizers and/or inhibitors to make the filaments resistant to deterioration resulting from exposure to sunlight or heat
 - Makes a pervious sheet of synthetic fibers oriented into a stable network so that the fibers retain their relative position with respect to each other under normal handling, installation, and service conditions
 - Has finished fabric edges to prevent the outer yarn from pulling away from the fabric
 - Has no defects or flaws that would significantly affect its physical and/or filtering properties
 - Meets the following physical or dimensional requirements:

<table>
<thead>
<tr>
<th>Type Fence</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elongation (% Max.)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Apparent opening size (max. sieve size)</td>
<td>No. 30 (600 um)</td>
<td>No. 30 (600 um)</td>
<td>No. 30 (600 um)</td>
</tr>
<tr>
<td>Flow rate, gal./min./ft² (L/min./m²)</td>
<td>25 (1015)</td>
<td>25 (1015)</td>
<td>70 (2850)</td>
</tr>
<tr>
<td>Ultraviolet stability (2)</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Bursting strength, psi (kPa)</td>
<td>175 (1200)</td>
<td>175 (1200)</td>
<td>175 (1200)</td>
</tr>
<tr>
<td>Minimum fabric width</td>
<td>36 in (900 mm)</td>
<td>22 in (550 mm)</td>
<td>36 in (900 mm)</td>
</tr>
</tbody>
</table>

1. Minimum roll average of five specimens.
2. Percent of required initial minimum tensile strength.

B. Fabrication

The fabric may be manufactured with pockets for posts, hems with cord, or with posts pre-attached using staples or button head nails.

Ensure that the fabric has the manufacturer’s mark, either with an approved color mark yarn in the fabric or the manufacturer’s name and product trade name labeled on the fabric at a minimum of 100 ft (30 m) intervals.

C. Acceptance

Test according to the following:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>ASTM D 4632</td>
</tr>
<tr>
<td>Elongation</td>
<td>ASTM D 4632</td>
</tr>
<tr>
<td>Apparent opening size</td>
<td>ASTM D 4751</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>GDT 87</td>
</tr>
<tr>
<td>Ultraviolet stability</td>
<td>ASTM D 4632 (after 300 hours weathering according to ASTM D 4355)</td>
</tr>
<tr>
<td>Bursting strength</td>
<td>ASTM D 3786, Diaphragm Bursting Strength Tester</td>
</tr>
</tbody>
</table>

D. Materials Care and Warranty

Wrap fabric in a heavy-duty protective covering during shipment and storage to protect it from mud, dirt, dust and debris.

Do not expose fabric to temperatures greater than 140 °F (60 °C).

881.2.08 Filter Fabric for Embankment Stabilization

See Special Provision.
882.1 General Description
This Section includes the requirements for agricultural lime; lime for soil stabilization; and lime for asphaltic concrete.

882.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 AASHTO M 303
 ASTM C 25
 ASTM C 110
 ASTM C 977
 “Official Methods of Analysis,” Association of Official Agricultural Chemists
 QPL 41

882.2 Materials
882.2.01 Agricultural Lime
A. Requirements
 Use agricultural lime made of ground dolomitic limestone with the following properties:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total carbonates, min.</td>
<td>85</td>
</tr>
<tr>
<td>Elemental magnesium derived from magnesium carbonate, min.</td>
<td>6</td>
</tr>
<tr>
<td>Passing No. 10 (2.00 mm) sieve, min</td>
<td>90</td>
</tr>
<tr>
<td>Passing No. 100 (150 µm) sieve, min</td>
<td>25</td>
</tr>
</tbody>
</table>

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Test agricultural lime according to the “Official Methods of Analysis” of the Association of Official Agricultural Chemists.

D. Materials Warranty
 General Provisions 101 through 150.

882.2.02 Lime for Soil Stabilization
A. Requirements
 Use either a commercial dry hydrated lime or a commercial granular or pelletized quicklime for soil stabilization.
 1. Hydrated Lime: Use hydrated lime that meets the requirements of ASTM C 977, except that at least 85 percent by weight of the lime shall pass the No. 200 (75 µm) sieve.
 2. Quicklime: Use quicklime that meets the requirements of ASTM C 977, except that the lime shall contain at least 94 percent total calcium oxide and magnesium oxide (CaO + MgO), and at least 90 percent total available calcium oxide (CaO).
882.2.03 Lime for Asphaltic Concrete

A. Requirements
Use hydrated lime that meets the chemical and physical properties of AASHTO M 303, Type I.

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Test the hydrated and quicklime used for soil stabilization according to ASTM C 977.

D. Materials Warranty
General Provisions 101 through 150.

882.2.03 Lime for Asphaltic Concrete

<table>
<thead>
<tr>
<th>Grade A</th>
<th>Grade B</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% passes the 3/8 in (9.5 mm) sieve</td>
<td>100% passes the No. 10 (2.00 mm) sieve</td>
</tr>
<tr>
<td>0% passes the 1/4 in (6.3 mm) sieve</td>
<td></td>
</tr>
</tbody>
</table>

b. Furnish certified test reports with each shipment of lime attesting that the lime meets the requirements of the Specification. However, the Engineer may inspect, test, and reject the material at any time.

c. You may use lime from more than one source or more than one type on the same Project, but do not mix the limes.

d. Protect the lime from exposure until used. Ensure that the lime is dry enough to flow freely when handled.

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
Test the hydrated and quicklime used for soil stabilization according to ASTM C 977.

D. Materials Warranty
General Provisions 101 through 150.

882.2.03 Lime for Asphaltic Concrete

A. Requirements
Use hydrated lime that meets the chemical and physical properties of AASHTO M 303, Type I.

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
1. Run the chemical analysis of hydrated lime used in asphaltic concrete according to ASTM C 25.
2. Test the physical properties of the hydrated lime according to the residue test in ASTM C 110.

NOTE: QPL 41 for lime is used in asphaltic concrete only.

3. See QPL 41 for acceptable hydrated lime that meets the requirements of this Specification.

D. Materials Warranty
General Provisions 101 through 150.

Section 883—Mineral Filler

883.1 General Description
This section covers mineral filler added as a separate ingredient for use in bituminous paving mixtures. Use mineral filler that consists of finely divided mineral matter such as rock dust, slag dust, hydrated lime, hydraulic cement, fly ash, or other suitable mineral filler. Ensure that at the time of use it is sufficiently dry, flows freely, and is free from lumps.

883.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 AASHTO PP 1
 AASHTO T 90
AASHTO T 240
AASHTO TP 1
AASHTO TP 5
GDT 2

883.2 Materials

883.2.01 Mineral Filler

A. Requirements

Mineral filler shall be graded within the following limits:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 30 (600 μm)</td>
<td>100</td>
</tr>
<tr>
<td>No. 50 (300 μm)</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 200 (75 μm)</td>
<td>55-100</td>
</tr>
</tbody>
</table>

Ensure that the mineral filler is free from organic impurities and has a plasticity index not greater than 4. Plasticity index limits are not appropriate for hydrated lime and hydraulic cement.

Thoroughly blend mineral filler to be used in Stone Matrix Asphalt mixtures with asphalt cement and fiber stabilizing additives into a homogenous mixture. The total fine mortar shall then meet the following requirements:

<table>
<thead>
<tr>
<th>Test</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unaged DSR, G*/sin(°) (kPa)</td>
<td>5 minimum</td>
</tr>
<tr>
<td>RTFO Aged DSR, G*/sin(°) (kPa)</td>
<td>11 minimum</td>
</tr>
<tr>
<td>PAV Aged BBR, Stiffness (MPa)</td>
<td>1500 maximum</td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Sieve Analysis of Mineral Filler</th>
<th>GDT 22*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasticity Index</td>
<td>AASHTO T 90</td>
</tr>
</tbody>
</table>

* A laser diffraction particle size distribution analyzer may be used in lieu of this test.

Mortar Properties to be based on NCAT procedure for Laboratory Preparation and Testing of HMA Mortars using AASHTO T240, AASHTO PP1, AASHTO TP1, and AASHTO TP5.

D. Materials Warranty

General Provisions 101 through 150.

Section 884—Chlorides

884.1 General Description

This section includes the requirements for calcium chloride.

884.1.01 Related References

A. Standard Specifications

General Provisions 101 through 150.
Referenced Documents

AASHTO M 144

884.2 Materials

884.2.01 Calcium Chloride

A. Requirements

Use calcium chloride that meets the requirements of AASHTO M 144, Type I or Type II.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

General Provisions 101 through 150.

D. Materials Warranty

General Provisions 101 through 150.

Section 885—Elastomeric Bearing Pads

885.1 General Description

This section includes the requirements for elastomeric bearing pads.

885.1.01 Related References

A. Standard Specifications

Section 106—Control of Materials

B. Referenced Documents

AASHTO Standard Specifications for Highway Bridges: Divisions I and II

AASHTO M 251

885.2 Materials

885.2.01 Elastomeric Pads

A. Requirements

1. Type

Use elastomeric bearing pads of the types, dimensions, and shapes specified in the Plans.

a. Design the pads according to Division I of the AASHTO Standard Specifications for Highway Bridges.

b. Use 100 percent virgin chloroprene (neoprene) that meets the requirements of AASHTO M 251 as the elastomer portion of the compound, unless otherwise specified.

2. Certification:

Submit, with each shipment from the neoprene manufacturer, a certification to the Engineer about the physical properties of the material and compliance with these specifications.

a. Submit a certificate from the pad manufacturer stating that the lot representing the shipment has been tested according to AASHTO M 251.

b. Include test results data in the certificates.

B. Fabrication

Use the materials, fabricate, and install the pads according to Division II of the AASHTO Standard Specifications for Highway Bridges.
C. Acceptance
The Department will accept the pads based on the material certification and inspection of each pad. The Department will inspect the pads when received for compliance to quality of work, type, dimension, and shape requirements.

The Department reserves the right to sample and test completed pads according to the provisions of Section 106.

D. Materials Warranty
General Provisions 101 through 150.

Section 886—Epoxy Resin Adhesives

886.1 General Description
This section includes the requirements for all epoxy adhesives used in highway construction or maintenance.

886.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 AASHTO T 237
 ASTM 2240
 Federal Hazardous Products Labeling Act
 GDT 58
 QPL 15

886.2 Materials

886.2.01 Epoxy Resin Adhesives
A. Requirements
 1. Use the types of epoxy adhesives below:
 a. Type I-R: Rapid-setting marker adhesive for bonding raised pavement markers to pavement.
 b. Type I-S: Standard setting marker adhesive for bonding raised pavement markers to pavement.
 c. Type II: Epoxy adhesive for bonding plastic concrete to hardened concrete.
 d. Type III: Epoxy adhesive for bonding hardened concrete to hardened concrete, or for bonding miscellaneous materials such as metals.
 e. Type IV: Epoxy adhesive for creating an epoxy mortar for use with clean concrete or mortar sand.
 f. Type V: Epoxy adhesive for repairing cracks in concrete by intrusion grouting.
 g. Type VI: Epoxy adhesive for a complete application or as a component in the application of a skid resistant or protective coating on hardened Portland cement concrete or asphaltic concrete.
 h. Type VII: Discontinued.
 i. Type VIII: Epoxy adhesive used for anchors and dowel bar implants. Either mix this epoxy by machine to the proper ratio or package it in a two-component cartridge with a mixing nozzle that thoroughly mixes the two components as they are dispensed. Use a nozzle at least 8 in (200 mm) long.

 2. Furnish the epoxy adhesive as two separate components.

 3. Viscosity
 Ensure that the viscosities of the separate components are similar and conducive to easy blending of the epoxy adhesive system.
 a. Submit the viscosity for the epoxy adhesive system to the Engineer.
 b. Ensure that the viscosity of the mixed system is compatible with the intended use of the system.
4. Labeling
 Clearly label each container of the separate components of an epoxy adhesive system with the following information:
 - Specification number and type
 - Component designation (A or B)
 - Manufacturer’s batch number—a batch is a single charge of all components in a mixing chamber
 - Expiration date (shelf life for separate components in original containers)
 - Mixing ratio and directions (by volume or weight as designated by the manufacturer)
 - Potential hazards and precautions according to the Federal Hazardous Products Labeling Act
5. Stencil the component designation on the top of each container.
6. Physical Requirements
 Ensure that the mixed epoxy adhesive system meets the applicable requirements of Table 1.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Each epoxy adhesive system shall meet the requirements of this Section.

 If the Department qualifies or disqualifies a system for one of the types specified, it will not affect the qualification or disqualification of any other type.

 The Department will reject any epoxy adhesive system that meets all the requirements of this Section, but fails in actual use. For a list of sources, see QPL 15.

D. Materials Warranty
 General Provisions 101 through 150.

Table 1

Mixed Epoxy Adhesive Systems Requirements

<table>
<thead>
<tr>
<th>Property</th>
<th>Type Designation</th>
<th>I-R</th>
<th>I-S</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pot Life at 77 °F (25 °C) (minutes)</td>
<td></td>
<td>6-11</td>
<td>8-13</td>
<td>30</td>
<td>10-45</td>
<td>30-60</td>
<td>10-45</td>
<td>30-60</td>
<td>—</td>
<td>3-10</td>
<td>GDT 58</td>
</tr>
<tr>
<td>Elongation at 77 °F (25 °C) (percent)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>30**</td>
<td>—</td>
<td>30**</td>
<td>—</td>
<td>5% Max.</td>
</tr>
<tr>
<td>Bond Strength, psi (MPa) at 1 hr and 77 °F (25 °C)</td>
<td></td>
<td>180 (1.2)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>GDT 58</td>
</tr>
<tr>
<td>at 3 hr and 77 °F (25 °C)</td>
<td></td>
<td>180 (1.2)</td>
<td>400 (2.8)</td>
<td>400 (2.8)</td>
<td>400 (2.8)</td>
<td>250 (1.7)</td>
<td>400 (2.8)</td>
<td>250 (1.7)</td>
<td>—</td>
<td>400 (2.8)</td>
<td>—</td>
</tr>
<tr>
<td>at 24 hr and 77 °F (25 °C)</td>
<td></td>
<td>400 (2.8)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>75 Max.</td>
<td>—</td>
<td>35-65</td>
<td>—</td>
<td>—</td>
<td>ASTM: 2240</td>
</tr>
<tr>
<td>Shore D Hardness at 77 °F (25 °C)</td>
<td></td>
<td>—</td>
</tr>
</tbody>
</table>

1122
Type Designation

<table>
<thead>
<tr>
<th>SAG Test</th>
<th>Wet Bond Test (psi (MPa))</th>
<th>Shelf Life*** (months)</th>
<th>No Sag</th>
<th>AASHTO: T 237</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>400 (2.8)</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>6</td>
<td>6</td>
<td>AASHTO: T 237</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>24</td>
<td>12</td>
<td>Section 31</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6</td>
</tr>
</tbody>
</table>

Note: * Values are minimums except where a range is shown, or otherwise noted.
** Epoxy adhesive system only. *** For separate components in original containers.

Section 887—Bearing Plates with Polytetrafluoroethylene Surfaces

887.1 General Description

This section includes the requirements for polytetrafluoroethylene (PTFE) bearing surfaces.

887.1.01 Related References

A. Standard Specifications
 - Section 106—Control of Materials

B. Referenced Documents
 - AASHTO Standard Specifications for Highway Bridges, Division II
 - ASTM D 4894
 - ASTM D 4895

887.2 Materials

887.2.01 PTFE Bearing Surfaces

A. Requirements

1. Ensure the expansion bearings with polytetrafluoroethylene (PTFE) sliding surfaces meet the dimensions shown on the Plans and meet the requirements of the fastening method to the structure.

2. Use bearings that meet the requirements for PTFE Bearing Surfaces in Division II of the AASHTO Standard Specifications for Highway Bridges.

3. Ensure the PTFE resin is virgin material, not reprocessed, and meets the requirements of ASTM D 4894 and ASTM D 4895.

4. Submit certified test reports, materials certificates, and a certificate of compliance with this Specification.

B. Fabrication

1. Package each completed bearing to protect it from damage during shipment and storage.

2. Clearly identify and mark the components of each bearing and securely fasten them for shipment. Ship to the Project locations for each structure, as stated on Plans.

C. Acceptance

The Department reserves the right to sample and test completed bearings or components according to Section 106.

D. Materials Warranty

General Provisions 101 through 150.
Section 888—Waterproofing Membrane Materials

888.1 General Description
This section includes the requirements for waterproofing materials that serve as a barrier between the concrete bridge deck and the overlay of asphaltic concrete. The membranes included herein are for bridge decks, pavement joints and cracks, and retaining wall joints.

888.1.01 Related References
A. Standard Specifications
 Section 106—Materials Certification

B. Referenced Documents
 ASTM D 146
 ASTM D 412 (Die C)
 ASTM D 882 (Method A)
 ASTM E 96 Procedure B
 ASTM E 154
 GDT 69
 QPL 22

888.2 Materials

888.2.01 Waterproofing Membrane Material for Bridge Decks
A. Requirements
 1. Use a water-resistant primer adhesive that is supplied by the manufacturer of the membrane or other approved equal compatible with the membrane.
 2. Use an approved sealant compatible with the membrane and primer as mastic.
 3. Provide certified results from the manufacturer of the membrane system of the tests in Subsection 888.2.01.C.
 4. Re-submit the certified test results each time the product’s formulation is changed.
 5. For a list of sources, see QPL 22.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Test the membrane system with GDT 69 and meet these requirements:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond</td>
<td>No break in bond, curled edges, bubbles, or pinholes</td>
</tr>
<tr>
<td>Water permeability</td>
<td>Above 500,000 ohms/ft² (5.4 megaohms/m²), measured indirectly in ohms per square foot (meter)</td>
</tr>
<tr>
<td>Heat resistance</td>
<td>Withstand 300 °F (150 °C) and retain an electrical resistance above 500,000 ohms/ft² (5.4 megaohms/m²)</td>
</tr>
<tr>
<td>Resistance to aggregate penetration</td>
<td>Retain an electrical resistance above 500,000 ohms/ft² (5.4 megaohms/ m²) after granite chip creep damage test for 20 hours at 140 °F (60 °C)</td>
</tr>
<tr>
<td>Resistance to freeze-thaw cycles</td>
<td>After 10 cycles of freezing and thawing, the test membrane shall have the tensile strength of similar samples of the same membrane unfrozen</td>
</tr>
<tr>
<td>Chemical resistance</td>
<td>Remain intact and in good condition when immersed for 30 days in each of the following inorganic acids, alkalis, and salts:</td>
</tr>
</tbody>
</table>

- 5% sulfuric acid
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 5% hydrochloric acid</td>
</tr>
<tr>
<td></td>
<td>• 5% sodium hydroxide</td>
</tr>
<tr>
<td></td>
<td>• 25% sodium chloride</td>
</tr>
<tr>
<td></td>
<td>• 25% calcium chloride</td>
</tr>
</tbody>
</table>

Resistance to shear
Have a shear resistance of 100 lbs (45 kg), or pass the Department's evaluation of where and how the shear failure took place.

Waterproofing effectiveness
The membrane system does not displace; retain an electrical resistance above 500,000 ohms/ft² (5.4 megohms/m²)

See QPL 22 for membranes that meet the requirements of this Specification.

888.2.02 Waterproofing Membrane for Pavement Joints and Cracks

A. Requirements

 a. Ensure that the membrane contains at least 14 percent synthetic rubber by weight.
 b. Ensure that the combined amount of asphalt and plasticizer oils is at least 60 percent of the total weight of the membrane. The total weight of the membrane for this purpose does not include the weight of any reinforcement or fabric.

2. Get primer from the membrane manufacturer or some approved equal compatible with the membrane.

3. Use membrane with the following physical properties:

<table>
<thead>
<tr>
<th>Thickness of rubber-asphalt membrane</th>
<th>0.065 in (1.65 mm) minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water permeability</td>
<td>500,000 ohms/ft² (5.4 megohms/m²)</td>
</tr>
<tr>
<td>Breaking factor</td>
<td>50 lbs/in (8.75 kN/m) minimum</td>
</tr>
<tr>
<td>Heat resistance</td>
<td>300 °F (150 °C) minimum without membrane damage and retain minimum 500,000 ohms/ft² (5.4 megohms/m²) resistivity</td>
</tr>
<tr>
<td>Puncture resistance (mesh)</td>
<td>200 lbs (900 N) minimum</td>
</tr>
<tr>
<td>Elongation of mesh</td>
<td>15 to 60% minimum</td>
</tr>
<tr>
<td>Pliability 1/4 in (6 mm) Mandrel 180° bend at –15 °F, ± 2 °F (-26 °C, ± 1 °C)</td>
<td>No cracks in the membrane</td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

1. Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water permeability</td>
<td>GDT 69</td>
</tr>
<tr>
<td>Breaking factor</td>
<td>ASTM D 882 (Method A)</td>
</tr>
<tr>
<td>Heat resistance</td>
<td>GDT 69</td>
</tr>
<tr>
<td>Puncture resistance</td>
<td>ASTM E 154</td>
</tr>
<tr>
<td>Elongation of mesh</td>
<td>ASTM D 882</td>
</tr>
<tr>
<td>Pliability 1/4 in (6 mm) mandrel, 180° bend at –15 °F, ± 2 °F (-26 °C, ± 1 °C)</td>
<td>ASTM D 146</td>
</tr>
</tbody>
</table>

2. See QPL 22 for membranes that meet the requirements of this Specification.

3. The Department will remove from the list any membrane that meets this Specification but fails in actual use.
D. Materials Warranty
 General Provisions 101 through 150.

888.2.03 Waterproofing Membrane for Retaining Wall Joints

A. Requirements

1. Use these waterproofing barriers for concrete and other masonry surfaces at locations shown on the plans.
2. Use waterproofing membrane that incorporates a cross-laminated, high density polyethylene film, adhered to a flexible, self-adhesive, rubberized asphalt.
3. Get primer from the membrane manufacturer or an approved equal compatible with the membrane.
4. Use membranes that meet the following requirements when tested with the required test method:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Requirement Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>0.060 in (1.5 mm) minimum</td>
</tr>
<tr>
<td>Thickness of polyethylene film</td>
<td>0.004 in (100 µm) minimum</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>250 psi (1.7 MPa) minimum</td>
</tr>
<tr>
<td>Ultimate elongation</td>
<td>200% minimum</td>
</tr>
<tr>
<td>Permeance-perms grains/ft²/hr/in Hg</td>
<td>0.1 (5.7) maximum</td>
</tr>
<tr>
<td>Cycling over crack at –15 °F (–26 °C)</td>
<td>No effect 100 cycles</td>
</tr>
<tr>
<td>Puncture resistance</td>
<td>40 lbs (180 N) minimum</td>
</tr>
<tr>
<td>Pliability (180° bend over 1 in (25 mm) mandrel at –25 °F (–32 °C))</td>
<td>No cracks</td>
</tr>
</tbody>
</table>

5. Submit a certification from the manufacturer that the physical properties of the membrane meet the Specification according to Subsection 106.05, “Materials Certification.”

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance

Test as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>ASTM D 412 (Die C)</td>
</tr>
<tr>
<td>Ultimate elongation</td>
<td>ASTM D 412 (Die C)</td>
</tr>
<tr>
<td>Permeance</td>
<td>ASTM E 96 Procedure B</td>
</tr>
<tr>
<td>Puncture resistance</td>
<td>ASTM E 154</td>
</tr>
<tr>
<td>Pliability</td>
<td>ASTM D 146</td>
</tr>
<tr>
<td>Cycling over crack</td>
<td>Apply and roll membrane across two primed concrete blocks with no separation between the blocks. Open and close the crack from 0 to 1/4 in (6 mm).</td>
</tr>
</tbody>
</table>

See QPL 22 for membranes that meet the requirements of this Specification.

D. Materials Warranty
 General Provisions 101 through 150.

Section 890—Seed and Sod

890.1 General Description
 This section includes the requirements for seed and sod.
890.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 General Provisions 101 through 150.

890.2 Materials
890.2.01 Seed
A. Requirements
 1. Use seed that meets the requirements of the Georgia Seed Laws and Rules and Regulations.
 2. The germination, purity, and maximum weeds specified in the Georgia Seed Laws for all seeds used by DOT are:

Germination and hard seed minimum	70%
Purity minimum	90%
Weed seeds maximum	2%
Noxious seeds maximum	300 seeds per lb (660 seeds per kg), subject to the limitations in Table 1

3. Seed Mixture
 When seed mixtures are specified, each variety of seed shall be furnished separately and mixed after approval by the Engineer.

Table 1—Noxious Weed List

<table>
<thead>
<tr>
<th>Name</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Field Bindweed (Convolvulus arvensis)</td>
<td>Prohibited</td>
</tr>
<tr>
<td>2. Cocklebur</td>
<td>Prohibited</td>
</tr>
<tr>
<td>3. Hedge Bindweed (Convolvulus sepium)</td>
<td>Prohibited</td>
</tr>
<tr>
<td>4. Nutgrass (Cyperus Rotundus)</td>
<td>Prohibited</td>
</tr>
<tr>
<td>5. Blessed Thistle (Cnicus benedictus)</td>
<td>9 per pound (20 per kg)</td>
</tr>
<tr>
<td>6. Wild Onion and/or Wild Garlic ([Allium spp.])</td>
<td>27 per pound (60 per kg)</td>
</tr>
<tr>
<td>7. Sandbur (Cenchrus pauciflorus)</td>
<td>27 per pound (60 per kg)</td>
</tr>
<tr>
<td>8. Johnson Grass (Sorghum halepense)</td>
<td>100 per pound (220 per kg)</td>
</tr>
<tr>
<td>9. Wild Mustard and Turnips (Brassica spp.)</td>
<td>27 per pound (60 per kg)</td>
</tr>
<tr>
<td>10. Blue Weed (Helianthus ciliaris)</td>
<td>200 per pound (440 per kg)</td>
</tr>
<tr>
<td>11. Wild Radish (Raphanus raphanistrum)</td>
<td>27 per pound (60 per kg)</td>
</tr>
<tr>
<td>12. Dodders (Cuscuta spp.)</td>
<td>100 per pound (220 per kg)</td>
</tr>
<tr>
<td>13. Canada Thistle (Cirsium arvense)</td>
<td>100 per pound (220 per kg)</td>
</tr>
<tr>
<td>14. Quack Grass (Agrophron repens)</td>
<td>100 per pound (220 per kg)</td>
</tr>
<tr>
<td>15. Russian Knapweed (Centaurea Picris)</td>
<td>100 per pound (220 per kg)</td>
</tr>
<tr>
<td>16. Bermuda Grass (Cynodon dactylon)</td>
<td>300 per pound (660 per kg)</td>
</tr>
<tr>
<td>17. Cheat or Ches (Bromus secalinus and/or Bromus comutatus)</td>
<td>300 per pound (660 per kg)</td>
</tr>
<tr>
<td>18. Damel (Lolium temulentum)</td>
<td>200 per pound (440 per kg)</td>
</tr>
<tr>
<td>19. Cornockle (Agrotemma githago)</td>
<td>100 per pound (220 per kg)</td>
</tr>
<tr>
<td>Name</td>
<td>Limitations</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>20. Horsenettle (Solanum carolinense)</td>
<td>200 per pound (440 per kg)</td>
</tr>
<tr>
<td>21. Purple Nightshade (Solanum elaeagnifolium)</td>
<td>200 per pound (440 per kg)</td>
</tr>
<tr>
<td>22. Buckhorn Plantain (Plantago lanceolata)</td>
<td>200 per pound (440 per kg)</td>
</tr>
<tr>
<td>23. Docks (Rumex spp.)</td>
<td>100 per pound (220 per kg)</td>
</tr>
<tr>
<td>24. Gian Foxtail</td>
<td>100 per pound (220 per kg)</td>
</tr>
<tr>
<td>25. Sheep sorrel (Rumex acetosells)</td>
<td>200 per pound (440 per kg)</td>
</tr>
<tr>
<td>26. Red Rice (oryza sativa variety)</td>
<td>300 per pound (660 per kg)</td>
</tr>
<tr>
<td>27. Sorghum alatum</td>
<td>100 per pound (220 per kg)</td>
</tr>
<tr>
<td>Sum Total Noxious Weeds</td>
<td>300 per pound (660 per kg)</td>
</tr>
</tbody>
</table>

B. Fabrication

 General Provisions 101 through 150.

C. Acceptance

1. Get approval from the Engineer before sowing seed.
2. Ensure each bag of seed is tagged with an analysis tag showing the results of a test made within 9 months of planting.
 a. Collect and check the tags to ensure that they show a lot number, a test date within 9 months, and that the seed quality meets the requirements in Table 1.
 b. The Georgia Department of Agriculture and the laboratory will randomly sample seed.
3. Even though the Engineer approves the seed, you are still responsible to furnish and sow seed that meets these Specifications at the time of sowing.
4. If the Engineer requires, provide seed samples to the Engineer early enough before seeding to allow further testing before seeding.
5. You may increase the rate of seeding to obtain the minimum pure live seed content specified if a low percentage of germination causes the quality of the seed to fall below the minimum.

 NOTE: You may increase the seeding rates if the noxious weed seed per square yard (meter) does not exceed the allowable quantity at the regular rate of seeding.

6. The Department will reject wet, moldy, or otherwise damaged seed.

D. Materials Warranty

 General Provisions 101 through 150.

890.2.02 Sod

A. Requirements

1. Use living, growing sod of the designated species for block or big roll sod. This includes sod that is dormant during the cold or dry season and capable of renewing growth after the dormant period.
2. Obtain all sod from approved nurseries that have a Georgia Live Plant License.
3. Ensure that at least 75 percent of the plants in the sod are of the designated variety of grass.

B. Fabrication

1. Mow grass and weeds to a maximum height of 3 in (75 mm). Rake and remove the grass before cutting the sod.
2. Cut the sod into the following sizes:
 - Block sod—12 in (300 mm) by 22 in (550 mm)
 - Big roll sod—21 in (525 mm) by 52 ft (15.8 m)
 Ensure that the sod has at least 1/2 in (15 mm) of soil adhering firmly to the roots.
3. Always exercise care to retain the soil on the roots of the sod during cutting, transporting, and planting. Do not dump the sod from vehicles.

C. Acceptance

The Department will accept the material based on the following:
1. Notify the Engineer to inspect the sod sources before it is harvested.
2. The Engineer will inspect the sod while it is being planted.
3. The Department will reject sod with weeds or other growth or foreign material that may be detrimental to the planting. Sod that is excessively dried out, exposed to heat, or not viable will also be rejected.

Do not assume that an approval of a source means that the material is accepted.

D. Materials Warranty

1. Transplant the sod within 72 hours from the time it is harvested.
2. Sod that is not transplanted within 24 hours shall be kept moist and protected from exposure to heat, direct sunlight, and freezing until it is transplanted. Do not exceed the 72-hour time limit for transplanting all of the harvested sod.
3. Cut and install sod only when the soil moisture conditions are favorable.

Section 891—Fertilizers

891.1 General Description

This section includes the requirements for fertilizers.

891.1.01 Related References

A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 Georgia Plant Food Act

891.2 Materials

891.2.01 Fertilizer

A. Requirements
 1. Use fertilizer of the grades specified that meet the requirements of the Georgia Plant Food Act in effect at the date of Advertisement For Bids.
 2. Any fertilizer that becomes caked or otherwise damaged, making it unsuitable for use, shall be replaced at the Contractor’s expense.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept fertilizer that meets the above requirements.

D. Materials Warranty
 General Provisions 101 through 150.
893.1 General Description

This section includes the requirements for miscellaneous planting materials, such as the following:

- Plant topsoil
- Mulch
- Vines, shrubs, trees, and miscellaneous plants
- Inoculants
- Porous material
- Tree paint
- Prepared plant topsoil
- Stakes
- Organic soil additives

893.1.01 Related References

A. Standard Specifications

- Section 814—Soil Base Materials
- Section 822—Emulsified Asphalt

B. Referenced Documents

- “USA Standard for Nursery Stock” of the American Association of Nurserymen, Inc.
- “Standardized Plant Names”
- GDT 41

893.2 Materials

893.2.01 Plant Topsoil

A. Requirements

1. Use plant topsoil with the following characteristics:

 - Obtained from well-drained, arable land, but not from fields where tobacco grew in the last three years, or where Johnson grass or kudzu is present.
 - Friable, loamy soil with between 2 and 30 percent organic matter. Determine the percentage by measuring the loss on ignition of oven-dried samples ignited at 1,200 °F (650 °C).
 - Reasonably free from subsoil, heavy or stiff clay, coarse sand, and other deleterious substances.
 - Has no toxic amounts of acid or alkaline elements.
 - Can sustain healthy plant life.
 - Meets the grade requirements of Subsection 814.2.01.A.8.

2. The Department reserves the right to inspect all plant topsoil during the planting period. The Department will reject any material that does not meet the Specifications.

3. Do not use frozen, muddy, or non friable topsoil.

4. Before delivering any topsoil to the job site, clear stones larger than 2 in (50 mm) size and roots, sticks, brush, coarse litter, and other substances that would interfere with mixing, planting, and maintenance.

B. Fabrication

- General Provisions 101 through 150.

C. Acceptance

- General Provisions 101 through 150.
D. Materials Warranty

General Provisions 101 through 150.

893.2.02 Mulch

A. Requirements

1. Use mulch materials from two groups:
 a. Grassing and Erosion Control: Threshed rye, oat or wheat straw; or Bermuda grass hay
 b. Vine, Shrub, Tree, and Miscellaneous Plant Plantings: Pine straw, pine bark, or hardwood mulch (see Subsection 893.2.09.A.2 for pine bark and hardwood mulch).

2. Use mulch materials from either group that meet the following requirements:
 □ Are accepted by the Engineer.
 □ Can be distributed uniformly when properly loosened
 □ Produce the desired results
 □ Meet the moisture requirements specified herein
 □ Contain no excessive amounts of noxious weed seeds

3. Noxious Weed Seeds
 Do not use hay or straw mulch material that has an excessive quantity of matured seeds from noxious weeds or other species that would harm surrounding farmland.

4. Moisture Content
 Ensure that the mulch material is reasonably dry, especially when bituminous treated mulches must retain the bituminous material.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

1. If the material feels damp, the Department will use GDT 41 to test for moisture content.

2. To pass, materials shall have a moisture content of 12 percent or less.

D. Materials Warranty

General Provisions 101 through 150.

893.2.03 Vines, Shrubs, Trees, and Miscellaneous Plants

A. Requirements

1. Use stock that meets the requirements of all State and Federal Laws for inspection of plant diseases and infestation.

2. Use nursery grown and collected plant materials that meet all regulations of the States of their origin and destination, and that meet Federal regulations governing interstate movement of nursery stock.

3. Use stock that is true to name and variety and is of first class quality with well developed tops and vigorous, healthy root systems.

 NOTE: Use plant names according to the edition of “Standardized Plant Names” in effect at the time of Invitation For Bids.

4. Use only nursery-grown stock that have had their roots pruned during their development, unless otherwise specified.
 a. The Department will not accept plants and/or trees that are severely cut back or pruned to conform to contract size requirements.
 b. The Department will reject trees and shrubs that are undersized, have poorly developed tops or root systems, or are infected with disease or infested with insects.

5. Certification
 Furnish all certificates of disease and infestation inspection and a list of plant materials received from each source to the Engineer.
B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will inspect plants at the nursery whenever necessary.
 1. Inspect and grade living plants for type, size, and quality according to the requirements and recommendations of
 “USA Standard for Nursery Stock” of the American Association of Nurserymen, Inc.
 2. Even if the Department accepts materials after a test at the source, the Department may inspect the stock during
 planting and reject any that does not meet specification.
 3. The Department will reject any of the following:
 - Stock damaged during digging, loading, transporting, planting, and transplanting
 - Broken or loose balls or balls of less diameter than that specified
 4. Replace rejected stock at your own expense.
 5. Dispose of rejected stock to the satisfaction of the Engineer.

D. Materials Warranty
 1. Delivery
 a. Give the Engineer at least 24 hours notice before delivering any stock to the job site.
 b. Send an invoice with each shipment that shows the sizes and varieties of material included.
 2. Packaging
 Pack stock for shipment to properly protect against drying, freezing, breaking, or other injury.
 a. Pack and clearly label each variety in separate bundles.
 b. Designate plants that are to be balled and burlapped as “B&B.”
 1) Place as many fibrous roots as possible in the ball.
 2) Securely and tightly wrap the ball with burlap. Tie a cord or wire around the ball, or pin it with nails to hold
 the burlap in place.
 c. For remaining plants, dig them bare-rooted and puddle them immediately after digging them up and when
 receiving them at the Project. Use the standard practices of the nursery trade.

893.2.04 Inoculants
A. Requirements
 1. Use a pure culture of nitrogen-fixing bacteria for an inoculant to treat seeds. Select an inoculant for maximum
 vitality and ability to transform nitrogen from the air into soluble nitrates and deposit them into the soil.
 2. Use only purebred cultures less than one year old.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Engineer will review acceptable cultures.

D. Material Warranty
 General Provisions 101 through 150.

893.2.05 Porous Material
A. Requirements
 Protect roots with gravel, broken stone, slag, broken concrete, brick bats, or other acceptable coarse aggregate ranging in
 size from 1-1/2 to 4 in (38 to 100 mm). Excessive amounts of lime in the form of brick mortar shall be grounds for
 rejection.

B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 The Department will reject the material if it has excessive amounts of lime in the brick mortar.

D. Material Warranty
 General Provisions 101 through 150.

893.2.06 Tree Paint

A. Requirements
 Use tree paint that meets the requirements of Subsection 822.2.01, or use any commercial tree paint with antiseptic qualities.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 See Subsection 822.2.01.C.

D. Material Warranty
 General Provisions 101 through 150.

893.2.07 Prepared Plant Topsoil

A. Requirements
 1. Use prepared plant topsoil made from plant topsoil, organic soil additive, commercial fertilizer, and lime, as described in Subsection 893.2.07.B.
 2. Base any volume for peat moss used as an organic soil additive on the compressed bale.
 3. For loose peat, double the volume.

B. Fabrication
 1. Make prepared plant topsoil from the following:
 - Four parts plant topsoil, Subsection 893.2.01
 - At least one part organic soil additive, by volume, Subsection 893.2.09
 - A commercial fertilizer, grade 6-12-12, at the rate of 3 lb/ft³ (1.8 kg/m³)
 - Lime at the rate of 5 lb/ft³ (3 kg/m³)
 2. Base the above volumes on naturally compacted, undisturbed topsoil.

C. Acceptance
 See the appropriate subsections.

D. Material Warranty
 General Provisions 101 through 150.

893.2.08 Stakes

A. Requirements
 1. Use wood stakes as indicated in the Specifications or shown on the Plans. Use the stakes for vine, shrub, tree, and miscellaneous plantings.
 2. Saw wood stakes from either oak or gum. Use only stakes that are number two common or better, either rough or dressed.

B. Fabrication
 1. Cut the stakes from sound, solid, undecayed wood, without unsound knots.
 2. Shape stakes to within 1/4 in (6 mm) for all dimensions.
 3. Taper all stakes at one end.
C. Acceptance

The Department will reject any stake that does not meet the following test:

1. Draw a line from the center of the top to the center of the butt of each stake.
2. Ensure that the line stays within the body of the stake and is not more than 1 in (25 mm) from the geometric center of the stake.

D. Materials Warranty

General Provisions 101 through 150.

893.2.09 Organic Soil Additives

A. Requirements

Use four types of organic additives: peat moss, pine bark, compost, and hardwood mulch.

1. Peat Moss

Use peat moss that meets the following requirements:

- Be granulated sphagnum virtually free from woody substances, consisting of at least 75 percent partially decomposed stems and leaves of sphagnum
- Be essentially brown in color
- Be free of sticks, stones, and mineral matter
- Be in an air-dry condition
- Shows an acid reaction of 3.5 pH to 5.5 pH
- Meets State and Federal regulations

2. Pine Bark

Use pine bark that meets the following requirements:

- Be obtained from disease-free wood, 100 percent of which is 9 in² (5625 mm²) or less in area, and 50 percent is more than 1 in² (625 mm²) in area.
- Contain no noxious weed seeds, soil, sawdust or any substance toxic to plant growth
- Be at least two years old

3. Compost

Use compost that meets the following requirements:

- Be organic materials that have undergone biological decomposition
- Be disinfected using composting or similar technologies
- Be stabilized so it is beneficial to plant growth
- Be mature, dark brown or black in color and have minimal odors
- Contain no human pathogens
- Fall within a pH range of 5 to 8

Provide to the Department a list of all the ingredients in the original compost mix in the order of their relative proportions on a weight basis.

4. Hardwood Mulch

Use hardwood mulch that meets the following requirements:

- Derived from disease-free deciduous trees
- Particle size of less than 1 in (25 mm) diameter and less than 3 in (75 mm) in length. Hardwood mulch shall complete two composting cycles of 140 °F (60 °C) so that all viable weed seeds are destroyed and no further decomposition due to nitrification will occur
- Free from toxic levels of acidity and alkalinity

Provide test results stating that the ingredients meet Federal, State, and local requirements for priority pollutant limits and do not contain levels of any chemicals that are harmful to plants or humans.

B. Fabrication

General Provisions 101 through 150.

1134
C. Acceptance
The Department will accept the materials based upon their compliance with this specification.

D. Material Warranty
General Provisions 101 through 150.

Section 894—Fencing

894.1 General Description
This section includes the requirements for the following types of fence and fencing accessories:
- Chain link fence
- Woven wire fence
- Barbed wire
- Ground rods
- Field fencing
- Silt fabric fencing

894.1.01 Related References
A. Standard Specifications
 - Section 862—Wood Posts and Bracing
 - Section 881—Fabrics
B. Referenced Documents

<table>
<thead>
<tr>
<th>ASTM</th>
<th>AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 116</td>
<td>A 392</td>
</tr>
<tr>
<td>A 121</td>
<td>A 491</td>
</tr>
<tr>
<td>A 123/ A 123 M</td>
<td>A 584</td>
</tr>
<tr>
<td>A 153/ A 153M</td>
<td>A 585</td>
</tr>
<tr>
<td>A 239</td>
<td>A 702</td>
</tr>
</tbody>
</table>

894.2 Materials
894.2.01 Chain Link Fence
A. Requirements
 Ensure that zinc or aluminum coated steel fabric, fittings, accessories, and posts for chain link fence meet the following requirements.
 1. Fence Fabric
 Use woven wire with reasonably uniform 2 in (50 mm) square mesh. Ensure that the mesh has parallel sides and horizontal and vertical diagonals of uniform dimensions. Use the wire size specified on the Plans or in the Proposal.
 a. Zinc Coated: Use steel fabric that meets the requirements of ASTM A 392. Ensure that the wire and hot-dip coating meet the requirements of ASTM A 817 Type II, Class I.
 b. Aluminum Coated: Use steel fabric that meets the requirements of ASTM A 491. Ensure the wire and coating meets the requirements of ASTM A 817, Type I.
 2. Fittings and Accessories
 a. Tension Wire: Use wire that meets the requirements of ASTM A 824 Type I for aluminum coated fabric, or Type II, Class 2 for hot-dipped, zinc-coated fabric.
b. Fittings: Use fittings that meet the requirements of ASTM F 626.
 1) Ensure fittings or accessories not included in ASTM F 626 meet industry standards for heavy, industrial-type fences.
 2) Hot-dip the materials in zinc with at least 1.2 oz./ft² (365 g/m²) of surface area. If applicable, you may make the materials from Aluminum Alloy 360, die-cast, or Sand Alloy 356, ZG61A, or Tenzalloy.
 3) Use bolts and nuts that meet industry standards and are zinc coated with the hot-dip process according to ASTM A 153/A 153 M.

3. Posts, Rails, and Braces
 Use posts, rails, and braces that meet the requirements of ASTM F 1043, Table 2, Group IA, IC, II, or III.
 a. Group IA, II, and III posts to be used with zinc coated or aluminum coated chain link fence shall meet the coating requirements of ASTM F 1083.
 b. Group IC posts to be used with zinc coated or aluminum coated chain link fence shall be coated according to AASHTO M 181 Section 32.3.
 c. Check the Plans for specifications on posts used for special applications. Use special posts that meet the requirements of ASTM F 1083 or are approved by the Office of Materials and Research.

4. Gates
 Use support posts and gate frames as designated on the Construction Detail or Project Plans. Use gate materials that meet the requirements of Subsection 894.2.01.A.3.
 a. Use the same coating requirements as for the fence posts. Coat gate frames after completing all welding.
 b. Use fittings and hinges that meet the requirements of Subsection 894.2.01.A.2.b.

B. Fabrication
 Ensure that the chain link fence fabric is produced by recognized, good commercial practices.
 1. Apply the zinc or aluminum coating to the fabric in a continuous process. Do not apply in roll form.
 2. Carefully inspect the coated fabric visually, both before and after weaving, to determine the coating quality.

C. Acceptance
 The Department will reject chain link fabric that has excessive roughness, blisters, sal ammoniac spots, bruises, flaking, bare spots, or other obvious defects to any considerable extent.

D. Materials Warranty
 General Provisions 101 through 150.

894.2.02 Woven Wire Fence

A. Requirements
 1. Fabric
 Use fabric that meets the requirements of ASTM A 116, Design Number 1047-6-11, with Class 3 coating.
 a. Ensure that the galvanizing is uniform.
 b. Ensure that less than 5 percent of the joints are deficient in zinc coating, as determined by ASTM A 239.
 c. You may use aluminum coated steel that meets the requirements of ASTM A 584, Design Number 1047-6-11, for the woven wire fence fabric.
 2. Posts
 Use steel or wood posts of the sizes shown on the Plans.
 a. Use wood posts that meet the requirements of Subsection 862.2.01.
 b. Use steel posts and bracing that meet the requirements of ASTM A 702. Galvanize posts and braces with the hot-dip method according to ASTM A 123/A 123M.
 3. Certification
 Furnish a certification to the Engineer from the manufacturer that shows the physical properties of the materials.
 4. Accessories
 Galvanize the following accessories according to ASTM A 153/ A 153M. Use 0.80 oz./ft² (245 g/m²) as the galvanizing minimum. Galvanize other accessories as necessary or specified on the Plans.
 a. Wire Fasteners: Use fasteners that meet the requirements of ASTM A 702.
b. Tension Wire: Use No. 11 gauge wire.

c. Staples: Use No. 9 gauge staples 1-1/2 in (38 mm) long.

d. Nails: Use 1 in (25 mm) roofing nails to fasten metal caps to wooden posts.

5. Gates

Use support posts and gate frames of the size designated on the Construction Detail or Project Plans.

a. Use a frame that is an all welded unit. Ensure that the gate is galvanized after welding with 2 oz./ft² (610 g/m²) of spelter coating.

b. Use hinges, latches, and other accessories of good commercial quality that are coated as in Subsection 894.2.02.A.4.

B. Fabrication

1. Ensure that the woven wire fence fabric is produced by methods recognized as good commercial practices.

2. Carefully inspect the galvanized fabric to determine the zinc coating quality.

C. Acceptance

The Department will reject woven wire fabric that has excessive roughness, blisters, sal ammoniac spots, bruises, flaking, bare spots, or other obvious defects to any considerable extent.

D. Materials Warranty

General Provisions 101 through 150.

894.2.03 Barbed Wire

A. Requirements

1. Galvanized Steel Barbed Wire

 Use wire that meets the requirements of ASTM A 121 and has a Class 3 zinc coating.

2. Aluminum Coated Steel Barbed Wire

 Use wire that meets the requirements of ASTM A 585.

3. Posts

 Use posts as specified in Subsection 894.2.02.A.2 for barbed wire fence.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

General Provisions 101 through 150.

D. Materials Warranty

General Provisions 101 through 150.

894.2.04 Ground Rods

A. Requirements

1. Use ground rods that are 9/16 to 5/8 in (14 to 16 mm) diameter and at least 8 ft (2.4 m) long, unless otherwise shown on the Plans.

2. Ensure that the ground rods are galvanized steel with a minimum coating of 2 oz./ft² (610 g/m²) according to the requirements of ASTM A 153/ A 153M.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

General Provisions 101 through 150.

D. Materials Warranty

General Provisions 101 through 150.
894.2.05 Field Fencing (Woven Wire and Barbed Wire)

A. Requirements

1. Definition
 Field fencing designates replacement fencing outside the Right of Way or temporary fencing inside the Right of Way, provided you do not reuse the materials for permanent fencing inside the Right of Way.

2. Fence fabric
 Use woven wire fabric that meets the requirements of ASTM A 116 Design No. 939-6-12-1/2, and has a Class I coating, unless otherwise designated.

3. Barbed wire
 Use wire that meets the requirements of ASTM A 121 and has a Class I coating. Use the same number of barbed wire strands as the existing or replaced fence, or as specified in the Plans.

4. Posts
 Use either galvanized steel, painted steel, or treated timber of the dimensions and spacing shown on the Construction Detail or Plans.

5. Gates
 Use posts, frame material, hinges, and fittings of acceptable commercial quality. Get approval from the Engineer before use.

6. Use the Special Plan Details and/or Special Provisions for any special design of the field fence.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance

1. Get approval from the Engineer for all materials. Ensure that the materials are of an acceptable commercial quality and are equivalent in quality to the fence being replaced or to the existing fence, as applicable.

2. Do not send materials to the laboratory unless requested by the Engineer or required by the Plans.

D. Materials Warranty
 General Provisions 101 through 150.

894.2.06 Silt Fabric Fencing

A. Requirements

1. Fabric
 b. Use a woven wire support fence with Type “C” fence.
 1) Ensure that the wire fence fabric is at least 32 in (810 mm) high with at least 6 horizontal wires.
 2) Ensure that the vertical wires have a maximum spacing of 12 in (155 mm).
 3) Ensure that the top and bottom wires are at least 10 gauge (2.49 mm) and all other wires are at least 12-1/2 gauge (2.03 mm).
 4) You may use other designs subject to approval by the Office of Materials and Research.

2. Posts
 Use post sizes and types as determined by the type of fence being installed. Generally hardwood posts will be limited to ash, hickory, or oak. Other hardwoods may be acceptable if approved by the Office of Materials and Research.
 a. Type “A” Fence: Use either wood or steel posts that are at least 4 ft (1.2 m) long.
 1) If using soft wood, use posts that are at least 3 in (75 mm) in diameter or nominal 2 x 4 in (33 x 89 mm) and straight enough to provide a fence without noticeable misalignment.
 2) If using hardwood, use posts that are 1-1/2 x 1-1/2 in (38 x 38 mm) with a minus tolerance of 1/4 in (6 mm) providing the cross sectional area is at least 2.25 in² (1440 mm²).
 3) If using steel, use posts that are “U,” “T,” or “C” shaped with a minimum weight of 1.15 lb/ft (1.7 kg/m), and have projections for fastening the fence to the posts.
b. Type “B” Fence: Use either wood or steel posts that are at least 3 ft (900 mm) long.
 1) If using soft wood, use posts that are at least 2 in (50 mm) in diameter or nominal 2 x 2 in (33 x 33 mm).
 2) If using hardwood, use posts that are 1 x 1 in (25 x 25 mm) with a minus tolerance of 1/4 in (6 mm) providing the cross sectional area is a minimum of 1 in² (625 mm²).
 3) If using steel posts, use types “U,” “T,” or “C” shapes with a minimum weight of 0.75 lb/ft (1.1 kg/m).

 c. Type “C” Fence: Use only steel posts that are at least 5 ft (1.5 m). Use “U,” “T,” or “C” shaped posts with a minimum weight of 1.15 lb/ft (1.7 kg/m). Use posts that have projections for fastening the woven wire and filter fabric.

 NOTE: You must use woven wire to provide extra support for Type “C” fence installations.

 3. Fasteners for Wooden Posts
 a. Wire Staples: Use staples that are at least 17 gauge (1.37 mm), legs at least 1/2 in (13 mm) long, and a crown at least 3/4 in (19 mm) wide.
 b. Nails: Use nails that are at least 14 gauge (2.03 mm), 1 in (25 mm) long, with button heads of at least 3/4 in (19 mm).

 B. Fabrication
 General Provisions 101 through 150.

 C. Acceptance
 General Provisions 101 through 150.

 D. Materials Warranty
 General Provisions 101 through 150.

Section 910—Sign Fabrication

910.1 General Description
This section includes the requirements for fabricating and applying messages on sign blanks, laminated panels, and extruded panels.

910.1.01 Related References
A. Standard Specifications
 Section 107—Legal Regulations and Responsibility to the Public
 Section 911—Sign Posts
 Section 912—Sign Blanks and Panels
 Section 913—Reflectorizing Materials
 Section 914—Sign Paint
 Section 915—Mast Arm Assemblies
 Section 917—Reflective and Nonreflective Characters

B. Referenced Documents
 Manual on Uniform Traffic Control Devices (MUTCD)

910.2 Materials
Use the dimensions, colors, and reflectorizing as specified in the Plans, Proposal, and Manual on Uniform Traffic Control Devices (MUTCD).
The materials requirements are as listed below:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posts for Groundmounted Signs</td>
<td>911</td>
</tr>
<tr>
<td>Aluminum Sign Blanks</td>
<td>912.2.01</td>
</tr>
<tr>
<td>Extruded Aluminum Sign Panels</td>
<td>912.2.02</td>
</tr>
<tr>
<td>Reflective Sheeting</td>
<td>913.2.01</td>
</tr>
<tr>
<td>Silk Screen Lettering Paint</td>
<td>914.2.01</td>
</tr>
<tr>
<td>Mast Arm Assemblies</td>
<td>915</td>
</tr>
<tr>
<td>Demountable Characters with Type VI Reflective Sheeting</td>
<td>917.2.01</td>
</tr>
<tr>
<td>Direct Applied Non-Reflective Characters</td>
<td>917.2.02</td>
</tr>
</tbody>
</table>

1. Handle the clean metal blanks and panels with either a mechanical device or with clean cotton gloves before applying any paint.
2. After the final metal treatment, protect the blanks and panels at all times from contact or exposure to greases, oils, dusts or other contaminants.
3. Get approval for all materials used to fabricate the finished signs according to these Specifications.

910.2.01 Painted Signs

A. Requirements
 1. Use paint in fabricating these signs that meets the requirements in this Specification and is of the type specified.
 2. Do not paint sign blanks or panels on which reflective sheeting shall be applied.

B. Fabrication
 1. Coat the sign blanks or panels on one face and all the edges with one coat of primer. Allow the primer to dry thoroughly.
 2. Apply a coat of the specified enamel to the primed face and edges.
 a. Ensure the film is 2.5 mils, ± 0.5 mils (60 µm, ± 10 µm) thick when dry. Determine the thickness with a suitable gauge accurate to 0.1 mil (3 µm).
 b. Apply the paint with either sprayers or rollers.
 3. Ensure that the finished paint surface is smooth, uniform, and exhibits neat work quality.
 4. Ensure that the paint does not run, curdle, or separate after application.

C. Acceptance
 The Department will reject any sign panels or blanks with paint that is not of the proper thickness, or with paint that has run, curdled, or separated after application.

D. Materials Warranty
 General Provisions 101 through 150.

910.2.02 Reflective Sheeting Signs

A. Requirements
 Use materials that meets the requirements of these Specifications and is of the type specified.

B. Fabrication
 1. Apply the reflective sheeting to the face of the sign blank or panel with either an approved vacuum applicator, using a combination of vacuum and heat, or an approved roller process, using heat when necessary.
 2. Apply the specified sheeting type and level of reflectivity according to the sheeting manufacturer’s recommendations.
 3. Splice the sheeting on a sign according to the sheeting manufacturer’s recommendations.
 4. Age the sheeting for 48 hours.
C. Acceptance

After applying the sheeting properly, test the adhesion to ensure it produces a durable bond equal to or greater than the strength of the reflective sheeting.

1. Ensure that the adhesion is strong enough to resist stripping from the blank when tested with a stiff putty knife.
2. Ensure that no air pockets or bubbles exist between the sheeting and the sign blank.

D. Materials Warranty

General Provisions 101 through 150.

910.2.03 Message

A. Requirements

Ensure that all finished signs have the following characteristics:

- The signs are clear-cut
- The lines of all letters and details true, regular, and free from all waviness, unevenness, and furry edges or lines
- The signs do not have scaling, cracking, pitting, blistering, dents, or blemishes of any kind
- The size, style, and spacing of the letters, numerals, symbols, and borders used to convey the message are according to the details shown in the MUTCD and on the Plans.

See Subsection 107.03, “Patented Devices,” if patented materials are used.

B. Fabrication

Ensure that the legends and borders have one coat of silk screen paint as per Subsection 914.2.01.

1. Apply legends and borders by using one of the following processes:
 - Silk screening
 - Reverse screening
 - Directly applying nonreflective, durable, glossy plastic film that meets the requirements of Section 917.
2. Air-dry or oven-bake the sign at a temperature that will not affect the sign.
3. Demountable legends and borders may be used where approved by the Engineer.

 NOTE: Attach all demountable legends (letters, numerals, symbols, and borders) to the sign face with pull-through rivets recommended by the manufacturer.

C. Acceptance

The Department will accept finished signs based on quality of workmanship and accuracy of dimensions and message.

D. Materials Warranty

General Provisions 101 through 150.

Section 911—Sign Posts

911.1 General Description

This section includes the requirements for the following:

- Galvanized steel sign posts
- Galvanized steel structural shape posts
- Aluminum structural shape posts
- Delineator posts
- Wood sign posts
- Ground-mounted breakaway sign supports
911.1.01 Related References

A. Standard Specifications
 Section 106—Certification of Materials
 Section 859—Guard Rail Components
 Section 862—Wood Posts and Bracing
 Section 863—Preservative Treatment of Timber Products
 Section 913—Reflectorizing Materials

B. Referenced Documents

<table>
<thead>
<tr>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
</tr>
<tr>
<td>A 123/A 123M</td>
</tr>
<tr>
<td>A 153/A 153M</td>
</tr>
<tr>
<td>A 193/A 193M</td>
</tr>
<tr>
<td>A 307</td>
</tr>
<tr>
<td>A 499</td>
</tr>
<tr>
<td>A 570 (A 570M)</td>
</tr>
<tr>
<td>A 653/A 653M</td>
</tr>
<tr>
<td>A 715</td>
</tr>
<tr>
<td>B 209 (B 209M)</td>
</tr>
<tr>
<td>B 211 (B 211M)</td>
</tr>
<tr>
<td>B 221 (B 221M)</td>
</tr>
<tr>
<td>B 308 (B 308M)</td>
</tr>
<tr>
<td>B 695</td>
</tr>
<tr>
<td>B 766 G 53</td>
</tr>
</tbody>
</table>

AASHTO M 181, Section 32
ANSI B 1.13M
ANSI B 18.22.1
Georgia Standard No. 9055
Southern Pine Inspection Bureau Grading Rules, 1977 Edition
NCHRP 350
QPL 29
QPL 35
QPL 69

911.2 Materials

911.2.01 Galvanized Steel Sign Posts (Drive Type)

A. Requirements

Use drive-type steel posts made of flanged “U” channel or square tubular sections. For a list of sources, see QPL 35.

1. U-Channel

 Use U-channel posts made of rerolled rail steel or new billet steel that meets the mechanical requirements of ASTM A 499, Grade 60, and the chemical requirements of ASTM A 1 for rails with nominal weights of 91 lbs/yd (45 kg/m) or greater.

 a. Dimensions, Weights, Tolerances: Use the dimensions, weights, and tolerances in Table 1 for U-channel posts, unless otherwise indicated on the Plans.

 1) Use post lengths as specified on the Plans.
 2) Use post assemblies within a sign structure from the same manufacturer.
Table 1—Dimensions, Weights, and Tolerances for Galvanized Steel Sign Posts (Drive Type)

<table>
<thead>
<tr>
<th>Outside Diameters</th>
<th>TP 1 in (mm)</th>
<th>TP 2 in (mm)</th>
<th>TP 3 in (mm)</th>
<th>TP 4 in (mm)</th>
<th>Tolerance in (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange Width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±0.125 (±3)</td>
</tr>
<tr>
<td>a. Rib Back</td>
<td>2.063 (50)</td>
<td>3.125 (80)</td>
<td>3.5 (90)</td>
<td>3.75 (95)</td>
<td>±0.125 (±3)</td>
</tr>
<tr>
<td>b. Flat Back</td>
<td>2.313 (60)</td>
<td>3.125 (80)</td>
<td>3.5 (90)</td>
<td>3.75 (95)</td>
<td>±0.125 (±3)</td>
</tr>
<tr>
<td>Depth of “U”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±0.125 (±3)</td>
</tr>
<tr>
<td>a. Rib Back</td>
<td>0.875 (22)</td>
<td>1.500 (40)</td>
<td>1.875 (50)</td>
<td>2.000 (50)</td>
<td>±0.125 (±3)</td>
</tr>
<tr>
<td>b. Flat Back</td>
<td>0.875 (22)</td>
<td>1.500 (40)</td>
<td>1.750 (45)</td>
<td>1.750 (45)</td>
<td>±0.125 (±3)</td>
</tr>
</tbody>
</table>

Weight per linear foot (meter) before drilling, punching holes, or galvanizing

| a. Rib Back | 1.12 lb (1.7 kg) | 2 lb (3 kg) | 3 lb (4.5 kg) | 4 lb (6 kg) | ±5% |
| b. Flat Back | 1.12 lb (1.7 kg) | 2 lb (3 kg) | 3 lb (4.5 kg) | 4 lb (6 kg) | ±5% |

b. Bolt Holes: Ensure the bolt holes are properly punched or drilled with the following characteristics:
 1) Holes are 3/8 in (10 mm) diameter and spaced 1 in, ±1/32 in (25 mm, ±1 mm), center to center.
 2) Ensure that the holes start 1 in (25 mm) from the top and extend the full length of the post for Types II, III, and IV, and at least 18 in (450 mm) for Type I.
 3) The Department will not accept field-punched holes.

c. Coatings: Ensure that the posts are coated according to ASTM A 123/A 123M after the holes are punched or drilled.

2. Square Tubular

Use square tubular posts that meet the requirements of ASTM A 570 (A 570M), Grade 55 (380); ASTM A 715, Grade 60 (420); or ASTM A 653/A 653M, Grade 33 (230).

a. Dimensions, Weights, Tolerances: Use the dimensions, weights, and tolerances shown in Table 2 for square tubular posts unless otherwise indicated on the Plans:

Table 2—Dimensions, Weights, and Tolerances for Square Tubular Posts

<table>
<thead>
<tr>
<th></th>
<th>TP 5</th>
<th>TP 6</th>
<th>TP 7</th>
<th>TP 8</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside size, in</td>
<td>1.00</td>
<td>1.75</td>
<td>2.00</td>
<td>2.50</td>
<td>±0.010 (0.3)</td>
</tr>
<tr>
<td>(mm)</td>
<td>(25)</td>
<td>(45)</td>
<td>(50)</td>
<td>(63)</td>
<td></td>
</tr>
<tr>
<td>Wall thickness,</td>
<td>0.65</td>
<td>0.08</td>
<td>0.08</td>
<td>0.10</td>
<td>±0.010 (0.2)</td>
</tr>
<tr>
<td>in (mm)</td>
<td>(1.7)</td>
<td>(2.1)</td>
<td>(2.1)</td>
<td>(2.7)</td>
<td></td>
</tr>
<tr>
<td>Weight before</td>
<td>0.83</td>
<td>1.8</td>
<td>2.1</td>
<td>3.4</td>
<td>±5%</td>
</tr>
<tr>
<td>drilling/punching</td>
<td>(1.2)</td>
<td>(2.7)</td>
<td>(3.1)</td>
<td>(5.1)</td>
<td></td>
</tr>
<tr>
<td>holes or galvaniz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ing, lb/ft (kg/m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Use post lengths as specified on the Plans.
2) Use post assemblies within a sign structure from the same manufacturer.

b. Bolt Holes: Ensure all bolt holes are properly punched or drilled with the following characteristics:
 1) Holes are 7/16 in, ±1/64 in (11 mm, ±0.5 mm) diameter and spaced 1 in, ±3/64 in (25 mm, ±1 mm)
 center to center.
 2) Ensure that the holes start 1 in (25 mm) from the top and extend the full length of the post on all four sides
 for Types 6, 7, and 8, and at least 18 in (450 mm) on all four sides for Type 5.
 3) The Department will not accept field-punched holes.

c. Coatings: Coat square tubular posts with zinc at a minimum thickness of 0.90 oz/ft² (275 g/m²).
3. **Bolts, Nuts, and Washers**
 Use bolts, nuts, metallic washers, and spacers made of aluminum, stainless steel, or galvanized steel. Use stainless steel that meets the requirements of ASTM A 193/A 193M, Type B8.
 a. **Bolts:** Use bolts 5/16 in (8 mm) diameter with hexagonal heads. Ensure they are long enough to extend at least 0.25 in (6 mm) beyond the nut when installed.
 1) Use a bolt thread fit of ANSI B 1.13M, Class 6H.
 2) If using aluminum bolts, ensure that the aluminum meets the requirements of ASTM B 211 (B 211M), Alloy 2024-T4.
 b. **Nuts:** Use self-locking, plastic-insert hex nuts.
 1) Use a bolt thread fit of ASNI B 1.13, Class 6G.
 2) If using aluminum bolts, ensure that the aluminum meets the requirements of ASTM B 211(B 211M), Alloy 2017-T4.
 c. **Washers:** Place metallic washers under all bolt heads. Place nylon washers between the metallic washer and the sign face.
 1) If using aluminum washers, ensure that the aluminum meets the requirements of ASTM B 209 (B209M), Alloy 2024-T4.
 2) Use aluminum washers with 25/64 in (10 mm) inside diameter, 0.75 in (19 mm) outside diameter, and 0.091 in (2.3 mm) thick.
 3) Use standard galvanized and stainless steel washers that meet the size requirements of ANSI B 18.22.1.
 4) Use nylon washers with 13/32 in (10 mm) inside diameter, 13/16 in (21 mm) outside diameter, and 1/16 in (1.6 mm) thick. Use nylon washers in combination with metallic washers to prevent torsional damage caused by the twisting action of the bolt heads.
 d. **Coatings:** Use galvanized steel bolts and nuts that meet ASTM A 307 requirements.

B. **Fabrication**
 1. Roll or form post sections of the dimensions specified.
 2. Round all sharp corners and make rough or burried parts smooth.
 3. Punch or drill holes as specified in Subsection 911.2.01.A.1.b.
 4. Galvanize as necessary, according to ASTM A 153/A 153M.

C. **Acceptance**
 Get approval for each sign support matrix from the FHWA.
 The FHWA evaluates the matrix according to the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries, and Traffic Signals, current edition.

D. **Materials Warranty**
 General Provisions 101 through 150.

911.2.02 Galvanized Steel Structural Shape Posts

A. **Requirements**
 1. Ensure that the galvanized steel shapes for sign posts match the shape and dimensions shown on the Plans.
 a. Use steel that meets the requirements of ASTM A 709 (A 709M) Grade 36 (245).
 b. Galvanize the shapes according to ASTM A 123/A 123M. Handle the structural shape through only one hole during galvanizing.
 2. Submit a certification according to Subsection 106.05, “Materials Certification.”

B. **Fabrication**
 General Provisions 101 through 150.

C. **Acceptance**
 General Provisions 101 through 150.

D. **Materials Warranty**
 General Provisions 101 through 150.
911.2.03 Aluminum Structural Shape Posts

A. Requirements
 1. Ensure that the aluminum shapes for sign posts match the shape and dimensions shown on the Plans.

 NOTE: Use aluminum that meets the requirements of ASTM B 308/B 308M, Alloy 6061-T6.

 2. Submit a certification according to Subsection 106.05, “Materials Certification.”

B. Fabrication

 General Provisions 101 through 150.

C. Acceptance

 General Provisions 101 through 150.

D. Materials Warranty

 General Provisions 101 through 150.

911.2.04 Delineator Posts

A. Requirements

 1. Check the Plans for the types of delineator posts to use. For a list of sources, see QPL 69.

 2. If using flexible delineator posts, use only those indicated on the Georgia Department of Transportation Qualified Products List.

 3. Mounting

 Fasten all delineators to be mounted on galvanized or aluminum posts with commercial aluminum lock bolts.

 NOTE: Fasten delineators to be mounted on wood posts with galvanized wood screws.

 4. Galvanized Steel Posts

 Use posts that meet the requirements of Subsection 911.2.02.A.

 5. Aluminum Flange Type Posts

 Use aluminum that meets the requirements of ASTM B 221 (B 221M), Alloy 6063-T6.

 a. Provide a post section in the form of a flanged “U” with dimensions shown on the Plans. Point the bottom of the post.

 b. Punch or drill holes as specified in Subsection 911.2.01.A.1.b.

 6. Wood Delineator Posts

 Use 4 in (100 mm) square posts of the length specified on the Plans.

 a. Use wood posts that meet the requirements of Subsection 862.2.02.

 b. Treat wood posts with preservative according to Section 863.

 7. Flexible Delineator Posts

 Use posts made of a durable plastic or poly resin material. Check the Plans to see the type of flexible delineator post used for each location.

 a. Physical Characteristics: Use posts that can either be driven into the ground with equipment that does not damage the posts or reflective sheeting, or be surface-mounted onto pavement.

 1) Drill or form pilot holes where necessary to embed the posts as shown on the Plans.

 2) Classify flexible delineator posts as follows:

Type I	Curved or flat Soil mount Surface mount
A	
B	
Type II	Tubular Soil mount Surface mount
A	
B	

1145
3) Use durable, flexible, non-discoloring posts that can recover from repeated vehicle impacts.
4) Ensure that materials used to manufacture flexible delineator posts are stabilized with UV (ultraviolet) inhibitors to prevent degradation.
5) Ensure that the posts are inert to normal atmospheric elements and chemicals possibly used in grass or weed control.
6) Use material for the post that can accept reflective sheeting.
b. Color: Use gray, white, or yellow posts, as required.
c. Reflective Sheeting: Use white or yellow reflective sheeting on the posts as required.
 1) Use sheeting that meets the requirements of Subsection 913.2.01, Type III.
 2) Obtain approved reflective sheetings from QPL 29.
d. Certification: Submit a certification from the manufacturer that the flexible delineator posts are formulated of the same material as when tested by National Transportation Product Evaluation Program (NTPEP) and will meet the requirements of this Specification.

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
1. Performance Criteria
 Get approval for flexible delineator posts through the evaluation performed by NTPEP or the Southeastern Association of State Highway and Transportation Officials (SASHTO) Regional Test Facility. The Department will use the data generated by the NTPEP and SASHTO testing to select usable materials that performed satisfactorily when tested with the following material and field tests.
2. Shapes and Dimensions (Materials Test)
 a. Ensure that flexible delineator posts are curved, flat, or tubular with the upper 14 in (350 mm) presenting at least a 3 in (75 mm) wide profile facing approaching traffic.
 b. Place the top of the wide profile sheeting 0.5 in (13 mm) from the top of the delineator post.
 c. Cap the top of tubular posts to prevent water inclusion.
 d. Design flexible delineator posts that are soil mounted to connect with a drive-type anchor base made of corrosion-resistant material. When a post is no longer serviceable, remove it and replace it in the same anchor base.
 e. Ensure that the minimum length for the anchor base is 18 in (450 mm) and the minimum height above ground for the soil mount flexible delineator posts is 48 in (1200 mm).
 f. Design surface-mount flexible delineator posts to connect with the base assembly and be easily replaced when the existing post is no longer serviceable. Use post heights of 24 in (600 mm), 36 in (900 mm), or 48 in (1200 mm), as required.
3. Weathering (Materials Test)
 a. Ensure that flexible delineator posts withstand 1,000 hours of UV exposure in the QUV weatherometer without significant color change or physical deterioration. If the Department sees splitting, cracking, delaminating, or other failures, it will reject the delineator post.
 b. The Department will conduct the test according to ASTM G 53.
4. Field Tests
 Perform impact tests on the flexible delineator posts as described below:
 a. Install 8 delineator posts in 2 rows of 4 each so that 1 row will be bumper hits and 1 row will be wheel hits in 1 pass of the vehicle.
 b. Set the delineator post with a height of 48 in, ± 1 in (1200 mm, ± 25 mm) from ground level with the reflective sheeting facing the test vehicle.
 c. Use a standard American sedan or pickup for the test vehicle. Ensure that the vehicle has no unusually sharp hood ornaments or other appurtenances.
 d. Impact 8 delineator posts 10 times with the test vehicle at 55 mph (90 kph)
 e. Hit the posts five times at an ambient temperature of 32 °F, ± 5 °F (0 °C, ± 2 °C) and five times at an ambient temperature of 85 °F, ± 5 °F (30 °C, ± 2 °C).
f. After concluding the impact test, ensure that at least 5 of the 8 posts remain intact, are securely anchored, and return to their original vertical orientation within an angle of ±10 degrees.
g. Of the 5 posts that remain intact, ensure that they also retain at least 50 percent of their reflective sheeting and show minimal signs of distress (cracking, loss of rigidity).

5. The Department will place flexible delineator posts that pass the laboratory material test and field test requirements on the approved list.

D. Materials Warranty
 General Provisions 101 through 150.

911.2.05 Wood Sign Posts
A. Requirements
 1. Use wood sign posts to support special signs, when noted on the Plans. Use posts that comply with Georgia Standard No. 9055.
 2. Treat the posts with preservative according to Section 863 and Standard No. 9055 notes.
 3. Use wood that matches that specified in Subsection 859.2.04, except that it shall meet the grading requirements for No. 1 SR or No. 2 SR as specified in the current Southern Pine Inspection Bureau Rules.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.

911.2.06 Ground Mounted Breakaway Sign Supports
A. Requirements
 1. Use ground-mounted breakaway sign supports of any assembly approved by the Department as a breakaway foundation. For a list of sources, see QPL 63.
 2. Design the support to modified AASHTO wind loads of 70 mph (112 kph).
 3. Certification
 Furnish a copy from the manufacturer of an independent testing agency report showing that the support has been dynamically tested according to AASHTO Standard Specifications for Highway Signs, Luminaire, and Traffic Signals, current edition.
 a. Furnish evidence that the support has been tested and has met the criteria established in NCHRP 350.
 b. Supply a certification showing the physical properties of the material and how it meets the Specifications, as stated in Subsection 106.05, “Materials Certification.”
 c. Show evidence that the assembly has been used successfully in installations with similar environmental and Project conditions to the satisfaction of the Department.
 4. Sign Support Design
 a. Type A: A single-post mount that can support a 7 ft² (0.65 m²) sign mounted to the centroid 9 ft (2.7 m) above ground.
 b. Type B: A two-post mount that can support a 18 ft² (1.67 m²) sign mounted to the centroid 9 ft (2.7 m) above ground.
 c. Type C: A three-post mount that can support a 37 ft² (3.4 m²) sign mounted to the centroid 9 ft (2.7 m) above ground.
 5. Base Assembly
 a. Ensure that the furnished base assembly protrudes no more than 4 in (100 mm) above ground.
 b. Ensure that the foundation assembly is compatible with the applicable sign post in Subsection 911.2.01.
 c. Ensure that the assembly is galvanized with the hot-dip method as per ASTM A 123/A 123M or an approved equal.
d. To use an alternate protective coating, obtain approval from the Office of Materials and Research before using it on Department Projects.

6. Assembly Hardware
 a. Use base attachment hardware that matches the Plans and is as recommended by the manufacturer.
 b. Ensure that the hardware is protectively coated as in ASTM A 153/A 153M, ASTM B 695 Class 55, or ASTM B 766 Type II, class 12-, whichever is applicable.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Use foundation assemblies that are FHWA-approved for the specific design category for which the unit was evaluated.
 Foundation assemblies are evaluated according to AASHTO Standard Specifications for Highway Signs, Luminaires, and Traffic Signals, current edition.

D. Materials Warranty
 General Provisions 101 through 150.

Section 912—Sign Blanks and Panels

912.1 General Description
This section includes the requirements for aluminum sign blanks and panels, and extruded aluminum sign panels.

912.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 ASTM B 108
 ASTM B 209 (B 209M)
 ASTM B 221 (B 221M)
 ASTM F 467 (F 467M)
 ASTM F 468 (F 468M)
 ASTM B 211 (B 211M)

912.2 Materials
912.2.01 Aluminum Sign Blanks
A. Requirements
 1. Use aluminum sign blanks of the type, size, and shape specified:
 a. Type I: Signs with an area of 9 ft² (0.84 m²) or less, at least 0.08 in, ± 0.005 in (2 mm, ± 0.125 mm) thick.
 b. Type II: Signs with an area more than 9 ft² (0.84 m²), at least 0.10 in, ± 0.006 in (2.5 mm, ± 0.150 mm) thick.
 2. Use metal for the sign blanks that meets the requirements of ASTM B 209 (B 209M), Alloy 6061-T-6 or 5052-H38.
 3. See Table 1 for locations of bolt holes in the sign blanks. Punch or drill bolt holes 10 mm diameter. The table shows where the holes are located for each type and size of blank.
 4. Submit to the Engineer at least 1 ft² (0.1 m²) of the sign material for each lot or shipment of each type.
Table 1—Bolt Hole Locations for Sign Blanks and Panels

<table>
<thead>
<tr>
<th>1. Diamond-Shaped Blanks</th>
<th>Number of Holes Required and Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 in (600 mm)</td>
<td>2 holes, 12 in (300 mm) from center on diagonal line</td>
</tr>
<tr>
<td>30 in (750 mm)</td>
<td>2 holes, 15 in (375 mm) from center on diagonal line</td>
</tr>
<tr>
<td>36 in (900 mm)</td>
<td>2 holes, 18 in (450 mm) from center on diagonal line</td>
</tr>
<tr>
<td>48 in (1200 mm)</td>
<td>4 holes, 2 on each side 15 in (375 mm) from both vertical and horizontal center line</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Square Shaped Blanks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All sizes to 36 (900 mm)</td>
<td>2 holes, 3 in (75 mm) from edge in center of opposite sides</td>
</tr>
<tr>
<td>36 in (900 mm)</td>
<td>2 holes, 6 in (150 mm) from edge in center of opposite sides</td>
</tr>
</tbody>
</table>

NOTE: Drill or punch 24 in (600 mm), 30 in (750 mm), and 36 (900 mm) diamond and square blanks for use as either type.

<table>
<thead>
<tr>
<th>3. Rectangular Sign Blanks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 48 in x up to 15 in (1200 mm x up to 375 mm)</td>
<td>4 holes, 1.5 in (38 mm) from the edge in the center of each side</td>
</tr>
<tr>
<td>Up to 48 in x 18 – 24 in (1200 mm x 450 - 600 mm)</td>
<td>4 holes, 3 in (75 mm) from the edge in the center of each side</td>
</tr>
<tr>
<td>36 (900) x 48 (1200 mm)</td>
<td>4 holes, 6 in (150 mm) from edge at 6 in (150 mm) from top and bottom edges</td>
</tr>
<tr>
<td>48 x 36 in (1200 x 900 mm) and 48 x 60 in (1200 x 1500 mm)</td>
<td>4 holes, 9 in (225 mm) from edge at 6 in (150 mm) from top and bottom edges</td>
</tr>
<tr>
<td>Over 48 x 12 in (1200 x 300 mm)</td>
<td>4 holes, 1/6 horizontal dimension from edge at 1.5 in (38 mm) from top and bottom edges</td>
</tr>
<tr>
<td>Over 48 x 24 in (1200 x 600 mm)</td>
<td>4 holes, 1/6 horizontal dimension from edge at 3 in (75 mm) from top and bottom edges</td>
</tr>
<tr>
<td>Over 48 x over 36 in (1200 x over 900 mm)</td>
<td>4 holes, 1/6 horizontal dimension from edge at 6 (150 mm) from top and bottom edges</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Octagonal Sign Blanks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 x 30 in (750 x 750 mm) and 36 x 36 (900 x 900 mm)</td>
<td>2 holes, 3 in (75 mm) from edge on vertical center line</td>
</tr>
<tr>
<td>48 x 48 in (1200 x 1200 mm)</td>
<td>4 holes, 2 on each side, 15 in (375 mm) from both vertical and horizontal center lines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Triangular Sign Blanks</th>
<th>with point down</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 in (900 mm)</td>
<td>2 holes on vertical center line, spaced 3 in (75 mm) and 24 in (600 mm) from the top</td>
</tr>
<tr>
<td>48 in (1200 mm)</td>
<td>2 holes on vertical center line, spaced 4 in (100 mm) and 28 in (700 mm) from the top</td>
</tr>
<tr>
<td>60 in (1500 mm)</td>
<td>4 holes, 2 each 15 in (375 mm) from vertical center line, 3 in (75 mm) and 21 in (525 mm) from top</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Circular Sign Blanks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 in (750 mm)Diameter</td>
<td>2 holes on vertical center line 12 in (300 mm) from center</td>
</tr>
<tr>
<td>36 in (900 mm) Diameter</td>
<td>2 holes on vertical center line 15 (375 mm) from center</td>
</tr>
</tbody>
</table>
B. Fabrication
 1. Complete all fabrication, including shearing, cutting, and drilling or punching holes, before treating the metal and applying the face material.
 2. Cut the metal blanks to size and shape. Ensure that the blanks are free of buckles, warp, dents, cockles, burrs, and defects resulting from fabrication.
 3. Finish each face of the blank to be a plain surface and flat.
 4. Metal Treatment
 Use conversion coating or anodizing to finish the metal before painting or applying the reflective sheeting.
 a. Ensure the finished sign blank or panel has a uniform, light-colored appearance, without splotches or stains.
 b. If the finishing procedure produces an iridescent color, ensure that the shade is uniform.
 c. Thoroughly clean the metal before finishing.
 1) Begin cleaning with an etch-type alkaline cleaner or with a vapor degreaser, using a trichloroethylene or perchloroethylene solvent.
 2) Use the cleaner according to the manufacturer’s specifications.
 3) After using an alkaline etching cleaner, treat the metal with an acid solution or desmutting compound. Use the desmutting agent according to the manufacturer’s specifications.
 d. Finish: Finish the metal with a chromate conversion coating or by anodizing with a chromic acid anodizing solution. Use the conversion coating compound according to the manufacturer’s specifications.
 e. Handling: Carefully handle the metal with a device or with clean cotton gloves between all cleaning and finishing operations and before applying the finish material.
 Be sure that the metal never comes in contact with greases, oils, dust, or other contaminants before you apply the finish material.
 C. Acceptance
 The Department will accept the sign blanks based on results of chemical and physical tests on the materials, approval of methods and procedures for metal treatment, and acceptable quality of work of the finished blank.

D. Materials Warranty
 General Provisions 101 through 150.

912.2.02 Extruded Aluminum Sign Panels

A. Requirements
 1. Use extruded aluminum sign panels close to the shape and size shown on the Plans.
 2. Ensure that the aluminum meets the requirements of ASTM B 221 (B 221M), Alloy 6063-T6 or 6061-T6.
3. Accessories
 Ensure that the accessories for fabricating the signs meet the following:
 a. Bolts: Use bolts for connecting the panels that are 3/8 in (M10x1.5), tolerance grade 16 UNC 2A thread (6G threads), and 3/4 in (19 mm) long. Use bolts that meet the requirements of ASTM F 468 (F 468M), Alloy 2024-T4.
 b. Hex Nuts: Use hex nuts with tolerance grade 4 threads that meet the requirements of ASTM F 467 (F 467M), Alloy 6061-T6.
 c. Washers: Use washers that meet the requirements of ASTM B 209 (B 209M), Alloy 2024-T4.
 e. Post Clip Bolts: Use bolts that are 3/8 in (M10x1.5), tolerance grade 16 UNC 2A thread (6G threads), and 1-3/4 in (44 mm) long, and meet the requirements of ASTM F 468 (F 468M), Alloy 2024-T4.
 f. Post Clip Nuts: Use hex locknuts that meet the requirements of ASTM B 211(B 211M), Alloy 2017-T4.
 g. Post Clip Washers: Use washers that meet the requirements of ASTM B 209 (B 209M), Alloy 2024-T4.
4. Tolerances
 Ensure that the sections are within the established commercial tolerances of the aluminum industry.
 a. Ensure that all panels 6 in (150 mm) wide have a nominal weight of 1.115 lb/ft (1.7 kg/m). Use these sections only at the top of signs that do not conform to 1 ft (300 mm) modules.
 b. Ensure that all panels 1 ft (300 mm) wide have a nominal weight of 2.707 lb/ft (4.0 kg/m). Use these sections as the normal sign panel.
 c. Before supplying an alternate extruded panel section of equal or greater section moduli with dimensions suitable to use hardware, as shown on the Plans, obtain written approval from the Engineer.
5. Submit to the Engineer at least 1 ft² (0.1 m²) of the sign material for each lot or shipment of each type.

B. Fabrication
 1. Make the extruded panel signs as shown on the Plans.
 2. Finish the extruded panels as specified in Subsection 912.2.01.B.4.

C. Acceptance
 The Department will accept these sign panels based on results of chemical and physical tests of materials, approval of methods and procedures for metal treatment, and the quality of workmanship on the finished panel.

D. Materials Warranty
 General Provisions 101 through 150.

Section 913—Reflectoring Materials

913.1 General Description
This section includes the requirements for reflective sheeting.

913.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 AASHTO M 268
 ASTM G 7
 ASTM D 523
 ASTM E 810
 ASTM D 4956
 QPL 29

1151
913.2 Materials

913.2.01 Type I, II, III, and IV Reflective Sheeting

A. Requirements

1. Use reflective sheeting that meets the requirements of AASHTO M 268.
2. Use reflective sheeting as listed in QPL 29.
3. Use reflective sheeting that has been evaluated (3 year field exposure) by the National Transportation Product Evaluation Panel (NTPEP) test facility or other approved test facility.
4. Use Silver-White, Type III or Type IV reflective applied copy for Type I reflective sheeting signs including letters, numerals, symbols, borders, and specified route markers.
5. Submit the following to the Department:
 a. A certificate with each lot or shipment stating the following:
 □ The material supplied will meet all the test requirements listed herein.
 □ You have performed the specified tests to ensure compliance.
 □ You will submit test results upon request.
6. Definitions
 a. Reflective Sheeting Types:
 Type I: Medium-intensity retroreflective sheeting (engineering grade) that is typically an enclosed lens glass-bead retroreflective material.
 Type II: Medium-high-intensity retroreflective sheeting (super engineering grade), that is typically enclosed lens glass-bead retroreflective material.
 Type III: High-intensity retroreflective sheeting that is typically an encapsulated glass-bead retroreflective material.
 Type IV: High-intensity retroreflective sheeting that is typically an unmetallized microprismatic retroreflective element material.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

1. The Engineer will reject reflective sheeting in the following situations:
 a. The material fails to meet any one of the designated requirements.
 b. The material meets the requirements but later fails during sign fabrication or in actual field use. Cracks, wrinkles, delamination, color change, or abnormal loss of reflectivity constitute failure.
 c. Natural causes deteriorate the material to the extent that:
 1) The sign is ineffective for its intended purpose as defined in Subsection 913.2.01.C.1.b above.
 2) The average nighttime reflective brightness does not meet the outdoor weathering requirements of AASTHO M 268.

D. Materials Warranty

Transfer to the Department a performance warranty for Type I, II, III, or IV reflective sheeting issued by the manufacturer.

Ensure that the warranties cover the full replacement cost, including material and labor.

Include in these warranties a provision that the warranty is subject to a transfer to the Department.

Submit a warranty from the manufacturer that states that the reflective sheeting—processed, applied to sign blank materials, and cleaned—meets the outdoor weathering photometric requirements of AASHTO M 268.

913.2.02 Type V and VI Reflective Sheeting

A. Requirements

Use wide-angle prismatic reflective sheeting—Type V or Type VI that has a smooth surface and a distinctive interlocking diamond seal pattern and orientation marks visible from the face. Ensure that the sheeting is precoated with a pressure-sensitive adhesive backing protected by a removable liner.
1. Reflective Intensity

The wide-angle reflective sheeting shall have minimum reflective intensity values as shown in Table 1, Type V or Table 2, Type VI expressed as candlepower/foot per candle/square foot (candela/lux/m²) of material. Determine the reflective intensity according to ASTM E 810.

TABLE 1
MINIMUM REFLECTIVE INTENSITY VALUES - TYPE V

<table>
<thead>
<tr>
<th>Observation Angle°</th>
<th>Entrance Angle°</th>
<th>White</th>
<th>Yellow</th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
<th>Fluorescent Orange</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>-4</td>
<td>850</td>
<td>680</td>
<td>235</td>
<td>45</td>
<td>90</td>
<td>--</td>
</tr>
<tr>
<td>0.1</td>
<td>+30</td>
<td>625</td>
<td>500</td>
<td>155</td>
<td>32</td>
<td>65</td>
<td>--</td>
</tr>
<tr>
<td>0.1</td>
<td>+45</td>
<td>300</td>
<td>250</td>
<td>75</td>
<td>15</td>
<td>30</td>
<td>--</td>
</tr>
<tr>
<td>0.2</td>
<td>-4</td>
<td>800</td>
<td>660</td>
<td>215</td>
<td>43</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>0.2</td>
<td>+30</td>
<td>425</td>
<td>370</td>
<td>105</td>
<td>20</td>
<td>35</td>
<td>120</td>
</tr>
<tr>
<td>0.2</td>
<td>+45</td>
<td>165</td>
<td>130</td>
<td>40</td>
<td>9</td>
<td>15</td>
<td>--</td>
</tr>
<tr>
<td>0.2</td>
<td>+50</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>0.5</td>
<td>-4</td>
<td>235</td>
<td>190</td>
<td>58</td>
<td>10</td>
<td>21</td>
<td>80</td>
</tr>
<tr>
<td>0.5</td>
<td>+30</td>
<td>110</td>
<td>92</td>
<td>28</td>
<td>5.2</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>0.5</td>
<td>+45</td>
<td>75</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>7</td>
<td>--</td>
</tr>
<tr>
<td>0.5</td>
<td>+50</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>20</td>
</tr>
<tr>
<td>1.0</td>
<td>-4</td>
<td>12</td>
<td>10</td>
<td>3.0</td>
<td>0.5</td>
<td>1.0</td>
<td>--</td>
</tr>
<tr>
<td>1.0</td>
<td>+30</td>
<td>10</td>
<td>8</td>
<td>2.4</td>
<td>0.4</td>
<td>0.8</td>
<td>--</td>
</tr>
<tr>
<td>1.0</td>
<td>+45</td>
<td>10</td>
<td>8</td>
<td>2.4</td>
<td>0.4</td>
<td>0.8</td>
<td>--</td>
</tr>
</tbody>
</table>

TABLE 2
MINIMUM REFLECTIVE INTENSITY VALUES – TYPE VI

<table>
<thead>
<tr>
<th>Observation Angle°</th>
<th>Entrance Angle°</th>
<th>White</th>
<th>Yellow</th>
<th>Red</th>
<th>Green</th>
<th>Blue</th>
<th>Yellow-Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>-4</td>
<td>625</td>
<td>565</td>
<td>165</td>
<td>80</td>
<td>42</td>
<td>--</td>
</tr>
<tr>
<td>0.1</td>
<td>+30</td>
<td>430</td>
<td>315</td>
<td>110</td>
<td>45</td>
<td>22</td>
<td>--</td>
</tr>
<tr>
<td>0.1</td>
<td>+45</td>
<td>120</td>
<td>90</td>
<td>24</td>
<td>12.5</td>
<td>6</td>
<td>--</td>
</tr>
<tr>
<td>0.2</td>
<td>-4</td>
<td>370</td>
<td>300</td>
<td>98</td>
<td>45</td>
<td>22</td>
<td>275</td>
</tr>
<tr>
<td>0.2</td>
<td>+30</td>
<td>225</td>
<td>180</td>
<td>65</td>
<td>28</td>
<td>14</td>
<td>180</td>
</tr>
<tr>
<td>0.2</td>
<td>+45</td>
<td>90</td>
<td>70</td>
<td>26</td>
<td>9.8</td>
<td>4.5</td>
<td>125*</td>
</tr>
<tr>
<td>0.5</td>
<td>-4</td>
<td>275</td>
<td>220</td>
<td>70</td>
<td>32</td>
<td>17</td>
<td>250</td>
</tr>
<tr>
<td>0.5</td>
<td>+30</td>
<td>125</td>
<td>100</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>70</td>
</tr>
<tr>
<td>0.5</td>
<td>+45</td>
<td>35</td>
<td>27</td>
<td>10</td>
<td>3.5</td>
<td>1.5</td>
<td>40*</td>
</tr>
<tr>
<td>1.0</td>
<td>-4</td>
<td>75</td>
<td>58</td>
<td>20</td>
<td>9</td>
<td>4.5</td>
<td>50</td>
</tr>
<tr>
<td>1.0</td>
<td>+30</td>
<td>42</td>
<td>35</td>
<td>11</td>
<td>6</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>1.0</td>
<td>+45</td>
<td>10</td>
<td>8.8</td>
<td>3</td>
<td>1.6</td>
<td>0.8</td>
<td>12*</td>
</tr>
</tbody>
</table>
For colored, transparent overlay films and for screen printed transparent color areas on white sheeting, the ratios of the intensity for the white to the intensity for the color, when measured at 0.2° observation, 45° entrance, and 0° rotation, shall be 5:1 to 15:1 for red, and not less than 5:1 for blue or for green when processed in accordance with sheeting manufacturer’s recommendations.

2. Color
The colors specified shall be matched visually and be within the color tolerance limits shown on the appropriate Highway Color Tolerance Charts issued by the Federal Highway Administration utilizing the instructions thereon. The purchaser may accept certification by the manufacturer as to conform with this requirement. Or through instrumental color testing the diffuse day color of the sheeting material shall conform to the requirements of Table 3. The test instrument shall be one of the following or approved equal:
- Gardner Multipurpose Reflectometer
- Gardner Model AC-2a Color Difference Meter
- MEECO Model V Colormaster
- Hunterlab D 25 Color Difference Meter

If the results of instrumental testing are disputed, the visual test is the referee method and shall prevail.

TABLE 3
COLOR SPECIFICATION LIMITS* (DAYTIME)

<table>
<thead>
<tr>
<th>Color</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Y (%) Reflectance Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>White</td>
<td>0.305</td>
<td>0.305</td>
<td>0.355</td>
<td>0.355</td>
<td>0.335</td>
</tr>
<tr>
<td>Yellow</td>
<td>0.487</td>
<td>0.423</td>
<td>0.545</td>
<td>0.454</td>
<td>0.465</td>
</tr>
<tr>
<td>Red</td>
<td>0.690</td>
<td>0.310</td>
<td>0.595</td>
<td>0.315</td>
<td>0.569</td>
</tr>
<tr>
<td>Blue</td>
<td>0.078</td>
<td>0.171</td>
<td>0.150</td>
<td>0.220</td>
<td>0.210</td>
</tr>
<tr>
<td>Green</td>
<td>0.030</td>
<td>0.398</td>
<td>0.166</td>
<td>0.364</td>
<td>0.286</td>
</tr>
<tr>
<td>Yellow-Green</td>
<td>0.387</td>
<td>0.610</td>
<td>0.460</td>
<td>0.540</td>
<td>0.421</td>
</tr>
<tr>
<td>Fluorescent Orange</td>
<td>0.583</td>
<td>0.416</td>
<td>0.523</td>
<td>0.397</td>
<td>0.560</td>
</tr>
</tbody>
</table>

* The four pairs of chromaticity coordinates determine the acceptable color in terms of the CIE 1931 standard colorimetric system measured with standard illuminant D65.

3. Specular Gloss
The retroreflective sheeting shall have an 85° specular gloss of not less than 40 when tested in accordance with ASTM D 523.

4. Color Processing
Use retroreflective sheeting designed to work in concert with recommended imaging systems. The retroreflective sheeting shall permit cutting and color processing with compatible transparent and opaque process colors according to the sheeting manufacturer’s recommendations at temperatures of 60°F to 100°F (16°C to 38°C) and relative humidity of 20% to 80%. Ensure that the sheeting is heat resistant and will permit force curing without staining of applied or unapplied sheeting at temperatures recommended by the sheeting manufacturer.

5. Shrinkage
Ensure the retroreflective sheeting complies with the shrinkage requirements contained in ASTM D 4956 section 7.6.

6. Flexibility
The reflective sheeting with the liner removed and conditioned as in ASTM D 4956 section 8.1 & 8.2 shall be sufficiently flexible to show no cracking when slowly bent, in one second’s time around a 1/8 inch (3.175 mm) mandrel with adhesive contacting the mandrel. Spread Talcum powder on the adhesive to prevent sticking to the mandrel.
7. Adhesive
 Ensure the reflective sheeting complies with the liner removal and adhesion requirements contained in ASTM D 4956 sections 7.8 and 7.9.

8. Impact Resistance
 The reflective sheeting, when applied according to the manufacturer’s recommendations to a cleaned, etched aluminum panel of alloy 6061-T6, 0.040 inch x 3 inches x 5 inches (1.02 mm x 76 mm x 127 mm) and conditioned as in ASTM D 4956 sections 8.1 & 8.2, shall show no cracking when the face of the panel is subjected to an impact of a 2.0 inch (51 mm) diameter steel ball, 1.19 lbs. (0.54 kg), dropped from a height of 8.5 inches (216 mm) through a 2.125 inch (54 mm) tube.

9. Resistance to Accelerated Weathering
 The retroreflective surface of the sheeting shall be weather resistant and show no appreciable cracking, blistering, crazing or dimensional change after three years unprotected outdoor exposure conducted according to ASTM G 7 and inclined at 45° from the horizontal facing the equator. After cleaning, the coefficient of retroreflection shall not be less than 70% of the values in Table 1 and II and shall show no appreciable evidence of cracking, scaling, pitting, blistering, edge lifting or curling or more than 1/32 inch (0.79 mm) shrinkage or expansion. Where more than one panel of a color is measured, the coefficient of retroreflection shall be the average of all the determinations. The reflective sheeting shall not be removable from the aluminum panels without damage.

10. Resistance to Heat, Cold and Humidity
 Expose three samples of retroreflective sheeting, 3 inch x 6 inch (76 mm x 152 mm), applied to test panels according to ASTM 4956 section 8.1 & 8.2 as follows:
 - Heat: Place one specimen in an oven at 160 °F ± 5 °F (71 °C ± 3 °C) for 24 hours, then condition for 2 hours
 - Cold: Expose one specimen to an air temperature of −70 °F ± 5 °F (-57 °C ± 3 °C) for 72 hours, then condition for 2 hours.
 - Humidity: Subject one specimen to 100% relative humidity at a temperature of 75 °F – 78 °F (24 °C – 26 °C) according to Federal Test Method Standard 141, method 6201, for 24 hours, then condition for 24 hours.
 Ensure through examination of each of the samples following exposures that there is no evidence of cracking, peeling, chipping or delaminating from the test panel. After heat exposure, ensure the sheeting retains a minimum of 85% and a maximum of 115% of the original coefficient of retroreflection when measured at room temperature at all specified angles.

11. Fungus Resistance
 Ensure the retroreflective sheeting complies with the supplementary requirements contained in section S1 of ASTM D 4956.

12. Intended Use
 The reflective sheeting specified herein is intended for use on surfaces of highway signs to assure their optimum visibility by day and at night when exposed to a light source and whether day or totally wet by rain.

13. Lettering Paint
 Use the sheeting manufacturer’s recommendations for all paint or ink used on the sheeting for symbols, message, numerals, and borders.

14. Use reflective sheeting that has been evaluated (3 year field exposure) by the National Transportation Product Evaluation Panel (NTPEP) test facility or other approved test facility.

15. Use reflective sheeting as listed in QPL 29.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 1. The Engineer will reject reflective sheeting in the following situations:
 a. The material fails to meet any one of the designated requirements.
 b. The material meets the requirements but later fails during sign fabrication or in actual field use. Cracks, wrinkles, delamination, color change, or abnormal loss of reflectivity constitute failure.
914.1

c. Natural causes deteriorate the material to the extent that:
 1) The sign is ineffective for its intended purpose as defined in Subsection 913.2.01.C.1.b above.
 2) The average nighttime reflective brightness is less than 70% of the values specified in Table 1 or Table 2.

D. Materials Warranty

Transfer to the Department a performance warranty for Type V or Type VI reflective sheeting issued by the manufacturer.

Ensure that the warranties cover the full replacement cost, including material and labor.

Include in these warranties a provision that the warranty is subject to a transfer to the Department.

Submit a warranty from the manufacturer that states that the reflective sheeting—processed, applied to sign blank materials, and cleaned—shall maintain 70% of the values listed in Table 1 or Table 2 for 10 years.

Section 914—Sign Paint

914.1 General Description

This section includes the requirements for opaque silk screen lettering paint and transparent process colors intended for fabricating high quality, durable reflective signs and emblems by screen processing, spraying, roll coating, or hand brushing.

914.1.01 Related References

A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 ASTM G 23, Type D
 ASTM D 822

914.2 Materials

914.2.01 Silk Screen Lettering Paint

A. Requirements

1. Process Colors
 Use process colors and toner that are weather resistant and designed for use on reflective sheeting.
 a. You may tone or blend process colors to make the desired color, but supply each color ready-mixed to a smooth, uniform texture.
 b. If painting on reflective sheeting, use only paint recommended by the sheeting manufacturer.

2. Submittals
 a. Submit a 1/2-pint (0.25L) sample of each color paint from each lot to be used.
 b. Submit to the Engineer a certificate from the fabricator stating that the paint used on the Project signs is recommended by the sheeting manufacturer and is of the same lot as the test sample.

3. Color and Transparency
 Ensure that the transparent colors have the following characteristics when processed, according to the manufacturer’s instructions, through a 10XX screen onto silver-white reflective sheeting background:
 a. Produce a true color under both diffuse and reflected light.
 b. Match the color samples submitted by the Engineer.
 c. Allow good reflective brilliance of the processed sheeting.

4. Process Color and Toner
 Use process colors that flow out and dry to a tough, smooth, glossy surface free of defects, pattern, non-wet spots, and have a sharp edge (screen processed).
Ensure that the process colors have the following characteristics when applied according to the manufacturer's instructions:

- Have an appropriate viscosity for the purpose intended.
- Dry to a solid film in 24 hours at 77 °F (22 °C) and 50 percent relative humidity.
- Withstand curing at temperatures up to 150 °F (66 °C) for 4 hours without adverse effect or embrittlement.
- Be removable with a recommended solvent before it thoroughly dries, without damaging the reflective sheeting.

5. Durability
 a. Use weather-resistant colors when processed through a 10XX screen and finished according to the recommended procedures.
 b. After cleaning, ensure that the material meets the following requirements:
 - No appreciable color change
 - No loss by either diffuse or reflected light
 - No significant change in transparency when exposed to accelerated weathering for 100,000 Langleys, facing south, unprotected at 45 degrees in southern Florida; or 1,000 hours Atlas Twin Arc Weathering (ASTM G 23, Type D) as per ASTM D 822.
 c. After accelerated exposure, ensure that no process color can be removed when tested by scratching through the surface, applying cellophane tape over the scratched area, and removing the tape with one quick motion.

B. Fabrication
 1. When using color silk screen paint other than black, thoroughly stir the paste before use and frequently during use. Stir especially when using reverse silk screening.
 2. Ensure that the finished silk screen has no streaks. If the paint has streaks, the Engineer or Inspector will reject it.
 3. Apply the paste on the silk screen with a rubber squeegee that is as wide as the sign.

C. Acceptance
 The Engineer will approve the lettering paint based on the results from the color, transparency, viscosity, dry time, and removability tests from submitted paint samples.

D. Materials Warranty
 Storage and Packaging: Ensure that the material in storage for up to one year does not skin, settle, change color, thicken, or liver so that normal mixing procedures do not return the material to the proper consistency and texture.

Section 915—Mast Arm Assemblies

915.1 General Description
This section includes the requirements for steel posts, arms, and guy wires and cable for mast arm assemblies.

915.1.01 Related References
A. Standard Specifications
 Section 106—Control of Materials

B. Referenced Documents
 ASTM A 53/A 53M
 ASTM A 475
 Federal Specification FF-T-2765, Type III
 QPL 72
915.2 Materials

915.2.01 Steel Posts and Arms for Mast Arm Assembly
A. Requirements
 1. Use steel posts and arms of the dimensions shown on the Plans and that meet the requirements of ASTM A 53 for Type E or S, Grade B with a galvanized finish.
 2. Use pipe of weight class XS, schedule No. 80. Do not use the hydrostatic test requirements.
 3. Submit a certification to the Engineer from the manufacturer that the materials meet the requirements of this section.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 The Engineer will accept the material based on the certification, according to Subsection 106.05, “Materials Certification,” and on results of galvanized coating tests made by the Department.
D. Materials Warranty
 General Provisions 101 through 150.

915.2.02 Guy Wires and Cable
A. Requirements
 1. Use guy wires for mast arm assemblies and cable for overhead sign assemblies of the dimensions shown on the Plans and that meet the requirements of ASTM A 475, Siemens-Martin Grade, with Class A coating.
 2. Provide extra heavy wire rope thimbles that meet Federal Specification FF-T-2765, Type III for each end of the cable.
 3. Submit a certificate from the manufacturer according to Subsection 106.05, “Materials Certification.”
 For a list of sources, see QPL 72.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 The Engineer will accept the material based on the certificate.
D. Materials Warranty
 General Provisions 101 through 150.

Section 916—Delineators

916.1 General Description
This section includes the requirements for center mount reflector delineators.

916.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 General Provisions 101 through 150.

916.2 Materials
Definitions for Optical Requirements: Use the following definitions in this Specification:
 1. Entrance Angle
 The angle at reflector between direction of light incident on it and direction of reflector axis.
2. Observation Angle
 The angle at reflector between observer's line of sight and direction of light incident on reflector.

3. Specific Intensity
 Candlepower/footcandle (Candela) returned at the chosen observation angle by a reflector for each footcandle (lux) of illumination at the reflector.

916.2.01 Center Mount Reflector Delineators

A. Requirements
 1. Use a reflector delineator made of a hermetically sealed, acrylic plastic, prismatic reflex reflector with a single grommeted hole.
 2. Submit 50 delineators of each color to be used on the Project to the Department for testing.
 3. Acrylic Plastic Reflector
 Use an acrylic plastic reflector. Submit to the Department the manufacturer of the raw material and the identification number of the particular molding compound to be furnished.
 a. Ensure that the reflector has the following characteristics:
 - A clear, transparent plastic face with at least 6.5 in² (4200 mm²) of reflective area (the lens)
 - A heat-scalable plastic back fused to the lens under heat and pressure around the entire perimeter of the lens and the central mounting hole
 - A unit permanently sealed against dust, water, and water vapor
 b. Use a crystal (colorless), amber, or red reflector, as specified on the Plans.
 c. Ensure that the lens has the following characteristics:
 - A smooth surface without projection or indentations other than a central mounting hole and identification number
 - A rear surface bearing a prismatic configuration that will affect total internal reflection of light
 - The manufacturer’s trademark molded legibly into the lens face

4. Specific Intensity
 Ensure that the specific intensity of each reflex reflector used in delineators or markers equals or exceeds the following minimum values, regardless of reflector orientation.

<table>
<thead>
<tr>
<th>Observation Angle</th>
<th>Entrance Angle</th>
<th>Specific Intensity, candlepower per footcandle (candelas per lux)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degrees</td>
<td>Degrees</td>
<td>Crystal</td>
</tr>
<tr>
<td>0.1</td>
<td>0</td>
<td>119</td>
</tr>
<tr>
<td>0.1</td>
<td>20</td>
<td>47</td>
</tr>
</tbody>
</table>

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 1. The Engineer will accept the material based on test results (optical, seal, and heat resistance) of samples taken by the Department.
 The Department will return undamaged delineators to the Contractor.
 2. Optical Test
 a. Place the reflex reflector to be tested about 100 ft (30 m) from a single light source that has an effective diameter of 2 in (50 mm). Operate the light source at normal efficiency.
 b. Measure the return light from the reflector with a photoelectric photometer that has a minimum sensitivity scale of 1 x 10⁻⁷ footcandles/mm (1 x 10⁻⁶ lux/mm).

NOTE: If using a test distance other than 100 ft (30 m), modify all other dimensions for this test in the same proportion as the test distance.
NOTE: Use a photometer with a receiver aperture 0.5 in (13 mm) diameter, shielded to eliminate stray light.

c. Place the light source center 2.1 in (53 mm) from the aperture center for a 0.1 degree observation angle.
d. During testing, spin the reflectors to average the orientation effect.
e. The Department will reject a tested reflector if it fails the specific intensity minimum. If more than 2 reflectors fail out of 50 tested, the Department will reject the lot.

3. Seal Test
Use this test to determine if a reflector is adequately sealed against dust and water.
a. Submerge 50 samples in a water bath at room temperature.
b. Subject the submerged samples to a vacuum of 5 in (125 mm) gauge for 5 minutes.
c. Restore atmospheric pressure and leave the samples submerged for 5 minutes.
d. Examine the samples for water intake.
e. The Department will reject the lot if more than 2 percent of the reflectors fail.

4. Heat Resistance Test
a. Place three reflectors in a horizontal position on a grid or perforated shelf inside a circulating oven that allows air to circulate freely.
b. Set the oven temperature at 175 °F, ± 5 °F (80 °C, ± 3 °C) and let the specimens sit at this temperature for 4 hours.
c. After the 4 hours, remove the samples from the oven and let them cool in air to room temperature.
d. Rejection: The Department will reject the lot if any sample shows significant change in shape and general appearance when compared with unexposed control standards.

D. Materials Warranty
General Provisions 101 through 150.

Section 917—Reflectors and Nonreflective Characters

917.1 General Description
This section includes the requirements of demountable characters with Type VI reflective sheeting, and direct-applied, nonreflective characters.

917.1.01 Related References
A. Standard Specifications
 Section 106—Certification of Materials
 Section 913—Reflectorizing Materials

B. Referenced Documents
 ASTM B 209 (B 209M)
 ASTM D 822

917.2 Materials
917.2.01 Demountable Characters with Type VI Reflective Sheeting
A. Requirements
 1. Use Type VI reflective sheeting letters, numerals, symbols, and borders that meet the requirements of Subsection 913.2.02, Type VI.
 2. Use a silver color, unless otherwise specified on the Plans.
 3. Apply the characters to aluminum flat frames as recommended by the sheeting manufacturer.
 4. Use flat frames (letter, numerals, symbols and borders) made from aluminum sheet 0.032 in (0.813 mm) thick matching ASTM B 209 (209M), Alloy 3003-H14.
5. Submit to the Department:
 □ One letter of a predominant size and type to be used on the Project.
 □ A certificate to the Engineer stating that the material used on the Project is the same as the sample submitted.

B. Fabrication

1. Before applying any sheeting, properly degrease, etch, and treat each frame with a light, tight amorphous chromate-type coating.
2. Mechanically apply the reflective sheeting to the prepared flat aluminum frames. Use the proper equipment as prescribed by the sheeting manufacturer.
3. When recommended by the sheeting manufacturer, coat the completed demountable letters, numerals, symbols and borders with a clear finish approved by the sheeting manufacturer.
 Apply the clear coat to the sheeting surface to ensure the sheeting has a fully glossy coat and a complete edge seal.
4. Ensure that the finished letters, numerals, symbols, and borders show careful workmanship, are clean cut, sharp, and have a plane surface.
5. Use the character size and shape to determine the hole spacing to mount the frame with aluminum rivets or other approved non-corrosive fasteners. Do not space holes more than 8 in (200 mm) on center.

C. Acceptance

The Department will accept the material based on test results of samples taken by the Department or of samples submitted by the manufacturer or fabricator, when directed. The sample shall consist of one letter of predominant size and type to be used on the Project. Samples submitted by the manufacturer or fabricator to the Engineer, shall include a certificate stating that the material used on the Project is the same as the sample submitted.

D. Materials Warranty

General Provisions 101 through 150.

917.2.02 Direct Applied Nonreflective Characters

A. Requirements

1. Use direct-applied, nonreflective characters as opaque legend, stripping, and symbols on traffic control signs made from reflective sheeting that meets Subsection 913.2.
2. Use nonreflective, weatherproof plastic film that is precoated with pressure-sensitive or heat-sensitive adhesive backing.
3. Use sheeting that is flexible enough to be easily cut, shaped, and applied over reflective sheeting.
4. Submit the manufacturer’s certification to the Engineer showing the properties of the materials used and how they match the Specifications, as required by Subsection 106.05, “Materials Certification.”
5. Ensure that the nonreflective sheeting is weather resistant after processing and application, according to the manufacturer’s recommended procedures.
 a. Expose the nonreflective sheeting for 1,200 hours in an Atlas Twin Arc Weatherometer, as per ASTM D 822.
 b. Clean the sheeting.
 c. The Department will reject nonreflective sheeting that appreciably discolors, cracks, crazes, blisters, changes dimensionally, or adversely affects the reflective sheeting on which it is mounted.
6. Use adhesive that has the following characteristics:
 □ Is precoated and pressure-sensitive (Class 1) or tack-free and heat-activated (Class 2). Be able to apply either without adding more adhesive to either the nonreflective sheeting or to the reflective sheeting.
 □ Has a protective liner that can be peeled off without being soaked in water or other solvents.
 □ Ensure that the liner is easily removed after accelerated storage for 4 hours at 150 °F (65 °C) under 2.5 psi (17 kPa) of pressure.
 □ Forms a durable, vandal-resistant bond to smooth and weather resistant surfaces.
 □ Adheres securely at temperatures ranging from−30 °C to 200 °F (−35 °C to 95 °C), just 48 hours after application.
 □ Prevents the sheeting from shocking off the panel when struck at −10 °F (−25 °C).
919.1

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 The Department will accept the material based on the manufacturer’s certificate.

D. Materials Warranty
 General Provisions 101 through 150.

Section 919—Raised Pavement Markers

919.1 General Description
This section includes the requirements for raised pavement marker materials for use in reflective, ceramic, and channel markers.

919.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 ASTM C 424
 ASTM C 373
 ASTM D 2240
 ASTM D 4280
 Federal Method TT-T-141, Method 4252

919.2 Materials
A. Requirements
 Do not use any marker materials until the laboratory approves it.
 1. Use raised pavement marker sources as listed in QPL 76.
 2. Use raised pavement markers of the type shown in the Plans or specified in the proposal. This Specification references markers as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>One-way, one-color, 4 x 2 in (100 mm x 50 mm), reflective</td>
</tr>
<tr>
<td>2</td>
<td>Two-way, one-color, 4 x 2 in (100 mm x 50 mm), reflective</td>
</tr>
<tr>
<td>3</td>
<td>Two-way, two color, 4 x 2 in (100 mm x 50 mm), reflective</td>
</tr>
<tr>
<td>4</td>
<td>Round white, yellow or black ceramic, non-reflective</td>
</tr>
<tr>
<td>5</td>
<td>Oval white, yellow or black ceramic, non-reflective</td>
</tr>
<tr>
<td>6</td>
<td>Oval white or yellow ceramic, reflective</td>
</tr>
<tr>
<td>7</td>
<td>White or yellow ceramic jiggle bar, non-reflective</td>
</tr>
<tr>
<td>8</td>
<td>White or yellow ceramic jiggle bar, reflective</td>
</tr>
<tr>
<td>9</td>
<td>White or yellow channel, non-reflective</td>
</tr>
<tr>
<td>10</td>
<td>White or yellow channel, reflective</td>
</tr>
<tr>
<td>11</td>
<td>Two-way, one-color, 4 x 4 in (100 mm x 100 mm), reflective</td>
</tr>
<tr>
<td>12</td>
<td>One-way, one color, 4 x 4 in (100 mm x 100 mm), reflective</td>
</tr>
<tr>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>Two-way, two color, 4 x 4 in (100 mm x 100 mm), reflective</td>
</tr>
<tr>
<td>14</td>
<td>Two-way, one color, flexible reflective</td>
</tr>
<tr>
<td>15</td>
<td>One-way, one color, flexible reflective</td>
</tr>
</tbody>
</table>

3. Definitions
 a. Angle of Incidence: Formed by a ray from the light source to the marker, and the normal to the leading edge of the marker face.
 b. Angle of Divergence: Formed by a ray from the light source to the marker and the return ray from the marker to the measuring receptor.
 c. Specific Intensity: The mean candela of the reflected light at a given incidence and divergence angle for each lux at the reflector on a plane perpendicular to the incident light.

4. Sampling
 The Department will select at random the required number of markers for initial tests for each shipment or lot, as follows:

<table>
<thead>
<tr>
<th>Reflective Markers</th>
<th>Ceramic Markers</th>
<th>Channel Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>25</td>
<td>5</td>
</tr>
</tbody>
</table>

5. Certification
 Submit a certification to the Engineer from the manufacturer showing the physical properties of the markers and their conformance to this Specification.

6. Packaging
 Pack shipments in containers that are acceptable to common carriers.
 a. Pack the containers to ensure delivery in perfect condition.
 b. Clearly mark each package of pavement markers with the size, color, type, and lot number.
 c. You are liable to replace any damaged shipments.

7. Acceptance
 The Department will give conditional approval to raised pavement markers evaluated by the National Transportation Product Evaluation Program (NTPEP), the Georgia Department of Transportation, or other Department-approved test facilities and place them on QPL 76.
 All white raised pavement markers must meet the requirements of this Specification and the following field performance requirements.
 a. Conditional QPL Placement: The Department may add markers on a conditional basis to QPL 76. These markers must maintain an average Coefficient of Retroreflected Luminous Intensity of 1.5 candles per footcandle (cd/ft)* after a one-year field evaluation period through at least one of the test facilities specified above.
 b. Final Acceptance or Rejection: The Department will accept or reject markers based on the marker maintaining an average Coefficient of Retroreflected Luminous Intensity of 0.5 candles per footcandle (cd/ft)* after a two-year field evaluation period through at least one of the test facilities specified above.

 NOTE: Measure the coefficient of retroreflected luminous intensity at the 0 degree incident angle and 0.2 degree divergence angle.

919.2.01 Reflective Pavement Markers

A. Requirements
 Plastic reflective pavement markers are types 1, 2, 3, 11, 12, and 13 (rigid plastic reflective) and types 14 and 15 (flexible reflective).

 1. Rigid Plastic Reflective Markers
 a. Use prismatic markers made with a methyl methacrylate or acrylonitrile butadiene styrene, a high-impact plastic shell filled with a mixture of inert thermosetting compound and filler material.
1) Ensure that the exterior shell surface is smooth and contains one or two prismatic faces, molded to reflect incident light from a single direction or from opposite directions.

2) Ensure that the shell is one color or a combination of two colors that will be the same as reflective elements and shall match the size and shape in the Plans.

b. Use two basic sizes—a standard (a base of 4 x 4 in [100 mm x 100 mm]) or a low-profile (a base of 4 x 2 in [100 mm x 50 mm]).

1) Ensure that reflective raised pavement markers have one or two lens surfaces that meet the requirements of ASTM D 4280, designation H—a marker with a hard, abrasion-resistant lens surface.

2) Ensure the marker base is clean and has no gloss or substance that may reduce the adhesive’s bond. The Department will reject the marker if it has a soft or resin-rich film on the base.

2. Flexible Reflective Markers (Type 14 and 15)

Use markers manufactured by extruding plastic into an “L” shape, with nominal dimensions of 4 in (100 mm) long x 2 in (50 mm) high (vertical face) x 1 in (25 mm) wide (base leg). Ensure that the markers have the following:

- A pressure-sensitive adhesive with a paper release liner to the bottom of the base leg.
- Strips of metallized acrylic reflective sheeting on either one or both sides of the vertical face.
- A clear plastic cover to protect the reflective strip. Ensure that the cover withstands a chip-seal operation and is easily removed after the operation.

3. Color

Use clear, yellow, or red raised reflective pavement markers, as required.

If the reflection is off-color, the Department will reject the markers.

4. Specific Intensity

Ensure that the specific intensity of each reflective surface, when tested at 0.2 degree angle of divergence, has at least these values:

<table>
<thead>
<tr>
<th>Incidence Angle</th>
<th>Clear</th>
<th>Yellow</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>3.0</td>
<td>1.50</td>
<td>0.75</td>
</tr>
<tr>
<td>20°</td>
<td>1.2</td>
<td>0.60</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Calculate the intensity as follows:

\[SI = \frac{(R_L \times D^2)}{I_L} \]

Where:

- \(SI \) = Specific Intensity
- \(I_L \) = Incident Light
- \(R_L \) = Reflected Light
- \(D \) = Test Distance

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

The Department will accept markers based on the results of the physical tests and on the manufacturer’s certification showing the physical properties of the markers and their conformance to this Specification.

The Department will conduct the following tests:

- Specific Intensity
- Compressive Strength
- Impact
- Temperature Cycle
- Shore A Hardness (Type 14 and 15 only)

1. Specific Intensity
a. Place markers so the center of the reflecting face is 5 ft (1.5 m) from a uniformly bright light source. Use a source with an effective diameter of 0.21 in (5 mm).
 If using a test distance other than 5 ft (1.5 m), modify the source and receptor in the same proportion as the test distance.

b. Use a photocell receptor 0.5 in (13 mm) wide. Shield it to eliminate stray light.

c. Place the center of the light source aperture 0.2 in (5 mm) from the center of the photocell.

d. Use the following table to determine if the markers pass the tests (except the strength test), unless otherwise specified.

<table>
<thead>
<tr>
<th>Markers that Pass</th>
<th>Department Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 of 50</td>
<td>Accept the lot.</td>
</tr>
<tr>
<td>44 or less of 50</td>
<td>Reject whole lot; no retest allowed.</td>
</tr>
<tr>
<td>45-47 of 50</td>
<td>Contractor can request a retest on 100 markers. The Department will pass each marker through all tests except the strength test.</td>
</tr>
<tr>
<td>96 of 100 retested</td>
<td>Accept the whole shipment</td>
</tr>
<tr>
<td>95 or less of 100 retested</td>
<td>Reject the whole shipment</td>
</tr>
</tbody>
</table>

2. Compressive Strength

Test for compressive strength as follows:

<table>
<thead>
<tr>
<th>Standard Raised Markers 4 x 4 in (100 x 100 mm)</th>
<th>Low-Profile Markers 4 x 2 in (100 x 50 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Select three random markers for the test.</td>
<td>2. Position the marker on its base at the center of a flat, steel plate that has a minimum thickness of 0.5 in (13 mm).</td>
</tr>
<tr>
<td>2. Center the base of the marker over the open end of a hollow, vertically positioned metal cylinder (1 in (25 mm) high, internal diameter of 3 in (75 mm), wall thickness of 0.25 in (6 mm)).</td>
<td></td>
</tr>
<tr>
<td>3. Apply a load to the top center of the marker with a 1 in (25 mm) diameter solid steel plug at a rate of 0.2 in (5 mm) per minute.</td>
<td>0.03 in (0.75 mm) per minute.</td>
</tr>
<tr>
<td>4. The marker fails if it breaks or deforms at a load less than 2,000 lbs (8.9 kN)</td>
<td>4,000 lbs (17.8 kN)</td>
</tr>
<tr>
<td></td>
<td>Or if the shell and the filler material significantly delaminate, regardless of the load required to break the marker.</td>
</tr>
<tr>
<td>5. If any of the 3 samples fail, the Department will test 6 additional samples.</td>
<td></td>
</tr>
<tr>
<td>6. If any of the 6 additional samples fail, the Department will reject the entire lot.</td>
<td></td>
</tr>
</tbody>
</table>

3. Impact Test

a. Condition all prismatic reflective faces that meet the requirements of ASTM D 4280, designation H, before the impact test.

b. Choose at random 20 markers for each test.

c. Condition the markers in an oven at 130 °F (54° C) for one hour.

d. While at this temperature, drop a 0.42 lb (0.2 kg) dart fitted with a 0.25 in (6 mm) radius spherical head from 18 in (450 mm) above the reflective face.

e. Drop the dart perpendicularly onto the center of the reflective surface. The cracks in the impact area shall appear generally concentric.

f. The Department will reject the marker if more than two radial cracks longer than 0.25 in (6 mm) appear, or if radial cracks extend to the edge of the reflective face.
g. Use the following table to determine if the markers pass the tests.

<table>
<thead>
<tr>
<th>Markers That Pass</th>
<th>Department Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 of 20</td>
<td>Accept the lot.</td>
</tr>
<tr>
<td>16 of 20</td>
<td>Reject the lot.</td>
</tr>
<tr>
<td>17 of 20</td>
<td>The Contractor may request a retest. The Department will test 20 additional lenses.</td>
</tr>
<tr>
<td>19 or less of 20 retested</td>
<td>Reject the lot.</td>
</tr>
</tbody>
</table>

4. Temperature Cycle
 a. Subject the same markers used for impact testing to 3 cycles of 140 °F (60 °C) for 4 hours followed by 20 °F (~7 °C) for 4 hours.
 b. The Department will reject the markers if they crack or delaminate after this test.
 c. Use the following table to determine if the markers pass the tests.

<table>
<thead>
<tr>
<th>Markers That Pass</th>
<th>Department Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 of 20</td>
<td>Accept the lot.</td>
</tr>
<tr>
<td>16 of 20</td>
<td>Reject the lot.</td>
</tr>
<tr>
<td>17 of 20</td>
<td>The Contractor may request a retest. The Department will test 20 additional lenses.</td>
</tr>
<tr>
<td>19 or less of 20 retested</td>
<td>Reject the lot.</td>
</tr>
</tbody>
</table>

5. Hardness (Type 14 or 15 only)
 a. Select five random markers.
 b. Use ASTM D 2240 to determine the Shore A hardness.
 c. Measure the hardness. The Department will reject markers whose body and clear protective cover hardness is less than 80.

D. Materials Warranty
 General Provisions 101 through 150.

919.2.02 Ceramic Pavement Markers

A. Requirements

Ceramic pavement markers are types 4, 5, 6, 7, and 8.

1. Use ceramic pavement markers made from a heat-fired, white, vitreous, ceramic base and a heat fired, opaque, glazed surface to produce the properties required in these Specifications.
 a. Do not place glaze on the marker bottom where it connects to the road surface.
 b. Thoroughly and evenly mature the markers. Ensure that they have no defects that affect appearance and serviceability.
 c. Use reflective ceramic markers that meet the specific intensity of each reflective surface according to Subsection 919.2.01.A.4.
 d. Ensure that the mean thickness of the glazed surface is at least 0.005 in (0.13 mm) when measured at least 0.25 in (6 mm) from the edge of the marker.
 e. Ensure that the water absorption of the ceramic markers does not exceed 2 percent of the original dry weight when tested according to ASTM C 373.
 f. Ensure that the glazed surface does not craze, spoil, or peel when passed through one cycle of the Autoclave test at 250 psi (1724 kPa) (ASTM C 424).

2. Use the designated colors for the white and yellow markers.
 a. Ensure that the colors are uniform.
 b. Ensure that black matches Federal Color No. 595-27038.
c. Determine the color by visually comparing each marker with calibrated standards having CIE Chromaticity Coordinate limits. Determine the limits with Federal methods of test TT-T-141, Method 4252, using a rectangle with the following corner points:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>(90MGO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>.290</td>
<td>.316</td>
<td>.310</td>
<td>.296</td>
<td>.330</td>
</tr>
<tr>
<td>Yellow</td>
<td>.435</td>
<td>.485</td>
<td>.445</td>
<td>.435</td>
<td>.544</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.310</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.344</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

1. Use a random sample of five markers for each of the required tests in Subsection 919.2.01.C.3 to Subsection 919.2.01.C.4, and Subsection 919.2.01.C.5. Use the Compressive Strength Test in Subsection 919.2.02.C.3.

2. Use the following table to determine if the markers pass the tests.

<table>
<thead>
<tr>
<th>Markers that Pass</th>
<th>Department Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 of 5</td>
<td>Accept the lot.</td>
</tr>
<tr>
<td>3 or less of 5</td>
<td>Reject the lot; no resample allowed.</td>
</tr>
<tr>
<td>4 of 5</td>
<td>The Contractor may request a retest. The Department will retest an additional 25 random markers in the test or tests where the original sample failed.</td>
</tr>
</tbody>
</table>

| 20 of 25 retested | Accept the lot. |
| 19 or less of 25 retested | Reject the lot; no resample allowed. |

3. Compressive Strength Test

a. Center the markers with the base down over the open end of a vertically positioned hollow metal cylinder. Use a cylinder 1 in (25 mm) high with an internal diameter of 3 in (75 mm) and a wall thickness of 0.25 in (6 mm).

b. Apply a load at 0.2 in (5 mm) per minute to the top of the markers through a 1 in (25 mm) diameter solid metal cylinder centered on the top of the markers.

c. Apply the load until the marker breaks.

d. The markers pass if the average compressive load of all five markers is at least 1,500 psi (6.7 kN). No individual marker shall be less than 1,200 psi (5.3 kN).

D. Materials Warranty

General Provisions 101 through 150.

919.2.03 Channel Pavement Markers

A. Requirements

Channel pavement markers are type 9 and 10 markers only.

1. Use channel pavement markers made of either a heat-fired, white, vitreous, ceramic base with a heat-fired, opaque, glazed surface, or a 9 gauge (3.9 mm) steel body with a heat-fired porcelain finish.

a. Ensure both ceramic and steel channel markers have no defects that affect appearance and serviceability.

b. Ensure that the mean thickness of the glazed surface of ceramic channel markers is at least 0.005 in (0.13 mm) when measured at least 0.25 in (6 mm) from the edge of the marker.

c. Ensure that mean thickness of the porcelain finish on the steel channel markers is at least 0.030 in (0.76 mm).

d. Ensure that the water absorption of the ceramic markers does not exceed 2.0 percent of the original dry weight when tested according to ASTM C 373.

e. Ensure that the surface of the markers do not craze, spoil, or peel when passed through one cycle of the Autoclave test at 250 psi (1724 kPa) (ASTM C 424).
2. Use the designated colors for the white and yellow markers.
 a. Ensure that the colors are uniform.
 b. Determine the color by visually comparing them with calibrated standards having CIE Chromaticity Coordinate limits. Determine the limits with Federal methods of test TT-T-141, Method 4252, using a rectangle with the following corner points:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>(90MGO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>.290</td>
<td>.316</td>
<td>.296</td>
<td>.330</td>
<td>.310</td>
</tr>
<tr>
<td>Yellow</td>
<td>.435</td>
<td>.485</td>
<td>.445</td>
<td>.544</td>
<td>.456</td>
</tr>
</tbody>
</table>

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 1. Ensure that Type 10 markers meet the specific intensity of each reflective surface according to Subsection 919.2.01.A.4
 2. Use a random sample of five markers for each of the required tests in Subsection 919.2.01.C.2, Subsection 919.2.01.C.3, Subsection 919.2.01.C.4, and Subsection 919.2.01.C.5.
 3. Select two of the five markers and subject them to all the required tests.
 4. Use the following table to determine if the markers pass the tests.

<table>
<thead>
<tr>
<th>Markers that Pass</th>
<th>Department</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 of 2</td>
<td>Accept the lot.</td>
<td></td>
</tr>
<tr>
<td>0 of 2</td>
<td>Reject the lot; no resample allowed.</td>
<td></td>
</tr>
<tr>
<td>1 of 2</td>
<td>Retest the three remaining markers.</td>
<td></td>
</tr>
<tr>
<td>3 of 3 retested</td>
<td>Accept the lot.</td>
<td></td>
</tr>
<tr>
<td>2 or less of 3 retested</td>
<td>Reject the lot; no resample allowed</td>
<td></td>
</tr>
</tbody>
</table>

D. Materials Warranty
 General Provisions 101 through 150.

Section 920—Lighting Standards and Towers

920.1 General Description
This section includes the requirements for the structural components of poles, towers, bases, anchor bolts, luminaires, and other attachments used for roadway, high mast, or other lighting.

In particular, the section covers the following:
- Steel lighting standards and towers
- Aluminum lighting standards
- Prestressed concrete standards
- Service cars
- Support and lowering assemblies
- Grounding

920.1.01 Related References
A. Standard Specifications
 Section 105—Control of Work
Section 501—Steel Structures
Section 645—Repair of Galvanized Coatings
Section 865—Manufacture of Prestressed Concrete Bridge Members

B. Referenced Documents

<table>
<thead>
<tr>
<th>ASTM</th>
<th>AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 27/A 27M</td>
<td>A 153/A 153M</td>
</tr>
<tr>
<td>A 53/A 53M</td>
<td>A 193/A 193M</td>
</tr>
<tr>
<td>A 123/A 123M</td>
<td>A 588/A 588M</td>
</tr>
<tr>
<td>A 709/A 709M</td>
<td>B 108</td>
</tr>
<tr>
<td>M 222/M 222M</td>
<td>M 314</td>
</tr>
</tbody>
</table>

MIL-W-83420
AISI 304
AISI 1020
AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals

920.2 Materials
Design lighting assemblies consisting of standard, tower, bracket arms, lowering assembly, and luminaire support and assemblies according to AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals.
Submit to the Engineer the manufacturer’s design calculations and shop drawings for each type of lighting standard or tower to be used.

920.2.01 Steel Lighting Standards and Towers

A. Requirements
1. Include the following in the makeup of lighting standards and towers:
 a. A pole and bracket arms as required on the Plans.
 b. A steel base welded to the other end complete with bolts for use as an anchor base pole, or attached to an approved breakaway device, such as slip base, aluminum transformer base, breakaway couplings, etc., when so specified.
2. Steel Structures
 Use structural carbon or structural low alloy steel that meets the requirements of AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals. However, do not use ASTM A 588/A 588M (AASHTO M 222/M 222M) steel.
3. Steel Pipe
 Use steel pipe according to ASTM A 53/A 53M Grade B or approved equal. No hydrostatic test is required.

B. Fabrication
1. Roadway Standards
 Unless otherwise specified, do the following:
 a. Make the shaft or appropriate shape continuously taper with a base welded to the lower end.
 b. Construct the standard of steel at least 11 gauge (3.1 mm) thick to the dimensions required for the specified mounting height. Form the standard from one piece with one electrically welded longitudinal joint and no intermediate horizontal joints.
 c. After forming and welding, cold-roll the shaft longitudinally under sufficient pressure to flatten the weld and increase the physical characteristics of the metal in the shaft.
d. Ensure that the shaft has a reinforced handhole with a cover, except where a transformer base is specified.
 1) Provide a 0.5 in (13 mm) approved grounding connector in the shaft or base.
 2) Equip the top of the shaft with a removable pole cap held securely in place.
 3) Galvanize the shaft with the hot-dipped method in ASTM A 123/A 123M.

2. Lighting Towers
 a. Make the shaft to meet the requirements of the roadway standard (Subsection 920.2.01.B.1).
 b. Construct the standard to continuously taper 0.14 to 0.40 in/ft (12 to 33 mm/m).
 c. Ensure that the standard has the necessary dimensions and metal quality to meet the requirements for the specified mounting height.
 d. You may form the shaft in sections with each section having no more than two longitudinal welded seams.
 e. Use intermediate horizontal welds only at section joints.
 f. Make telescoped joints overlap at least 1-1/2 pole diameters, measured at the minimum diameter of the inner telescoping section.
 g. Have field welding done only by an approved certified welder who represents the manufacturer. Ensure the welding follows the requirements of Section 501.
 h. Repair any damage to spelter coating according to Section 645.
 i. Match-mark all sections of the shaft so that the tapered sections are assembled properly.

3. Post Top or Other Standards for Special Installation
 a. Make the post top and other standards meet the requirements for roadway standards (Subsection 920.2.01.B.1).
 b. Make the top diameter of the shaft 3 in (75 mm), or include a 3 in (75 mm) tenon, unless otherwise specified, to insert the shaft or tenon into the luminaire.

4. Anchor Base
 Do the following, unless otherwise specified:
 a. Secure a steel base to the lower end of the shaft with two continuous electric welds. Ensure that the base develops the full strength of the adjacent shaft section to resist bending.
 b. Where the Plans specify a frangible or breakaway base, attach the base to an approved breakaway device with an approved number and type of bolts.
 c. Provide removable cast or pressed steel covers with each base. Appropriately attach each cover to the base.

5. Steel Bracket Arms
 Do the following, unless otherwise specified:
 a. Use the design dimensions from the Plans.
 b. Ensure that the installed bracket connects securely with the shaft and has a smooth wiring raceway.
 c. Use stainless steel bolts and nuts that meet the requirements of ASTM A 193/A 193M, Type B8C or AISI 304 to attach the bracket arm assembly.

6. Transformer Bases
 Do the following, unless otherwise specified:
 a. Use the dimensions on the Plans to build the bases.
 1) Make top and bottom plates that meet the requirements of ASTM A 709/A 709M, Grade 36 (250), and are fabricated to receive the shaft, anchor bolts, and the foundation bolts.
 2) Make the side panels meet the requirements of AISI 1020.
 3) Create a base thick enough for the height of the standard.
 b. Fit the base with a door that can be securely fastened.

7. Anchor Bolts
 a. Provide bolts as follows:

 | Lighting standard | 4 anchor bolts |
 | Lighting tower | 8 anchor bolts (minimum) |

 b. Use the size indicated on the Plans or as required by the manufacturer’s shop drawings.
c. Use anchor bolts, nuts, and washers that meet the requirements of AASHTO M 314, Grade 55(370). Supplementary requirement S 1 of AASHTO M 314 also applies.

NOTE: Do not use Grade 105 (724).

d. Install anchor bolts with a leveling nut and a flat washer between the leveling nut and the base plate.
 1) Use a template to install the bolts.
 2) Place a flat washer on top of the base plate.
 3) Lock a lock washer on top of the flat washer and secure the nut.
 4) Fully grout the space between the shoe base and the top of the footing with non-shrink grout.

e. Galvanize threaded ends of anchor bolts, hexagonal nuts, flat washers, and lock washers according to ASTM A 153/A 153M and Plan details.

8. Finish

 Unless otherwise specified, galvanize all steel lighting standards and towers, including pole, base, transformer base, and bracket arm assembly according to ASTM A 123/A 123M.

C. Acceptance

 1. The Engineer reserves the right to make test and inspections as necessary to ensure compliance with these Specifications and to reject items that fail testing.

 2. The Engineer will accept the steel lighting standards and towers based on:
 - The results of physical and chemical tests made by the Department.
 - The manufacturer’s certification showing physical and chemical properties of the metal prior to forming.

D. Materials Warranty

 General Provisions 101 through 150.

920.2.02 Aluminum Lighting Standards

A. Requirements

 Include the following in making aluminum lighting standards:

 1. A pole and bracket arms as required on the Plans.

 2. An aluminum base welded or bonded to the lower end, complete with bolts for use as an anchor base pole or attached to an approved breakaway device such as an aluminum transformer base, breakaway couplings, etc., when so specified.

B. Fabrication

 Use aluminum materials that meet the requirements of AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals.

 1. Roadway Standards
 a. Make the shaft with a continuous taper and weld, or bond a base to the lower end.
 b. Give the shaft a reinforced handhole with a cover, except when a transformer base is specified.
 c. Provide a 0.5 in (13 mm) approved grounding connection in the shaft or base.
 d. Equip the top of the shaft with a removable pole cap held securely in place with set screws.

 2. Post Top or Other Standards for Special Installation
 Do the following, unless otherwise specified:
 a. Build the standard to meet the requirements for roadway standards (Subsection 920.2.01.B.1).
 b. Make the top diameter of the shaft 3 in (75 mm), or include a 3 in (75 mm) tenon to insert the shaft or tenon into the luminaire.

 3. Anchor Base
 Do the following, unless otherwise specified:
 a. Secure the one-piece aluminum base to the lower end of the shaft by either:
 - Using two continuous welds.
Inserting the base at least 12 in (300 mm) into the shaft and bonding with a weatherproof structural epoxy adhesive that fully develops the required strength as specified by the design criteria.

b. Ensure that the base develops the full strength of the adjacent shaft section to resist bending.

c. When the Plans call for a frangible or breakaway base, attach the base to an approved breakaway device with an approved number and type of bolts, or use a base that is an approved breakaway type.

d. Provide removable cast or pressed aluminum covers with each base. Appropriately attach each cover to the base.

4. Aluminum Bracket Arms
 a. Use the Plan design and dimensions.
 b. Ensure that the installed bracket arm connects securely with the shaft and has a smooth wiring raceway.
 c. Use stainless steel bolts and nuts that meet the requirements of ASTM A 193/A 193M, Type B8C or AISI 304, to attach the bracket arm assembly.

5. Transformer Bases
 a. Form the base of cast aluminum that meets the requirements of ASTM B 108, Alloy A03560, T6 to dimensions on the Plans. Use aluminum as the primary material.
 b. Make the top so it can receive the anchor base bolts and the bottom so it can receive the anchor bolts.

6. Anchor Bolts
 Use bolts as described in Subsection 920.2.01.B.7.

7. Finish all aluminum lighting standards, including pole, base, transformer base, and bracket arm assembly in a natural aluminum color, unless otherwise specified.

C. Acceptance
 1. The Engineer reserves the right to make test and inspections as necessary to ensure compliance with these Specifications and to reject items that fail tests.
 2. The Engineer will accept the aluminum lighting standards and towers based on:
 - The results of physical and chemical tests made by the Department
 - The manufacturer’s certification showing physical and chemical properties of the metal prior to forming the standard

D. Materials Warranty
 General Provisions 101 through 150.

920.2.03 Prestressed Concrete Lighting Standard

A. Requirements
 1. Make the prestressed concrete lighting standard of the design and dimensions in the Plans. Make the standard with machines in steel forms by the centrifugal spinning process to ensure maximum density.
 2. Use a manufacturing method that produces a smooth cable raceway throughout the length of the standard.

B. Fabrication
 1. Use materials and manufacturing methods according to Section 865 with the following exceptions:
 a. Concrete: Use Class AAA concrete with a maximum aggregate size of 3/8 in (10 mm) and a maximum slump of 0.5 in (15 mm) after the spinning process.
 b. Detension: You may detension the standards after 24 hours under a low-temperature steam process. However, if the standard does not reach a compression strength of 3,500 psi (25 MPa) in this 24-hour period, the Inspector will reject the standard.
 c. Finish: Ensure that the standard has a smooth, uniform finish from a water carborundum mechanical process that removes the laitance and surface content revealing the aggregate.
 2. Bases
 a. Furnish the standards with an anchor base or a precast butt base.

NOTE: If using the precast butt base, cast it as an integral part of the standard during the spinning process. Make a conduit entrance as shown on the Plans.
b. Make the bolt-down anchor base have a cast steel anchor base that meets the requirements of ASTM A 27/A 27M, Grade 70-36 (485-250).
c. Secure the base to the primary pole reinforcement so it is strong enough to transmit the required loads to the anchor bolts.

3. Bracket Arms
 a. You may make the bracket arm assembly of aluminum or steel that meets the requirements shown herein.
 b. Galvanize the steel bracket arm assembly according to ASTM A 123/A 123M.

C. Acceptance
 1. The Engineer reserves the right to make test and inspections as necessary to ensure compliance with these Specifications and to reject those items failing such tests.
 2. The Engineer will accept these standards based on tests made by representatives of the Department during the manufacturing process.
 3. Give sufficient notice to the Engineer prior to manufacture to arrange for the required inspection.

D. Materials Warranty
 General Provisions 101 through 150.

920.2.04 Service Car
A. Requirements
 1. Use a power-driven hoisting device suitable for safely servicing any level of the lighting tower.
 2. Furnish shop and working drawings or illustration sheets as needed according to Section 105.
 3. Transfer to the Engineer all guarantees on materials and equipment that the manufacturer normally furnishes, together with all operating instructions and service manuals.
 Include in the guarantees the provision that they are subject to such transfer.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Submit guarantees on materials and equipment.

920.2.05 High Mast Luminaire Support and Lowering Assembly
A. Requirements
 1. This assembly shall be a mechanical device capable of supporting the luminaire assembly at the required operating position and raising and lowering the assembly to ground level for servicing.
 2. Furnish shop and working drawings or illustration sheets according to Section 105.
 3. Transfer to the Engineer all guarantees on materials and equipment that the manufacturer normally furnishes, together with all operating instructions and service manuals.
 Include in the guarantees the provision that they are subject to such transfer.

B. Fabrication
 2. Support Head Frame
 Use a head frame with three supports for the suspension cables and a pulley for the power cable.
 a. Place the suspension supports 120 degrees apart. Place the power cable pulley midway between two suspension supports.
 b. Attach two pulleys to the inside of each support, one at each end. Construct the pulleys so that the suspension cables ride freely in the groove of the pulleys.
 Provide cable guides and retainers to keep the suspension cables and power cable inside the pulleys.
c. Supply a hood for the support head frame to protect against weather for all working components at the pole top. Ensure that the hood adequately ventilates the pole.

3. Luminaires Mounting Ring
 a. Equip the inner portion of the ring with approved roller-contact, spring-loaded centering arms. The arms center the luminaire ring while ascending or descending the pole, protect the pole and luminaires, and prevent jamming during the raising and lowering operations.
 Make the rollers for the centering arms of a water-resistant, non-marking composition material.
 b. Design the mounting ring to symmetrically mount the number of luminaires indicated on the Plans.
 1) Provide a weatherproof junction box and terminal board terminating the power cable and connecting the luminaire wiring.
 2) Provide a weatherproof power receptacle to test the luminaires when the ring is in the lowered position.

4. Non-Latching Device Design
 a. If the design does not have a latching device at the top of the pole, position the luminaire mounting ring tightly against the support head frame.

 NOTE: Use a positive, visible indication that the required force has been applied.

 b. Make sure the luminaire mounting ring and support head frame can hold the luminaire mounting ring in place and prevent rotation while in the raised position.

5. Latching Device Design
 a. Use a latching device at the top of the pole to latch all three suspension points and support the total weight of the ring including luminaires.
 b. Place all moving parts of the latching device in the luminaire mounting ring.

 NOTE: Use a positive, visible indication of the latching position.

6. Miscellaneous Hardware
 Use non-corrosive miscellaneous fittings, fasteners, and hardware for the support head frame and luminaire mounting ring. Use an approved means for locking nuts.

7. Hoisting Systems
 a. Ensure that each pole has three suspension cables and one hoisting cable.
 b. Use cables that have 7 strands of 19 wires each, made of stainless steel aircraft cable according to MIL-W-83420, Type 1, Composition B.
 c. Use at least 0.2 in (5 mm) diameter suspension cables and at least a 0.25 in (6 mm) diameter hoisting cable.
 d. Anchor the ends of the pole’s suspension cables to the top of the suspension cable bracket assembly. Pass the other ends through the pulleys on the support head frame and attach to the luminaire mounting ring.
 e. Secure the hoisting cable at the bottom center of the suspension cable bracket assembly. Attach the other end to the drum of the motor-driven winch. Prevent future twisting and eliminate any tension developed during initial installation of the hoisting cable system.
 f. Use a worm-gear reducing winch with a reduction ratio that is self-locking in both raising and lowering operations.
 Completely enclose the worm-gear in a lubricating reservoir.
 g. Make the winch operable with either an electric drill motor or a NEMA frame motor as described in Lowering Device Power Supply Unit.
 h. Provide a hand crank for raising and lowering.
 i. Include a cable guard/retainer for the winch drum. This will force the cable away from the ends of the drum for spooling and prevent the cable from coming off the drum.
 j. Design the entire hoisting system so that power cable, suspension cables, and hoisting cable may be replaced from the ground.
8. Lowering Device Power Supply Unit
 a. Use a lowering device power supply unit that is either an electric drill motor or a NEMA frame motor.
 1) Equip both motors with a factory-set torque limiter. Power each from a weatherproof outlet or receptacle located in the service area of the pole.
 2) You may use a stepdown transformer to supply the required motor voltage.
 b. Make the transformer an integral part of the power supply unit, when required.
 c. Attach and lock in place the drill or motor at the pole handhole. Provide a remote control system that works from at least 20 ft (6 m) away.

9. High Mast Power Cable
 a. Use extra-heavy duty power cable in a jacket that resists oil and sunlight. Include in the cable the number and size of copper insulated conductors required on the Plans.
 b. Securely connect the power cable to the luminaire mounting ring and the suspension cable bracket assembly so it will not damage the cable and supports only its own weight.

10. Pole Disconnect
 a. Furnish each pole with a molded case circuit breaker in a NEMA enclosure of the size and type specified on the Plans.
 b. Make the breaker accessible through the pole handhole. Get the breaker from the manufacturer of the raising and lowering device.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Submit guarantees on materials and equipment.

920.2.06 Grounding
A. Requirements
 General Provisions 101 through 150.

B. Fabrication
 1. Connect the power system ground to the pole.
 2. Include a grounding conductor with the high mast power cable and connect it to the luminaire mounting ring.
 3. Ground the pole disconnect to the pole.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.

Section 921—Luminaires

921.1 General Description
This section includes the requirements for the following types of luminaires:

- Roadway
- Rest area
- High mounting height
- Offset
- Underpass
- Navigation lighting
921.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.
B. Referenced Documents
 ANSI/IES Types (specified on Plans)

921.2 Materials
Use luminaires that are complete, including ballast, lamps, fuses, and associated hardware and wiring.

921.2.01 Luminaires
A. Requirements
 1. Standard Equipment for Roadway, Rest Area, High Mounting Height, and Offset Luminaires
 Use luminaires for these locations that have the following equipment:
 a. Lamps: Check the Plans for the lamp wattage, type, and size.
 b. Ballasts: Use ballasts that meet these requirements, unless otherwise specified:
 □ Are part of the luminaire housing or in a separate weatherproof housing attached to the luminaire housing.
 □ Are used for multiple circuits, unless otherwise specified.
 □ Operate at voltages shown on the Plans.
 □ Provide rated lamp watts to the lamp through a range in primary voltage of +10 percent.
 □ Have a power factor of at least 0.90.
 □ Provide enough open circuit voltage to start lamps at a temperature as low as -20 °F (-29 °C).
 □ Are enclosed in an epoxy encapsulated covering (mounted on the external pole base or cabinet).
 c. Controls: The local power company will provide and install control equipment, including photoelectric control, receptacle, contactor, and other equipment, unless otherwise indicated on the Plans.
 d. Level Indicator: When shown on the Plans as a required item, ensure that each luminaire has a built-in device indicating the direction and amount of tilt over a range of 0 to 5 degrees in any direction. Ensure that the indicator has the following characteristics:
 □ Has three calibrations, accurate to within 1/2 degree:

	Level
A	
B	3 degree tilt
C	5 degree tilt

 □ Is clearly visible without aid in daylight to a distance of 50 ft (15 m).
 □ Does not alter or reduce the amount of light from the luminaire.
 □ Has a transparent container made of clear, ultraviolet-inhibited acrylic. The lower surface is curvilinear in any vertical cross-section to support a spherical indicator and dampening fluid.
 □ Uses a clear dampening fluid made of 70 percent glycerol and 30 percent iron-free water.
 □ Uses a highly visible orange or red color ball in the spherical indicator that is chemically inert to the dampening fluid.
 2. Roadway Luminaires
 Ensure that roadway luminaires have or meet the following requirements:
 a. Are placed horizontal or vertical as indicated on the Plans.
 b. Have an aluminum housing with the following:
 □ A 2 in (50 mm) slipfitter
 □ A removable aluminum reflector
 □ A detachable prismatic glass reflector and aluminum refractor holder
 □ A prewired terminal board and integral ballast
An adjustable, porcelain enclosed mogul socket with spring loaded center contact and lamp grips
An approved type gasket with a positive latch at the street side of the luminaire

3. Rest Area Luminaires
 Ensure that rest area luminaires have or meet the following requirements:
 a. Have a hinged aluminum canopy
 b. Have a pressed glass prismatic refractor, unless otherwise specified
 c. Have a die cast aluminum base/housing with access door and slipfitter for a 3 in (75 mm) OD pile top or tenon
 d. Have a prewired terminal board and integral ballast
 e. Have a porcelain enclosed mogul socket with spring loaded center contact and lamp grips
 f. Distribute light according to ANSI/IES type as specified on the Plans

4. High Mounting Height Luminaires
 Ensure that high mounting height luminaires have or meet the following requirements:
 a. Have a rain-tight, precision-cast aluminum housing that includes an adjustable slipfitter for a 2 in (50 mm) mast arm that allows adjustments of at least 3 degrees above and below the mast arm axis.
 b. Contain a prewired terminal board.
 c. Have an integral ballast with quick disconnect plug.
 d. Have an adjustable porcelain-enclosed mogul socket with spring-loaded center contact and lamp grips.
 1) Ensure that the lamp socket adjusts to obtain maximum intensity at vertical angles from 55 to 65 degrees.
 2) Provide a separate lamp support to prevent vibration damage.
 e. Be able to accept No. 6 to No. 14 AWG wire with clamp-type terminals.
 f. Have ballast enclosed in a rain-tight cast aluminum housing, fully serviceable without removing the luminaire from its bracket.
 g. Have refractors and/or lens that are heat- and shock-resistant tempered glass.
 h. Distribute light according to ANSI/IES type as specified on the Plans.

5. Offset Luminaires
 Ensure that offset luminaires have or meet the following requirements:
 a. Have rain-tight, precision-cast aluminum housing with a baked-on enamel finish and the following:
 i. Twin trigger latches
 ii. A hinged door for easy access to internal components
 iii. Non-corrosive hardware
 b. Include a porcelain-enclosed mogul socket with spring-loaded center contact and lamp grips.
 1) Ensure that the grips are permanently attached to the reflector to properly position the lamp.
 2) Equip the socket wiring with a quick-disconnect to easily remove the reflector/socket assembly.
 c. Include a highly polished, anodic-surfaced, aluminum reflector and a prismatic borosilicate glass refractor.
 d. Have seals or gaskets at all critical points to form a weather-tight breathing seal.
 e. Include a prewired terminal board.
 f. Have integral wired ballast (that meets the ballast requirements of this Specification and the Plans).
 g. Have a slipfitter for a 2-3/8 to 3 in (60 to 75 mm) OD pole tenon and external means to level and aim, both horizontally and vertically, for rapid and versatile field installation.
 h. Be adjusted and sized, after the pole is erected and plumbed, to provide the lighting pattern according to the Plans and the manufacturer's recommendations and instructions.
 i. Efficiently distribute light uniformly along the roadway when offset as shown on the Plans and with spacings up to 7 mounting heights.
6. Underpass Luminaires (Type A)
 a. Housing: Ensure that the Type A housing meets these requirements, unless otherwise indicated on the Plans:
 □ Be surface-mounted at about 15 ft (4.5 m) above the edge of the finished pavement on an outside bridge pier, as shown on the Plans
 □ Be die-cast aluminum with an integral ballast
 □ Have a specular aluminum reflector
 □ Have a detachable thermal shock-resistant glass refractor
 □ Have an adjustable porcelain-enclosed mogul socket with spring-loaded center contact and lamp grips to properly position the lamp
 □ Have a hinged door assembly protected by safety chains and an approved gasket to keep out moisture and dirt
 □ Be able to attach directly to the bridge pier or underpass wall
 b. Light Distribution: For Type A, use an enclosed High Intensity Discharge (H.I.D.) luminaire, unless otherwise indicated on the Plans.
 Ensure that the luminaire distributes light in a wide-beam, diffused pattern.
 c. Lamp: Use a lamp of the wattage, type, and size shown on the Plans.
 d. Ballast: Use ballast that meets the provisions of Subsection 921.2.01.A.1.b.
 e. Controls: Use controls that meet the provisions of Subsection 921.2.01.A.1.c.
 f. Include all thimbles, fittings, elbows, etc., in the price bid for conduit. The Department will include a pay item for necessary conduit in the contract.

7. Underpass Luminaires (Type B)
 a. Housing: Ensure that Type B housing meets the following requirements:
 □ Be made from aluminum with a specular-finish, one-piece aluminum reflector and a clear, ribbed, one-piece detachable, side-hinged cover of acrylic plastic. Ensure that the cover is completely gasketed to keep out contamination.
 □ Have a heavy-duty, galvanized mounting support that allows the unit to rotate 180 degrees around its lateral axis when mounted.
 □ Include spring-loaded, heavy-duty, recessed, double-contact lamp holders to accept a single F-72/PG 17 fluorescent lamp.
 □ Be able to attach to the bridge pier or underpass wall.
 b. Light Distribution: For Type B, use an enclosed fluorescent luminaire with a wide-beam, diffused light distribution pattern.
 c. Lamp: Use a 165 watt F-72 PG 17/CW fluorescent lamp with a recessed double contact base and a rated life of at least 12,000 hours, unless otherwise indicated on the Plans.
 d. Ballasts for Multiple Circuits: Use ballasts that meet the following requirements:
 □ Have a power factor of at least 0.90 to operate at voltages shown in the Plans
 □ Provide enough open-circuit voltage to start lamps at temperatures as low as −20 °F (-29 °C)
 □ Are inside the luminaire housing
 □ Can service one or two luminaires as indicated on the Plans
 e. Controls: Use controls that meet the provisions of Subsection 921.2.01.A.1.c.
 f. Circuit Breakers: Install galvanized, weatherproof circuit breakers and cabinets as indicated on the Plans. Use cabinets 12 x 10 in (300 x 250 mm) deep.
 g. Install cabinets, conduit, and complete wiring as shown on Plans and as directed by the Engineer.

8. Navigation Lighting Luminaires
 a. Housing: Use cast aluminum housing of the type specified on the Plans. Use housing that has a gasketed service door for relamping.
 b. Lamps: Use clear, 100-watt, rough service lamps with 125-130 volt rating.
 c. Receptacles: Use receptacles rated at least 660 watts, 250 volts for medium screw base lamps.
 Use a design that will not freeze the lamps with aluminum screw base shells.
 d. Lens: Use 8 in (200 mm) marine type, fresnel lens(es).
1) Use a lens color with horizontal arcs of visibility as shown on the Plans.
2) For fixed span installations, you may use a combination of the following luminaires and colors:

<table>
<thead>
<tr>
<th>Location</th>
<th>Color</th>
<th>Degrees of Horizontal Arcs of Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel center</td>
<td>Green</td>
<td>360</td>
</tr>
<tr>
<td>Channel margin</td>
<td>Red</td>
<td>180</td>
</tr>
<tr>
<td>Main channel</td>
<td>White</td>
<td>180</td>
</tr>
<tr>
<td>Pier, bent</td>
<td>Red</td>
<td>180</td>
</tr>
<tr>
<td>Abutment</td>
<td>Red</td>
<td>180</td>
</tr>
<tr>
<td>Fender system</td>
<td>Red</td>
<td>180</td>
</tr>
<tr>
<td>Axis line or center line</td>
<td>Red</td>
<td>180</td>
</tr>
</tbody>
</table>

3) Mount channel marker luminaires with a swivel so that you can move the arm and luminaire in a 180-degree arc to replace the lamp and maintain the unit.

4) Unless otherwise noted, use pivot or swivel-type channel marker luminaires with either bronze or galvanized steel retriever chain and swivel.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.

Section 922—Electrical Wire and Cable

922.1 General Description
This section includes the requirements for electrical conductors, wire, and cable.

922.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 National Electrical Code

922.2 Materials

922.2.01 Electrical Wire and Cable
A. Requirements
 1. Conductors
 Unless otherwise specified, use conductors that meet the following requirements:
 - Are made of copper
 - Are the size and type shown on the Plans
 - Meet the requirements of the National Electrical Code
 - Have the appropriate identification on the outer jacket.

NOTE: Do not use conductors not meeting this requirement or with illegible identification.
2. Wire and Cable
 Use wire and cables that have the following requirements:
 a. Are new without kinks or other defects when installed
 b. Are single conductor or multi-conductor with one of the following types:
 - RHH/RHW/USE 90/75 °C
 - RHW, USE, THW, XHHW, or THWN 75 °C
 - RHH, XHHW, or THHN 90 °C
 c. Use insulation for 600 volts as indicated on the Plans.

3. Underground Cable
 Use underground wire that meets the following requirements:
 - Be rot and vermin proof
 - Be the proper size
 - Be a type recommended by the cable manufacturer for direct burial in earth

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.

Section 923—Electrical Conduit

923.1 General Description
This section includes the requirements for metallic, nonmetallic, and flexible electrical conduit.

923.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 National Electrical Code
 ANSI C-80.1
 ASTM A 90
 Federal Specification WW-C-540a
 Federal Specification W-C-1094
 American National Standards Institute (ANSI) Specification C-80.1
 Underwriter’s Laboratories (UL) 651
 National Electrical Manufacturers Association (NEMA) Standard TC 14, Type HW

923.2 Materials
923.2.01 Metallic Conduit
A. Requirements
 1. Use metallic conduit that meets the requirements of and is used according to the latest edition of the National Electrical Code.
a. Check the Plans or Project Proposal for the type of conduit allowed.
b. Ensure each section of conduit shows approval by the Underwriter’s Laboratories, Inc. (UL).

2. Rigid Steel Conduit
 Ensure that rigid steel conduit, elbows, and couplings meet ANSI C-80.1.
 Use conduit protected by a uniform metallic zinc coating on both the exterior and interior surfaces.
 a. Coat the conduit and coupling with a minimum coating of 1.24 oz./ft² (378 g/m²), total of both surfaces.
 b. Determine the weight of the zinc coating using either ASTM A 90, or, if the Engineer elects, a magnetic or electromagnetic thickness gage to measure the coating thickness.

3. Rigid Aluminum Conduit
 Ensure that rigid aluminum conduit, elbows, and couplings meet Federal Specification WW-C-540a.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.

923.2.02 Nonmetallic Conduit
A. Requirements
 1. Polyvinyl Chloride (PVC) Conduit
 Use unplasticized PVC conduit that meets the requirements of UL 651.
 a. Use Type I conduit only when encased in concrete. UL 651 refers to Type I as Type EB.
 b. Use Type II conduit for direct burial. Use Schedule 40 (heavy wall), unplasticized PVC conduit that meets the requirements of Federal Specification W-C-1094, unless otherwise specified.
 2. Fiberglass Reinforced Epoxy (FRE) Conduit
 Use FRE conduit and fittings that meet the requirements of NEMA Standard TC 14, Type HW.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.

923.2.03 Flexible Conduit
A. Requirements
 1. Use flexible conduit with a galvanized steel core and a UV-resistant PVC cover.
 2. Use liquid-tight conduit with a continuous copper ground.
 3. Use conduit that meets the requirements of Article 351 of the National Electrical Code.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.
Section 924—Miscellaneous Electrical Materials

924.1 General Description
This section includes the requirements for the following miscellaneous electrical materials:

- Ground rods
- Fuses and fuse holders
- Lightning arresters
- Circuit breakers
- Disconnect switches
- Photoelectric controls
- Magnetic contactors

924.1.01 Related References
A. Standard Specifications
 General Provisions 101 through 150.

B. Referenced Documents
 ASTM A 153/A 153M
 EEI/NEMA publications

924.2 Materials
Ensure that all electrical materials are approved by the Underwriter’s Laboratory or other acceptable testing agency.

924.2.01 Ground Rods
A. Requirements
 1. Use ground rods that are 5/8 in, ± 1/16 in (16 mm, ± 2 mm) diameter and 8 ft (2.4 m) long, unless otherwise shown on the Plans.
 2. Ensure that the rods are galvanized steel with a minimum coating of 2 oz/ft² (610 g/m²) according to ASTM A 153/A 153M.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.

924.2.02 Fuses and Fuse Holders
A. Requirements
 Use fuses of the amperage indicated on the Plans and with an appropriate voltage rating to operate at the voltage specified on the Plans.

B. Fabrication
 1. Use in-the-line, waterproof fuse holders.
 a. Construct and install the fuse holder so it will retain the fuse on the load side if disconnected or broken apart.
 b. Install the fuse holder with a breakaway feature, when specified on the Plans.
 2. Install a weatherproof boot, furnished by the fuse holder manufacturer, over each end of the fuse holder.

C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty

General Provisions 101 through 150.

924.2.03 Lightning Arresters

A. Requirements

Use lightning arresters of the metal oxide varistor type, rated at 650 volts, and have the number of poles required, unless otherwise specified.

Provide a pole for each ungrounded leg of the service voltage.

B. Fabrication

1. For units not sealed at the factory:
 a. Apply silicone caulk to the lead entrance.
 b. Install heat shrinkable tubing, with precoated sealant on the interior surface, over the lead entrance.

2. Place the arrester in a watertight housing. Ensure that the lead entrance to the housing is encapsulated or sealed.

C. Acceptance

General Provisions 101 through 150.

D. Materials Warranty

General Provisions 101 through 150.

924.2.04 Circuit Breakers

A. Requirements

1. Use circuit breakers that have the following characteristics:
 - Are thermal magnetic, molded case, quick-make and quick-break
 - Operate with over-the-center toggles with the handle going to a position between “ON” and “OFF” to indicate automatic tripping
 - Can bolt on with an industrial rating and a minimum interrupting capacity of 10,000 RMS symmetrical amperes
 - Be enclosed in a lockable, weatherproof enclosure
 - Have proper lugs that are sized for the cable used. Do not cut cable strands to attach to circuit breakers.

2. Use multi-pole breakers that are of the single handle and common trip type with a voltage rating of at least 240 volts from line to ground.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

General Provisions 101 through 150.

D. Materials Warranty

General Provisions 101 through 150.

924.2.05 Disconnect Switches

A. Requirements

1. Use disconnect switches with the voltage and ampere rating specified on the Plans.
2. Fuse the switches as designated on the Plans.
3. Use switches that are 2-pole, 3-wire, solid neutral with heavy duty rating, unless otherwise specified.
 You may install the switch separately or with a magnetic contactor.
4. Enclose the switch in a lockable, stainless steel, weatherproof enclosure.
5. Use the proper lug sized for the cable used. Do not cut cable strands to attach to disconnect switches.
B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.

924.2.06 Photoelectric Controls
A. Requirements
 1. Use photoelectric controls that have the following characteristics:
 - Have a factory setting for turn-on at 1.5 footcandles (16 lux) ambient light level
 - Have a suitable differential between turn-on and turn-off levels to prevent cycling at critical levels
 - Operate on a supply voltage of 105-130 volts, 50/60 Hz AC, with an inrush rating of 120 amperes at 120 volts
 - Operate with a lamp load rating of 1,000 watts for incandescent and 1,800 volt-amperes for mercury vapor and fluorescent lamps
 - Contain built-in surge and lightning protection
 - Have a rated life at full load of at least 5,000 on-off operations
 - Have relay contacts that are single-pole, single-throw (SPST), normally closed (NC)
 - Have dielectric strength of at least 5,000 volts between any current carrying part and metal mounting surface
 - Withstand an ambient temperature range of –65° to 158° F (–54° to 70° C)
 - Have a moistureproof housing about 2-1/4 in (60 mm) high with a base diameter of less than 3-1/4 in (85 mm)
 - Have a chassis of molded phenolic with three locking-type blades and a neoprene gasket that meet EEI/NEMA publications
 2. Provide an approved receptacle for mounting the photoelectric control.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.

924.2.07 Magnetic Contactors
A. Requirements
 1. Use magnetic contactors that have the following characteristics:
 - Have the voltage and ampere rating as specified on the Plans
 - Have the number of poles required to open each ungrounded conductor
 - Have a coil voltage of 120 volts, 60 Hz AC, unless otherwise specified
 - Are in lockable, stainless steel, weatherproof enclosures, unless otherwise specified
 - Have proper lugs sized for the cable used
 2. Do not cut cable strands to attach to contactors.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 General Provisions 101 through 150.

Section 925—Traffic Signal Equipment

925.1 General Description
This section provides specifications for a variety of traffic signal equipment.

925.1.01 Related References
A. Standard Specifications
 Section 500—Concrete Structures
 Section 647—Traffic Signal Installation
 Section 682—Electrical Wire, Cable and Conduit
 Section 833—Joint Fillers and Sealers
 Section 870—Paints (Field Painting)
 Section 923—Electrical Conduit
 Section 935—Fiber Optic System
B. Referenced Documents
 NEMA TS-1 ITE Traffic Signal Lamps
 IMSA #20-1-1984
 IMSA #20-4-1984
 IMSA #20-6-1984
 IMSA #50-2-1984
 IMSA #51-5-1984
 UL #493 Carol #C6047 or Belden #9773
 CALTRANS Qualified Products List, QPL, “Polyurethane Sealant for Inductive Loops” and QPL-XX, “Model 2070 traffic Controllers”, Transportation Electrical Equipment Specifications (TEES).
 QPL 75

925.2 Materials
A. Requirements
 Ensure that the traffic signal equipment and materials meet the Plans and Specifications.
 All equipment furnished shall be new and meet the requirements of the following:
 - Underwriter’s Laboratory Incorporated (UL)
 - Electronic Industries Association (EIA)
 - National Electric Code (NEC)
 - American Society of Testing and Materials (ASTM)
 - American National Standards Institute (ANSI)
 - International Municipal Signal Association (IMSA)
National Electrical Manufacturers Association (NEMA)
Applicable Standards, Specifications, and Regulations of the:

Georgia Department of Transportation
Traffic Signal Electrical Facility & NaviGAtor Support (TSEF)
935 E. Confederate Avenue, Building 5
Atlanta, GA 30316

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
General Provisions 101 through 150.

D. Materials Warranty
- Provide all manufacturers’ warranties and guarantees for all signal equipment items listed in this document as well as any signal equipment listed in the plans, except for state supplied equipment.
- Ensure that warranties and guarantees are consistent with those provided as customary trade practices; or as otherwise specified in the plans, Standard Specifications, Supplemental Specifications or Special Provisions.
- Ensure that manufacturer’s and supplier’s warranties and guarantees are transferable to the agency or user that is responsible for traffic signal maintenance, are continuous throughout their duration and state that they are subject to such transfer.
- Ensure equipment provided under this specification shall be warranted by the manufacturer to be free from defects in materials and workmanship for a period of two years from date of receipt or one year from date of acceptance of installation.
- Ensure the manufacturer will repair any faulty equipment during this period at no charge to the Department for parts, labor or shipping to and from the factory.

925.2.01 Type 2070 Controller Assemblies

A. Requirements
For 2070 controller cabinet assemblies, use 2070 controller units that meet the requirements of the following or are previously approved by TSEF:
- Traffic Electrical Equipment Specifications (TEES) published by the State of California Business, Transportation, and Housing Agency; Department of Transportation, current edition and current addenda
- CALTRANS Qualified Products List (QPL)

The following specifications augment the CALTRANS specifications and take precedence over conflicting CALTRANS Specifications.

1. Input/output (I/O) and Configuration:
The 2070 Controller shall be supplied in one of the following configurations, as specified in the Plans (all modules are specified in TEES, but these configurations supersede the defined configurations in TEES):
2070L: Provide Chassis, 2070-1B Single-Board CPU, 2070-2A 170-style Field I/O Module, 2070-3B Front Panel (8x40 display), 2070-4B 3.5-amp Power Supply, and a 2070-7a Module.
2070 LCN: Provide Chassis, 2070-1B Single-Board CPU, 2070-2b NEMA-style Field I/O Module, 2070-3B Front Panel (8x40 display), 2070-4B 3.5-amp Power Supply, 2070-8 NEMA Interface Module, and a 2070-7A Module.

2. Power Supply Modules:
Either the 2070-4A or 2070-4B module shall be provided as required in the configuration requirements in the preceding Item. In addition to all requirements of the TEES, the power supplies shall be clearly marked as a “2070-4A” or “2070-4B”. These markings shall be used in place of the “2070-4B” markings as specified in TEES. The
Vendor may supply a 2070-4A power supply module in lieu of a 2070-4B, as long as it is so marked and adds on additional cost to GDOT.

3. Documentation:
 Include with each controller, manuals that document the programming, operation, and maintenance of the unit. Include schematic drawings and pin assignment charts in the manuals for maintenance. Documentation shall include all components, including communications modules.

A. Fabrication
 General Provisions 101 through 150.

B. Acceptance
 (See Subsection 925.2.01 for compliance with CALTRANS QPL).

C. Materials Warranty:
 (See Subsection 925.2.D for Materials Warranties).

925.2.02 Type 170E Cabinet Assemblies

A. Requirements

Ensure that the cabinet assembly meets the requirements of the CALTRANS Specifications as described in this document.

In addition to the CALTRANS Specifications, ensure that the cabinet assembly conforms to the requirements listed below, which take precedence over conflicting CALTRANS Specifications.

1. Cabinet configuration:

 Supply cabinets in accordance with these specifications. Equip the cabinets with auxiliary equipment as follows:
 a. Model 332A Cabinet:
 Lower input field termination panel
 1 – Model 242 DC Isolator in Slot 14 of Upper Input File
 4 – Flash Transfer Relays
 2 – Model 204 Flashers
 b. Model 336 Cabinet:
 1-Model 242 DC Isolator in Slot 14 of Input File
 4- Flash Transfer Relays
 2-Model 204 Flashers
 1-"M" Base Adapter installed (Base Mount Cabinets Only)
 1-Aluminum Cover Plate for Cabinet Bottom (Pole Mount Cabinets Only)
 c. Model 337 Cabinet
 3-Flash Transfer Relays
 1-Model 204 Flasher

 Note: Include above components in cabinet at time of delivery.

 Other auxiliary cabinet components such as controllers, monitors, load switches, etc. will be ordered as separate items.

2. Finish

 Use cabinets that have a bare aluminum finish (see Subsection 925.2.03.A.1 for controller-cabinet minimum fabrication specifications).

3. Locks

 Equip the main cabinet door with locks that accept No. 2 Corbin keys. Provide two sets of keys with each cabinet. One set of keys is defined as one – No. 2 key and one - police panel key.

4. Power

 Equip the cabinet assemblies with a power distribution assembly to generate AC and DC power for the electronic components, except the DC power for the controller units. Provide the Model 332 and 336 cabinets with a DC isolator for stop time/flash sense, located in slot 14 of the input file.
5. Mounting
 Equip the cabinets for pole or base mounting, as specified in the Plans.
 a. Base Mount
 Supply Model 336 cabinets, when specified as base mount, with a “M” base-mounting adapter installed.
 b. Pole Mount
 Supply Model 336 or 337 cabinets, when specified as pole mount, with two exterior pole mounting brackets that allow for mounting on steel, concrete, and timber poles.
 Ensure that the bracket mounting holes are properly reinforced with metal plates of adequate size and strength, welded longitudinally across the inside depth of the cabinet.
 Ensure that the exterior-mounting bracket is shipped installed on the cabinet housing. Additionally, provide an aluminum plate, which covers the bottom cabinet opening.

6. Unused Phase Monitoring
 Provide odd-phase reds with ballast resistor dummy loads. Do not wire the cabinet to monitor pedestrian yellow indications.
 Neatly lace and bundle the wiring from the signal monitor for pedestrian yellow monitoring on the back panel.

7. Red Monitoring
 Provide a connector and terminal assembly designated as P20 (Magnum P/N 722120 or equivalent) for monitoring the absence of red as an integral part of the output file.
 Terminate the connector and ensure compatible with the cable and connector of a Type 2010 conflict monitor unit capable of monitoring the absence of red.
 Provide the pin assignments of the P20 connector and terminal assembly with the cabinet plans.
 Ensure that the P20 connector is physically alike to the cable and connector of a Type 2010 conflict monitor unit to prevent the absence of red cable connector from being inserted into the P20 connector 180 degrees out of alignment.
 Submit details for programming of the unused red channels for approval.

8. Cabinet Light
 Include in each cabinet one fluorescent lighting fixture mounted inside the top front portion of the cabinet.
 The fixture includes a cool white lamp, covered, and operated by a normal power factor, UL listed ballast.
 Install a door-actuated switch to turn on the cabinet light when either door is opened.

9. Diagnostic Testing Shorting Jack
 Install a phone jack that can mate with a Switchcraft Model 190 plug in the cabinet for automatic cabinet diagnostic testing. Position the jack to be easily accessible.
 When the plug is inserted, a reset signal generated by the controller unit at pin C1-102 of the 210 monitor is routed to the external reset input.

10. Cabinet Interlock
 Do not install the interlock circuit, as detailed in the CALTRANS Specifications.

11. Intelligent Load Switches
 Provide cabinets with output files wired to be compatible with intelligent load switches.
 Wire pin 4 of the load switch sockets to DC ground, wire pin 11 to AC ground, and wire pin 12 of all load switches together and then bring to C1 pin 75 for fault output to the 2070 controller.

12. Cabinet Drawer
 Equip each Model 332A, and 336 cabinet with an aluminum storage compartment mounted in the rack assembly with the approximate following dimensions: 16 inches (400 mm) wide, 14 inches (350 mm) long, 1.75 inches (44 mm) deep.
 Mount this compartment directly under the Type 2070 controller. Provide a drawer with telescoping drawer guides to allow full extension from the rack assembly.
 When extended, the storage compartment opens to provide storage space for cabinet documentation and other miscellaneous items.
 Ensure that the storage compartment be of adequate construction to support a weight of 25 pounds (12 kg) when extended.
Provide a top for the storage compartment that has a non-slip plastic laminate attached, which covers a minimum of 90% of the surface area of the top.

13. Test Program
Supply each cabinet with a diagnostic test program, which verifies the operation of the cabinet. Ensure that the program can test cabinet wiring related to the output file, input file, and police panel and flash switches.
In addition, ensure that the program can check the operation of the conflict monitor, by generating all possible conflicts, in sequence, and resetting the monitor automatically (a shorting plug jack in the cabinet is specified previously).
Provide the cabinet test program on EPROMS that can be installed in the program module of the Model 2070 controller. Include full documentation for all test programs.

14. Surge Protection
Equip each cabinet with devices to protect the control equipment from surges and over voltages.
Design the surge protector panels to allow for adequate space for a wire connection and surge protector replacement without the removal of terminal blocks or panels. Provide surge protectors for the input sections as detailed below and as shown in the Input Terminal and Surge Arrestor Detail.
Supply surge protectors that meet the following specifications.

a. AC Service Input
Include a surge protection unit for each cabinet on the AC service input that meets or exceeds the following requirements:

- Provide a hybrid type power line surge protection device, which may be incorporated into the power distribution assembly.
- Install the protector between the applied line voltage and earth ground. Use a surge protector capable of reducing the effect of lightning transient voltages applied to the AC line, that conforms to the following:
 - Peak surge current for an 8 x 20 μs waveform: 20,000 A for 20 occurrences
 - Clamp voltage @ 20,000 A: 280 V max
 - Maximum continuous operating current: @ 120 V / 60 Hz 10 A
 - Series Inductance: AC Line/AC Neutral - 200 microhenries
 - Response time:
 - Spike suppression for +/- 700 V spike: +/- 40 V deviation from sine wave at all phases angles between 0 and 180 degrees.

- Provide a protector with the following terminals:
 - Main Line (AC line first stage terminal)
 - Main Neutral (AC neutral input terminal)
 - Equipment Line In (AC line second stage input terminal, 10 A)
 - Equipment Line Out (AC line second stage output terminal, 10 A)
 - Equipment neutral out (neutral terminal to protected equipment)
 - GND (Earth connection)

- Supply a protector that is epoxy encapsulated in a flame-retardant material.

- Configure the Equipment Line Out to provide power to the Type 2070 and to the 24 V power supply.

b. AC+ Interconnect Cable Inputs
Use a surge protection device to protect each AC interconnect line as it enters the cabinet with a surge protection device that meets or exceeds the following requirements:

- 3-electrode gas tube type of surge arrester
- Striking voltage of 300-500 V DC with a minimum holder over voltage of 155 V DC
- A three terminal device, one of which is connected to ground, the other two are connected across each input respectively
The units must meet the following minimum requirements:

- **Impulse breakdown**: Less than 100V in less than 1.1 ns at 10 kV/µs
- **Impulse breakdown balance**: 0.01 microsecond (or less) difference at 10 kV/µs impulse
- **Energy application**: Withstands 20A AC for one (1) second applied ten (10) times at three (3) minute intervals on either section
- **Current rating**: 10,000A (8 x 20 ns impulse)
- **Capacitance**: 6 pF, line to ground

c. Inductive Loop Detector Inputs

Protect each inductive loop detector channel input by an external surge protection device that meets or exceeds the following requirements:

- A three-terminal device, two (2) of which are connected across the signal inputs of the detector with the third connected to the chassis ground to protect against common mode damage.
- Instantly clamps differential mode surges (induced voltage across the loop detector input terminals) via a semiconductor array. The array appears as a low capacitance to the detector.
- Clamps common mode surges (induced voltage between the loop leads and ground) via solid state clamping devices.
- **Withstand 25-100A surge current occurrences of a 10 x 700 ns waveform.**
- **Have the following clamp characteristics:**
 - Maximum break over voltage: 170 V
 - Maximum on-stage clamping voltage: 3V
 - Response Time: <5 ns
 - Off-stage leakage current: <10 xA
 - Capacitance: less than 220 pf
- Ensure that the unit also meets the following minimum requirements:
 - Peak surge current: 6 times
 - Differential mode: 400 A (8 x 20 ms)
 - Common mode: 1,000 A (8 x 20 ms)
 - Estimated occurrences: 500 @ 200 A
 - Response time: 40 ns
 - Input capacitance: 35 pF typical
 - Temperature: -40°F to +185°F (-40°C to 85°C)
 - Mounting: No. 10-32 x 3/8-inch (No. 5 x 10 mm) bolt

Clamp voltage
- @400 A diff. Mode: 30 V max.
- @1,000 A comm. Mode: 30 V max.

d. Signal Load Switches (Switchpacks)

Provide the output of the switchpack in the output file with metal oxide varistors (MOV) tied from the AC positive field terminal to the chassis ground to protect switchpacks from surges on the AC output lines.

Ensure that these MOVs meet or exceed these requirements:

- Steady state sinusoidal voltage (RMS) rating at 50 to 60 Hz of at least 150 V at 77 °F (25 °C)
- Steady state applied DC voltage rating of at least 200 V at 77 °F (25 °C)
- Transient energy rating is of at least 80 J for a single impulse of 10/1,000 x8 current waveform at 77 °F (25 °C)
- Peak current rating of 6,500 A for a single impulse of 8/20 x8 waveform with the rated continuous voltage applied
- Varistor voltage of at least 212 V at 1.0mA of DC current applied for the duration of 20 x8 to 5s
- Clamping voltage of at least 395 V with an applied 8/20 x8 impulse of 100 A
- Typical capacitance at a frequency of 0.1 to 1.0 MHz of 1600 pF
- Two-terminal device, one of which is connected to the AC output of the signal load switch on the output file terminals (backside of the field terminals) with the other connected to AC neutral
e. Communication Inputs
 Protect low voltage communications input as it enters the cabinet with a solid-state surge protection unit that meets or exceeds these requirements:
 - Dual pair (4-wire) module with a printed circuit board connector, double sided and gold plated for reliability
 - Ability to mate with and be installed in a 10-circuit Buchanan connector PNPCBIB or equivalent
 - Usable as two independent signal pairs
 - The data circuits pass through the protection in a serial fashion
 - C2 connector of the 2070 controller that terminates on the line side of the unit
 - Communication field wires for this local side that terminate on the line side of the unit
 - Ground terminals connected to power ground
 - Ensure that the unit meets the following minimum requirements:
 - Peak surge current: 10 kA (8 x 20 μs wave shape)
 - 500A (10 x 700 μs wave shape)
 - Occurrences @ peak: 50 typical
 - Response time: <1ns
 - Voltage Clamp: 8V line to line
 - Series Resistance: 24 & total
 - Temperature: -40 °F (-40 °C) to +185 °F (85 °F)
 - Primary protector: 3 element gas tube 5kA, (8 x 20μs wave shape), per side
 - Secondary protector: Silicon avalanche, 1.5 kW minimum

f. Low Voltage DC Inputs
 Provide an external surge protection device for each low voltage DC input channel which meets the same requirements as the communication inputs with the following exception of the Voltage clamp, which shall be 30 V line-to-line.

15. Type 2010 Signal Monitors:
 a. Introduction
 This Specification sets forth the minimum requirements for a rack-mountable, sixteen channel, solid-state 2010 Signal Monitor for a Type 170 / 179 / 2070 Traffic Cabinet Assembly. Ensure that as a minimum, the Signal Monitor complies with all Specifications outlined in Chapter 4 of the California Traffic Signal Control Equipment Specifications, January 1989. Where differences occur, this Specification governs. Ensure that the manufacturer of the unit is listed on the current California Department of Transportation (Caltrans) Qualified Products List (QPL) for signal monitors.
 Provide a Signal Monitor that is capable of monitoring sixteen channels consisting of a Green input, a Yellow input, and a Red input for each channel. Ensure that the unit also includes the enhanced monitoring functions described in Subsection 925.2.01.A.15.b, diagnostic display functions described in Subsection 925.2.01.A.15.c, event logging functions described in Subsection 925.2.01.A.15.d, communications functions described in Subsection 925.2.01.A.15.e, and hardware functions described in Subsection 925.2.01.A.15.f.
 b. Monitor Functions
 Except for Conflict faults, compute all fault timing for each channel individually.
 1) Conflict Monitoring
 Ensure that the Signal Monitor is able to detect the presence of conflicting green or yellow signal voltages on the AC field terminals between two or more non-compatible channels. A Conflict fault (CONFLICT) shall be a latching fault.
 2) Conflict Recognition Time
 Ensure the Signal Monitor shall triggers when voltages on any conflicting channels are present for more than 500 ms. Ensure that the Signal Monitor does not trigger when voltages on any conflicting channels are present for less than 200 ms. Conflicting signals sensed for more than 200 ms and less than 500 ms may or may not trigger the unit.
 3) 24VDC Monitoring VDC
 Ensure that the Signal Monitor is able to detect that the cabinet +24 Vdc supply has fallen below 18 Vdc. A 24VDC failure (VDC FAIL) shall be a latching fault.
4) 24VDC Recognition Time
 Ensure that the Signal Monitor shall triggers when the voltage on the +24V input is below 18 Vdc for more than 500 ms. Ensure that the Signal Monitor does not trigger when the voltage on the +24V input is below 18 Vdc for less than 200 ms. A voltage level of +22 Vdc will be required to prevent the unit from triggering.

5) Controller Watchdog Monitoring
 Ensure that the Signal Monitor triggers when the Watchdog input does not toggle within the programmed time period (WDT ERROR). Ensure that the unit remains latched in the fault state until reset by the Reset button, an External Reset input command, or AC Line voltage restoring from a AC Line Brownout event (see 2.4). Ensure that a reset resulting from an AC Line Brownout event does not clear the WDT ERROR LED.

6) Controller Watchdog Latch Option
 Ensure a programming option sets the Watchdog monitoring function to a latching mode and that only a reset from the Reset button or External Reset input can clear a Watchdog fault. An AC Line brownout condition will not reset the fault.

7) Controller Watchdog Recognition Time
 Ensure a programming option sets the maximum Watchdog recognition time to 1000 ±100 ms or 1500 ±100 ms.

8) Controller Watchdog Enable Switch
 Provide an internal switch to disable the Watchdog monitoring function. Mount the switch on the PCB and be clearly label "WD ENABLE - ON...OFF". Ensure that placement of the switch in the OFF position causes monitoring of the Watchdog to be inhibited.

9) WDT ERROR LED Control
 Ensure that the WDT ERROR LED illuminates when the unit has been triggered by a Watchdog fault. Ensure that it can only be cleared by a reset command from the front panel Reset switch or External Reset input. If the Watchdog monitoring function is inhibited due to the Watchdog Enable switch, the WDT ERROR LED shall flash at a 0.5 Hz rate.

10) AC Line Monitoring
 a) AC Line Brownout Recognition
 Ensure that the Signal Monitor is able to detect that the AC Line has fallen below 98 ±2 Vac for greater than 400 ±50 ms. This shall force the output Relay to the de-energized "fault" state, enable the Stop-Time output, and cause the AC POWER LED to flash at a 2 Hz rate. Ensure that the unit maintains this state until the AC Line voltage rises above 103 ±2 Vac for greater than 400 ±50 ms. Provide a jumper option which will change the AC Brownout dropout level to 92 ±2 Vac and the restore level to 98 ±2 Vac.
 b) AC Line Power-up and Brownout Delay Time
 When the AC Line is greater than 103 ±2 volts after power-up or Brownout restore, ensure that the Signal Monitor holds the Output Relay in the de-energized "fault" state and enable the Stop-Time output, for a period of not less than 6.0 ±0.5 seconds and not greater than 10.0 ±0.5 seconds. Ensure that this flash interval is terminated after at least 6.0 ±0.5 seconds if the Signal Monitor has detected at least five transitions of the Watchdog input. If the Signal Monitor does not detect five transitions of the Watchdog input before 10.0 ±0.5 seconds, ensure that the Signal Monitor goes to the fault state. During this interval, ensure that the AC POWER LED flashes at a 4 Hz rate.
 c) Red Fail Monitoring
 Ensure that the Signal Monitor is able to detect the absence of an active voltage on the green and yellow and red field signal inputs of a channel. Red Fail fault (RED FAIL) shall be a latching fault. Ensure that the Red Fail monitoring function is enabled for all channels except when the Red Enable input is not active, or pin #EE is active, or Special Function #1 input is active, or Special Function #2 input is active.
 d) Red Fail Recognition Time
 Ensure the Signal Monitor triggers when an active voltage on one of the three inputs of a channel are absent for more than 1500 ms. Ensure that the Signal Monitor does not trigger when an active voltage on one of the three inputs of a channel are absent for less than 1200 ms. Channels without proper voltages sensed for more than 1200 ms and less than 1500 ms may or may not trigger the
unit. Provide an option switch (RF 2010) which will change the fault recognition time to between 700 ms and 1000 ms.

e) Red Interface Cable Fault
Ensure a programming option is provided such that operating without the Red Interface cable installed shall cause the Signal Monitor to enter the fault mode causing the Output relay contacts to close and enabling the Stop-Time output to the controller. To indicate this fault mode, ensure that the Red Fail indicator is illuminated with all fault channel indicators Off.
Ensure that any Red Fail preemption control to the monitor uses the Special Function inputs #1 or #2.

f) Dual Indication Monitoring
Ensure that the Signal Monitor is able to detect the presence of active voltage on the green and yellow, green and red, or yellow and red field signal inputs of a channel. GYR Dual Indication fault (DUAL IND) shall be a latching fault. Ensure this function is enabled on a per channel basis using dip switches mounted on the PCB labeled "CH1" through "CH16". Ensure that the GYR Dual Indication monitoring function is enabled for all selected channels except when the Red Enable input is not active or pin #EE is active.

g) GY Dual Indication Monitoring
Ensure that the Signal Monitor is able to detect the presence of active voltage on the green and yellow field signal inputs of a channel. GY Dual Indication fault (DUAL IND) shall be a latching fault. Enable this function with a dip switch on the PCB labeled "GY ENABLE". When the switch is in the ON position, monitor all channels for simultaneous active green and yellow inputs on a channel. When selected by the GY ENABLE switch, ensure that the GY Dual Indication monitoring function is disabled when pin #EE is active.

h) Dual Indication Recognition Time
Ensure that the Signal Monitor triggers when multiple inputs are active on a channel for more than 500 ms. Ensure that the Signal Monitor does not trigger when multiple inputs are active on a channel for less than 250 ms. Channels with multiple voltages active for more than 250 ms and less than 500 ms may or may not trigger the unit.

i) Sequence (Short or Absent Yellow) Monitoring
Ensure that the Signal Monitor is able to detect that a channel has not provided an adequate Yellow Clearance interval during a green to yellow to red sequence. A Sequence failure (SEQUENCE) shall be a latching fault. Ensure that this function is enabled on a per channel basis using dip switches mounted on the PCB labeled "CH1" through "CH16". Ensure that the Sequence monitoring function is enabled for all selected channels except when the Red Enable input is not active or pin #EE is active.

j) Sequence Recognition Time
The minimum Yellow Clearance interval may be modified by switches mounted on the PCB labeled "YEL TIME 1", "YEL TIME 2", and "YEL TIME 3". Ensure that the Yellow Clearance interval is 2.7 seconds plus 0.2 seconds times the binary sum of the three switches. The minimum Yellow Clearance interval shall therefore have a range of 2.7 seconds to 4.1 seconds, ± 0.1 seconds.

k) Recurrent Pulse Detection (RP Detect)
Ensure that the Signal Monitor detects Conflict, Red Fail, and Dual Indication faults that result from intermittent or flickering field signal inputs. These recurring pulses shall result in a latching fault with the RP DETECT indicator illuminated along with the resulting Conflict, Red Fail, or Dual Indication indicator. Provide an option switch to disable the RP detect function.

l) Configuration Change Monitoring
On power-up, reset, and periodically during operation, ensure that the Signal Monitor compares the current configuration settings with the previously stored value and if the settings have changed, the Signal Monitor automatically logs the new setting. Ensure that these settings include the permissive diode matrix, all switches, all jumpers, and the Watchdog Enable switch.
Provide a programming option such that any change in the configuration parameters will cause the Signal Monitor to enter the fault mode causing the Output relay contacts to close and enabling the Stop-Time output to the controller. To indicate this fault mode ensure that the PCA indicator will flash at a 4 Hz rate. Depressing the Reset button for 5 full seconds is required to clear this fault and log the new configuration parameters.
If the programming option is not selected, ensure that the unit does not set the fault mode but will still log the configuration change.

d) Program Card Ajar

Ensure that when the Programming Card is removed or not seated properly, the Signal Monitor forces the Output Relay to the de-energized "fault" state, enable the Stop-Time output, and illuminate the PCA LED. A reset command from the front panel Reset switch or External Reset input is required once the Program Card is in place.

d) Event Flash

When the Signal Monitor exits the flash state (Output relay de-energized) as a result of a Reset command or AC Line brownout restore, ensure that the Stop Time output goes to the inactive state 250 ± 50 ms before the Output relay transfers to the energized state. This transition will provide an early indication to the Controller Unit that the cabinet will transfer from flash to signal operation.

c) Display Functions

Ensure that it is possible to view the active channels for each individual color (GYR) during operation and when latched in a fault state. When the Signal Monitor is latched in a fault state ensure that it is also be possible to view the active channels for each individual color and fault status for each channel for the current fault and the two previous faults.

1) Previous Fault GYR Display

When the Signal Monitor has been triggered by a fault the channel status display will alternate between the channels which were involved in the fault (fault status) for 2 seconds, and the field signals active at the time of the fault for 6 seconds. The channels involved in the fault will flash their respective Green, Yellow, and Red indicators simultaneously at a 4 Hz rate for the 2 second interval.

The two previous faults may be also be displayed individually. This status is not reset by an AC Line power interruption. To enter this display mode remove the Program Card. The sequence is as follows:

<table>
<thead>
<tr>
<th>Reset</th>
<th>Event</th>
<th>PCA LED</th>
<th>Fault Status LEDs</th>
<th>Channel Status LEDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>#1</td>
<td>Single flash</td>
<td>Current Fault Status (newest)</td>
<td>Current Field status</td>
</tr>
<tr>
<td>#1</td>
<td>#2</td>
<td>Double flash</td>
<td>Event #2 Fault Status</td>
<td>Event #2 Field status</td>
</tr>
<tr>
<td>#2</td>
<td>#3</td>
<td>Triple flash</td>
<td>Event #3 Fault Status (oldest)</td>
<td>Event #3 Field status</td>
</tr>
</tbody>
</table>

(repeats back to top)

d) Event Logging Functions

Ensure that the Signal Monitor is capable of storing in non-volatile memory a minimum of 100 events. Mark each event with the time and date of the event. These events consist of fault events, AC Line events, reset events, and configuration change events. Provide a graphical means of displaying the signal states of all field inputs for 30 seconds prior to a fault trigger event. Provide the capability to assign a four-digit identification number to the unit shall be provided. Upload the event logs to a PC using the serial port of the Signal Monitor and software provided by the manufacturer.

Ensure each event log report contains the following information:

- **Monitor ID#:** a four digit (0000-9999) ID number assigned to the monitor.
- **Time and Date:** time and date of occurrence.
- **Event Number:** identifies the record number in the log. Event #1 is the most recent event.

1) Monitor Status Report (CS)

Ensure the Current Status report contains the following information:

a) **Fault Type:** the fault type description.

b) **Field Status:** the current GYR field status and field RMS voltages if the monitor is not in the fault state, or the latched field status and field RMS voltages and fault channel status at the time of the fault.

c) **Cabinet Temperature:** the current temperature if the monitor is not in the fault state, or the latched temperature at the time of the fault.

d) **AC Line Voltage:** the current AC Line voltage if the monitor is not in the fault state, or the AC Line voltage at the time of the fault.
e) **Control Input Status:** the current state and RMS voltages of the Red Enable input, EE input, and Special Function #1 and #2 inputs if the monitor is not in the fault state, or the status latched at the time of the fault.

2) **Previous Fault Log (PF)**
 Ensure the Previous Fault log contains the following information:
 a) **Fault Type:** the fault type description.
 b) **Field Status:** the latched field status with RMS voltages, and fault channel status at the time of the fault.
 c) **Cabinet Temperature:** the latched temperature at the time of the fault.
 d) **AC Line Voltage:** the AC Line voltage at the time of the fault.
 e) **Control Input Status:** the latched state of the Red Enable input, EE input, and Special Function #1 and #2 inputs at the time of the fault.

3) **AC Line Event Log (AC)**
 The AC Line log shall contain the following information:
 a) **Event Type:** describes the type of AC Line event that occurred.
 - Power-up—AC on, monitor performed a cold start
 - Interrupt—AC Line < Brownout level
 - Restore—AC restored from brown-out or interruption (AC Off), no cold start
 b) **AC Line Voltage:** the AC Line voltage at the time of the event.

4) **Monitor Reset Log (MR)**
 Ensure the Monitor Reset log contains the following information:
 a) The monitor was reset from a fault by the front panel Reset button or External Reset input.

5) **Configuration Change Log (CF)**
 Ensure the Configuration Change log contains the following information:
 a) **Program Card Matrix:** the permissive programming for each channel.
 b) **Yellow Disable Jumpers:** the Yellow Disable programming for each channel.
 c) **Dual/Sequence Switches:** the switch programming for each channel.
 d) **Option Switches:** RF 2010, RP Disable, GY Enable, SF1 Polarity, Sequence Timing, Minimum Flash Enable, Configuration Fault Enable, Red Cable Fault enable, AC Brownout timing.
 e) **Watchdog Programming:** Watchdog Enable, Watchdog Latch, and Watchdog timing.
 f) **Configuration CRC:** A unique CRC value which is based on the configuration of items #a through #e above.

 Indicate on the log, which items have been changed since the last log entry.

6) **Signal Sequence Log**
 Provide a log that graphically displays all field signal states for up to 30 seconds prior to the current fault trigger event. Ensure that the resolution of the display is at least 50 milliseconds.

e. **Communications Functions**
 1) **Controller Unit Communications**
 Ensure that the Signal Monitor is compatible with the Command/Response protocol of B1 Tran Systems Inc. Model 233 Software. Ensure the unit supports command types 02 and 07.

 2) **Personal Computer Communications**
 Have the manufacturer provide software to access the Signal Monitor status and event logs described in Subsection 925.2.01.A.15.d. Ensure this software operates with Microsoft Windows 9s™ or Windows NT™

f. **Hardware**
 1) **Red Monitoring**
 a) **Red Field Inputs**
 Ensure that the Signal Monitor is capable of monitoring sixteen Red field signals. Ensure that a Red input is sensed active when the input voltage exceeds 70 Vrms. Ensure that a Red input is sensed not active when the input voltage is less than 50 Vrms. A Red input may or may not be sensed active when the input voltage is between 50 Vrms and 70 Vrms.
b) Red Enable Input
 Ensure that the Red Enable input provides an AC input to the unit which enables Red Monitoring, Dual Indication Monitoring, and Sequence monitoring when the input is sensed active.
 Ensure that the Red Enable input is sensed active when the input voltage exceeds 70 Vrms. Ensure that the Red Enable input is sensed not active when the input voltage is less than 50 Vrms. The Red Enable input may or may not be sensed active when the input voltage is between 50 Vrms and 70 Vrms.

c) Special Function Preemption Inputs
 Ensure that the Special Function Preemption inputs #1 and #2 provide an AC input to the unit which disables only Red Fail Monitoring (Lack of Output) when either input is sensed active.
 Ensure that a Special Function input is sensed active when the input voltage exceeds 70 Vrms. Ensure that a Special Function input is sensed not active when the input voltage is less than 50 Vrms. A Special Function input may or may not be sensed active when the input voltage is between 50 Vrms and 70 Vrms.
 Use a PCB mounted switch to provide the option to invert the active status of the Special Function #1 input. When the switch is in the ON position, ensure that the Special Function #1 input is sensed not active when the input voltage exceeds 70 Vrms. Ensure that the Special Function #1 input is sensed active when the input voltage is less than 50 Vrms. The Special Function #1 input may or may not be sensed active when the input voltage is between 50 Vrms and 70 Vrms.

d) Red Interface Connector
 This connector provides the required inputs for the unit to monitor the Red field signal outputs. Ensure the connector is a 3M #3428-5302 type or equivalent and be polarized to insure proper mating with the cable. Ensure Ejector latches are included to facilitate removal and prevent the cable from inadvertently disconnecting. Ensure the unit shall functions as a standard 210 Signal Monitor when the cable is disconnected. Use the pin assignments shown in Table 1.

 Table 1

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Channel 15 Red</td>
<td>11</td>
<td>Channel 9 Red</td>
</tr>
<tr>
<td>2</td>
<td>Channel 16 Red</td>
<td>12</td>
<td>Channel 8 Red</td>
</tr>
<tr>
<td>3</td>
<td>Channel14 Red</td>
<td>13</td>
<td>Channel 7 Red</td>
</tr>
<tr>
<td>4</td>
<td>Chassis Ground*</td>
<td>14</td>
<td>Channel 6 Red</td>
</tr>
<tr>
<td>5</td>
<td>Channel 13 Red</td>
<td>15</td>
<td>Channel 5 Red</td>
</tr>
<tr>
<td>6</td>
<td>Special Function #2</td>
<td>16</td>
<td>Channel 4 Red</td>
</tr>
<tr>
<td>7</td>
<td>Channel 12 Red</td>
<td>17</td>
<td>Channel 3 Red</td>
</tr>
<tr>
<td>8</td>
<td>Special Function #1</td>
<td>18</td>
<td>Channel 2 Red</td>
</tr>
<tr>
<td>9</td>
<td>Channel 10 Red</td>
<td>19</td>
<td>Channel 1 Red</td>
</tr>
<tr>
<td>10</td>
<td>Channel 11 Red</td>
<td>20</td>
<td>Red Enable</td>
</tr>
</tbody>
</table>

*A jumper option shall be provided to allow the connection of Pin #4 to be made with Chassis Ground.

2) Front Panel
 Ensure the front panel is constructed of sheet aluminum with a minimum thickness of 0.090 in. (2.286 mm), and finished with an anodized coating. Ensure the model information shall be permanently displayed on the front surface.
a) Indicators

Ensure that all display indicators are mounted on the front panel of the Signal Monitor and are water clear, T-1 package, Super Bright type LEDs. Ensure that all fault LEDs are red except the AC POWER indicator which is green. Provide a separate Red, Yellow, and Green indicator for each channel. Label the indicators and provide the information as follows:

1. **AC POWER**
 - Ensure the AC Power indicator flashes at a rate of 2 Hz when the unit has detected a low voltage condition as described in Subsection 925.2.02.A.15.b.10).a. Ensure the AC POWER indicator flashes at a rate of 4 Hz during the minimum flash interval as described in Subsection 925.2.02.A.15.b.10).b. Ensure that the indicator illuminates when the AC Line voltage level is restored above the brownout level. Ensure the indicator extinguishes when the AC Line voltage is less than 80 Vac.

2. **VDC FAILED**
 - Ensure the VDC FAILED indicator illuminates when a 24VDC fault condition is detected. This indicator remains extinguished if the monitor has not been triggered by a 24VDC fault.

3. **WDT ERROR**
 - Ensure the WDT ERROR indicator illuminates when a controller Watchdog fault is detected. Ensure the WDT Error indicator flashes ON once every 2 seconds if the WD Enable switch on the monitor is placed in the OFF position to disable Watchdog monitoring, or the AC Line voltage is below the Watchdog disable level.

4. **CONFLICT**
 - Ensure that the CONFLICT indicator illuminates when a conflicting proceed signal fault is detected.

5. **DIAGNOSTIC**
 - Ensure the DIAGNOSTIC indicator illuminates when one of the following faults are detected: Internal Watchdog fault, Memory Test fault, or Internal power supply fault. This indicator is intended to inform the service technician of a monitor hardware or firmware failure.

6. **RED FAIL**
 - Ensure the RED FAIL indicator illuminates when an absence of signal is detected on a channel(s). Ensure the RED FAIL indicator flashes ON once every two seconds if the RED ENABLE input is not active, or a Special Function input is active, or the EE input is active.

7. **DUAL IND.**
 - Ensure the Dual IND. indicator illuminates when a GY-Dual or GYR-Dual Indication fault is detected on a channel(s).

8. **SEQUENCE**
 - Ensure the Sequence indicator illuminates when the minimum Yellow Clearance time has not been met on a channel(s).

9. **PCA**
 - Ensure the PCA indicator illuminates if the Program Card is absent or not properly seated.
 - If the unit is in the Diagnostic Display mode, ensure the PCA indicator flashes ON (once, twice, or three times) to indicate the fault event number being displayed. See Subsection 925.2.01.A.15.c.

10. **RP DETECT**
 - Ensure the RP DETECT indicator illuminates when the unit has detected a Conflict, Red Fail, or Dual Indication fault as a result of recurring pulse field inputs.

11. **CHANNEL STATUS**
 - Ensure that during normal operation the 48 Channel Status indicators displays all active signals (Red, Green, and Yellow).
 - In the fault mode, ensure that the Channel Status indicators display all signals active at the time of the fault for six seconds and then indicate the channels involved in the fault for 2 seconds.
b) Front Panel Control

 (1) **RESET Button**

 Provide a momentary SPST Control switch labeled RESET on the unit front panel to reset the monitor circuitry to a non-failed state. Position the switch on the front panel such that the switch can be operated while gripping the front panel handle. Ensure that a reset command issued from either the front panel button or External Reset input is a one-time reset input to prevent the unit from constant reset due to a switch failure or constant external input, and causes all LED indicators to illuminate for 300 ms.

 The Reset button also provides control of the Diagnostic Display mode. For a complete description of Diagnostic Display operation, see Subsection 925.2.01.A.15.c.

 c) **Serial Communications Connector**

 Use this connector to provide EIA-232 serial communications. Ensure that it is an AMP 9721A or equivalent 9 pin metal shell D subminiature type with female contacts. Refer to Table 2 for Pin assignments.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD*</td>
</tr>
<tr>
<td>2</td>
<td>TX DATA</td>
</tr>
<tr>
<td>3</td>
<td>RX DATA</td>
</tr>
<tr>
<td>4</td>
<td>DTR (Data Terminal Ready)</td>
</tr>
<tr>
<td>5</td>
<td>SIGNAL GROUND</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
</tr>
<tr>
<td>7</td>
<td>DSR*</td>
</tr>
<tr>
<td>8</td>
<td>CTS*</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
</tr>
</tbody>
</table>

* Provide Jumper options to allow the connection of Pin #4 to be made with Pin #7, and the connection of Pin #8 to be made with Pin #1.

3) **Electronics**

 a) **RMS Voltage Sampling**

 Use high speed sampling techniques to determine the true RMS value of the AC field inputs. Sample each AC input at least 32 times per cycle. Ensure that the RMS voltage measurement is insensitive to phase, frequency, and waveform distortion.

 b) **Internal MPU Watchdog**

 Use a microprocessor for all timing and control functions. Verify continuing operation of the microprocessor by an independent monitor circuit, that forces the Output Relay to the de-energized "fault" state, enable the Stop-Time output, and illuminate the DIAGNOSTIC indicator if a pulse is not received from the microprocessor within 300 ms.

 If the microprocessor should resume operation, ensure the Signal Monitor continues to operate. Ensure that this monitoring circuit is also configurable to latch in the fault state. Ensure the unit requires a power-up cycle to reset the circuit once it is triggered.

 c) **Sockets**

 In the interest of reliability, ensure that only the PROM memory device for the microprocessor firmware is socket mounted. Ensure that the PROM memory socket is a precision screw machine type socket with a gold contact finish providing a reliable gas tight seal. Low insertion force sockets or sockets with "wiper" type contacts are not acceptable.

 d) **Internal Power Supply**

 Use a built-in, high-efficiency switching power supply to generate all required internal voltages. Ensure that all supply voltages regulated. Failure of the internal power supply to provide proper operating voltages shall force the output Relay to the de-energized "fault"
state, enable the Stop-Time output, and illuminate the DIAGNOSTIC indicator. Provide a user replaceable slow blow fuse for the AC Line input. Ensure the unit is operational over the AC Line voltage range of 75 Vac to 135 Vac.

e) EIA-232 Interface
 Ensure the EIA-232 port interface electronics is electrically isolated from all monitor electronics except chassis ground.
f) Configuration Parameters
 Select user-programmed configuration settings using PCB mounted switches or jumpers. Designs requiring a Personal Computer (PC) to program or verify the configuration parameters are not acceptable. Ensure that user-programmed configuration settings that are transferred to memory are stored in a programmable read-only memory (ROM or EEPROM). Designs using a battery to maintain configuration data are not acceptable.

g) Field Terminal Inputs
 Ensure that all 120 V ac field terminal inputs provide an input impedance of 150K ±50K ohms and be terminated with a discrete resistor having a power dissipation rating of 0.5 Watts or greater and a voltage rating exceeding 350 volts.
h) Component Specifications
 Ensure that all electrical components used in the Signal Monitor are rated by the component manufacturer to operate beyond the full unit operating temperature range of −29 °F to 165 °F (-34 °C to +74 °C).
i) Printed Circuit Boards
 Ensure that all printed circuit boards meet the requirements of the California Traffic Signal Control Equipment Specifications, January 1989, plus the following requirements to enhance reliability:
 1. All plated-through holes and exposed circuit traces are plated with solder.
 2. Both sides of the printed circuit board are covered with a solder mask material.
 3. The circuit reference designation for all components and the polarity of all capacitors and diodes are clearly marked adjacent to the component. Ensure that Pin #1 for all integrated circuit packages is designated on both sides of all printed circuit boards.
 4. All electrical mating surfaces are gold plated.
 5. All printed circuit board assemblies are coated on both sides with a clear moisture-proof and fungus-proof sealant.
 6. All components and wire harnesses are mounted to the PCB using plated holes. "Piggy back" connections or jumper wires are not acceptable.

16 Model 242 DC Isolator
 Provide Model 242 DC Isolators that are in accordance with the latest version of CALTRANS Specifications as referenced earlier in this section.

17. Model 200 Switchpack
 Provide Model 200 Switchpacks that are in accordance with the latest version of CALTRANS Specifications as referenced earlier in this section.

18. Model 204 Flasher Unit
 Provide Model 204 Flasher Units that are in accordance with the latest version of CALTRANS Specifications as referenced earlier in this section.

19. Flash Transfer Relay
 Provide Flash Transfer Relays that are in accordance with the latest version of CALTRANS Specifications as referenced earlier in this section.

20. Cabinet Model 332A
 Provide Cabinet Model 332A that meets the CALTRANS Specification with the addition of surge protection as detailed in Table 925-1 Model 332A Default Input Files Assignment Detail and Table 925-2 Required Surge Arrestors for Model 332A Cabinet.
 Supply Model 332A (lower input panel) cabinets, with housing Type 1B, and all components as described in these specifications.
Supply cabinets having two input files which conform to the CALTRANS Specifications and configured to accept two 2070 controllers in the top portion of the cabinet.

Configure the cabinet for dial up communications. Mount a two (2) circuit Buchanan connector on the right side panel (from rear door).

Mount a phone jack with a RJ11 connector above or to the right of the Buchanan terminal block.

Wire the phone jack to the Buchanan and to the Terminal Block (TB0) in accordance with Figure 925-1.

21. Cabinet Model 336S (Base Mount)

This unit meets the CALTRANS Specification with the addition of approximately 6 additional inches (150 mm) of cabinet height exclusive of the "M" base adapter. Configure the internal component layout so that the additional space is available in the bottom area of the cabinet cage. Ensure that the field wiring input panels and surge protection conform to Table 925-3 Model 336 Default Input File Assignment Detail and Table 925-4 Required Surge Arrestors for Model 336 Cabinet.

22. Cabinet Model 336 (Pole Mount)

Ensure that this unit meets the requirements of Subsection 925.2.02.A.21 above, except that the cabinet is configured for pole mounting as specified in the General Requirements for Type 170 Cabinet Assemblies.

23. Cabinet Model 336 (Base Mount with Auxiliary Output File)

Ensure that this unit meets the requirements of Subsection 925.2.02.A.21 above, except that the cabinet is configured with an Auxiliary Output File. Additionally, the field wiring terminals may be mounted on the rear of the input file.

24. Cabinet Model 337

The Model 337 cabinet is a compact cabinet with an output capacity of four vehicle phases plus two pedestrian phases; the dimensions not to exceed 17 inches (425 mm) deep x 20 inches (500 mm) wide x 35 inches (875 mm) high and its shipping weight not to exceed 175 pounds (80 kg).

Supply the cabinet assembly with capacity for 11, two-channel slots in the input file.

Ensure that the pin assignments of the C1 connector are compatible with the 2070 controller as applicable according to the required number of input/outputs.

Ensure that the 337 cabinet uses standard Type 2070 input and output file units.

Equip the cabinet with a C2 connector harness with field terminals protected with surge protectors for communication inputs as specified under communications inputs.

Ensure that the cabinet has two full-size doors to allow complete access from the front or back of the cabinet. Design the rack assembly to mount in CALTRANS standard rails to allow for a Model 204 flasher.

Provide a receptacle to accept the plug in power distribution assembly card guides and edge connectors for the input file card guides to support the conflict monitor, and load switches and flash transfer relays.

Due to the compact design of this cabinet assembly, the Department of Transportation may accept a non-standard type of power distribution assembly (PDA).
Table 925-1 Model 332 Default Input Files Assignment Detail

<table>
<thead>
<tr>
<th>Slot</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Det</td>
<td>Det</td>
<td>Det</td>
<td>Det</td>
<td>Det</td>
<td>Det</td>
<td>Det</td>
<td>Det</td>
<td>Det</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
</tr>
<tr>
<td>Channel 1</td>
<td>C1 Pin</td>
<td>56</td>
<td>39</td>
<td>63</td>
<td>47</td>
<td>58</td>
<td>41</td>
<td>65</td>
<td>49</td>
<td>60</td>
<td>80</td>
<td>67</td>
<td>68</td>
<td>81</td>
</tr>
<tr>
<td>Function</td>
<td></td>
<td>[</td>
</tr>
<tr>
<td>Field Term</td>
<td>TB-2</td>
<td>TB-2</td>
<td>TB-2</td>
<td>TB-4</td>
<td>TB-4</td>
<td>TB-6</td>
<td>TB-6</td>
<td>TB-6</td>
<td>TB-8</td>
<td>TB-8</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 2</td>
<td>C1 Pin</td>
<td>56</td>
<td>43</td>
<td>76</td>
<td>47</td>
<td>58</td>
<td>45</td>
<td>78</td>
<td>49</td>
<td>62</td>
<td>53</td>
<td>69</td>
<td>70</td>
<td>82</td>
</tr>
<tr>
<td>Function</td>
<td></td>
<td>[</td>
</tr>
<tr>
<td>Field Term</td>
<td>TB-2</td>
<td>TB-2</td>
<td>TB-2</td>
<td>TB-4</td>
<td>TB-4</td>
<td>TB-6</td>
<td>TB-6</td>
<td>TB-6</td>
<td>TB-8</td>
<td>TB-8</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 925-2 Required Surge Arrestors for Model 332 Cabinet

<table>
<thead>
<tr>
<th>Field Terminal Block</th>
<th>Terminals</th>
<th>Required Arrestor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB-8</td>
<td>1-12</td>
<td>EDCO PC642C-030 plug in arrestors in PCB1B Terminal Block</td>
</tr>
<tr>
<td>TB-9</td>
<td>10-12</td>
<td>EDCO PC642C-030 plug in arrestors in PCB1B Terminal Block</td>
</tr>
<tr>
<td>TB-9</td>
<td>4-9</td>
<td>EDCO PCB1B Terminal Block only</td>
</tr>
<tr>
<td>TB-2, TB-3, TB-4, TB-5, TB-6, TB-7</td>
<td>1-12</td>
<td>EDCO SRA-LB</td>
</tr>
</tbody>
</table>
Note: For a typical signal installation, the Model 332 cabinet is the design standard.

Figure 925-1—Wiring Diagram for Dial-up Communications
Table 925-3 Model 336 Default Input File Assignment Detail

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Det</th>
<th>Det</th>
<th>Det</th>
<th>Det</th>
<th>Det</th>
<th>Det</th>
<th>DC</th>
<th>TBA</th>
<th>TBA</th>
<th>DC</th>
<th>DC</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 1</td>
<td>C1 Pin</td>
<td>56</td>
<td>39</td>
<td>58</td>
<td>41</td>
<td>55</td>
<td>40</td>
<td>57</td>
<td>42</td>
<td>51</td>
<td>71</td>
<td>72</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Function</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>SE1</td>
<td>EVA</td>
<td>EVB</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Field Term</td>
<td>TB-7</td>
<td>TB-7</td>
<td>TB-7</td>
<td>TB-8</td>
<td>TB-8</td>
<td>TB-8</td>
<td>TB-9</td>
<td>TB-9</td>
<td>TB-5</td>
<td>TB-5</td>
<td>TB-5</td>
<td>TB-5</td>
</tr>
<tr>
<td></td>
<td>Terminals</td>
<td>1,2</td>
<td>5,6</td>
<td>9,10</td>
<td>1,2</td>
<td>5,6</td>
<td>9,10</td>
<td>1,2</td>
<td>5,6</td>
<td>9,10</td>
<td>1,2</td>
<td>5,6</td>
<td>9,10</td>
</tr>
<tr>
<td>Channel 2</td>
<td>C1 Pin</td>
<td>47</td>
<td>43</td>
<td>49</td>
<td>45</td>
<td>48</td>
<td>44</td>
<td>50</td>
<td>46</td>
<td>52</td>
<td>73</td>
<td>74</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Function</td>
<td>2 CALL</td>
<td>2 CALL</td>
<td>4 CALL</td>
<td>4 CALL</td>
<td>6 CALL</td>
<td>8 CALL</td>
<td>8 R/R</td>
<td>R/R</td>
<td>EVC</td>
<td>EVD</td>
<td>4 PED</td>
<td>8 PED</td>
</tr>
<tr>
<td></td>
<td>Field Term</td>
<td>TB-7</td>
<td>TB-7</td>
<td>TB-7</td>
<td>TB-8</td>
<td>TB-8</td>
<td>TB-8</td>
<td>TB-9</td>
<td>TB-9</td>
<td>TB-5</td>
<td>TB-5</td>
<td>TB-5</td>
<td>TB-4</td>
</tr>
<tr>
<td></td>
<td>Terminals</td>
<td>3,4</td>
<td>7,8</td>
<td>11,12</td>
<td>3,4</td>
<td>7,8</td>
<td>11,12</td>
<td>3,4</td>
<td>7,8</td>
<td>11,12</td>
<td>3,4</td>
<td>7,8</td>
<td>NC</td>
</tr>
</tbody>
</table>

Table 925-4 Required Surge Arrestors for Model 336 Cabinet

<table>
<thead>
<tr>
<th>Field Terminal Block</th>
<th>Terminals</th>
<th>Required Arrestor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB-4</td>
<td>1-12</td>
<td>EDCO PC642C-030 plug in arrestors in PCB1B Terminal Block</td>
</tr>
<tr>
<td>TB-5</td>
<td>1-4</td>
<td>EDCO PC642C-030 plug in arrestors in PCB1B Terminal Block</td>
</tr>
<tr>
<td>TB-5</td>
<td>5-12</td>
<td>EDCO PCB1B Terminal Block only</td>
</tr>
<tr>
<td>TB-7, TB-8, TB-9</td>
<td>1-12</td>
<td>EDCO SRA-6LB</td>
</tr>
</tbody>
</table>
B. Fabrication
 Refer to Subsection 925.2.03.A.1 for controller cabinet minimum fabrication specifications.

C. Acceptance
 Refer to Subsection 925.2.01.A for compliance with CALTRANS QPL.

D. Materials Warranty
 Refer Subsection 925.2.D for Materials Warranties.

925.2.03 Flashing Beacon Assembly

A. Requirements

This specification is for a flashing signal cabinet, which consists of an aluminum cabinet containing a flasher assembly, field connection terminal block, surge arrestor and circuit breaker wired in a manner to operate flashing beacons. Refer to Figure 925-2.

![Diagram of a typical flashing signal cabinet layout]

Note: Front view of cabinet Door Assembly not shown
No scale

Figure 925-2—Typical Flashing Signal Cabinet Layout

1. Cabinet
 Supply a NEMA Type 3R cabinet assembly, manufactured of aluminum with a minimum thickness of 0.125 inches (3 mm).
 Ensure that the cabinet exterior has a smooth, uniform “bare” aluminum finish with all joints between adjoining cabinet components (sides and bottom) continuously welded on the outside to prevent the intrusion of moisture and dust.
Ensure that all welds are free of cracks, blow holes and other irregularities.
Supply a cabinet with the following exterior dimensions:

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>14 inches (350 mm)</td>
<td>18 inches (450 mm)</td>
</tr>
<tr>
<td>Width</td>
<td>10 inches (250 mm)</td>
<td>14 inches (350 mm)</td>
</tr>
<tr>
<td>Depth</td>
<td>7 inches (175 mm)</td>
<td>10 inches (250 mm)</td>
</tr>
</tbody>
</table>

Use a cabinet door that is double flanged on all four sides to prevent the entry of dirt and liquids when the door is open.

Install a one-piece gasket formed around the door opening to insure a weather tight seal when the door is secured.

Attach the door to the cabinet housing by a continuous tamper proof hinge.

Equip each cabinet with a Corbin #2 lock and one key. Police panel type locks are not acceptable.

Install an aluminum back panel in the cabinet, mounted on standoffs, to facilitate mounting of internal components.

Install exterior aluminum mounting brackets, which extend a minimum of 1.75 inches (44 mm) and a maximum of 2.5 inches (63 mm) from the top and bottom of the cabinet.

Use brackets that extend across the full width of the cabinet back on the top and bottom.

Provide these brackets with holes for mounting to a flat surface with screws and vertical slots for banding to steel, concrete or wooden signal poles.

2. Flasher Unit

Supply a standard plug in two circuits NEMA flasher.

Ensure that the flasher is of all solid state construction, meets the requirements of the NEMA standards and is rated at a minimum of 10 A per circuit.

Ensure that the flasher utilizes zero voltage turn-on and turn-off current and is capable of dimming outputs.

3. Surge Arrestor

Supply a flasher cabinet that incorporates an AC surge arrester (EDCO SPA-100 or equivalent) to protect the internal components from lighting and over voltages on the AC service input.

The requirements for the surge arrester are:

- Peak Surge Current: 15000 A
- Peak Surge Voltage @ 10KA: 680 V
- Energy Handling: 220 J
- Power Dissipation Rate: 1.5 W maximum
- Continuous AC Voltage: 130 V AC RMS
- Initial Breakdown (1mA): 212 V
- Typical Capacitance: 4000 pF
- Operating Temp.: -40 °F to 185 °F (-40 °C to 85 °C)

4. Circuit Breaker

Include a 15 A circuit breaker in the cabinet. (Square D QOU 115 Series or equivalent).

5. Terminal Block

Include a four position terminal block in the cabinet for making field connections. Properly label all field terminal connections.

6. Construction

Assemble the flasher assembly, terminal block, surge arrester and circuit breaker in the cabinet as shown on the attached drawing.

Wire all components together as a working unit, thus requiring only field connections to and from the AC power and flashing beacons.

B. Fabrication

Refer to Subsection 925.2.03.A.1 for controller cabinet minimum fabrication specifications.

C. Acceptance

General Provisions 101 through 150.
D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.04 Flashing Signal Cabinet With Time Clock

A. Requirements

 This specification is for a flashing signal cabinet with time clock which consists of an aluminum cabinet containing a flasher assembly, time clock, field connection terminal block, surge arrestor and circuit breaker wired in a manner to operate school flashing beacons. Refer to Figure 925-3.

 1. Cabinet

 Supply a NEMA Type 3R cabinet assembly that is manufactured of aluminum with a minimum thickness of 0.125 inches (3 mm).

 Ensure that the cabinet exterior has a smooth, uniform natural aluminum finish, and that all joints between adjoining cabinet components (sides and bottom) are continuously welded on the outside to prevent the intrusion of moisture and dust.

 Ensure that all welds are free of cracks, blow holes and other irregularities.

 The exterior dimensions of the cabinet are as follows:

	Minimum	Maximum
Height	14 inches (350 mm)	18 inches (450 mm)
Width	10 inches (250 mm)	14 inches (350 mm)
Depth	7 inches (175 mm)	10 inches (250 mm)

 Supply a cabinet door that is double flanged on all four sides to prevent the entry of dirt and liquids when the door is open.

 Use a one-piece gasket that is formed around the door opening to insure a weather tight seal when the door is secured.

 Attach the door to the cabinet housing with a continuous tamper proof hinge.

 Provide each cabinet with a Corbin #2 lock and one key. Police panel type locks are not acceptable.

 Supply each cabinet with an aluminum back panel mounted on standoffs to facilitate mounting of internal components.

 Supply cabinets with exterior aluminum mounting brackets, which extend a minimum of 1.75 inches (44 mm) and a maximum of 2.5 inches (63 mm) from the top and bottom of the cabinet.

 Use brackets that extend across the full width of the cabinet back on the top and bottom.

 Provide these brackets with holes for mounting to a flat surface with screws and vertical slots for banding to steel, concrete or wooden signal poles.
2. Flasher Unit
 Supply a standard plug in, two circuits NEMA flasher.
 Ensure that the flasher is of all solid state construction, meets the requirements of the NEMA standards and is rated at a minimum of 10 A per circuit.
 Ensure that the flasher utilizes zero voltage turn-on and turn-off current and be capable of dimming outputs.

3. Time Switch
 Supply a time switch that meets the requirements of Subsection 925.2.05 of this specification.

4. Surge Arrestor
 Supply flasher cabinets that incorporate an AC surge arrestor (EDCO SPA-100 or equivalent) to protect the internal components from lighting and over voltages on the AC service input.
 The requirements of the surge arrestor are as follows:
 - Peak Surge Current: 15000 A
 - Peak Surge Voltage @ 10KA: 680 V
 - Energy Handling: 220 J
 - Power Dissipation Rate: 1.5 W maximum
Continuous AC Voltage: 130 V AC RMS
Initial Breakdown (1mA): 212 V
Typical Capacitance: 4000 pF
Operating Temp.: -40 °F to 185 °F (-40 °C to 85 °C)

5. Circuit Breaker
 Include a 15 A circuit breaker in each cabinet. (Square D QOU 115 Series or equivalent).

6. Terminal Block
 Include a four position terminal block in each cabinet for making field connections. Properly label all field terminal connections.

7. Construction
 Assemble the flasher assembly, terminal block, surge arrester and circuit breaker in the cabinet as shown on the attached drawing.
 Wire all components together as a working unit, thus requiring only field connections of the AC power and flashing beacons.

B. Fabrication
 Refer to Subsection 925.2.03.A.1 for controller cabinet minimum fabrication specifications.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.05 Time Clock

A. Requirements
 Supply time clocks that are single circuit, calendar programmable, solid state, fully self-contained units (RTC AP 21 or equivalent) that meet the following specifications:
 1. Alphanumeric liquid crystal display.
 2. Automatic daylight savings time and leap year compensation. Changes in the daylight savings time program made through the keypad and not requires hardware modification.
 3. Minimum twenty-four (24) hour capacitive back up. Battery back up is not acceptable.
 4. Keypad entry programming without the use of any external devices such as a PC, external programming unit, another time switch, etc.
 5. Operate on 95 to 135 V AC, 60 Hz line current.
 6. SPDT relay output rated at 15 A.
 7. Maximum size of 4 inches (100 mm) wide, 8 inches (200 mm) high and 2 inches (50 mm) deep.
 8. A programming manual is to be included with each unit.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.06 Self Tuning Loop Detector

A. Requirements
 This specification sets forth the minimum acceptable design, operational and functional performance requirements for multi-channel, inductive loop vehicle detection systems.
1. General Requirements
 a. Mounting
 Ensure that the unit is configured for rack mount insertion into a NEMA (TS 1 or TS 2) card rack and/or
 CALTRANS Type 2070 cabinet input file.
 b. Environmental
 Ensure that the unit is in full compliance with the environmental tests, transient tests and size requirements of
 NEMA standard TS-1 Section 15, TS-2 Section 6.5 and the California Type 2070 specifications.
 Provide documentation from an independent laboratory, which certifies that the unit is in compliance with the
 above specifications.
 c. LED Indicator
 Ensure that each channel includes two high visibility LED indicators; one for the detect state and the second to
 indicate the status of the fault monitor.
 d. Phase Indicator
 Ensure that each channel has an erasable write-on pad to aid in identification of the associated phase or
 function.
2. Operational Requirements
 a. Tuning
 Supply units that are fully digital and self-tuning.
 Ensure that each channel of the unit can automatically tune to any loop and lead in combination within two (2)
 seconds of application of power or when a reset signal is received.
 Ensure that the tuning circuit is designed so that drift, caused by environmental changes or changes in applied
 power, does not cause false actuation’s.
 b. Scanning
 Supply units that sequentially scan each channel (only one channel energized at any given time) to eliminate
 crosstalk from multiple loops in adjacent lanes and/or allow overlapped loops for directional control and/or
 allow use of multi-conductor homerun cable when connected to the same detector unit.
 c. Sensitivity Setting
 Ensure that each channel is equipped with front panel selectable sensitivity settings in presence and pulse
 modes.
 d. Frequency
 Supply units that have a minimum of three switch selectable operating frequencies.
 e. Inductance Range
 Ensure that each channel can tune to an inductive load from 50 to 2000 microhenries with a Q factor > 5.
 f. Grounded Loops
 Ensure that each channel can continue to operate with poor quality loop systems (Q>2) including those that
 have a single point short to ground.
 g. Fault Monitoring
 Supply units that constantly monitor the operation of each channel.
 Ensure that the unit detects shorted loops, open circuit loops or sudden changes in inductance (>25% of
 nominal).
 Ensure that each type of fault is indicated on a fault LED by a unique sequence of flashes until the fault is
 rectified.
 Ensure that while the channel is in the fault condition, the channel output remains in the detect state.
 When the fault is rectified, the fault LED continues to emit the sequence signifying the last fault detected, but
 the detect LED and output returns to normal operation.
 h. Failsafe Output
 Ensure that each channel output generates a continuous solid state output to the controller when power to the
 detector is removed.
i. Operational Modes
Supply units with each channel selectable for either pulse or presence modes and that meet the following requirements:

- **Pulse Mode**
 This setting provides a single output pulse (125 ms +/- 25) in response to a vehicle entering the loop. If a vehicle remains in the sensing zone in excess of two (2) seconds, the unit “tunes out” said vehicle. The channel is then capable of detecting another vehicle entering the same detection zone.

- **Presence Mode**
 The presence hold time is a minimum of four (4) minutes for small vehicles (motorcycles) and a minimum of sixty (60) minutes for automobiles.
 Ensure that the unit tunes out of continuous peak hour traffic over long or multiple small loops as long as there is vehicle motion in the sensing zone every ten (10) minutes.

j. Resets
Ensure that the channels are manually resettable by removing the power momentarily.

Ensure that the channels reset remotely when the voltage on Pin C falls below 8 V DC for a period > \(15 \times s\), and that the unit resumes normal operation within four (4) seconds after the application of power or after a reset signal of \(15 \times s\).

k. Field Tuning
Ensure that field adjustments to the operation of the detector do not require the use of a meter, circuit changes, special software or any substitutions, modifications or additions to the unit.

3. Performance Requirements
If testing should be required, provide the Department with a test unit and/or software within ten (10) calendar days of the request.

Should the unit fail to meet the design and/or performance requirements of this specification, the unit will be rejected.

Ensure that the units meet the following requirements:

a. Capable of detecting passage, holding presence and accurately counting all types of licensed motor vehicles when connected in various loop configurations and lead-in combinations without detecting vehicles in adjacent lanes.

Typical Loop Configurations with Lead-in of 5 feet (1.5 m) to 1,500 feet (1000 m) are:

- 6 feet x 6 feet (1.8 m x 1.8 m)
- 6 feet x 20 feet (1.8 m x 6 m)
- 6 feet x 40 feet [(1.8 m x 12 m) standard or quadrupole]

b. Capable of responding to an inductance change of 0.02% and sense vehicles at speeds of up to 80 mph (130 km/h).

c. Not detect vehicles, moving or stopped, at distances greater than three feet for any loop perimeter.

d. Detect all vehicles over multiple turn and/or multiple loops that may be connected in series, parallel or series/parallel with homerun lengths from <5 feet (1.5 m) to > 1,500 feet (1,000 m).

4. Optional Features
In addition to the requirements listed in the previous sections, the units may be requested with any combination of the following optional features:

a. **Option 1: Timing Features - Delay & Extension**
 When this option is specified, ensure that the unit incorporates the following features:

 - **Delay Timing**
 Minimum selectable delay time of 1 to 30 seconds in minimum 1-second increments for each channel.

 - **Extension Timing**
 Minimum selectable extension time of 0.5 to 10 seconds in minimum 0.5-second increments for each channel.
b. Option 2 - Advanced Features
When the option for advanced features is specified, supply units that incorporate the following advanced features:

- Serial Port Interface
 When the serial port interface is specified, equip the detector with a front and rear panel RS 232 port for the transmission of data. Provide Windows 95 compatible software for interfacing with the detector.

- PC Interface
 Ensure that PC software, when connected directly to the unit through the front panel RS 232 port, provides a screen to display the following loop system operating characteristics, on a per channel basis, for system setup, data collection and diagnostics.
 - Loop Status
 - Loop Inductance (µH)
 - Loop Frequency (kHz)
 - Inductance Change (nH)
 - Last Fault: Open, Shorted, >25% Δ L
 - Fault Occurrence: Date & Time
 - Vehicle Count

- Speed, Volume & Occupancy
 The software, when connected directly to the unit, is capable of collecting and storing speed, volume and occupancy data from each detector channel.
 The software allows assignment of loop-to-loop distances to enable accurate speed and vehicle length measurements.
 The speed volume and occupancy information is uploaded and stored in the vendor-supplied software.
 Upon request, supply the necessary information/protocols to allow the Department to write custom software to retrieve speed, volume and occupancy data.

B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.07 Loop Sealant
A. Requirements
 Furnish and install loop sealant according to Subsection 833.2.09, “Polyurethane Sealant for Inductive Loops”. For a list of sources, see QPL 75.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.08 Vehicle Signal Heads
A. Requirements
 Supply vehicle signal heads that are 12 inches (300 mm) in diameter.
Ensure that the 12 inch (300 mm) polycarbonate vehicle signal heads meet the current ITE specification on Vehicle Traffic Control Signal Heads with the following modifications and / or clarifications:

1. Unless otherwise approved by the Engineer or as noted on the Plans, supply signal heads with the following exterior color scheme:
 - Signal Housing - Highway Yellow.
 - Front Face including Doors and Visors: Flat Black

2. Ensure that the reflector is the ALZAK type and hinged to the housing to prevent movement when the door is opened. Ensure that the construction of the reflector allows it to be opened for wiring inspection.
 - Lamps are not to be included with signal heads unless otherwise approved.

3. Terminate the wiring from each signal section in the top section of the head assembly.

4. Provide adjustable focus sockets that are supported so as to allow rotation.

5. Spring cushion mount the reflector holder to absorb vibration and to provide an effective seal against the silicon lens gasket.

6. Mount one aluminum reinforcing support plate in the top of the red section of each three-section signal head for the installation of mounting hardware.

7. Install a support plate between each section of all signal heads. Place these plates such that there is a plate in the bottom of and/or top of any sections where sections adjoin to another section.

8. Supply signal heads that accommodate a maximum of 150 W, 120-V lamps.

B. Fabrication
 - Refer to ITE Standards for material composition and finish specifications.

C. Acceptance
 - Refer to ITE Standards for material composition, finish specifications, and wind loading requirements.

D. Materials Warranty
 - Refer to Subsection 925.2.D for Materials Warranties.

925.2.09 Pedestrian Signal Head

A. Requirements
 - Provide each section with a visor encompassing the top and sides of the signal face of a size and shape adequate to shield the lens from external lighted sources.
 - An acceptable option is a “Z-crate” or louver type visor for mounting over the pedestrian signal face.
 - Construct the housing door, door latch, and hinges of aluminum, or approved equal.
 - Provide hinge pins of stainless steel.

 Ensure that the door is provided with a neoprene gasket capable of making a weather resistant, dustproof seal when closed. Unless otherwise specified by the Engineer, supply pedestrian signal heads with a black face and a yellow body.

 Ensure that pedestrian indications are distinguishable to the pedestrian both day and night and at all distances from 10 feet (3 m) to the full width of the areas to be crossed.

 Supply pedestrian indications that are rectangular in shape and consist of the "HAND & PERSON" symbol.

 Use symbols that are 12 inches (300 mm) high. Use only internal illumination.

 Ensure that when illuminated, the “HAND” symbol is Lunar White and the “PERSON” symbol is Portland Orange, meeting the ITE standards. Ensure that an opaque material obscures all areas of the face or lens, except for the message.

 Ensure that when not illuminated, the symbols are not to be distinguishable by pedestrians at the far end of the crosswalk they control.

B. Fabrication
 - General Provisions 101 through 150.

C. Acceptance
 - General Provisions 101 through 150.

D. Materials Warranty
 - Refer to Subsection 925.2.D for Materials Warranties.
925.2.10 Traffic Signal Lamps

A. Requirements
 Supply Traffic Signal Lamps that meet the current ITE Specification.
 Ensure the Traffic Signal Lamps supplied for Vehicle Signal Heads are a minimum of 135 W and a maximum of 150 W.
 Ensure the Traffic Signal Lamps supplied for Pedestrian Signal Heads are 69 W only.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.11 Optically Programmed or High Visibility Signal Head

A. Requirements
 Supply signal heads that permit the visibility zone of the indication to be determined optically and require no hoods or louver.
 The projected indication may be selectively visible or veiled anywhere within 15 degrees of the optical axis.
 Ensure that no indication results from external illumination and that one light unit does not illuminate a second. The components of the optical system include the lamp, lamp collar, optical limiter-diffuser, and objective lens.
 Ensure that the optical system accommodates projection of diverse, selected indications to separate portions of the roadway such that only one indication will be simultaneously apparent to any viewer.
 Ensure that the projected indication conforms to ITE transmittance and chromaticity standards.

1. Construction
 a. Ensure that the lamp is nominal 150 W, 120 V AC, three prongs, and sealed beam having an integral reflector with stippled cover and an average rated life of at least 6,000 hours.
 Couple the lamp to the diffusing element with a collar including a specular inner surface. The diffusing element may be discrete or integral with the convex surface of the optical limiter.
 b. Supply an optical limiter with an accessible imaging surface at focus on the optical axis for objects 900 to 1,200 feet (270 to 360 m) distance and permit an effective veiling mask to be variously applied as determined by the desired visibility zone.
 Ensure that the optical limiter is provided with positive indexing means and is composed of heat-resistant glass.
 c. Ensure that the objective lens is a high-resolution planar incremental lens hermetically sealed within a flat laminate of weather resistant acrylic or approved equal.
 Supply a lens that is symmetrical in outline and that may be rotated to any 90-degree orientation about the optical axis without displacing the primary image.

2. Mounting
 a. Supply signals that mount to standard 1.5 inch (38 mm) fittings as a single section, as a multiple section face, or in combination with other signals.
 Provide signal sections with an adjustable connection that permits incremental tilting from 0 to 10 degrees above or below the horizontal while maintaining a common vertical axis through couplers and mounting.
 Ensure that terminal connections permit external adjustment about the mounting axis in 5-degree increments.
 b. Ensure that the signal is mountable with ordinary tools and capable of being serviced with no tools.
 Supply attachments such as back plates or adapters that conform and readily fasten to existing mounting surfaces without affecting water and light integrity of the signal. Supply heads with tri-studs for mounting.

3. Electrical
 Supply lamp fixtures that comprise a separately accessible housing and integral lamp support indexed ceramic socket and self-aligning, quick release lamp retainer.
 Ensure that electrical connection between case and lamp housing can be accomplished with an interlock assembly, which disconnects lamp holder when opened. Include a covered terminal block for clip or screw attachment of lead wires for each signal section.
Use concealed No. 18 AWG, stranded and coded wires to interconnect all sections to permit field connection within any section.

4. Photo Controls
 Ensure that each signal includes integral means for regulating its intensity between limits as a function of the individual background illumination.
 Ensure that lamp intensity is not less than 97% of uncontrolled intensity at 10 750 lux, and reduces to 15 + 2% of maximum at less than 10.75 lux.
 Ensure that response is proportional and essentially instantaneous to any detectable increase of illumination from darkness to 10 750 lux, and damped for any decrease from 10 750 lux.
 Ensure that the intensity controller is comprised of an integrated, directional light sensing and regulating device interposed between lamp and line wires.
 Ensure that it is compatible with 60 Hz input and responsive within the range 105 to 135 V AC.
 Output may be phase controlled, but ensure that the device provides nominal terminal impedance of 1,200 & open circuit and a corresponding holding current.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.12 Vehicle Signal Head Lens

A. Requirements
 Ensure that the vehicle signal head lens conforms to current ITE standards.
 Unless specified in the plans, supply 12 inch (300 mm) lenses of the type and color specified in the plans.
 Lenses may be constructed from polycarbonate plastic or glass.
 Supply lenses of the concave/convex type with the convex side smooth and the concave side fluted for the purpose of properly directing the light rays.
 Ensure that the lenses are clearly marked to indicate the maximum wattage of the lamp to be used and the orientation of the lens for proper installation purposes.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.13 LED Vehicle Modules and LD Pedestrian Signals

A. Requirements
 This specification covers Type 1 and Type 2 Light Emitting Diode (LED) red, green and yellow modules for vehicle signals. It also covers LED pedestrian “HAND & PERSON” signal modules.

1. General Requirements
 a. Ensure that Type 1 LED signal modules fit in standard incandescent vehicle traffic signal housings.
 Ensure that Type 1 LED signal module include a LED circuit board with LEDs and required circuit components, 36 inch (900 mm) 16 AWG wire leads with strain relief and spade terminals, a rigid housing, and a one piece neoprene gasket.
 Supply lenses for Type 1 ball modules that are made of ultraviolet stabilized polycarbonate or glass, and incorporate facets to enhance the optical efficiency of the LED traffic signal module.
 Ensure that the external lens surface for all vehicle signals is smooth, with no raised features, to minimize the collection of dirt, diesel smoke, and other particulate contaminates, and to facilitate periodic cleaning.
Supply Type 1 LED signal modules that are watertight when mounted in traffic signal housing.
Ensure that the Type 1 LED signal modules utilize the same mounting hardware that is used to secure the incandescent lens and gasket assembly.
Ensure that the housing of Type 1 LED signal modules have prominent and permanent markings to designate the proper orientation of the LED signal module in the traffic signal housing.
The marking consists of an up arrow, or the word “Up” or “Top”.
Supply lenses that are keyed to the housing of the LED signal module to insure the proper orientation.
b. Ensure that the Type 2 LED signal modules are designed to mount in the standard lamp socket normally used with an incandescent lamp.
When a Type 2 LED signal module is used, provide a standard lens in the doorframe to seal the signal section from the weather.
Supply Type 2 LED signal modules that do not require any modification to the standard lamp socket or reflector.
Supply Type 2 LED signal modules that do not require a specific mounting orientation or have a variance in light output, pattern or visibility for any mounting orientation.
Ensure that Type 2 LED signal modules are a sealed unit containing all components necessary for operation except the corresponding lens mounted in the doorframe.
c. Ensure that the LED pedestrian signal modules fit in standard incandescent pedestrian signal housings.
Supply LED pedestrian signal modules with all hardware and gaskets necessary for installation and to achieve a watertight enclosure.
Supply stand-alone pedestrian “HAND” LED signal kits that are Portland Orange and have a filled-in figure symbol.
Ensure that combination “HAND & PERSON” LED Pedestrian signal modules incorporate a Lunar White walking person symbol.
The “HAND & PERSON” symbol may be an outline type symbol, and to insure color compliance with existing Lunar White standards for pedestrian walking person pedestrian signals, includes a replacement lens for the existing OEM lens.
Ensure that the “HAND & PERSON” symbols are overlaid on top each other so that the illuminated image appears to be in the middle of the signal housing.

2. Optical
Ensure that the light intensity and distribution from LED signal modules and pedestrian signals, as a minimum, meet the current ITE and current Caltrans standards and measurement criteria for LED traffic signal modules.
Provide test data from an independent laboratory to verify that the performance of the product meets current ITE requirements.
Ensure that the light output of all LED vehicle signal modules and LED pedestrian signal kits meet current ITE specifications for chromaticity.
Ensure that the individual LEDs are wired such that a catastrophic failure of one LED will result in the loss of not more than 5% of the signal module light output.
The failure of a single LED in a string causes loss of light from only that LED, not the entire string or indication.
Provide control circuitry that prevents the current flow through the LEDs in the “off” state to avoid any false indications as may be perceived by the human eye during daytime and nighttime hours.
Ensure that the LED traffic signal module is operationally compatible with NEMA TS – 1 and NEMA TS – 2 conflict monitoring parameters.
Ensure that the intensity of the LED signal module does not vary by more than 10% over the allowable voltage range as specified in the electrical section below.
Ensure that the LED signal modules maintain not less than 90% of the required intensity, as defined by the July 1998 ITE intensity standards for LED traffic signal modules.
Ensure this over the temperature range of −40 °F to 165 °F (−40 °C to + 74 °C) at 120 V AC, when new and after four (4) years of field installation.

3. Electrical
Supply LED signal modules that operate over the temperature range of –40 °F to 165 °F (−40 °C to 74 °C).
Ensure that the power factor is 90% or greater, at nominal rated voltage, at 77 °F (25 °C), after 60 minutes of operation.

Ensure that the total harmonic distortion (THD) is less than 20% at rated voltage, at 77 °F (25 °C) and that all LED traffic signal modules are in compliance with FCC noise regulations.

Supply Red, Yellow, and Portland Orange LEDs that utilize AlInGaP technology, either AS (Absorbing Substrate) or TS (Transparent Substrate), and do not exhibit degradation of more than 30% of their initial light intensity following accelerated life testing (operating at 185 °F [85 °C] and 85% humidity, for 1,000 hours).

AlGaAs technology is not acceptable.
Supply green LEDs that utilize gallium nitride technology.
Ensure that the LED signal modules operate on line voltage, 120 V AC nominal, and are able to operate over the voltage range of 80 V AC to 135 V AC.
Supply Red Arrow LED traffic signals that are temperature compensated so as to maintain intensity at elevated temperatures.
Supply red arrow type LED traffic signals that are tested and documented as being in compliance with Caltrans intensity standards for red arrows at elevated temperatures.
Provide transient voltage suppression rated at 1,500 W for 1 millisecond and fusing with a maximum rating of 2 A to minimize the effect and repair cost of an extreme over voltage situation or other failure mode.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Ensure that LED traffic signal modules and LED pedestrian modules are performance warranted to be in compliance with July 1998 ITE and Caltrans minimum intensity standards for LED traffic signal modules, measured at 120 V AC and 165 °F (74 °C), for a period of three (3) years.
 Ensure that the manufacturer’s name, part number, date code, and electrical characteristics of the LED signal module is visible on the assembly, and that each LED signal module is identified for warranty purposes.

925.2.14 Blank-Out Signs

A. Requirements
 Ensure that each sign provides a clearly visible and definable legend for 500 feet with ample safety factors.
 Provide hardware to mount the sign on standard 1.5 inch (38 mm) pipe brackets or to mount directly to signal mast arms or span wire.
 Supply blank-out sign faces 30 inches x 36 inches (750 mm x 900 mm) that are capable of displaying one message at a time in one direction.

1. Case
 Use a case formed from aluminum extrusion F1-6-E and a special aluminum door frame angle.
 For Alloy 6063-T5, ensure that the wall is at least 0.075 inches thick and the corners and joints are at least 0.080 inches (2 mm) thick.
 Use filler arc for all welding.
 Ensure that the corner radii of both case and door are approximately 3 inches (75 mm).
 Use a BR-type take-apart door hinge and draw bolt. Furnish one P-15 1.5 inch (38 mm) hub on the top surface.
 Prime the entire case with zinc chromate, bake the inside with two coats of non-yellowing white, and paint the outside with two coats of highway yellow.

2. Electrical
 Provide fluorescent illumination with 8 F-36-T12-CW/HO fluorescent bi-pin lamps fired by two 4-lamp ballasts, 90% power factor corrected, 120 V AC. This provides approximately 25% additional lumen output for HO lamps.
 Ensure that the glass fiber-optic blank-out signs meet the requirements in the Specifications for lane use control signals. Obtain approval for messages and letter dimensions from the Engineer.
3. Sun Phantom Screen
 Attach to each sign a heavy-duty aluminum louver-type sun phantom screen covering the entire sign face. Slant the
 louvers down enough to eliminate the sun glare without obstructing the view of the sign face.

4. Painting
 Paint the signal surfaces, inside and out, with two coats of oven-baked enamel in addition to the primer coat. Paint
 the non-illuminated portions of the signal face black. Paint the housings, brackets, fittings, and etc. highway yellow.

5. Lens
 Use a fabricated, three-section plexiglass lens clear face, with or without legend, that can accept a silk-screened
 legend on the first surface. Provide a thickness of at least 0.31 inches (8 mm).

6. Legend
 Acceptable legends are as follows:
 NO LEFT TURN
 NO RIGHT TURN
 SIGNAL AHEAD
 NO TURNS

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.15 Lane-Use Control Signal

A. Requirements
 Ensure that all signals are glass fiber optic and conform to current ITE standards. Supply all signals with the necessary
 mounting hardware to provide for mounting as shown on the plans. Provide mounting for one way or two way
 configurations.

1. General Requirements
 a. Weight
 Ensure that one-way units weigh not more than 50 pounds (23 kg) and two-way units weigh not more than 60
 pounds (27 kg), regardless of messages.
 b. Color
 Ensure that the color of lane-use control signal indications is clearly visible for 0.25 mile (0.38 km) at all times
 under normal atmospheric conditions. Provide lane-use control signals with a visibility angle of a minimum of
 60 degrees.
 c. Housing
 Ensure that the housing of each signal is polycarbonate or a one-piece corrosion resistant aluminum alloy die
 casting or equal and meets current related ASTM specifications.
 Ensure that all configurations are balanced to provide a plumb hanging unit. Ensure that all components are
 readily and easily accessible from the open door.
 d. Housing door
 Ensure that the housing door is one-piece corrosion resistant aluminum or polycarbonate and meets current
 related ASTM specifications.
 Provide two substantial door hinges with stainless steel hinge pins. Ensure hinges are on the left side of each
 section with a latch boss on the right side.
 Provide stainless steel dual eye bolt latches or similar approved devices to securely close and latch the housing
 door. Equip the housing or door with a continuous molded neoprene gasket to make the interior of the unit
dustproof and waterproof.
e. Wiring
Provide each signal housing with a complete terminal board. Ensure that one side of terminal strip accommodates socket leads and the other side accommodates field wires. Ensure that the terminal board provides totally separate wiring of each symbol.
Ensure each lamp is separately wired to a terminal block located in each housing. Provide each lamp holder socket with color-coded leads.
For combination symbols, color-code socket leads separately to distinguish between red “X”, yellow “X” or downward arrow symbols. Provide leads that are No. 14 AWG type THW, 600 V AC, and fixture wire with 194 °F (90 °C) thermoplastic insulation.

f. Visors
Provide visors not less than 12 inches (300 mm) long for multiple unit and 7 inches (175 mm) long for single unit signals for each signal face.
Ensure that the visors are constructed of sheet aluminum or polycarbonate and encompass the top and sides of each section.

Paint all signal surfaces, inside and out, with two coats of oven baked enamel in addition to the primer coat.
Paint the insides of the visors flat black.
The non-illuminated portions of the signal face black or dark gray and all housings, brackets and fittings highway yellow.

h. Hardware and fittings:
Supply all necessary fittings, pipe brackets, hangers, hubs, etc. for the type of mounting specified.

i. Sun-phantom screen
Provide each signal face with a screen, which substantially counteracts sun phantom effect.

2. Signal Display
Ensure that the symbols, which are on an opaque black or dark gray background, meet ITE requirements and are blacked out when not illuminated.

3. Fiber Optical System
a. Ensure that the glass fiber optic illuminating system consists of a legend illuminated by glass fiber optic bundles transmitting light to the arranged signal legend. Refer to Section 935 - Fiber Optic Cable Design Criteria.

b. Ensure that each separate color indication in a sign face is illuminated by an independent pair of 12 V AC, 50 W, MR-16, ENL quartz halogen lamp with an average lamp life of 4,000 hours. Additional pairs of 50 W lamps, as required by legend size, or at the discretion of the manufacturer, will be allowed.
Use transformers to operate these lamps that output 10.8 V AC with load applied. Ensure that the glass fiber bundle which illuminates a given color indication is constructed such that adjacent fibers in the bundle receive their light input from separate lamps of the pair used to illuminate that specific color indication.

Ensure that the green arrow indication does not utilize the same termination points as any “X” indication.
Provide indicators near the bottom of each sign face to indicate the status of each lamp utilized for that face. These indicators are to emit light of the same color as the sign face indication, which utilizes the same lamp. Angle these indicators downward at approximately 30 degrees and place them as not to interfere with the visibility or discernibility of the sign face indications.

d. Ensure that total power required for any single indication does not exceed 250 W.

f. Ensure that all lamps are contained behind a water tight signal face or lens assembly.

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
General Provisions 101 through 150.

D. Materials Warranty
Refer to Subsection 925.2.D for Materials Warranties.
925.2.16 Pedestrian Push Button Station

A. Requirements
 Ensure that pedestrian push buttons are of tamperproof construction and consist of a direct push type button and single momentary contact switch in a cast metal housing.
 Finish the housing with baked enamel and paint the push button housing and pedestrian heads highway yellow (unless otherwise specified by the Engineer).
 Ensure that any screws or bolts are stainless steel. Provide the unit with a 0.5 inch (13 mm) threaded opening with plug.
 Ensure that the assembly is weatherproof and so constructed that when properly installed, it will be impossible to receive an electrical shock under any weather condition. Ensure this item consists of Pelco hardware or approved equal.
 Ensure that Pedestrian Pushbuttons are integrated with a sign as shown in the standard details. Ensure the proper size sign is used as indicated on the plans.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.17 Signal Head Back Plate

A. Requirements
 Ensure that each back plate is designed to properly shield a traffic signal head from background distractions for better visibility.
 Design the back plates to extend beyond the signal head to a minimum of 6 inches (150 mm) on all sides and have all corners rounded with minimum 2 inch (50 mm) radii.
 Construct the back plates from aluminum, sheet metal, UV stabilized polycarbonate or, ABS plastic material with a finished color of flat black.
 Ensure that polycarbonate back plates are at least 0.15 inches (4 mm) thick; ABS back plates are at least 0.05 inches (1 mm) thick and metal back plates are at least 0.05 inches (1 mm) thick.
 Design the back plates with predrilled holes to provide for simple attachment to the specified brand, size and configuration of traffic signal head with all mounting hardware included.
 Ensure that the back plates do not interfere with the signal mounting hardware. Ensure that the back plates include louvers.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.18 Signal Head Visors

A. Requirements
 Typically, visors are one piece tunnel type and removable unless specified otherwise in the signal plans.
 Ensure that visors are polycarbonate and at least 9 inches (225 mm) deep for 12 inch (300 mm) heads. Special angle visors are full circle with the long side at least 18 inches (450 mm) deep.
 Unless otherwise specified by the Engineer, provide black signal head visors.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.
925.2.19 Signal Head Louvers

A. Requirements
 Ensure that louvers (with the vanes oriented vertically) are directional with a 7-degree cutoff right of center. Rotating the louver 180 degrees will produce a 7-degree cutoff left of center.
 Provide twelve-inch (300 mm) louvers with 5 vanes. Finish all louvered surfaces in flat black. Ensure that programmable louvers are directional with a 7-degree cutoff and that all louver surfaces have a flat black finish.
 Ensure that the units can be installed and programmed in accordance with the manufacturer’s instruction on visors that are recommended by the manufacturer.
 Have the programmable louver display approved by the Engineer prior to placing the signal in stop and go operation.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.20 Hardware For Mast Arm Mounting

A. Requirements
 Ensure that signal heads are rigidly mounted to the mast arm. Provide mounting hardware that is ASTRO-BRAC or similar.
 This item will be approved upon submittal of catalog cuts. Refer to Standard Detail Drawings for additional information.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.21 Hardware For Signal Head Pole Mounting

A. Requirements
 General Provisions 101 through 150.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Ensure that this item consists of Pelco 1.5 inch (38 mm) hardware or approved equal as shown in the standard details.
 This item will be approved upon submittal of catalog cuts.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.22 Balance Adjuster

A. Requirements
 General Provisions 101 through 150.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Ensure this item consists of Pelco or equivalent hardware. This item will be approved upon submittal of catalog cuts.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.
925.2.23 Hardware For Mounting 12 Inch (300 mm) Pedestrian Head

A. Requirements
 General Provisions 101 through 150.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 Ensure this item consists of Pelco or equivalent hardware. This item will be approved upon submittal of catalog cuts.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.24 Pedestal Pole

A. Requirements
 The pedestal poles support vehicle signal heads, pedestrian signal heads, and push button. Furnish pedestal poles according to type and overall length.
 1. Ensure that all poles are made of one continuous piece of bare finish aluminum from top to base connection for the entire height of the pole.
 The shaft, of appropriate shape, may or may not be uniformly tapered from butt to tip. A pole used to support only a traffic signal may be tapered.
 2. Fabricate pole caps, when required, of cast material, and secure in place with set-screws.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.25 Pedestal Pole Base

A. Requirements
 Ensure that all design radii are smooth and intact. Ensure that the exterior surface finish is smooth and cosmetically acceptable by being free of molding fins, cracks and other exterior blemishes.

 Fabricate from new aluminum ingot. Do not use scrap materials.

 Minimum requirements are as follows:

<table>
<thead>
<tr>
<th>ALUMINUM ALLOY NO.</th>
<th>ELONGATION [% IN 2 IN. (50 mm)]</th>
<th>TENSILE STRENGTH, KSI (MPa)</th>
<th>BRINELL HARDNESS</th>
<th>YEILD STRENGTH, KSI (MPa)</th>
<th>SHEAR STRENGTH, KSI (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>319</td>
<td>2.5</td>
<td>34 (234)</td>
<td>85</td>
<td>19 (131)</td>
<td>232 (1600)</td>
</tr>
</tbody>
</table>

 1. Ensure this item consists of square cast aluminum with bare finish, and has a minimum weight of 21 pounds (9.5 kg). Thread the upper end to receive a 4 inch (100 mm) National Pipe Thread (NPT) pipe shaft.

 2. Design the base so that it may be fastened to a foundation with four (4) 0.75 inch (19 mm) anchor bolts located 90 degrees apart on the bottom of the base.
 Provide slots in the bottom of the base 1.5 inch (38 mm) wide and 2.5 inches (63 mm) long measured along the circumference of the bolt circle, allowing a proper fit even if the bolts are placed slightly off center.

 3. Design the base to accommodate bolt circles of a minimum of 12 inches (300 mm) through a maximum of 14.5 inches (363 mm) and anchor bolts with a minimum of 0.63 inches (16 mm) through 1 inch (25 mm) diameter.

 4. Design the base with a removable plastic door. Ensure that the door opening is free of burrs and sharp edges and is no less that 8.5 inches (213 mm) square. Attach the door to the base using one socket button head screw to prevent unauthorized entry.

 5. Ensure that the base meets or exceeds 1985 AASHTO breakaway requirements. Provide test reports from an FHWA approved independent laboratory certifying that the base has been tested and meets all applicable requirements. In addition, supply a statement of certification from the FHWA stating such tests have been accepted and approved.

 6. In order to prove structural soundness, provide a certification from a recognized independent structural laboratory certifying that the base will withstand a bending moment of 10,750 ft-lbs (14 575 N-m).
7. Ensure that the door is injection molded from ABS plastic to deter vandalism and theft, and has the following properties:

<table>
<thead>
<tr>
<th>TEST</th>
<th>ASTM METHOD</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile @ Yield [0.13 inches (3 mm)]</td>
<td>D638</td>
<td>6600 psi (45 500 kPa)</td>
</tr>
<tr>
<td>Flexural @ Yield</td>
<td>D790</td>
<td>11,000 psi (75 850 kPa)</td>
</tr>
<tr>
<td>Rockwell Hardness</td>
<td>D785</td>
<td>101 (R Scale)</td>
</tr>
<tr>
<td>Notched Izod</td>
<td>D256</td>
<td>5 ft-lb./in. (0.03 N-m/mm)</td>
</tr>
</tbody>
</table>

8. Ensure that the door exhibits the following properties:
- Has an edge thickness of 0.25 inches (6 mm) and a minimum thickness of 0.156 inches (4 mm)
- Contains flame-retardant material, meeting or exceeding underwriters laboratories UL 94 test H.B
- Gray aluminum tone in color, unless otherwise specified
- Contains ultra-violet inhibitors and stabilizers for protection against UV degradation
- Is injection molded with a smooth front finish
- Has flat and straight surfaces without blisters, buckling or warping; have reinforcing ribs
- Contains two (2) injection molded lugs on the bottom of the door with slots of the proper width and depth to fit the base door opening. (Figure 925-2)

9. Supply the base with a set of four (4) anchor bolts, 0.75 inch (19 mm) diameter by 18 inches (450 mm) in length, material per ASTM A 572A 572M, Galvanized per ASTM A 153/A 153M. Supply (1) hex nut and (1) flat washer with each bolt.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 General Provisions 101 through 150.

925.2.26 Timber Poles

A. Requirements
 Ensure that all timber poles meet the requirements of Section 861. Poles must be inspected and tested by the GDOT Office of Materials and Research and hammer stamped by the inspector.
 Ensure that all poles have a brand or stamp 10 feet (3 m) from the butt that notes the type wood, date of manufacture, manufacturer, class and length.
 Ensure that all timber poles that have guy attachments or support spanwire or arms that suspend signal heads over the roadway or sidewalk are Class II.
 Poles that support loop lead-in, messenger or communications cable that does not have guy attachments may be Class IV size.
 Ensure that all poles meet the requirements in the table below unless otherwise noted on the traffic signal plans or list of materials.

<table>
<thead>
<tr>
<th>Class</th>
<th>Nominal Length, ft (m)</th>
<th>At 6 feet (2.4 m) from butt, in. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>30 (9)</td>
<td>34.0 (850)</td>
</tr>
<tr>
<td>II</td>
<td>35 (10.5)</td>
<td>36.5 (913)</td>
</tr>
<tr>
<td>II</td>
<td>40 (12)</td>
<td>38.5 (963)</td>
</tr>
<tr>
<td>II</td>
<td>45 (13.5)</td>
<td>40.5 (1013)</td>
</tr>
<tr>
<td>II</td>
<td>50 (15)</td>
<td>42.0 (1050)</td>
</tr>
<tr>
<td>IV</td>
<td>30 (9)</td>
<td>29.5 (738)</td>
</tr>
<tr>
<td>IV</td>
<td>35 (10.5)</td>
<td>31.5 (788)</td>
</tr>
</tbody>
</table>
925.2.29 Traffic Signal Pull Box

A. Requirements

Ensure that traffic signal pull boxes are based on a test load of 20,800 pounds (9455 kg) load over a 10 inch x 10 inch (250 mm x 250 mm) area. Ensure polymer concrete pull boxes are used. Supply polymer concrete covers satisfying the loading qualification with each pull or junction box. Furnish covers with the logo “TRAFFIC SIGNAL”.

Use Type 1 pull boxes [12 inches x 12 inches (300 mm x 300 mm)] for loop lead-ins. Use Type 2 or Type 3 pull boxes [11 inches x 18 inches (275 mm x 450 mm)] for cables other than loop lead-ins and splices. Use Type 4 and 5 pull boxes for fiber optic cable. Refer to the Standard Detail Drawings and the Traffic Signal Design Manual for further information.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

General Provisions 101 through 150.
D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.30 Prefabricated Controller Cabinet Base
A. Requirements
 Ensure that prefab controller cabinet bases are designed to withstand wind loading of 100 mph (160 km/h) with a 332A cabinet mounted. Refer to Standard Detail Drawings for further information.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.31 Loop Lead-In Cable
A. Requirements
 Ensure that loop detector lead-in cable, No. 14 AWG, stranded, 3-pair shielded cable meets IMSA specification #50-2-1984.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.32 Encased Loop Detector Wire
A. Requirements
 Ensure that encased loop detector wire, meets IMSA specification 50-2 and is 18 AWG, 3 pair stranded and twisted tin plated copper (TPC) conductor, with .015 (15 mils) polyethylene (PE) insulation for each conductor. Each pair shall be stranded with TPC drain wire and overall covered with aluminum Mylar shield.
 Ensure that the outer jacket be .040 (40 mils), black ultra violet (UV) resistant, and that the cable is rated PE 300 V AC direct burial with a nominal outside diameter of .40 inches (10 mm).
 Ensure that identification markings are stamped on the cable jacket.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.33 Aerial (Lashed) & Duct Signal Cable
A. Requirements
 Ensure that aerial (lashed) or duct (conduit) No. 14 AWG, stranded, 4-conductor, with black polyethylene (PE) jacket and 600 V AC rating meets IMSA specification #20-1-1984. Use conductors that are straight, not twisted pairs.
B. Fabrication
 General Provisions 101 through 150.
C. Acceptance
 General Provisions 101 through 150.
D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.34 Self-Supporting Twisted Pair Aerial Signal Communications Cable

A. Requirements
 Ensure that self-supporting, figure eight, aerial signal communications cable, No. 19 AWG, stranded 6-pair conductors is rated at 600 V AC and meet IMSA specification #20-4-1984.
 Use conductors that are twisted pairs with copper tape shield under a black PE jacket. Ensure that messenger strand is 0.25 inch (6 mm), 7-strand and conforms to ASTM A 475 Siemens-Martin grade or better with a Class A coating.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.35 Underground Feeder Cable, Type UF

A. Requirements
 Ensure that underground feeder cable, Type UF w/ground has two (2) conductors with pvc/nylon jacket and a minimum 600 V AC rating per UL #493. Two-conductor, No. 6 AWG wire may be used.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.36 Messenger & Guy Strand (Span Wire)

A. Requirements
 Ensure that all messenger and guy strand (span wire) conforms to ASTM A 475 Siemens-Martin grade or better with a Class A coating, 7-wire span wire.
 Ensure ¼-inch (6 mm) Messenger & guy strand shall be used to support interconnect cable or as tether spans.
 Messenger & guy strand 0.31 inch (7 mm) shall be used only where it is essential to match an existing 0.31 inch (7 mm) span wire that will not be replaced as part of a new installation.
 Ensure all span wire for signal heads, blank out sign, optically programmed heads, lane control signs, standard, aerial or sidewalk guys uses a minimum Messenger & guy strand 0.38 inch (9 mm) as a minimum size.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.37 Power Disconnect Box

A. Requirements
 Ensure that all power disconnect boxes are Midwest Catalog U065P 240 V AC, 60 Amp Phase 1 (metal non-fused disconnect) or equivalent.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.
925.2.38

D. Materials Warranty
Refer to Subsection 925.2.D for Materials Warranties.

925.2.38 Cable Ties
A. Requirements
Ensure that all cable ties are nylon, ultraviolet resistant black and consist of the following as a minimum:

Nominal Length 8 inches (200 mm)
Width 0.30 inches (7 mm)
Tensile Strength 120 pounds (55 kg)

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
General Provisions 101 through 150.

D. Materials Warranty
Refer to Subsection 925.2.D for Materials Warranties.

925.2.39 Guide Insulators
A. Requirements
Ensure that all guide insulators are Empire fiberglass strain insulators Series 500-24EE or equivalent.

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
General Provisions 101 through 150.

D. Materials Warranty
Refer to Subsection 925.2.D for Materials Warranties.

925.2.40 Universal Closure Kit
A. Requirements
Supply a Universal Signal Closure Kit to seal the signal head at either the top or bottom. Ensure that the kit will fit any manufacturer’s signal head (top or bottom) without the use of special tools or modification.
1. Ensure that the Signal Closure Kit is a Pelco SE-3054 or equivalent.
2. Ensure that the gasket is 60-70 durometer neoprene.
3. Ensure that Closure Cap is injection molded ABS plastic. The plastic is to be loaded with UV stabilizers.
4. Ensure that Adapter Bar is made so that it will secure the closure cap and compensate for varying thickness of signal heads.
5. Provide two # 10 (9mm) screws to fit any manufacturer’s signal head. Ensure that one screw is 0.75 inches (19 mm) in length and the second screw is 1 inch (25 mm) in length.
6. Pack each assembly in a clear plastic bag. Mark the bag with the manufacturer’s name and part number. Include the Universal Signal Closure Kit in a package containing the span wire clamp and Tri-Stud wire entrance fitting.
7. Ensure that the Closure Cap is molded to closely match the color of the signal head (Federal Yellow). The adapter bar and screws are to be zinc plated steel.

B. Fabrication
General Provisions 101 through 150.

C. Acceptance
General Provisions 101 through 150.

D. Materials Warranty
Refer to Subsection 925.2.D for Materials Warranties.
925.2.41 Cast Aluminum Span Wire Clamp

A. Requirements

Provide Pelco or equivalent Span Wire Clamps that are cast from Aluminum Alloy 713 or equivalent, free of voids, pits, dents, molding sand and excessive foundry grinding marks. Ensure that all design radii are smooth and intact.

Provide an exterior surface finish that is smooth and cosmetically acceptable, free of molding fins, cracks and other exterior blemishes. Ensure that span wire clamps are fabricated from aluminum ingot with minimum requirements as follows:

<table>
<thead>
<tr>
<th>ALUMINUM ALLOY No.</th>
<th>713</th>
</tr>
</thead>
<tbody>
<tr>
<td>YIELD STRENGTH, ksi (MPa)</td>
<td>25 (172)</td>
</tr>
<tr>
<td>TENSILE STRENGTH, ksi (MPa)</td>
<td>35 (240)</td>
</tr>
<tr>
<td>BRINELL HARDNESS</td>
<td>75</td>
</tr>
<tr>
<td>ELONGATION [% in 2 inches (50 mm)]</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Ensure that the Span Wire Clamp can accommodate cables 0.25 inch (6 mm) to 0.63 inch (16 mm) diameter.
2. Ensure that the weight is less than 1.75 pounds (0.8 kg) with hardware.
3. Ensure that the Span Wire Clamp have a minimum overall length of 7 inches (175 mm).
4. Ensure that the Span Wire Clamp have a centerline dimension from cable to clevis pin of 2 inches (50 mm) [+/- 0.5 inches (13 mm)].
5. Ensure that the Span Wire Clamp have a cast aluminum cable bar to protect the cable when tightening the U-bolts.
6. Ensure that the Span Wire Clamp have a mounting opening of 0.75 inches (19 mm) [+/- 0.03 inches (0.8 mm)].
7. Ensure that the Span Wire Clamp have 0.5 inch (13 mm) - 13 NPT U-bolts with 0.5 inch (13 mm) lockwashers and nuts.
8. Ensure that the clevis pin are 0.63 inch (16 mm) diameter with a length of 2.25 inches (56 mm) and secured with a hump back stainless steel cotter pin.
9. Ensure that the Clamp and Cable Bar have an Alodine 1200 conversion coating to help resists oxidation.
10. Ensure that the Clevis Pin and hardware are galvanized per ASTM 123/A 123M or stainless steel.

B. Fabrication

General Provisions 101 through 150.

C. Acceptance

General Provisions 101 through 150.

D. Materials Warranty

Refer to Subsection 925.2.D for Materials Warranties.

925.2.42 Cast Aluminum Tri-Stud Span Wire Entrance Fitting

A. Requirements

Ensure that the Tri-Stud Span Wire Entrance Fittings are Pelco or equivalent cast from Aluminum Alloy 713 or equivalent, free of voids, pits, dents, molding sand and excessive foundry grinding marks.

Ensure that the all design radii are smooth and intact. Ensure that the exterior surface finish is smooth and cosmetically acceptable, free of molding fin, cracks and other exterior blemishes.

Ensure that the material is fabricated from aluminum ingot with minimum requirements as follows:

<table>
<thead>
<tr>
<th>ALUMINUM ALLOY No.</th>
<th>713</th>
</tr>
</thead>
<tbody>
<tr>
<td>YIELD STRENGTH, ksi (MPa)</td>
<td>25 (172)</td>
</tr>
<tr>
<td>TENSILE STRENGTH, ksi (MPa)</td>
<td>35 (240)</td>
</tr>
<tr>
<td>BRINELL HARDNESS</td>
<td>75</td>
</tr>
<tr>
<td>ELONGATION [% in 2 inches (50 mm)]</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Ensure that the Tri-Stud Span Wire Entrance fitting has a mounting support at the top of the wire entrance 0.69 inches (17 mm) thick [+/- 0.07 inches (1.5 mm)].
2. Ensure that the Tri-Stud Span Wire Entrance fitting weight is not less than 1.75 pounds (0.8 kg) with hardware.
3. Ensure that the mounting support has at least six (6) clevis openings for adjustment with suspension bracing between every two (2) openings.
4. Ensure that the Tri-Stud Span Wire Entrance has a minimum of 0.5 inch (13 mm) diameter throughout for wire access and that wire access is free of burrs and casting webs.

5. Ensure that the Wire Entrance opening is recessed and has a neoprene grommet with sealed membrane sections.

6. Ensure that the signal head attachment end is serrated and has a minimum of 3-signal head centering bosses extending 0.19 inches (5 mm) from the serrations.

7. Ensure that the serrations have a 72-tooth design to match the signal head.

8. Ensure that three (3) stainless steel studs are cast into the wire entrance fitting. Ensure that the studs are 0.31 inches (7 mm) and extend 1.5 inches (38 mm) [+/- 0.13 inches (4 mm)] beyond the serrations. Provide each Tri-Stud span wire entrance fitting with a Tri-Stud hardware kit.

9. Ensure that the Tri-Stud Span Wire Entrance Fitting has an alodine conversion coating to provide a proper base for paint adhesion. Ensure that the assembly is painted federal yellow and baked in a drying oven after painting.

10. Ensure that the all Hardware is galvanized or stainless steel.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

925.2.43 Bull Rings

A. Requirements
 Provide bull rings that are weldless steel 0.63 inch (16 mm) diameter. Submit catalog cuts for approval.

B. Fabrication
 General Provisions 101 through 150.

C. Acceptance
 General Provisions 101 through 150.

D. Materials Warranty
 Refer to Subsection 925.2.D for Materials Warranties.

Section 934—Rapid Setting Patching Materials for Portland Cement Concrete

934.1 General Description
This section includes the requirements for rapid setting patching materials used in Portland cement concrete.

934.1.01 Related References
A. Standard Specifications
 Section 886—Epoxy Resin Adhesives

B. Referenced Documents

<table>
<thead>
<tr>
<th>AASHTO</th>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 97</td>
<td>C 31/C31M</td>
</tr>
<tr>
<td>T 260</td>
<td>C 109/C 109M</td>
</tr>
<tr>
<td></td>
<td>C 140</td>
</tr>
<tr>
<td></td>
<td>C 666</td>
</tr>
</tbody>
</table>

Federal Hazardous Products Labeling Act
QPL 27
934.2 Materials

934.2.01 Rapid Setting Patching Materials

A. Requirements

1. Use rapid setting patching materials that have the following characteristics:
 - Are nonmetallic
 - Have a color similar to Portland cement concrete
 - Can be mixed and placed like concrete
 - Have accelerated hardening characteristics
 - Can yield a permanent patch in concrete that can be subjected to traffic within 2 hours.
 For a list of sources, see QPL 27.

2. Type I
 Use Type I to patch reinforced or nonreinforced Portland cement concrete. Ensure that Type I contains less than 0.6 lbs (0.4 kg) total chloride per cubic yard (meter).

3. Type II
 Use Type II to patch only nonreinforced Portland cement concrete. Type II may contain more than 0.6 lbs (0.4 kg) total chloride per cubic yard (meter).

4. Classify Type I and Type II as follows:
 a. Class A, Premixed: Use these materials as received by adding water or an activator solution, according to the manufacturer’s instructions.

 NOTE: Although some manufacturers allow you to add more aggregate at the jobsite to Class A materials to increase yield, DO NOT do this unless you receive approval from the Office of Materials and Research.

 b. Class B, Non-Premixed: These materials contain no aggregate. Add aggregate (fine and/or coarse) according to the manufacturer’s recommendations.

5. Physical Requirements

 Ensure that rapid setting patching materials meet these requirements when tested with the required test methods.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow of Mortar, Minimum</td>
<td>100%</td>
</tr>
<tr>
<td>Flexural Strength, Minimum</td>
<td>500 psi (3.5 MPa) in 24 hours</td>
</tr>
<tr>
<td>Compression Strength, Minimum</td>
<td></td>
</tr>
<tr>
<td>2 hours</td>
<td>1,200 psi (8.5 MPa)</td>
</tr>
<tr>
<td>24 hours</td>
<td>3,000 psi (20 MPa)</td>
</tr>
<tr>
<td>7 days (moisture cure)</td>
<td>4,000 psi (27.5 MPa)</td>
</tr>
<tr>
<td>Absorption, Maximum</td>
<td>10%</td>
</tr>
<tr>
<td>Shear Bond, Minimum</td>
<td>200 psi (1.5 MPa) in 24 hours</td>
</tr>
<tr>
<td>Freeze Thaw Durability Factor</td>
<td>75% of the reference concrete after 300 freeze-thaw cycles</td>
</tr>
<tr>
<td>Total Chlorides</td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td>0.6 lb/yd³ (0.4 kg/m³) maximum</td>
</tr>
<tr>
<td>Type 2</td>
<td>No limits</td>
</tr>
</tbody>
</table>

6. Submittals

 For the Freeze-Thaw test, submit to the Department a certification from the manufacturer showing results of durability tests conducted by an independent professional testing laboratory.

 Ensure that the tests are conducted according to ASTM C 666. Express the durability as a durability factor.
B. Fabrication

1. Packaging
 a. Package this material in strong, moisture-proof paper bags or other suitable containers that can withstand shipping, normal handling, and storage without breaking.
 b. Clearly label each container of the components of a patching system with the following information:
 - Component designation, if two components
 - Manufacturer’s batch number
 - Mixing ratio and directions
 - Potential hazards and precautions displayed according to the Federal Hazardous Products Labeling Act

C. Acceptance

1. Follow the mixing instructions of the manufacturer to create test specimens.
2. Air-cure all test specimens except for the 7-day moisture cure cubes.
3. The Department will reject a patching system that meets all the requirements of this Specification, but does not work as required in actual use.
4. Test using the following methods:

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow of mortar</td>
<td>ASTM C 109/C 109M</td>
</tr>
<tr>
<td>Flexural strength</td>
<td>AASHTO T 97</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>ASTM C 109/C 109M or C 31/C 31M, whichever is applicable</td>
</tr>
<tr>
<td>Absorption</td>
<td>ASTM C 140</td>
</tr>
<tr>
<td>Shear bond strength</td>
<td>See Subsection 934.2.01.C, “Acceptance”, Step 5</td>
</tr>
<tr>
<td>Rapid freeze thaw</td>
<td>ASTM C 666</td>
</tr>
<tr>
<td>Total chlorides</td>
<td>AASHTO T 260</td>
</tr>
</tbody>
</table>

5. Shear Bond Strength
 a. Place a Type II epoxy resin adhesive meeting the requirements of Section 886 on the surface of a cured mortar bar 16 x 3 x 3 in (400 x 75 x 75 mm).
 b. Cast a 16 x 2 x 0.5 in (400 x 50 x 13 mm) rapid-setting material patch in the center of the mortar base.
 c. Air-cure the test sample for 24 hours.
 d. Saw the mortar bar base and the cured rapid setting material patch into 2 in (50 mm) segments for testing.
 e. Use a holding device and plunger to apply a load at a rate of 0.05 in (1.3 mm) per minute to the patch until the patch fails.
 f. Read the load in pounds (newtons) on the plunger.
 g. Calculate the shear bond strength in pounds per square inch by dividing the load in pounds by the interfacial area of the patch in square inches. The metric equivalent for shear bond strength in MPa is obtained by dividing the load in newtons by gravitational acceleration (9.81 m/s²).

D. Materials Warranty

 Storage: Ensure that the material has a minimum storage life of at least 1 year under conditions of 40 ° to 90 °F (4 ° to 32 °C) and a maximum relative humidity of 90 percent.
Section 935—Fiber Optic System

935.1 Fiber Optic System
This work includes the installation of fiber optic cable and equipment including but not limited to the following:
- Cable
- Interconnect
- Patch cords
- Pig tails
- Cable related hardware
- Connectors
- Splices
- Closures
- Temporary systems
- Testing
- Training
- Other fiber optic products specified on the Plans or in any other Section of these Specifications.

935.1.01 Definitions
General Provisions 101 through 150.

935.1.02 Related References
A. Standard Specifications
 Section 150—Traffic Control
 Section 639—Strain Poles for Overhead Sign and Signal Assemblies
 Section 647—Traffic Signal Installation
 Section 682—Electrical Wire, Cable and Conduit

B. Referenced Documents
 EIA Standard FOP-II, Test Condition 1
 EIA/TIA-492AAAA, "Detail Specification for 62.5 \(\times \) m Core Diameter/125 \(\times \) m Cladding Diameter Class IA Multimode, Graded Index Optical Waveguide Fibers", Current Edition
 EIA/TIA 492-BA00 Class 4A, Current Edition
 EIA/TIA-598-A, “Color Coding of Fiber Optic Cable”
 National Electrical Code Section 770:
 - Applicable Flame Tests: UL 1581 and UL 1666 (Non-Plenum Applications)
 - Applicable Flame Test UL 910 (NFPA 262-1994) (Plenum Applications)
 United States Department of Agriculture Rural Utilities Service (RUS) standard 7 CFR 1755.900:
 - FOTP-25, “Repeated Impact Testing of Fiber Cables”
 - FOTP-41, “Compressive Loading Resistance of Fiber Optic Cables”
 - FOTP-123, “Measurement of Optical Fiber Ribbon Dimensions”
 - FOTP-181, “Lightning Damage Susceptibility Test for Optic Cables with Metallic Components”

935.1.03 Submittals
Prior to any work, obtain approval from the Engineer for the products and procedures to be used on the Project.
The following chart provides the Contractor with an outline of the submittal requirements for the equipment and components for this pay item. This chart is to be used as a guide and does not relieve the Contractor from submitting additional information to form a complete submittal package.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F.O. Cable (OSP&IP)</td>
<td>935.2.A,B,&C</td>
<td>X</td>
<td>60 Days</td>
</tr>
<tr>
<td>Patch Cords & Pig Tails</td>
<td>935.2.D</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Drop Cable</td>
<td>935.2.E</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>F.O. Connectors</td>
<td>935.2.F</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Splice Closure</td>
<td>935.2.G&H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Mech. Lab Splice</td>
<td>935.2.I</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>FDC</td>
<td>935.2.J</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>60 Days</td>
</tr>
<tr>
<td>Transceivers</td>
<td>935.2.K</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>60 Days</td>
</tr>
</tbody>
</table>

Submit submittal data for all equipment, materials, test procedures, and routine maintenance procedures required for these items within 60 calendar days after the Notice To Proceed and prior to any installation, unless noted otherwise in the Contract Documents.

Submit to the Engineer for approval, six (6) copies of the manufacturer’s descriptive literature (catalog cuts), technical data, operational documentation, service and maintenance documentation and all other materials required within these specifications.

Provide submittal data that is neat, legible, and orderly. Neatly organize each package of submittal data and separate by hardware item. Use the “Materials Certification Package Index and Transmittal Form”, contained in Section 105.02 of the Specifications, for each pay item to document and list all material and components that are included in the submittal package. Any submittal data submitted without the Index/Transmittal form or that is incomplete will be rejected.

A. Cable Certification

Prior to installing any fiber optic cable on the Project, obtain approval for the cable type, cable manufacturer, fiber content, design and installation procedure from the Engineer. Request approval by submitting catalog cuts and factory specifications for the fiber optic cable.

B. Underground Splice Closures

Provide certification from an independent testing laboratory that certifies that the splice closures conform to the specifications and test procedures.

C. Splicing Procedures

Submit for Department approval the procedure to be used for the splicing of all cables on this project. Within the submittal documents, include the proposed process, cleave tool and the specific fusion splicer to be used.

D. Training

Prior to training, submit resume and references of instructor(s) to Engineer for approval. The instructor shall be qualified in his/her respective field as determined by the Engineer. Submit an outline of the training course and a training plan within 120 days of the Notice to Proceed for approval by the Engineer. Explain in the Training Plan in detail the contents of the course and the time schedule of when the training shall be given. Coordinate actual training with installation schedules as approved by the Engineer.

E. Fiber Optic Test Documentation

Provide the date, time and location of any tests required by this specification (see Subsection 935.3.06) to the Engineer at least 24 hours before performing the test. Provide two copies of documentation of the test results to the Engineer within...
5 working days of completion of the test for review and approval, or else retest the represented fiber optic cable and provide the documentation within 5 working days of the retest. Bind the test documentation and include the following:

1. Cable & Fiber Identification
 - Cable ID
 - Cable Location - begin and end point
 - Fiber ID, including tube and fiber color
 - Operator Name
 - Date & Time

2. Setup Parameters
 - Wavelength
 - Pulse width Optical Time Domain Reflectometer (OTDR)
 - Refractory index (OTDR)
 - Range (OTDR)
 - Scale (OTDR)

3. Test Results
 a. OTDR Test
 - Total Fiber Trace (mile or kilometer)
 - Splice Loss/Gain (dB per mile or km)
 - Events > 0.10 dB
 - Measured Length (Cable Marking)
 - Total Length (OTDR) (mile or km)
 - Also provide traces on a diskette to the Engineer.
 b. End – To – End Attenuation Test
 - Length, number and type of splices and connectors
 - Link attenuation

F. As-Built Documentation

Submit as built documentation of all work provided in accordance with this specification prior to Final Acceptance of the Project. Include in the as-built documents the following documents as a minimum as they are applicable. Supply manuals and wiring diagrams at the time of installation. Deliver as-buills no later than 30 days after completion of installation.

1. Operator’s Manual
 Furnish a manual containing detailed operating instructions for each different type of equipment.

2. Maintenance Procedures Manuals
 Furnish a manufacturer’s manual containing detailed preventative and corrective maintenance procedures for each different type or model of equipment.

3. System Connection Diagrams
 Furnish diagrams showing fiber optic and electric system interconnection cables and terminations.

4. As Built Drawings
 Provide the Department with drawings that detail the final installation route of all cable.
 Except for standard bound materials, bind all 8.5”x11” (A4) documentation, including 11” x 17” (A3)drawings folded to 8.5”x11” (A4), in logical groupings in loose-leaf binders of either the 3-ring or plastic slide-ring type. Permanently and appropriately label each such bound grouping of documentation.
 Furnish at least five (5) copies of all bound documentation.

935.2 Materials

A. Fiber Optic Cable

Ensure that all fiber optic related products conform to this specification. Install, apply, inspect, and use those products in accordance with the manufacturer’s standard operating and installation procedures and this Specification.
Use only fiber optic cable that meets the following requirements:

1. Ensure that the optical fiber used in both outside and inside plant cable conforms to the requirements of the United States Department of Agriculture Rural Utilities Service (RUS) standard 7 CFR 1755.900 and this Specification.
2. All fiber optic cable on this project shall be from a currently ISO9001 certified manufacturer who is regularly engaged in the production of this material using the processes noted within this Specification. All outside plant fiber optic cable used on each individual project shall be from only one manufacturer.
3. Use only cable that is new and of current design and manufacture.
4. Ensure that multimode optical fiber used in cables meets EIA/TIA-492AAAA, “Detail Specification for 62.5±m Core Diameter/125±m Cladding Diameter Class IA Multimode, Graded Index Optical Waveguide Fibers,” Current Edition and conforms to the requirements for multimode optical fiber in the Optical Fiber Specification Table in this Specification.
5. Ensure that single mode optical fiber used in cables meets EIA/TIA 492-BA000 Class 4A, Current Edition, and conforms to the requirements for single mode optical fiber in the Optical Fiber Specification Table in this Specification.
6. For hybrid cables, make the single mode fibers the first fibers in the count as specified in EIA/TIA-598-A, “Color Coding of Fiber Optic Cables.”
7. Ensure that all optical fibers in the cable are usable fibers.
8. Ensure that all optical fibers are free of surface imperfections and occlusions to meet the optical, mechanical, and environmental requirements of this specification.
9. Each optical fiber shall consist of a doped silica core surrounded by a concentric silica cladding. The fiber shall be of a matched clad design.
10. Use fiber coating that is a dual layered, UV cured acrylate applied by the fiber manufacturer. It shall be removable with commercially available stripping tools in a single pass without damaging the fiber.

The fiber optic cable type, configuration, and installation method will be detailed on the Plans, Drawings, Details, Specifications and in the pay items. The cable and cable installation shall conform to all requirements within the Plans and Specifications.

Optical Fiber Specification Table

<table>
<thead>
<tr>
<th>Multimode Optical Fiber:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Diameter</td>
<td>62.5 ± 3.0 μm.</td>
</tr>
<tr>
<td>Cladding Diameter</td>
<td>125.0 ± 2.0 μm.</td>
</tr>
<tr>
<td>Core-to-Cladding Offset</td>
<td>δ 3.0 μm.</td>
</tr>
<tr>
<td>Cladding Non-Circularity*</td>
<td>δ 2.0 %.</td>
</tr>
<tr>
<td>Core Non-Circularity**</td>
<td>δ 5.0 %.</td>
</tr>
<tr>
<td>Coating Diameter</td>
<td>250 ± 10 μm.</td>
</tr>
<tr>
<td>Index</td>
<td>Graded</td>
</tr>
<tr>
<td>Numerical Aperture</td>
<td>0.275 ± 0.015</td>
</tr>
<tr>
<td>Maximum Attenuation</td>
<td>δ 3.5 dB/km @ 850 nm</td>
</tr>
<tr>
<td></td>
<td>δ 1.0 dB/km @ 1300 nm</td>
</tr>
<tr>
<td>Attenuation Uniformity</td>
<td>No point discontinuities greater than 0.2dB at 850 nm and 1300 nm</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>ε 160 MHzykm at 850 nm</td>
</tr>
<tr>
<td></td>
<td>ε 500 MHzykm at 1300 nm.</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>100 kpsi</td>
</tr>
</tbody>
</table>

Single Mode Optical Fiber

| Typical Core Diameter | 8.3 μm. |
| Cladding Diameter | 125.0 ± 1.0 μm. |
Optical Fiber Specification Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core-to-Cladding Offset</td>
<td>(\delta \ 0.6 \ \text{um})</td>
</tr>
<tr>
<td>Cladding Non-Circularity*</td>
<td>(\delta \ 1.0%)</td>
</tr>
<tr>
<td>Coating Diameter</td>
<td>(245 \pm 10 \ \text{um})</td>
</tr>
<tr>
<td>Maximum Attenuation</td>
<td>(\delta \ 0.40 \text{db/km@1310 nm}) (\delta \ 0.30 \text{db/km@1550 nm})</td>
</tr>
<tr>
<td>Attenuation Uniformity</td>
<td>No point discontinuity greater than 0.10 dB at 1310 nm or 1550 nm</td>
</tr>
<tr>
<td>Attenuation at the Water Peak</td>
<td>The attenuation at 1383 (\pm) 3 nm shall not exceed 2.1 dB/km.</td>
</tr>
<tr>
<td>Cutoff Wavelength</td>
<td>The cabled fiber cutoff wavelength shall be (\delta \ 1260) nm.</td>
</tr>
</tbody>
</table>
| Mode-Field Diameter | \(9.3 \pm 0.5 \ \text{um} \) at 1310 nm
\(10.50 \pm 1.00 \ \text{um} \) at 1550 nm |
| Zero Dispersion Wavelength (\(\lambda_o \)) | \(1301.5 \) nm \(\delta \ \lambda_o \ 1321.5 \) nm |
| Zero Dispersion Slope (So) | \(\delta \ 0.092 \text{ps/(nm}^2 \text{ km)} \) |
| Polarization Mode Dispersion | \(\delta \ 0.5 \text{ ps/sq.rt. km} \) |
| Maximum Dispersion | \(\delta \ 3.2 \) ps/(nmykm) for 1285 nm to 1330 nm
\(\delta \ 18 \) ps/(nmykm) at 1550 nm |
| Tensile Strength | 100 kpsi |

* Defined as: \[1-(\text{min. cladding dia.} \div \text{max. cladding dia.})] \times 100

** Defined as: \[1-(\text{min. core dia.} \div \text{max. core dia.})] \times 100

B. Outside Plant (OSP) Cable

This section sets forth the general standards for fabrication and design of outside plant fiber optic cable.

1. OSP Cable Construction
 a. General Requirements
 OSP cable shall be an accepted product of the United States Department of Agriculture Rural Utilities Service (RUS) as meeting the requirements of 7 CFR 1755.900.
 Only use optical fibers that are placed inside a loose buffer tube.
 b. Buffer Tubes
 Ensure each buffer tube or ribbon contains up to 12 fibers. The fibers cannot adhere to the inside of the buffer tube.
 Use only buffer tubes filled with a non-hygroscopic, non-nutritive to fungus, electrically non-conductive, homogenous gel. The gel shall be free from dirt and foreign matter and readily removable with conventional non-toxic solvents.
 Apply binders with sufficient tension to secure the buffer tubes to the central member without crushing the buffer tubes. Use only binders that are non-hygroscopic, non-wicking (or rendered so by the flooding compound), and dielectric with low shrinkage.
 c. Cable Core
 Protect the cable core with a water blocking material. The water blocking material shall be non-nutritive to fungus, electrically non-conductive and homogenous.
 d. Strength Members
 Use a central anti-buckling member consisting of a glass reinforced plastic rod to prevent buckling of the cable.
 Use high tensile strength aramid, fiberglass, or a combination of aramid and fiberglass yarns to provide tensile strength. Fillers or rods may be included in the cable core to lend symmetry to the cable cross-section where needed.
e. **Color**

Distinguish each fiber and buffer from others by means of color coding according to the following:

Ensure these colors meet EIA/TIA-598-A, "Color Coding of Fiber Optic Cables."

For cables containing more than 12 buffer tubes, use the color code shown above for tubes 1 through 12, and use stripes or tracers in conjunction with the standard color code for tubes 13 through 24.

The colors shall be stable during temperature cycling and not subject to fading or smearing onto each other or into the gel filling material. Ensure colors do not cause fibers to stick together.

f. **Cable Jacket**

Include in the cable at least one ripcord under the sheath for easy sheath removal.

Helically strand the high tensile strength yarns evenly around the cable core.

Sheath all dielectric cables with medium density polyethylene. The minimum nominal jacket thickness shall be 0.06 in (1.5 mm). Apply jacketing material directly over the tensile strength members and water-blocking compound. The polyethylene shall contain carbon black to provide ultraviolet light protection and cannot promote the growth of fungus.

Ensure that the jacket or sheath be free of holes, splits, and blisters.

Ensure that the cable jacket contains no metal elements and is of a consistent thickness.

g. **Marking**

Mark cable jackets using the following template:

Manufacturer’s Name - Optical Cable - Year - Telephone Handset Symbol - GA DOT - Description

Where the Description conforms to the following depending on cable type:

- Multimode Cable: XXF MM
- Single-Mode Cable: XXF SM
- Hybrid Cable: XXF SM / XXF MM

XX denotes the fiber count

Mark the cable length every 2 feet (600 mm) if marking the cable in English units (every meter if using metric units. Ensure the actual length of the cable to be within -0/+1% of the length markings.

Use cable marking that is contrasting in color to the cable jacket. The height of the marking shall be approximately 0.10 in (2.5 mm).

2. **Additional Requirements for Loose Tube Cable**

Use only cable that is all dielectric, loose tube design. Ensure buffer tubes are stranded around a central member using the reverse oscillation, or "SZ", stranding process.

3. **Additional Requirements for Ribbon Cable**

Ensure that all fibers in a ribbon are parallel and do not cross over each other for the entire length of the cable. Dimension the ribbon fiber in accordance with FOTP-123, "Measurement of Optical Fiber Ribbon Dimensions."

Include in the ribbon markings both fiber number and color printed on each fiber.

4. **Additional Requirements for Armored Cable**

Provide armored cables with an inner sheath of medium density polyethylene. The minimum nominal jacket thickness of the inner sheath shall be 0.04 in (1 mm). Apply the inner jacket directly over the tensile strength members and water blocking material.

Ensure the armor is a corrugated steel tape, plastic-coated on both sides for corrosion resistance, and is applied with an overlapping seam with the corrugations in register.

Apply the outer jacket over the corrugated steel tape armor. Use an outer jacket with a medium density polyethylene and a minimum nominal jacket thickness of 0.06 in (1.5 mm). For the polyethylene, use carbon black to provide ultraviolet light protection and without promoting the growth of fungus.

Use only cable that can withstand a simulated lightning strike with a peak value of the current pulse of 105 kA when tested in accordance with the proposed FOTP-181, "Lightning Damage Susceptibility Test for Optic Cables with Metallic Components." Use a test current that is damped oscillatory with a maximum time-to-peak value of 15 μs
(which corresponds to a minimum frequency of 16.7 kHz) and a maximum frequency of 30 kHz. The time to half-value of the waveform envelope (t½) shall be from 40 - 70 μs. Ensure that in addition to the analysis criterion set forth in FOTP-181, the integrity of the buffer tubes (or analogous loose tube, i.e. core tube) and strength members to be intact after removal of the cable specimens from the test box.

5. Additional Requirements for All Dielectric Self Supporting (ADSS) Cable
 When shown as such in the Plans, use only cable that is all dielectric and designed for fully self-supporting installation (no messenger cable).
 Use high tensile strength, aramid yarns to provide tensile strength.
 Ensure that the cable is designed for spans up to 600 ft (183 m) with a typical sag value of 2%.

6. Cable Performance
 All OSP cable shall meet or exceed the requirements of the Fiber Optic Test Procedure (FOTP) criteria referenced in 7 CFR 1755.900. Upon the request of the Department, provide certification from an independent testing laboratory that certifies that the cable conforms to the specifications and test procedures.

7. Pulling Tension
 Ensure that the cable can withstand a maximum pulling tension of 600 lbf (2669 N) during installation (short term) and 200 lbf (890 N)) long term installed.

8. Temperature Range
 Provide only OSP cable with shipping, storage, and operating temperature range of -40 °F to +160 °F (-40 °C to +71 °C). The installation temperature range of the cable shall be -20°F to +160 °F (-30 °C to +71 °C).

C. Inside Plant (IP) Cable
 This section sets forth the general standards for fabrication and design of inside plant fiber optic cable.

1. IP Cable Construction
 a. Strength Members
 For the strength member, use a high modulus U.S. manufactured aramid yarn. The aramid yarns shall be helically stranded around the buffered fibers. Ensure that non-toxic, non-irritant talc is applied to the yarn to allow the yarns to be easily separated from the fibers and the jacket.
 b. Cable Jacket
 Ensure the jacket to be continuous, free from pinholes, splits, blisters, or other imperfections. The jacket shall be smooth, as is consistent with the best commercial practice. The jacket should provide the cable with a tough, flexible, protective coating, able to withstand the stresses expected in installation and service.
 Use orange cable jackets for multi-mode and yellow cable jackets for single mode.
 Design the cable jacket for easy removal without damage to the optical fibers by incorporating a ripcord under each cable jacket. Ensure that a non-toxic, non-irritant talc is applied to the aramid/ fiberglass yarns to allow the yarns to be easily separated from the fibers and the jacket.
 Ensure that the nominal thickness of the cable outer jacket is sufficient to provide adequate cable protection while meeting the mechanical, flammability, and environmental test requirements of this document over the life of the cable.
 c. Color
 Use color coded individual fibers for identification. The color coding shall be in accordance with EIA/TIA-598-A “Color Coding of Fiber Optic Cables” as stated in Subsection 935.2.B.1.e. Use coloring material that is stable over the temperature range of the cable, is not susceptible to migration, and does not affect the transmission characteristics of the optical fibers. Use color coded buffered fibers that will not adhere to one another. When grouping fibers into individual units, number each unit on the sub-unit jacket for identification. Repeat the number approximately every 6.0 in (150 mm).
 d. Marking
 Mark the outer cable jacket at least every three feet with the manufacturer's name or UL file number, date of manufacture, fiber type, flame rating, UL symbol, and sequential length marking every one meter (e.g. "62.5/125 MICRON Type OFNR - UL"). Use print color that contrasts to the color of the jacket and is permanent and legible for the life of the cable.
2. Construction by Cable Type
 a. Interconnect Cables
 Use interconnect cable to connect the distribution panels of a fiber optic cable plant with the actual electronic devices. The cross connect system requires either one or two fiber cable or cordage dependent upon the electronic connector requirement. Construct interconnect cable by surrounding the 900 μm tight buffered fibers with layered U.S. manufactured aramid yarns and a jacket of PVC or Copolymer depending on NEC requirements. Use the aramid yarns as tensile strength members. The cordage shall be allowed in one fiber simplex, two fiber duplex (round) or two fiber ZIP cordage.
 b. SBJ Buffered Fiber
 Use this special cordage when there is a need to splice a preconnectorized "pig tail" on to a cable end, routing that fiber within a splice shelf, and mounting the connector within the build-out panel of the distribution shelf. Construct SBJ cordage of 250 μm coated fiber (single mode or multi-mode optical fiber) surrounded with U.S. manufactured aramid fibers, and jacketed with flame retardant jacket material. Set the maximum diameter SBJ fiber to be 900 μm ±50μm and to have a coloration of orange for multi-mode and yellow for single mode. Ensure that the optical fiber is proof tested to 100 kpsi and that it meets all the optical fiber requirements of this Specification.
 c. For cables with less than 8 fibers
 Use fibers that are stranded around a U.S. manufactured aramid yarn central member and surrounded by layered U.S. manufactured aramid yarns. Use aramid yarns to serve as the tensile strength member of the cable. Apply a ripcord between the aramid yarns and the outer jacket to facilitate jacket removal. The outer jacket shall be extruded over the aramid yarns for physical and environmental protection.
 d. For cables with 8 to 24 fibers
 Use cables that have individual fibers stranded around a glass reinforced plastic (GRP) central member and surrounded by layered U.S. manufactured aramid yarns. The GRP central member provides anti-buckling to ensure consistent attenuation performance across the operating temperature range of the cable. Apply a ripcord between the aramid yarns and the outer jacket to facilitate jacket removal. The outer jacket shall be extruded over the aramid yarns for physical and environmental protection.
 e. For cables with 24 to 72 fibers
 Group together the buffered fibers in six-fiber sub-units. In each sub-unit, strand the individual fibers around a U.S. manufactured aramid yarn central member and surround the sub-unit by layered aramid yarns. Incorporate a ripcord in the sub-unit design to facilitate access to the individual fibers. The sub-unit jacket shall be extruded over the aramid yarns for additional physical and environmental protection. Strand the sub-units around a GRP central member. The GRP central member provides anti-buckling to assure consistent attenuation performance across the operating temperature range of the cable. Insert a ripcord beneath the outer jacket to facilitate jacket removal. The outer jacket shall be extruded around the units for physical and environmental protection.
 f. For cables with more than 72 fibers
 Group together the buffered fibers in twelve fiber sub-units. In each sub-unit, strand the individual fibers around a dielectric central member and surround the sub-unit by layered aramid yarns. Incorporate a ripcord in the sub-unit design to facilitate access to the individual fibers. The sub-unit jacket shall be extruded over the aramid yarns for additional physical and environmental protection. The sub-units may be stranded around a dielectric central member. Insert a ripcord beneath the outer jacket to facilitate jacket removal. The outer jacket shall be extruded around the units for physical and environmental protection.

3. Temperature Range
 Ensure that the storage temperature range for the cable on the original shipping reel to be -40° F to +160° F (-40 °C to + 71 °C). The operating temperature range for riser cables shall be 0 °F to +160 °F (-18 °C to +71 °C). The operating temperature range for plenum cables shall be 32 °F to +160 °F (0 °C to +71 °C).

4. Crush Resistance Requirements
 Ensure that the cable can withstand a minimum compressive load of 89 N/cm applied uniformly over the length of the compressive plate. Use only cable that has been tested in accordance with FOTP-41, “Compressive Loading Resistance of Fiber Optic Cables.” While under the compressive load, the fibers shall not experience an attenuation change of greater than 0.4 dB at 1550 nm for single-mode or greater than 0.6 dB at 1300 nm for multimode. After the compressive load is removed, the fibers shall not experience an attenuation change greater than 0.2 dB at 1550 nm for single-mode or greater than 0.4 dB at 1300 nm for multimode.
5. Impact Resistance Requirements
 Use only cable that can withstand a minimum of 20 impact cycles. Use only cable that has been tested in accordance with FOTP-25, “Repeated Impact Testing of Fiber Optic Cables and Cable Assemblies.” The fibers shall not experience an attenuation change greater than 0.2 dB at 1550 nm for single-mode or greater than 0.4 dB at 1300 nm for multimode.

6. Flammability
 Use only cables that are UL-listed in accordance with NEC, Article 770. Riser cables (OFNR) shall pass UL-1666. Plenum cables (OFNP) shall pass UL-910.

D. Patch Cords and Pig Tails

1. Patch Cords
 Use patch cords consisting of a length of fiber optic cable terminated on both ends.
 a. Construction
 Ensure that all factory preconnectorized assemblies adhere to the applicable cable, cordage, and fiber specifications stated in these Specifications.
 All inside plant (IP) patch cords shall meet NEC jacketing requirements.
 Use orange outer jackets for multimode and yellow jackets for single mode.

 b. Testing
 Fully test each assembly and place those test results on a test tag for each mated pair of connectors. Attach the tag to one end of each pair within the assembly.
 Individually package each assembly within a plastic bag and clearly mark on the outside of that bag the submitted manufacturer’s part number.

2. Pig Tails
 Use pig tails that consist of a length of fiber optic cable terminated on one end. Use only pig tails with factory installed connectors in accordance with Subsection 935.2.F. Provide pig tails with 900 micron tubing or 3mm fan out tubing as required for the application. Ensure that the other end of the cable is suitable for splicing to another cable. The pig tail shall conform to the same construction and testing requirements as patch cords.

E. Drop Cable Assembly – Outside Plant
 Drop cable assembly is defined as a connectorized fiber optic cable and appropriate fan out (if required) used for connectivity between a primary fiber trunk or feeder cable and field devices such as signal controllers, closed circuit television cameras, video detection system cameras, changeable message signs, etc.

1. General Requirements
 Provide a central core design drop cable assembly meeting the requirements for outside plant cable as specified in Subsection 935.2.B. Provide the drop cable assembly type (multimode, single-mode or hybrid) and fiber count specified in the Plans. Provide a drop cable with a maximum pulling tension of 300 lbs (1334 N)) unless the manufacturer’s requirements are more stringent.

2. Assembly Construction
 Provide a drop cable assembly meeting the following requirements. Drop cables may be factory pre-terminated or may use splice-on factory-connectorized pig tails.
 a. Pre-terminated Drop Cable Assembly
 Install pre-terminated drop cable assemblies with central core design fiber optic cable, factory-installed fiber optic connectors in accordance with Subsection 935.2.F on each drop cable fiber, and factory-assembled fan outs with 3mm fan out tubing. Use metallic crimps between the drop cable strength members and the fan out tubing strength members, and use heat-shrink tubing seals.
b. Field-spliced Drop Cable Assembly
 Install field-spliced drop cable assemblies with central core design fiber optic cable, fusion spliced factory-
 connectorized pig tails in accordance with Subsection 935.2.D and Subsection 935.2.F on each drop cable fiber.

c. Fan Out - Central Core Cable Design
 Install field-installed fan outs (if required) in accordance with Subsection 935.3.05.J. Additionally, secure the
 fan out tubing to the main cable sheath in a hard epoxy plug transition that extends a minimum of 2.0 in (50
 mm) onto the cable and 2.0 in (50 mm) onto the 3 mm tubing.

F. Fiber Optic Connectors
 Furnish and install ST compatible connectors unless otherwise specified. Use ceramic ferrule connectors for single-
 mode and multi-mode applications. Install connectors as per manufacturer application and recommendations, including
 proper termination to the outer-tubing (900 micron tubing, 3mm fan out tubing, etc.) required for the application.

 Use connectors rated for an operating temperature of –40 °F to +167 °F (-40 °C to + 75 °C).

 Use only factory-installed connectors for all applications except for connectors installed on outside plant drop cables in
 traffic signal cabinets. Use factory-installed connectors installed with a thermal-set heat-cured epoxy and machine
 polished mating face.

 Where barrel couplers are used in passive termination applications such as FDCs, use only ST compatible ceramic-insert
 couplers. Use only manufacturer recommended single-mode couplers for single-mode connector applications. Provide
 dust caps for both sides of couplers at all times until permanent connector installation.

 Provide connectors listed below that do not exceed the maximum loss listed for each connector.

<table>
<thead>
<tr>
<th>Connector Type</th>
<th>Installation</th>
<th>Max. Loss</th>
<th>Typical Loss</th>
<th>Optical Return Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimode</td>
<td>Field</td>
<td>.70 dB</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Single-mode</td>
<td>Field</td>
<td>.70 dB</td>
<td>.35 dB</td>
<td>>35 dB</td>
</tr>
<tr>
<td>Multimode</td>
<td>Factory</td>
<td>.50 dB</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Single-mode</td>
<td>Factory</td>
<td>.50 dB</td>
<td>.25 dB</td>
<td>>45 dB</td>
</tr>
</tbody>
</table>

G. Splice Closure - Underground
 1. Use
 Install closures designed for use under the most severe conditions such as moisture, vibration, impact, cable stress
 and flex temperature extremes. Splice closures shall pass the factory test procedures and minimum specifications
 listed below.

 2. Physical Requirements
 a. The closure shall handle up to eight cables in a butt configuration.
 b. Ensure that the closure prevents the intrusion of water without the use of encapsulate.
 c. Provide a closure that is capable of accommodating splice organizer trays that accept mechanical, fusion, or
 multi-fiber array splices. Use a splice closure that has provisions for storing fiber splices in an orderly manner,
 mountings for splice organizer assemblies, and space for excess or non-spliced fiber. Use splice organizers that
 are re-enterable and resealable. Splice cases shall hold a minimum of 2 splice trays to a maximum of 18 splice
 trays with each tray housing 12 or 24 splices depending on splice type.
 d. Use only UL rated splice cases. Where high fiber count (144 to 432) splice cases are required, use cases that
 have an external pressurization port for optional pressurization.
 e. Verify that closure re-entry and subsequent reassemble does not require specialized tools or equipment. Further,
 these operations cannot require the use of additional parts.
 f. Provide a splice closure with provisions for controlling the fiber bend radius to a minimum of 1.5 in (38 mm).
3. Quality Assurance Requirements
Install only underground splice closures that pass the following factory testing:

a. Compression Test
Provide a closure that does not deform more than 10% in its largest cross-sectional dimension when subjected to a uniformly distributed load of 300 lbf (1334 N) at a temperature of 0 °F and 100 °F (-18 °C to 38 °C). Perform the test after stabilizing at the required temperature for a minimum of two hours. Place an assembled closure between two flat paralleled surfaces, with the longest closure dimension parallel to the surfaces. Place the weight on the upper surface for a minimum of 15 minutes. Take the measurement with weight in place.

b. Impact Test
Provide an assembled closure capable of withstanding an impact of 21 ft-lb (28.5 Nm) at temperatures of 10 °F and 100 °F (-12 °C and 38 °C). Perform the test after stabilizing the closure at the required temperature for a minimum of 2 hours. The test fixture shall consist of 20 lb (9 kg) cylindrical steel impacting head with a 2 in (50 mm) spherical radius at the point where it contacts the closure. Drop it from a height of 12 in (300 mm). Ensure that the closure does not exhibit any cracks or fractures to the housing that would preclude it from passing the water immersion test. There shall be no permanent deformation to the original diameter or characteristic vertical dimension by more than 5%.

c. Cable Gripping and Sealing Testing
The cable gripping and sealing hardware shall not cause an increase in fiber attenuation in excess of 0.05 dB/fiber at 1550 nm when attached to the cables and the closure assembly. Test by measuring six fibers, one from each buffer tube or channel, or randomly selected in the case of a single fiber bundle. Take measurements from the test fibers, before and after assembly to determine the effects of the cable gripping and sealing hardware on the optical transmission of the fibers.

d. Vibration Test
Provide splice organizers that securely hold the fiber splices and store the excess fiber. Use fiber splice organizers and splice retaining hardware tested per EIA Standard FOP-II, Test Condition I. The individual fibers shall not show an increase in attenuation in excess of 0.1 dB/fiber.

e. Water Immersion Test
Provide a closure capable of preventing a 10 foot (3 m) water head from intruding into the splice compartment for a period of 7 days. Ensure that testing of the splice closure has been accomplished by the placing of the closure into a pressure vessel and filling the vessel with tap water to cover the closure. Apply continuous pressure to the vessel to maintain a hydrostatic head equivalent to 10 feet (3 m) on the closure and cable. Continue this process for 7 days. Remove the closure and open to check for the presence of water. Any intrusion of water in the compartment containing the splices constitutes a failure.

H. Splice Closure - Aerial

1. Use
Design the closure for use in aerial applications and to conform to the requirements below.

2. Physical Requirements
a. Ensure that the closure has the capacity to accommodate up to 144 fibers using six 24 fiber capacity trays.
b. The closure shall allow for the storage of at least twelve unopened buffer tubes and/or fiber ribbons.
c. Design the closure for free breathing splice protection without the use of encapsulate.
d. Provide a closure with fully assembled weather tight closure design.
e. The closure shall have flexible thermoplastic rubber end seals with pre-template cable ports.
f. Ensure that the closure has a high density polyethylene body.
g. The closure shall have corrosion resistant aluminum or stainless steel hardware. Design the aerial closure in such a way as to allow complete splice access after closure placement, without removal of the closure or electrical bonds from the cable. The closure shall be suitable for straight, butt or branch splices. Include provisions for strain relief, both around the cable jacket and to internal cable strength members. The aerial closure design shall eliminate the need for drip collars and sealing collars. Package the closure with all necessary hardware for aerial mounting.
3. **Optical Fiber Organizer**

The fiber organizer is a system that holds splice or organizer trays in such a way as to protect and support cable splices within an environmentally protected area. Provide organizer trays capable of storing all common splices; fusion and mechanical, in all configurations; butt, inline and branch (with up to four branch cables). All trays shall be completely re-enterable. Provide only trays able to accept both multi-mode or single mode fibers. The organizer itself shall accept a minimum of four trays, and offer bonding and grounding hardware. The organizer shall offer a simple one-piece cable strapping system.

I. **Mechanical Lab Splice**

Insertion Loss:

- Multi-Mode < 0.30 dB
- Single Mode < 0.30 dB

Operating Temperature:

-23 °F to 77 °F (-31 °C to 25 °C)

J. **Fiber Distribution Center (FDC)**

Use rack-mount and wall-mount FDCs and FDC splice cabinets with enclosures and mounting components of metallic construction.

Use rack-mount FDCs that fit standard 19 inch (483 mm)EIA equipment racks or cabinets.

Use rack-mount FDCs of specified sizes 6-fiber through 24-fiber that have front-opening swing-out drawers for access to the fiber splicing trays and the fiber termination couplers. When closed, the swing-out drawer shall provide a dust-tight seal that completely encloses the fiber splicing trays, fiber termination couplers, and the connecting ends of fiber patch cords connected to the couplers.

Use rack-mount FDCs of specified sizes 36-fiber through 96-fiber that have fixed-mounted front-facing fiber termination couplers accessible behind a removable transparent plastic dust cover.

Use rack-mount FDCs of specified sizes 6-fiber through 48-fiber that include fiber splicing trays integral to the FDC enclosure, accessible through the rear of the FDC or through the swing-out drawer. Use rack-mount FDCs of specified sizes 6-fiber through 48-fiber with a maximum horizontal depth of 24 inches (600 mm) and of the following maximum vertical heights:

- 6-fiber and 12-fiber: 1.75 in (45 mm)
- 24-fiber: 3.50 in (90 mm)
- 36-fiber and 48-fiber: 7.00 in (175 mm)

Where splice-on fiber pigtailed are to be used, provide 900 micron tubing or 3mm fan out tubing from the splice trays to the connectors.

Use rack-mount FDCs of specified sizes 60-fiber through 96-fiber that include a separate FDC splice cabinet installed adjacent to the FDC. Alternately, rack-mount FDCs with splice cabinets integral to the overall FDC enclosure but contained in a separated compartment either above or below the FDC termination couplers. Use rack-mount FDCs of specified sizes 60-fiber through 96-fiber with a maximum horizontal depth of 24 inches (600 mm) and of the following maximum vertical height, combined FDC and FDC splice cabinet of 17.50 inches (445 mm). Where splice-on fiber pigtailed are to be used, provide only 3mm fan out tubing from the splice trays in the splice cabinet to the connectors in the FDC.

Provide couplers with dust caps according to Subsection 935.2.F. Use only ST compatible couplers unless otherwise specified.

Provide rack-mount and wall-mount FDCs with the appropriate quantity of couplers, panels, splice trays, organizers, pig tails, and ancillary materials to terminate the number of fibers as specified by the FDC size, regardless of the cable size to be terminated as shown in the plans. Where factory pre-terminated drop cable assemblies are permitted and to be used, do not provide splice trays.

K. **Transceivers**

1. **External Transceiver**

 Ensure the transceiver meets the following requirements:
The transceiver shall be designed for daisy chained, linear multi-drop configuration.
The transceiver supports asynchronous, full duplex RS 232 communication.
The transceiver meets NEMA TS-1-1989 environmental standards for power interruption, temperature and humidity, power service transients, non-destruct transients, vibration and shock. Conformance with equivalent environmental standards by other entities may be submitted for consideration.
The connectors shall be external, female ST connectors with T1,R1,T2,R2 ports for fiber connection.
The equipment data connector shall be a female DB-25, DB-9, or terminal block RS 232 connector.
The transceiver shall have external indicator LEDs for power, transmit & receive (each channel).
A multimode transceiver operates at 1300 nm (minimum 14 dB power budget).
A single mode transceiver operates at 1310 nm (minimum 21 dB power budget).
Transceivers shall have a receiver dynamic range that is a minimum of 2 dB greater than the manufacturer’s specified power budget. The transceiver shall fully maintain all operational performance characteristics throughout the full receiver dynamic range, including a 0 dB path loss.
The transceiver communications shall be anti-streaming.
A single mode transmitter shall incorporate laser diode optical emitters.
The transceiver shall have an internal, nickel-cadmium trickle charge battery for a minimum of six (6) hour backup operation. The battery shall be designed to have minimized degradation to reliability during extended periods of trickle charge operation. Use corrosion resistant battery contacts.
The transceiver shall have a metal housing with maximum dimensions of 8” x 5” x 2” (200 x 125 x 50 mm) The metal housing shall have flanged mounting brackets to allow for permanent mounting with screws.
Do not use internal card-type units.

2. External Star Transceiver

Provide an RS232 data optical star transceiver meeting all requirements of the external transceiver in Subsection 939.2.B.1 with the following modifications:
The star transceiver shall be designed for multi-drop configuration with three optical data ports and one electrical equipment data connection port, to be applied in a drop-and-repeat optical three-way to “T” installation.
Verify the star transceiver is fully compatible and operable with the linear drop-and-repeat transceiver specified in Subsection 939.2.B.1.

935.2.01 Delivery, Storage, and Handling

Package the cable for shipment on reels. Each package shall contain only one continuous length of cable. Construct the packaging so as to prevent damage to the cable during shipping and handling.
Seal both ends of the cable to prevent the ingress of moisture.

Include with each reel a weatherproof reel tag attached identifying the reel and cable that can be used by the manufacturer to trace the manufacturing history of the cable and the fiber.

Include with each cable a cable data sheet containing the following information:

- Manufacturer name
- Cable part number
- Factory order number
- Cable length
- Factory measured attenuation of each fiber
- Bandwidth specification (where applicable)
- Index of refraction

When the length of an order requires a reel greater than 3 feet (1 m) in diameter, apply a protective coating around the cable before shipment. Cover the cable with a thermal wrap. Securely fasten the outer end of the cable to the reel head so as to prevent the cable from becoming loose in transit. Project the inner end of the cable a minimum of 6.5 ft (2 m) into a slot in the side of the reel or into a housing on the inner slot of the drum, in such a manner to make it available for testing.

Plainly mark each reel to indicate the direction in which it is to be rolled to prevent loosening of the cable on the reel.
935.3 Construction Requirements

935.3.01 Personnel

A. Technician Requirements

Employ only fiber optic technicians that are listed on the Department's "Approval Listing - Fiber Optic Technician" for all termination, splicing and testing.

Technicians not previously approved by the Department will be considered for approval upon submission of a qualifications package to the TMC Manager, 935 East Confederate Avenue, Building 24, Atlanta, Georgia 30316. Include in the qualifications package documentation showing that the technician meets the following requirements:

1. Education Requirement

The technician shall have attended and successfully completed at least one four day "Installation of Fiber Optic Products School." This school shall be conducted by a major manufacturer of fiber optic products or a Department approved independent generic four-day school that encompasses all aspects of fiber optic technician certification.

2. Work History Requirement

Employ only technicians demonstrating a minimum of two years work experience with the splicing, termination, and testing of fiber optic cable.

To apply for approval (see application form), the applicant shall submit a resume providing a summary of qualifications and a general description of professional experience, education and training in fiber optic installation techniques (termination, splicing and testing). The applicant shall also provide a work record for the previous two years detailing specific projects, types of installations, testing and a customer reference for each project.

B. Certification Compliance

The approved technician shall carry evidence of his/her Department provided approval on their person at all times while working on the project. The Department reserves the right to revoke the approval of any technician not demonstrating the skill and knowledge to perform at accepted industry standards or to the quality required in this spec.

C. Certification Cancellation

An approved certification is subject to cancellation upon determination by the Department that the technician’s work does not meet the Department’s requirements or common industry standards.

D. Certification Renewal

The certification issued is for two years. For renewal, submit a work history to the Department for that two-year period, no less than thirty days prior to expiration, for review. Include in the history the type and duration of each project and a reference for each. Include as much additional detail as reasonable to facilitate approval.
STATE OF GEORGIA DEPARTMENT
OF TRANSPORTATION FIBER OPTIC
TECHNICIAN
APPLICATION

Name (Last) (First) (Middle) (Social Security Number)

Address (Street) (City) (State) (Zip)

Section I (Identification)
Identification: (Must Supply Copy of Two) Drivers License Must Include Picture.
Drivers License Required
Social Security Card
Birth Certificate
Passport
Other (Specify)
2 Passport Pictures For I.D. Card

Section II (Proof of Technical Training)
Attach a photocopy of course completion certificate from an approved fiber optic school or manufacturer of fiber optic equipment and cable training school.

Section III (Experience)
In resume form, starting with the most recent: List all projects, the beginning and ending dates of the project, the contractor you worked for, the supervisor on said project and a complete description of the fiber optic work performed by you on said project.

Section IV
I, __, do hereby certify that all the above information is correct, and further give permission for a representative of the Department of Transportation to verify any part of the information which I have included on this application and/or attachments which I have made to this application.

Signature ___________________________ Date ___________________________
935.3.02 Equipment
Furnish a portable fiber optic light source and power meter test set for testing the fiber optic cable. Provide a test set matched, calibrated and referenced to work as a synchronized test system. Include 850 and 1300 nm light sources by LED and 1550 nm light source by laser. Provide a power meter capable of measuring the optical loss from all of the above sources. Provide a power meter capable of a resolution of at least 0.1 dB and a power range of at least +10 to −60 dB. Provide connectors and adapters for ST and duplex SC connectors. The light sources and power meter shall be capable of 120 VAC line power or rechargeable battery power. Provide a portable battery-operated printer for direct reports of test measurements, and provide PC software for uploading and storing test measurements on a computer. Provide protective padded carrying cases for all test set components, including test cables and adapters. Include complete instruction and training in the use of the test set in the training required in Subsection 935.3.08. This equipment shall remain the property of the Contractor.

935.3.03 Preparation
General Provisions 101 through 150.

935.3.04 Fabrication
A. Fiber Optic Connectors
 Furnish and install connectors with ceramic ferrules, with the fibers permanently secured within the ferrule with epoxy, heat set or air dried, as specified by the connector manufacturer.
 Install connectors according to the manufacturers recommended practice.

935.3.05 Construction
A. OSP and IP Cable Installation
 Submit for approval a detailed construction and installation procedure (SOP) covering all aspects of the construction and installation process for each and all specific cable to be used on this project. Secure from the cable manufacturer the construction and installation procedures to be used on the project. The SOP shall be submitted for review by the Engineer. Maintain traffic control that adheres to Section 150 of the Specifications.

B. Cable Installation Procedures and Standards
 1. Safety Precautions
 Follow all appropriate OSHA and industry standards related to safety when working in manholes or underground vaults and when handling optical fibers.
 2. Cable Handling
 Install all fiber optic cable according to the manufacturer’s recommended procedures and these specifications.
 3. Pulling Tension
 Do not exceed the maximum recommended pulling tension during installation as specified by the cable manufacturer.
 4. Allowable Bend Radius
 Do not violate the minimum recommended bend radius during installation as specified by the cable manufacturer. Unless the manufacturer’s recommendations are more stringent, use the following guidelines for minimum bend radius:
 - 20 X Cable Diameter Short Term - During Installation
 - 10 X Cable Diameter Long Term - Installed
 5. Cable Installation Guidelines
 Before the installation begins, carefully inspect the cable reels for imperfections such as nails that might cause damage to the cable as it is unreeled.
 Take all necessary precautions to protect unreeled cable from vandals or other sources of possible damage while unattended. Any damage to the cable sections may require replacement of the entire section.
 Whenever unreeled cable is placed on the pavement or surface above a manhole, provide means of preventing vehicular or pedestrian traffic through the area in accordance with Section 150 of the Specifications.
 Use the “figure-eight” cable lay configuration to prevent kinking or twisting when the cable is unreeled or backfed. Do not coil fiber optic cable in a continuous direction except for lengths of 100 ft (30 m), or less. The preferred size for the “figure-eight” is 15 ft (4.5 m) in length, with each loop 5 ft to 8 ft (1.5 to 2.4 m) in diameter. When
"figure-eighting" cable, exercise care to relieve pressure on the cable at the crossover of the eight. This may be done by placing cardboard shims at the crossover or by forming a second "figure-eight". Keep the cable continuous throughout the pull. Cable breaks are allowed only at designated splice points.

Where messenger cable is required, as shown in the Plans, lash aerial fiber optic cable to a steel strand wire messenger cable of the size specified in the plans that conforms to Section 915.

6. Cable End Sealing

Where a cable ends without termination in a fiber optic closure, seal the end of the cable by re-using a cable end cap that is shipped with a cable reel. Use a cap that is size-matched to the cable to be sealed. Clean the end of the cable. Partly fill the cap with a waterproof silicone adhesive sealant and press the cap fully onto the cable end, rotating the cap to fully encapsulate the cable end with the sealant in the cap. Apply a full sealant bead between the end of the cap and the cable jacket.

C. Cable Storage

At designated intervals throughout the cable plant, pull and store excess cable for slack for future terminations or splicing.

1. Cable Storage Requirements - Underground (OSP) & IP

Unless otherwise noted on the plans, the following are the requirements for cable storage for underground and IP applications:

a. Pull Box – 20 ft (6 m)

b. Hub Building – 65 ft (20 m)

c. Traffic Control Center & Transportation Management Center (OSP splice vault) – 65 ft (20 m)

d. Traffic Control Center & Transportation Management Center (IP at equipment room) – cable entrance to distribution panel bay plus 20 ft (6 m)

e. Electrical Communication Box (ECB) (Type 1, 2, 3, 4, 5) Apply the following storage requirements for the indicated cable/closure situations. More than one situation may occur in a single electrical communication box, in which case, apply each appropriate requirement.

- Trunk cable with no closure – 110 ft. (33.5 m)
- Trunk cable with one closure – 110 ft.(33.5m). Measure the storage amount from the top of the ECB manhole opening. Install closure in the center of the 110 ft. (33.5 m) cable loop, so that the closure can be removed from the ECB approximately 55 ft (17 m). If a drop cable(s) is spliced to the trunk cable at this point, store 55 ft. (17 m) of each drop cable.
- Trunk cable with one closure and trunk cable ends – 95 ft (29 m). Install closure at 55 ft (17 m) from the ECB on the trunk cable. If a drop cable(s) is spliced to the trunk cable at this point, store 55 ft (17 m) of each drop cable.
- Trunk cable ends with no closure – 95 ft (29 m)

2. Minimum Cable Storage Requirements - Aerial Applications

Unless otherwise noted on the plans, the following are the minimum requirements for cable storage for aerial applications:

- Install a minimum 65 ft (20 m) storage loop approximately one half the distance between every equipment drop. Where equipment drops are greater than 1000 ft (300 m) apart, install a minimum 65 ft (20 m) storage loop for every 1000 ft (300 m) of uninterrupted cable length.
- Additionally, at aerial splice closures, install enough cable slack to allow the fully assembled closure, including the trunk cable and drop cable, to be lowered to ground level for maintenance purposes.

3. Cable Storage

Properly store all cable to minimize susceptibility to damage. Maintain proper bend radius, both short and long term, during cable storage.

a. Communication and Pull Boxes: Store the excess or slack cable in the pull box or communication box in accordance with the Plans details.

b. Hub/TMC/TCC: Properly store the cable in cable troughs and plenum applications which meet NEC requirements.
c. Aerial Installations: Store the excess or slack cable at splice closures and storage loops in a “bow tie” configuration on the messenger strand. Install a device (a “snowshoe”) that maintains the proper bend radius in the fiber cable in the bow tie configuration.

D. Cable Splicing

Splice together each individual reel of fiber optic cable that makes up the continuous length of installed cable called for on this Project. Splice cable only at splice points designated on the plans. Make no splices within a patch cord assembly.

E. Mid Span/Drop Access

At points where mid span/drop access is required, keep all fibers intact except those that are being accessed for the equipment drop. Use a suitable tool for removing fibers from the buffer tube to prevent damage to the fibers that will remain intact.

F. Connector Termination Procedures

Only use procedures for the termination of the connectors that meet the process set out in that connector manufacturer’s standard operating procedure (SOP) for the field installation.

G. Cable Marking

1. Materials

 Use 2-1/2” (65 mm) wide, 4” (100 mm) long, wrap-around type cable markers (ACP International, Part No. DN33-2.5; UTICOM Systems Inc., Part No. U2540-GADOT; William Frick & Co., Part No. SA1-GADOT; or approved equal).

 Print text in bold black type on orange PVC marker. Use base material that is minimum 0.015” (0.4 mm) thickness PVC. Pre-print the following text legibly on labels used for trunk cables:

 Cable ID: XXXXXX
 GA DOT
 Optical Cable

 Where XXXXXX is the appropriate cable ID as defined in the Plans.

 Pre-print the following text on labels used for drop cables:

 Cable ID: GA
 DOT Optical
 Cable

 Print the text specified above twice on every cable marker with the text of the second image reversed and abutting the first image. The end result shall be text which “reads right” when either short edge of the cable marker is held horizontally upright.

 Use only permanent marking pens, as recommended or provided by the manufacturer, for labels requiring a handwritten cable ID. Per manufacturer’s recommended procedure, apply an optically clear protective 2” x 3” (50 x 75 mm) Mylar (polyester) overlay to the marker, covering the written text.

2. Installation

Clean the installed cable of all dirt and grease before applying any label. Follow the label manufacturer’s recommended procedure for applying cable labels. Label all cables in every communications hub, electrical communications box, pull box, handhole, and equipment cabinet.

Place cable labels in the following locations:

- Within 18” (450 mm) of every cable entry to a box
- Within 18” (450 mm) of every splice enclosure at cable entry points
- Within 6” (150 mm) of every FDC or splice cabinet in which a cable terminates or enters
- Every 10 ft (3 m) for the length of a cable in maintenance coils in electrical communications boxes or pull boxes

Label drop cables to devices within 18” (450 mm) of the splice enclosure where spliced to a trunk cable. Use cable labels with pre-printed cable ID numbers when labeling trunk cables. For drop cable applications, legibly print the drop cable ID number as shown in the Plans with a permanent-marking pen as recommended by the label manufacturer and seal with a laminate covering.
H. Fusion Splicing
 1. Use
 Unless otherwise noted, fusion-splice all fiber optic splices.
 2. Procedure
 Fusion splicing consists of aligning the cores of two clean, cleaved fibers or a group of such fibers and fusing the ends together with an electric arc. Position the fiber ends under a microscope or a high-resolution video monitor and then align them using precision movement micro-positioners. High-voltage electrodes contained in the splicer conduct an arc across the fiber ends as the fibers are moved together, thus fusing the fibers together. Verify maximum core alignment prior to splicing and estimate splice loss after the fusion process by the use of light injection and detection devices or profile alignment algorithms. Install all splice enclosures according to the manufacturer’s recommended guidelines.
 3. Splice Protection
 Adequately protect all fusion splices in splice trays or organizers in an enclosure. When splicing inside a building, use a splice center where rack or wall space is available. Provide the splice with strain relief and protection of the stripped fiber splice in a manner recommended by the splice tray or organizer manufacturer. Use splice types compatible with the tray design. Protect fusion splices with a heat shrink tubing that protects the splice and extends over the fiber coating. No bare fiber may be exposed.

I. Mechanical Splicing
 1. Use
 Where designated on the plans, splice fiber optic cable using a mechanical splice.
 2. Procedure
 Make all mechanical splices of the strain relief/locking type requiring no adhesive or polishing of the fiber ends. Ensure the fibers are self-aligning upon the closing of the mechanical splice. The splices shall have the capability of splicing multi-mode or single mode fiber, and with any combination of buffer coating (250 μm and 900 μm). The splice shall be of one-piece construction. Ensure that there is no stress on the fiber in the alignment area. Install all splice closures according to the manufacturer’s recommended guidelines.
 3. Lab Splice
 Use a mechanical fiber optic lab splice when a temporary joining of two fibers is required, such as in the testing of non-terminated fiber. These splices may be used on single mode or multi-mode optical fiber. Ensure the lab splice is re-usable for up to 50 matings. The lab splice shall accommodate optical fibers with cladding diameters between 120 and 145 μm.

J. Fiber Optic Cable Fan Out
 1. Inside Plant
 Provide all inside plant cable with a fan out in accordance with the manufacturer’s recommended guidelines. In protected environments such as a splice case, protect the fiber with a minimum 900 μm jacket. In all other instances, protect the fiber with 3 mm fan out tubing. Install only connectors meeting the requirements for connectors set forth in Subsection 935.3.04.A and Subsection 935.2.F.
 2. Outside Plant
 Up-jacket individual 250 or 900 micron fibers to 3 mm using fan out tubing. Include in the fan out tubing aramide yarn strength members and an outer protective jacket. The individual leg length shall be 3 ft ± 2 in (1 m ± 50 mm)

K. Temporary Fiber Optic Cable
 Furnish and install one continuous temporary fiber optic cable system as shown in the Plans. Terminate the cable and patch cords as required in the Plans, splice the cable along cable route at the points indicated in the Plans.

L. External Transceivers
 Mount external transceivers on a shelf in a manner that does not restrict the placement of other components in the cabinet housing. In Type 170 cabinets mount the transceiver on an aluminum shelf permanently attached to the EIA 19” (475 mm) cabinet rack in the rear of the cabinet.
M. Fiber Distribution Center (FDC)

Array connectors in a vertical pattern with number one being at the top left position. Do not install mechanical splices or field installed connectors. Equip unused panel slots with blank panels. Provide inter-cabinet and inter-bay bend radius and jumper management on each side of the FDC. Install all hardware according to the manufacturer’s recommended procedures and Department standards. Determine specific hardware sizing from the project documents.

935.3.06 Quality Acceptance
A. Underground Splice Closures

Ensure that an independent testing laboratory has performed all tests described in Subsection 935.2.K. Provide certification from an independent testing laboratory as required in Subsection 935.3.01.

B. Fiber Optic Cable

1. Installation Test

Upon completion of the cable installation, splicing, and termination, and a minimum of fourteen days before equipment hookup, test all fibers for continuity, events above 0.10 dB, and total attenuation of the cable. In the event that fiber optic cable installed on this project is connected to existing fiber optic cable, perform installation testing on both the new cable and existing fibers to which it is spliced or connected.

Submit both printed and electronic (diskette) OTDR traces as specified in Subsection 935.1.03.

2. Test Requirements

a. OTDR Test

For all single mode and multi-mode fiber links, test and document the installation using OTDR testing.

A certified technician (Subsection 935.3.01) shall conduct the installation test using an optical time domain reflectometer (OTDR) and optical source/power meter. The technician is directed to conduct the test using the standard operating procedure as defined by the manufacturer of the test equipment.

Use a factory patch cord of a length equal to the "dead zone" of the OTDR to connect the OTDR and the cable. Optionally, the Technician can use a factory "fiber box" of 325 ft (99 m) minimum with no splices within the box.

Conduct the tests at 1300 nm for multimode cable and at 1310/1550 nm for single mode cable.

b. Attenuation Test

For all single mode and multi-mode fiber links, test and document attenuation by a standard power-meter test.

For every fiber installed or connected to under this Contract, perform end-to-end attenuation test. For the test, use a calibrated optical source and power meter using the standard three-stage procedure. Determine acceptable link attenuation by the cumulative value of standard losses based on length, number and type of splices and connectors.

3. Fiber Optic Cable Acceptance

Use the following criteria for acceptance of the cable:

Provide test results demonstrating that the dB/km loss does not exceed +3% of the factory test or 1% of the cable's published production loss. Consider the error rate for the test equipment in the test.

No event can exceed 0.10 dB. If any event is detected above 0.10 dB, replace or repair that event point.

The total dB loss of the cable, less events, cannot exceed the manufacturer's production specifications as follows:

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Max. Attenuation dB/km</th>
<th>Test Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singlemode</td>
<td>0.30</td>
<td>1550 nm</td>
</tr>
<tr>
<td></td>
<td>0.40</td>
<td>1310 nm</td>
</tr>
<tr>
<td>Multimode</td>
<td>1.0</td>
<td>1300 nm</td>
</tr>
</tbody>
</table>

If the total loss exceeds these specifications, replace or repair that cable run and assume all expenses, both labor and materials. Elevated attenuation due to exceeding the pulling tension during installation will require the replacement of the cable run at no expense to the Department for either labor or materials.

NOTE: The Department may allow the "bi-directional/averaging" process of OTDR testing, particularly when splice losses are being unfavorably affected by "mode field diameter misalignment," "core off-set" or "core misalignment."

1250
C. Fusion Splicing
 Ensure that the maximum splice loss for any fusion splice does not exceed 0.10 dB.

D. Mechanical Splicing
 Ensure that the maximum splice loss for mechanical splices does not exceed 0.70 dB.

935.3.07 Contractor Warranty and Maintenance
Provide a manufacturer’s support (usual and customary warranties) period for all equipment and materials furnished and installed as part of Fiber Optic System. Transfer Manufacturer’s and Contractor’s warranties or guarantees to the agency or user responsible for the device or system maintenance. The warranties and guarantees shall be continuous throughout their duration, and state that they are subject to transfer.

935.3.08 Training
Provide both installation and maintenance training on fiber optic cable to selected Department personnel. Personnel trained by the manufacturer of the fiber optic cable furnished on this project and authorized by said manufacturer shall perform the training. Furnish a training notebook in a labeled 3-ring binder to each trainee.

Provide a location to hold the courses that is an acceptable indoor and comfortable location near the project area. If requesting that the training be conducted away from the project area, pay all costs associated with travel and accommodation of all students.

As a minimum, include in the fiber optic training the following:

Provide installation and maintenance training for up to eight (8) people. Include in this training both classroom training and hands-on training. All training shall be conducted in half-day sessions. Two half-day sessions may be held on the same day. The total of the installation and maintenance training shall consist of at least forty (40) clock hours of training for each participant. Cover all aspects of inside plant and outside plant fiber optic cable installation, maintenance, and troubleshooting including the use of all recommended test equipment.

935.4 Measurement
Fiber optic system, temporary fiber optic system, testing and training that is complete, in place, accepted and of the kind, size, and type specified is measured as follows:

A. Fiber Optic Cable
 Fiber optic cable is measured for payment by the actual number of linear feet installed, complete, functional, and accepted.

B. Pig Tails
 Pig tails are measured for payment by the actual number of linear feet (meters) installed, complete, functional, and accepted. Factory-connectorized pigtails associated with drop cable assembly, in accordance with Subsection 935.2, will not be measured separately for payment.

C. Closures
 Underground splice closures, aerial splice closures, and FDCs are measured for payment by the actual number of units installed, complete, functional and accepted.

D. Fiber Optic Splice
 Fiber optic splices, whether fusion, mechanical, or lab, are measured for payment by the actual number of splices made, complete, and accepted. Fiber optic splices associated with the use of factory-connectorized pigtais, in accordance with Subsection 935.2, will not be measured separately for payment.

E. Fiber Optic Cable Fan Out
 Fan out kits are measured for payment by the actual number of units installed, complete, functional and accepted.

F. Fiber Optic Connectors
 Fiber optic connectors are measured for payment by the actual number of units installed, complete, functional and accepted. Fiber optic connectors associated with the use of factory-connectorized pigtais, in accordance with Subsection 935.2, will not be measured separately for payment.
G. Patch Cords
Patch cords are measured for payment by the actual number of units installed, complete, functional and accepted.

H. Fiber Optic Snowshoe
Fiber optic snowshoes are measured for payment by the actual number of units installed, complete, functional, and accepted.

I. Temporary Fiber Optic System
Payment for work on the Temporary Fiber Optic System will be lump sum and will be considered full compensation for all installed materials and labor associated with the Temporary Fiber Optic System. Specific items include but are not limited to timber poles, guys, anchors, lashing, messenger cable, conduit directional boring, conduit, fiber optic cable, fusion splicing, hardware attachments, splice enclosures, equipment rentals, and disposal of materials.

J. Transceivers
External drop and repeat transceivers and external star transceivers are measured for payment by the actual number of transceivers installed, complete, functional, and accepted.

K. Testing
Testing is measured as a lump sum for full delivery of testing and acceptance requirements. Measurement of testing includes subsistence necessary to conduct the testing.

L. Training
Training is measured as a lump sum for all supplies, equipment, materials, handouts, travel, and subsistence necessary to conduct the training.

935.4.01 Limits
General Provisions 101 through 150.

935.5 Payment
Fiber optic cable, pig tails, closures, splices, fiber optic cable fan out, fiber optic connectors, patch cords, fiber optic snowshoes, temporary fiber optic system, and testing are paid for at the Contract Unit Price for the various items. Payment is full compensation for furnishing and installing the items complete and in place according to this Specification.

Training is paid for on a partial payment basis as follows:

The Department will pay 25% of the total contract bid amount for this item upon approval of the Training Plan. The Department will pay the remaining 75% after completion of all training as described in Subsection 935.3.08. The total sum of all payments cannot exceed the original contract amount for this item. Payment will be made under:

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 935</th>
<th>Outside plant fiber optic cable (type, mode, size)</th>
<th>Per linear foot (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item No. 935</td>
<td>Inside plant fiber optic cable (type, mode, size)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Fiber optic pigtail (mode, size)</td>
<td>Per linear foot (meter)</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Fiber optic closure</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Fiber optic splice</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Fiber optic fan out kit</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Fiber optic connectors (mode)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Fiber optic patch cord (mode)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Fiber optic snowshoe</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>Temporary fiber optic system</td>
<td>Per lump sum</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>External transceiver (mode)</td>
<td>Per each</td>
</tr>
<tr>
<td>Item No. 935</td>
<td>External star transceiver (mode)</td>
<td>Per each</td>
</tr>
</tbody>
</table>
935.5.01 Adjustments
General Provisions 101 through 150.

Section 936—Closed Circuit Television (CCTV)

936.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 937—Video Detection System

937.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 938—Microwave Radar Detection

938.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 939—Communication and Electronic Equipment

939.1 General Description
Specifications for this work will be included elsewhere in the Contract.

Section 940—NaviGAtor Advanced Transportation Management System Integration

940.1 General Description
Specifications for this work will be included elsewhere in the Contract.
GADOT PAY SOFTWARE SYMBOLS

<table>
<thead>
<tr>
<th>ENGLISH</th>
<th>GDOT PAY SOFTWARE SYMBOL</th>
<th>METRIC</th>
<th>ASTM E-380 SYMBOL</th>
<th>GDOT PAY SOFTWARE SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT OF MEASURE</td>
<td>UNIT OF MEASURE</td>
<td>ASTM E-380 SYMBOL</td>
<td>GDOT PAY SOFTWARE SYMBOL</td>
<td></td>
</tr>
<tr>
<td>Inch</td>
<td>Millimeter</td>
<td>mm</td>
<td>MM</td>
<td></td>
</tr>
<tr>
<td>Linear Foot</td>
<td>Linear Meter</td>
<td>m</td>
<td>LM1</td>
<td></td>
</tr>
<tr>
<td>Gross Linear Foot</td>
<td>Gross Linear Meter</td>
<td>m</td>
<td>GLM1</td>
<td></td>
</tr>
<tr>
<td>Mile</td>
<td>Kilometer</td>
<td>km</td>
<td>KM</td>
<td></td>
</tr>
<tr>
<td>Gross Linear Mile</td>
<td>Gross Linear Kilometer</td>
<td>km</td>
<td>GLKM</td>
<td></td>
</tr>
<tr>
<td>Acre</td>
<td>Hectare</td>
<td>ha</td>
<td>HA</td>
<td></td>
</tr>
<tr>
<td>Square Foot</td>
<td>Square Meter</td>
<td>m²</td>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>Square Yard</td>
<td>Square Meter</td>
<td>m²</td>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>Cubic Foot</td>
<td>Cubic Meter</td>
<td>m³</td>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>Cubic Yard</td>
<td>Cubic Meter</td>
<td>m³</td>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>Gallon</td>
<td>Liter</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Thousand Gallons</td>
<td>Cubic Meter</td>
<td>m³</td>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>Thousand Foot Board Measure</td>
<td>Cubic Meter</td>
<td>m³</td>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>Thousand</td>
<td>K</td>
<td>k</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Pound</td>
<td>Kilogram</td>
<td>kg</td>
<td>KG</td>
<td></td>
</tr>
<tr>
<td>Ton (2000 lb)</td>
<td>Megagram (1000 kg)</td>
<td>Mg</td>
<td>MG</td>
<td></td>
</tr>
</tbody>
</table>
ALPHABETIC INDEX

A

Abbreviations.. 1, 526
Abrasive Components for Blast Cleaning .. 559, 804, 947
Acceptance, Final Inspection and .. 26, 35, 42, 48
Adhesives, Epoxy ... 801, 803
Adhesives, Epoxy Resin ... 295, 320, 329, 373, 376, 384, 543, 619, 620, 645, 750, 800, 803, 1074, 1121, 1228
Adjusting to Grade of Miscellaneous Roadway Structures ... 647, 650, 816, 831
Admixtures, Air-Entraining ... 392, 398, 458, 626, 998
Admixtures, Chemical ... 213, 296, 331, 458, 999
Admixtures, Retarding .. 392, 399
Admixtures, Water Reducing ... 392
Agents, Curing.. 213, 294, 296, 329, 330, 347, 392, 637, 676, 677, 750, 844, 1000
Aggregate, Graded ... 127, 128, 166, 172, 199, 202, 203, 207, 210, 213, 341, 342, 392, 637, 969, 973
Aggregate, Soil .. 172, 193, 194, 197, 973, 974
Agreement ... 7, 14, 15, 18
Agricultural Lime .. 28, 368, 606, 876, 881, 887, 890, 891, 1117
Aids, Survey .. 74
Air-Entraining.. 392, 398, 458, 626, 998
Aluminum Alloy Materials ... 750
Aluminum Alloy Railing Posts, Cast.. 1054
Aluminum Alloy Rivets .. 515, 1040
Aluminum Alloy Sheet and Plate ... 515, 519, 1039
Aluminum Alloy Shims ... 515, 1040
Aluminum Alloy Washers .. 515, 1040
Aluminum Caulking Compound ... 1107
Aluminum Handrail .. 515, 517
Aluminum Powder .. 462, 463, 1015, 1016, 1075
Aluminum Structural Shape Posts .. 1145
Anchor Bolts .. 431, 441, 446, 465, 467, 505, 513, 516, 620, 621, 623, 730, 735, 1043, 1170, 1172
Approach Slabs, Reinforced Concrete ... 315, 672
Appurtenances for Water Systems ... 842
Appurtenances, Pipe .. 504, 592, 691, 701, 816, 831, 1023, 1031, 1034
Arch Culverts .. 603, 604
Asphalt Concrete .. 236, 246, 617
Asphalt Plank ... 469, 988
Asphalt Plank Bridge Floor .. 469
Asphalt Plant ... 222, 227
Asphalt-Rubber Joint and Crack Seal .. 262
Attenuator, Traffic Impact ... 777
Authority of ... 19
Award and Execution of Contract .. 12

B

Backfill for Minor Structures ... 117, 121, 131, 133, 504, 592, 603, 643, 727, 816, 825, 831
Backfill Materials .. 117, 118, 119, 120, 593, 603, 634, 691, 701, 961
Bags ... 638, 1112
Bar Reinforcement Steel ... 500, 512
Barricades ... 33, 712, 714
Barriers ... 97, 316, 411, 426, 635, 673, 674, 928
Base and Subbase Courses, ... 165, 174, 183, 188, 194, 199, 204, 207, 213
Bearing Pads, Elastomeric ... 429, 619, 620, 680, 682, 1074, 1120
Bearing Plates with Polytetrafluoroethylene Surfaces ... 619
Bearing Surfaces ... 439, 1123
Bidding Requirements and Conditions .. 8
<table>
<thead>
<tr>
<th>ALPHABETIC INDEX (Continued)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bids</td>
<td>5, 9, 10, 12, 1129, 1131</td>
</tr>
<tr>
<td>Bituminous Adhesive For Raised Pavement Markers</td>
<td>803, 1088</td>
</tr>
<tr>
<td>Bituminous Material</td>
<td>51, 52, 185, 187, 188, 221, 226, 243, 255, 269, 271, 273, 276, 277, 278, 279, 289, 553, 920, 988</td>
</tr>
<tr>
<td>Bituminous Prime</td>
<td>127, 154, 155, 163, 164, 166, 174, 183, 188, 191, 194, 197, 199, 200, 203, 204, 210, 267, 286, 554</td>
</tr>
<tr>
<td>Bituminous Surface Treatment</td>
<td>163, 164, 218, 258, 267, 270, 272, 277, 278, 286, 935, 938</td>
</tr>
<tr>
<td>Bituminous Tack Coat</td>
<td>52, 163, 164, 218, 220, 225, 254, 258, 270, 281, 288, 293, 324, 357, 554</td>
</tr>
<tr>
<td>Bituminous Treated Roving</td>
<td>88, 89, 919, 921, 922, 923</td>
</tr>
<tr>
<td>Blanket</td>
<td>148, 149, 152, 153, 637, 640, 912, 914, 915, 916, 922, 952</td>
</tr>
<tr>
<td>Blanket for Fill Slopes</td>
<td>148</td>
</tr>
<tr>
<td>Blanks and Panels, Sign</td>
<td>68, 714, 750, 1139, 1148, 1149</td>
</tr>
<tr>
<td>Boiled Linseed Oil</td>
<td>1108</td>
</tr>
<tr>
<td>Bolts, Aluminum Alloy</td>
<td>515, 1039</td>
</tr>
<tr>
<td>Bolts, Anchor</td>
<td>431, 441, 446, 465, 467, 505, 513, 516, 620, 621, 623, 730, 735, 1043, 1170, 1172</td>
</tr>
<tr>
<td>Bolts, High Tensile Strength</td>
<td>1043</td>
</tr>
<tr>
<td>Bolts, Steel</td>
<td>431, 505, 512, 515, 519, 1042</td>
</tr>
<tr>
<td>Bond, Contract</td>
<td>3, 5, 13, 48, 49, 57</td>
</tr>
<tr>
<td>Borrow</td>
<td>41, 114, 116, 117, 121, 130, 131, 166, 188, 680, 684, 687, 689</td>
</tr>
<tr>
<td>Borrow Excavation</td>
<td>114, 117, 121, 131, 166, 188, 680</td>
</tr>
<tr>
<td>Bracing</td>
<td>120, 455, 531, 744, 1070, 1071, 1105</td>
</tr>
<tr>
<td>Brick</td>
<td>599, 600, 601, 643, 644, 645, 825, 826, 827, 1014</td>
</tr>
<tr>
<td>Brick Masonry</td>
<td>599, 643, 825, 827</td>
</tr>
<tr>
<td>Bridge Complete</td>
<td>2, 584</td>
</tr>
<tr>
<td>Bridge Excavation and Backfill</td>
<td>133, 388, 540, 584</td>
</tr>
<tr>
<td>Bridge Floor, Asphalt Plank</td>
<td>469</td>
</tr>
<tr>
<td>Bridge Joint Seals, Elastomeric Profile</td>
<td>353, 366</td>
</tr>
<tr>
<td>Bridge Plank, Corrugated Steel</td>
<td>461, 462</td>
</tr>
<tr>
<td>Bronze</td>
<td>429, 431, 465, 466, 1058, 1059, 1074, 1075</td>
</tr>
<tr>
<td>Bronze Bearings</td>
<td>1059</td>
</tr>
<tr>
<td>Buildings</td>
<td>104, 932, 935</td>
</tr>
<tr>
<td>Burlap</td>
<td>303, 336, 1000, 1001, 1110, 1112</td>
</tr>
<tr>
<td>Bushings</td>
<td>429, 431, 465, 1058, 1059, 1074, 1075</td>
</tr>
</tbody>
</table>

C

<p>| Calcium Chloride | 368, 458, 1120 |
| Capacity | 9, 11, 395, 525, 864, 1045, 1046 |
| Castings and Forgings | 429, 650, 750, 825, 844, 1053 |
| Catch Basins | 648, 698, 828, 829 |
| Cationic Asphalt Emulsion | 247, 270, 272, 273, 281, 286, 288, 985 |
| Cattle Pass | 574 |
| Caulking Compound, Aluminum | 1107 |
| Cement Stabilized | 166, 172, 181, 182, 197, 203, 210 |
| Cement, Bituminous Plastic | 505, 593, 1037 |
| Certified Mill Test Reports | 31, 475 |
| Chain Link Fence | 72, 744, 1135 |
| Changes, Authority to Make | 14 |
| Channel Excavation | 107, 121, 131 |
| Channel Type Shear Connectors | 502, 503 |
| Characters, Reflective and Nonreflective | 714, 1139 |
| Check Dams, Erosion Control | 86, 97 |
| Check Point Shelter | 931, 934 |
| Chlorides | 367, 597, 661, 963, 1119, 1229 |
| Claims for Adjustments and Disputes | 18, 22, 39 |
| Clay Pipe | 816, 817, 901, 1024 |
| Cleaning Up, Final | 17, 35, 42, 529 |
| Clearing and Grubbing, Random | 106, 109, 114, 131, 188, 647 |
| Closed Circuit Television (CCTV) | 1253 |
| Coal Tar Emulsion Seal Coat | 261 |</p>
<table>
<thead>
<tr>
<th>ALPHABETIC INDEX (Continued)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Aggregate for Asphalitic Concrete</td>
<td>218, 247, 944</td>
</tr>
<tr>
<td>Coarse Aggregate for Underdrain</td>
<td>951</td>
</tr>
<tr>
<td>Coffer dams</td>
<td>133, 540, 541, 542, 543</td>
</tr>
<tr>
<td>Commissioner</td>
<td>3, 28, 29, 39, 56, 57</td>
</tr>
<tr>
<td>Compensation</td>
<td>35, 38, 40, 53, 54, 487, 558, 584</td>
</tr>
<tr>
<td>Concrete Pavement</td>
<td>109, 143, 265, 308, 309</td>
</tr>
<tr>
<td>Concrete Sidewalks</td>
<td>349, 350</td>
</tr>
<tr>
<td>Concrete Slope Paving</td>
<td>349, 350</td>
</tr>
<tr>
<td>Concrete Spillways</td>
<td>351</td>
</tr>
<tr>
<td>Concrete Underdrain Pipe</td>
<td>613, 1026</td>
</tr>
<tr>
<td>Concrete, Graffiti Proof Coating for</td>
<td>1020</td>
</tr>
<tr>
<td>Concrete, Grind</td>
<td>294, 310, 329, 376, 388</td>
</tr>
<tr>
<td>Concrete, Miscellaneous</td>
<td>315, 327, 346, 617, 676, 940, 941</td>
</tr>
<tr>
<td>Concrete, Pneumatically Applied</td>
<td>676</td>
</tr>
<tr>
<td>Concrete, Polymer</td>
<td>1018</td>
</tr>
<tr>
<td>Conformity with Plans and Specifications</td>
<td>19</td>
</tr>
<tr>
<td>Connectors</td>
<td>692, 1231, 1240, 1246, 1251</td>
</tr>
<tr>
<td>Construction Layout</td>
<td>44, 59, 61, 62</td>
</tr>
<tr>
<td>Contract, Failure to Execute</td>
<td>14</td>
</tr>
<tr>
<td>Control Devices, Uniform Traffic</td>
<td>1, 15, 560, 599, 602, 714, 715, 750, 787, 791, 806, 814, 1139</td>
</tr>
<tr>
<td>Control of Materials</td>
<td>26, 114, 141, 165, 188, 218, 294, 359, 627, 679, 691, 701, 749, 822, 907, 912, 917, 923, 953, 1002, 1023, 1030, 1031, 1034, 1038, 1041, 1042, 1061, 1074, 1120, 1123, 1157</td>
</tr>
<tr>
<td>Control of Soil Erosion and Sedimentation</td>
<td>86, 88, 97, 121</td>
</tr>
<tr>
<td>Control of Work</td>
<td>19, 182, 194, 199, 272, 577, 579, 863, 868, 1168</td>
</tr>
<tr>
<td>Control, Traffic</td>
<td>15, 19, 63, 166, 291, 354, 356, 710, 719, 750, 774, 804, 861, 870, 872, 1212, 1231, 1247</td>
</tr>
<tr>
<td>Cooperation</td>
<td>20, 21, 39, 77</td>
</tr>
<tr>
<td>Cooperation by Contractor</td>
<td>20, 77</td>
</tr>
<tr>
<td>Corrugated Aluminum Alloy</td>
<td>592, 593, 603, 610, 612, 613, 615, 1021, 1022, 1023</td>
</tr>
<tr>
<td>Corrugated Polyethylene Underdrain Pipe</td>
<td>610, 612, 1020, 1021</td>
</tr>
<tr>
<td>Corrugated Steel</td>
<td>461, 462, 505, 593, 606, 610, 615, 1027, 1028, 1029, 1048</td>
</tr>
<tr>
<td>Cotton</td>
<td>303, 336, 431, 453, 465, 1001, 1111, 1112</td>
</tr>
<tr>
<td>Crushed Aggregate Subbase</td>
<td>149, 975</td>
</tr>
<tr>
<td>Crushed Stone Base</td>
<td>203</td>
</tr>
<tr>
<td>Crushed Stone Drainage</td>
<td>952</td>
</tr>
<tr>
<td>Culverts</td>
<td>407, 408, 421, 425, 428, 504, 507, 508, 592, 593, 648, 649, 656</td>
</tr>
<tr>
<td>Curb</td>
<td>324, 325, 327, 346, 349, 350, 351, 352, 415, 498, 617, 649, 752, 759, 773, 950, 951</td>
</tr>
<tr>
<td>Cutback</td>
<td>154, 174, 183, 184, 188, 189, 199, 200, 247, 267, 470, 978, 979, 980, 981, 983, 984</td>
</tr>
</tbody>
</table>

D

<p>| Deck Drain System | 586 |
| Deduction | 47 |
| Default of Contract | 48 |
| Definitions and Terms | 1, 518, 863, 868 |
| Delay in Completing Work on Time | 47, 774, 867, 874 |
| Delineator Posts | 715, 716, 1145 |
| Delineators | 714, 718, 1158, 1159 |
| Detour Bridges | 577, 608 |
| Detours | 16, 42, 246, 578 |
| Deviations | 237, 239, 401 |
| Display and Interior Furnishings | 935 |
| Dissipators, Velocity | 351, 352 |
| Distribution System, Water | 830, 842, 931 |
| Ditch Checks | 91, 92, 93 |
| Ditch Excavation | 30 |
| Docks | 654, 656, 1128 |
| Dowel Bars and Tie Bars | 328 |
| Drain Inlet, Metal | 616, 618, 619 |
| Drains, Slope | 89, 92, 93 |</p>
<table>
<thead>
<tr>
<th>E</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edgedrains</td>
<td>612</td>
</tr>
<tr>
<td>Elastomeric Bearing Pads</td>
<td>429, 619, 620, 680, 682, 1074, 1120</td>
</tr>
<tr>
<td>Elastomeric Profile Bridge Joint Seals</td>
<td>353, 366</td>
</tr>
<tr>
<td>Electrical Conduit</td>
<td>545, 546, 719, 750, 844, 858, 869, 1180, 1185</td>
</tr>
<tr>
<td>Electrical Materials, Miscellaneous</td>
<td>545, 546, 844, 845, 1182</td>
</tr>
<tr>
<td>Electrical Work</td>
<td>931</td>
</tr>
<tr>
<td>Eliminated Items</td>
<td>55, 718</td>
</tr>
<tr>
<td>Embankment, Rock</td>
<td>121, 126, 960, 961</td>
</tr>
<tr>
<td>Emulsified Asphalt Slurry Seal</td>
<td>270, 280, 282</td>
</tr>
<tr>
<td>Emulsion</td>
<td>183, 189, 199, 200, 290, 913, 982, 983, 984, 1017, 1102, 1104</td>
</tr>
<tr>
<td>Encasement, Pile</td>
<td>518, 587, 588, 589</td>
</tr>
<tr>
<td>Epoxy Coated Steel Reinforcement</td>
<td>509, 588, 691, 701, 1049, 1074</td>
</tr>
<tr>
<td>Epoxy Pressure Injection of Concrete Cracks</td>
<td>543, 544, 545</td>
</tr>
<tr>
<td>Epoxy Resin Adhesives</td>
<td>295, 320, 329, 373, 376, 384, 543, 619, 620, 645, 750, 800, 803, 1074, 1121, 1228</td>
</tr>
<tr>
<td>Erection</td>
<td>391, 436, 438, 445, 465, 570, 623, 632, 634, 697, 732, 741, 742, 746, 756</td>
</tr>
<tr>
<td>Erosion Control</td>
<td>86, 91, 97, 126, 908, 922, 1131</td>
</tr>
<tr>
<td>Excavation for Minor Structures</td>
<td>120</td>
</tr>
<tr>
<td>Excavation, Borrow</td>
<td>114, 117, 121, 131, 166, 188, 680</td>
</tr>
<tr>
<td>Excavation, Roadway</td>
<td>107, 109, 112, 113, 117, 121, 130, 131, 142, 154, 166, 173, 188, 207, 208, 266, 592, 603, 647, 656, 680, 740, 844</td>
</tr>
<tr>
<td>Excavation, Unclassified</td>
<td>151, 689</td>
</tr>
<tr>
<td>Expanded Mortar</td>
<td>462, 463, 464, 465, 504, 505, 619, 621</td>
</tr>
<tr>
<td>Expansion Joint</td>
<td>302, 335, 350</td>
</tr>
<tr>
<td>Expansion Plates</td>
<td>429, 431, 465, 1058, 1059, 1074, 1075</td>
</tr>
<tr>
<td>Explosives, Use of</td>
<td>33, 112</td>
</tr>
<tr>
<td>Extension Agreement</td>
<td>4, 15</td>
</tr>
<tr>
<td>Extruded Aluminum</td>
<td>715, 717, 1140, 1150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrics, Waterproofing</td>
<td>388, 469, 550</td>
</tr>
<tr>
<td>Failure</td>
<td>11, 14, 23, 24, 26, 35, 47, 78, 79, 366, 486, 578, 687, 774, 775, 867, 874, 978, 1198</td>
</tr>
<tr>
<td>Failure to Maintain Roadway or Structures</td>
<td>26, 578</td>
</tr>
<tr>
<td>Fence, Chain Link</td>
<td>72, 744, 1135</td>
</tr>
<tr>
<td>Fence, Woven Wire</td>
<td>744, 1136</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>28, 876, 887, 891, 903, 1129</td>
</tr>
<tr>
<td>Fiber Optic System</td>
<td>750, 1185, 1231, 1251, 1252</td>
</tr>
<tr>
<td>Fiber Stabilizing Additives</td>
<td>220, 976</td>
</tr>
<tr>
<td>fiberglass blanket</td>
<td>912, 921, 922</td>
</tr>
<tr>
<td>Field Fencing</td>
<td>1138</td>
</tr>
<tr>
<td>Field Laboratory Building</td>
<td>64, 166, 218, 294, 329, 1074</td>
</tr>
<tr>
<td>Filler, Mineral</td>
<td>220, 222, 227, 281, 287, 288, 367, 368, 605, 606, 1118, 1119</td>
</tr>
<tr>
<td>Filter Fabric for Embankment Stabilization</td>
<td>380, 1116</td>
</tr>
<tr>
<td>Final Cleaning Up</td>
<td>17, 35, 42, 529</td>
</tr>
<tr>
<td>Final Finishing of Roadway</td>
<td>113</td>
</tr>
<tr>
<td>Final Payment</td>
<td>47, 48, 56, 57</td>
</tr>
<tr>
<td>Fine Aggregate for Asphaltic Concrete</td>
<td>247, 943</td>
</tr>
<tr>
<td>Fine Aggregate for Cushion</td>
<td>940</td>
</tr>
<tr>
<td>Fine Aggregate for Portland Cement Concrete</td>
<td>941</td>
</tr>
<tr>
<td>Fine Aggregate for Sand Cement Rip Rap</td>
<td>637, 942</td>
</tr>
<tr>
<td>ALPHABETIC INDEX (Continued)</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Finish, Surface</td>
<td>297, 415, 416, 418, 447, 466, 514, 516, 675, 786, 1082</td>
</tr>
<tr>
<td>Finishing of Roadway, Final</td>
<td>113</td>
</tr>
<tr>
<td>Fire Hydrants</td>
<td>833, 836, 837, 839, 840, 841</td>
</tr>
<tr>
<td>Fittings</td>
<td>547, 593, 715, 724, 741, 763, 821, 831, 832, 839, 1023, 1024, 1031, 1034, 1061, 1135, 1136, 1227</td>
</tr>
<tr>
<td>Flag Pole</td>
<td>933</td>
</tr>
<tr>
<td>Flowable Fill, Controlled Low Strength</td>
<td>625</td>
</tr>
<tr>
<td>Foamed Asphalt Stabilized Base Course</td>
<td>217</td>
</tr>
<tr>
<td>Force Account</td>
<td>4, 14, 16, 53, 54, 55, 58, 72, 106</td>
</tr>
<tr>
<td>Forest Protection</td>
<td>33</td>
</tr>
<tr>
<td>Forgings, Steel</td>
<td>1055</td>
</tr>
<tr>
<td>Full Depth Slab Replacement</td>
<td>367, 376</td>
</tr>
<tr>
<td>Furnishings, Display and Interior</td>
<td>935</td>
</tr>
<tr>
<td>Furniture, Outdoor</td>
<td>930</td>
</tr>
</tbody>
</table>

G

Galvanized Coating, Repair of	452, 512, 545, 586, 592, 599, 603, 617, 691, 701, 727, 740, 744, 748, 750, 1169
Galvanized Steel Sign Post	1142, 1143
Galvanizing Repair Compound	748, 1106
Gasket Joints	593, 817
Gaskets	1035, 1036
Gate Valves	831, 836, 839, 840, 1037
Gates, Silt Control	89, 92, 93
Geogrid Materials	953
Geogrid Reinforcement	383
Grade Separation Structures, Railroad	15
Graded Aggregate	127, 128, 166, 172, 199, 202, 203, 207, 210, 213, 341, 342, 392, 637, 969, 973
Graded Aggregate Construction	166, 199, 203, 210
Grading Complete	131, 132, 142, 680
Granite Curb	326
Granular Embankment	41, 136
Grassing	34, 42, 43, 55, 80, 88, 98, 652, 654, 680, 684, 687, 688, 689, 727, 740, 743, 750, 776, 876, 881, 885, 886, 891, 903, 905, 909, 911, 912, 923, 924, 1131
Grind Concrete Pavement	294, 310, 329, 376, 388
Grout Pump	368, 607, 1077
Grout Pumping Equipment	368
Grout, Cement	660, 1017
Grout, Pumping Underseal	370
Grouting	468, 479, 485, 487, 1082
Grouting Equipment	479
Grouting, Pressure	367, 602
Guaranty, Material	12
Guaranty, Proposal	6, 9, 11, 12, 13, 14
Guard Rail	650, 651, 740, 741, 1061, 1062, 1063, 1070, 1071, 1142
Gutter	351, 352, 411

H

Handrail	500, 512, 513, 514, 516, 517, 636
Hardware, Miscellaneous Bridge	1060
Haul Roads	30, 163
Header Curb, Precast Concrete	327, 328
Heat Stable Anti-Stripping Additive	220, 990, 998
High Early Strength Concrete	996
High Level Lighting Systems	844, 859, 931
Highway Lighting	750, 776, 844, 857, 858, 860, 869, 931
Highway Provisions	33
Holes, Sample	29
Holidays	2, 4

1259
<table>
<thead>
<tr>
<th>ALPHABETIC INDEX (Continued)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Asphalt-Vulcanized Rubber Seal Treatment</td>
<td>258</td>
</tr>
<tr>
<td>Hot In-Place Recycled Asphaltic Concrete</td>
<td>253</td>
</tr>
<tr>
<td>Hot Mix Recycled Asphaltic Concrete</td>
<td>64, 249</td>
</tr>
<tr>
<td>Hydrants, Fire</td>
<td>833, 836, 837, 839, 840, 841</td>
</tr>
<tr>
<td>Hydrated Lime</td>
<td>158, 161, 220, 222, 227, 244, 281, 288, 1117</td>
</tr>
</tbody>
</table>

I

Illuminated Sign System	719, 931
Information Center Building	931, 933
Inoculants	877, 1130, 1132
In-Place Embankment	121, 125
Insect Control	35, 73, 899
Inspection, Plant	28, 1085
Interpretation of Estimates	9
Iron Pipe	592, 593, 594, 656, 657, 816, 817, 831, 1023, 1024, 1033
Irrigation System	931, 934
Item Numbers	20

J

Jacking or Boring Pipe	599, 656, 831
Joint Fillers and Sealers	294, 296, 320, 329, 331, 347, 373, 376, 384, 392, 672, 676, 727, 750, 1002, 1185
Joining	818, 820, 837
Joints, Sealing Roadway and Bridge	294, 320, 329, 341, 376, 383, 1002
Joints, Steel	440, 446
Junction Box	548, 722, 829, 849
Jute Mesh Erosion Control	917, 922

K

| Knots | 1067, 1068 |

L

<p>| Laboratory, Field | 30, 64, 65, 66, 166, 218, 221, 244, 294, 297, 329, 1074 |
| Lead Joints | 836, 1024 |
| Legal Regulations and Responsibility to the Public | 32, 95, 102, 106, 109, 114, 138, 145, 165, 558, 804, 831, 907, 1139 |
| Liability | 39, 57, 558 |
| Lighting Standards and Towers | 844, 845, 854, 855, 857, 860, 1168, 1169 |
| Lighting, Highway | 750, 776, 844, 857, 858, 860, 869, 931 |
| Lighting, Navigation | 545, 549, 550, 931, 1178 |
| Lime, Agricultural | 28, 368, 606, 876, 881, 890, 891, 1117 |
| Lime, Hydrated | 158, 161, 220, 222, 227, 244, 281, 288, 1117 |
| Lime-Fly Ash Soil Construction | 210 |
| Limitations | 144, 184, 271, 393, 408, 1082, 1127 |
| Linseed Oil | 392 |
| Liquidated Damages | 5, 47, 56 |
| Load Restrictions | 36, 907 |
| Local Material Sources | 29, 166, 193 |
| Lumber and Timber | 88, 89, 453, 456, 457, 713, 1064 |
| Luminaires | 721, 724, 727, 750, 844, 845, 852, 855, 856, 857, 860, 931, 1142, 1147, 1148, 1169, 1171, 1173, 1175, 1176 |
| Luminaires, High Mounting Height | 1177 |
| Luminaires, Navigation Lighting | 1178 |
| Luminaires, Offset | 1176, 1177 |
| Luminaires, Rest Area | 1177 |
| Luminaires, Roadway | 1176 |
| Luminaires, Underpass | 1178 |
| Lump Sum Construction | 163 |</p>
<table>
<thead>
<tr>
<th>ALPHABETIC INDEX (Continued)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance During Construction</td>
<td>15, 25</td>
</tr>
<tr>
<td>Maintenance of Traffic</td>
<td>16</td>
</tr>
<tr>
<td>Manholes</td>
<td>648, 651, 821, 827, 828, 829</td>
</tr>
<tr>
<td>Markers, Raised Pavement</td>
<td>799, 800, 802, 1162</td>
</tr>
<tr>
<td>Masonry, Brick</td>
<td>599, 643, 825, 827</td>
</tr>
<tr>
<td>Masonry, Rubble</td>
<td>640, 642, 825, 827, 901</td>
</tr>
<tr>
<td>Mast Arm Assemblies</td>
<td>714, 716, 718, 734, 750, 1139, 1140, 1157</td>
</tr>
<tr>
<td>Mat, Permanent Soil Reinforcing</td>
<td>909, 916</td>
</tr>
<tr>
<td>Materials, Aluminum Alloy</td>
<td>750</td>
</tr>
<tr>
<td>Materials, Backfill</td>
<td>117, 118, 119, 120, 593, 603, 634, 691, 701, 961</td>
</tr>
<tr>
<td>Materials, Handling</td>
<td>29</td>
</tr>
<tr>
<td>Materials, Masonry</td>
<td>504, 592, 599, 641, 643, 680, 825, 901, 1014</td>
</tr>
<tr>
<td>Materials, Miscellaneous Electrical</td>
<td>545, 546, 844, 845, 1182</td>
</tr>
<tr>
<td>Materials, Miscellaneous Planting</td>
<td>88, 148, 876, 891, 907, 1130</td>
</tr>
<tr>
<td>Materials, Miscellaneous Steel</td>
<td>429, 452, 453, 461, 504, 545, 546, 619, 727, 734, 1042</td>
</tr>
<tr>
<td>Materials, Reflectoring</td>
<td>68, 713, 714, 750, 803, 1139, 1142, 1151, 1160</td>
</tr>
<tr>
<td>Materials, Roadway</td>
<td>86, 117, 121, 127, 137, 154, 210, 831, 958, 959, 961, 965, 975</td>
</tr>
<tr>
<td>Materials, Shoulder</td>
<td>143</td>
</tr>
<tr>
<td>Membrane Curing Compound</td>
<td>347, 637, 1001</td>
</tr>
<tr>
<td>Metal Drain Inlets</td>
<td>616</td>
</tr>
<tr>
<td>Metals, Miscellaneous</td>
<td>453, 1060</td>
</tr>
<tr>
<td>Method of Handling Classes of Soils</td>
<td>124</td>
</tr>
<tr>
<td>Micro Surfacing</td>
<td>286, 287</td>
</tr>
<tr>
<td>Microwave Radar Detection</td>
<td>1253</td>
</tr>
<tr>
<td>Mill Asphalitic Concrete Pavement</td>
<td>313</td>
</tr>
<tr>
<td>Mineral Filler</td>
<td>220, 222, 227, 281, 287, 288, 367, 368, 605, 606, 1118, 1119</td>
</tr>
<tr>
<td>Mineral Spirits</td>
<td>392, 1108</td>
</tr>
<tr>
<td>Minor Drainage Structures for Detours</td>
<td>608</td>
</tr>
<tr>
<td>Miscellaneous Bridge Hardware</td>
<td>1060</td>
</tr>
<tr>
<td>Miscellaneous Concrete</td>
<td>315, 327, 346, 617, 676, 940, 941</td>
</tr>
<tr>
<td>Miscellaneous Drainage Structures</td>
<td>650, 816, 825</td>
</tr>
<tr>
<td>Miscellaneous Electrical Materials</td>
<td>545, 546, 844, 845, 1182</td>
</tr>
<tr>
<td>Miscellaneous Erosion Control Items</td>
<td>88, 97, 98, 876</td>
</tr>
<tr>
<td>Miscellaneous Metals</td>
<td>453, 1060</td>
</tr>
<tr>
<td>Miscellaneous Pipe</td>
<td>592, 593, 656, 816, 831, 1031</td>
</tr>
<tr>
<td>Miscellaneous Planting Materials</td>
<td>88, 148, 876, 891, 907, 1130</td>
</tr>
<tr>
<td>Miscellaneous Steel Materials</td>
<td>429, 452, 453, 461, 504, 545, 546, 619, 727, 734, 1042</td>
</tr>
<tr>
<td>Mitigation Site Construction</td>
<td>138</td>
</tr>
<tr>
<td>Mobile Operations Office</td>
<td>931, 934</td>
</tr>
<tr>
<td>Mobilization</td>
<td>63, 64</td>
</tr>
<tr>
<td>Modification of Existing Signs</td>
<td>711</td>
</tr>
<tr>
<td>Modular Expansion Joints</td>
<td>359</td>
</tr>
<tr>
<td>Monuments and Road Markers</td>
<td>711</td>
</tr>
<tr>
<td>Mortar, Expanded</td>
<td>462, 463, 464, 465, 504, 505, 619, 621</td>
</tr>
<tr>
<td>Mowing</td>
<td>885, 890</td>
</tr>
<tr>
<td>Mulch</td>
<td>83, 84, 88, 90, 91, 92, 93, 94, 876, 877, 883, 890, 892, 899, 903, 904, 1130, 1131, 1134</td>
</tr>
</tbody>
</table>

| N |
|------------------------------|------|
| Navigation | 33, 545, 549, 550, 931, 1175, 1178 |
| Nonreinforced Concrete Pipe | 593, 826, 1026 |
| Normal Backfill | 118, 120, 830 |
| Notice | 3, 5, 9, 10, 11, 12, 23, 24, 39, 41, 44, 48, 78, 79, 752, 867, 875, 1085, 1232 |
| Nuts | 431, 441, 446, 453, 456, 467, 505, 512, 515, 519, 620, 692, 695, 736, 1039, 1042, 1043, 1044, 1144, 1151 |

<p>	O
Obliteration of Old Roads	112
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstructions, Abandoned</td>
<td>648</td>
</tr>
<tr>
<td>Office, Field</td>
<td>752</td>
</tr>
<tr>
<td>Office, Mobile Operations</td>
<td>931, 934</td>
</tr>
<tr>
<td>Outdoor Furniture</td>
<td>930</td>
</tr>
<tr>
<td>Overrun in Contract Time</td>
<td>47</td>
</tr>
</tbody>
</table>

P

<p>| Pads, Elastomeric Bearing | 429, 619, 620, 680, 682, 1074, 1120 |
| Paint, Sign | 714, 715, 1139, 1156 |
| Painting Existing Steel Structures | 574 |
| Painting Structures | 429, 461, 471, 512, 557, 596, 619, 691, 701 |
| Painting Traffic Stripe | 787, 791, 802 |
| Paints for Structural Steel | 1093 |
| Paper, Waterproof | 414 |
| Patching Portland Cement Concrete Pavement | 373 |
| Patented Devices | 32, 1141 |
| Paved Ditches | 317, 349, 351 |
| Pavement Arrow with Raised Reflectors | 802 |
| Pavement Markers, Raised | 799, 800, 802, 1162 |
| Pavement Markings, Preformed Plastic | 803, 804, 806, 813, 815 |
| Pavement Markings, Removal of | 787, 804 |
| Pavement, Grind Concrete | 294, 310, 329, 376, 388 |
| Peat Moss | 1134 |
| Pedestrian Overpass Bridge | 557 |
| Permanent Anchored Walls | 659 |
| Permanent Changeable Message Signs | 707, 931 |
| Permanent Soil Reinforcing Mat | 909, 916 |
| Pile Encasement | 518, 587, 588, 589 |
| Piling and Round Timber | 453, 734, 750, 1067 |
| Piling, Metal Shell | 445, 520, 524, 525, 531, 532, 534, 536, 537, 572 |
| Piling, Prestressed Concrete | 468, 519, 521, 522, 524, 529, 532, 536, 538 |
| Piling, Timber | 454, 456, 466, 519, 521, 522, 524, 531, 536, 538 |
| Pilot Vehicles | 59 |
| Pine Bark | 1134 |
| Pine Seedlings | 83, 84 |
| Pipe, Aluminum Alloy | 515, 1041 |
| Pipe, Cast Iron | 1027 |
| Pipe, Cast Iron Soil | 817 |
| Pipe, Clay Underdrain | 1023, 1024 |
| Pipe, Copper | 901 |
| Pipe, Corrugated Steel Underdrain | 832, 837, 1032 |
| Pipe, Jacking or Boring | 610, 1028 |
| Pipe, Miscellaneous | 599, 656, 831 |
| Pipe, Plastic | 592, 593, 656, 816, 831, 1031 |
| Pipe, Steel | 505, 832, 837 |
| Pipe, Storm Drain | 512, 514, 592, 594, 599, 603, 605, 610, 615, 617, 657, 817, 832, 837, 1026, 1031, 1169 |
| Pipe-Arch | 592, 656 |
| Pipes | 30, 41, 115, 171, 865, 870, 904 |
| Plain Portland Cement Concrete Shoulders | 341 |
| Plank, Corrugated Steel Bridge | 461, 462 |
| Plans and Working Drawings | 19, 580 |
| Plant Establishment | 84, 85, 885, 886, 890 |
| Plant Laboratory | 66, 67 |
| Plant Topsoil | 148, 876, 892, 903, 906, 907, 908, 1130 |
| Planting Materials, Miscellaneous | 38, 148, 876, 891, 907, 1130 |
| Planting Zones | 81, 880, 894, 897 |
| Plastic Pipe | 505, 832, 837 |</p>
<table>
<thead>
<tr>
<th>ALPHABETIC INDEX (Continued)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic Sheets</td>
<td>414</td>
</tr>
<tr>
<td>Plate, Steel</td>
<td>455, 620, 621</td>
</tr>
<tr>
<td>Plates, Bronze</td>
<td>466</td>
</tr>
<tr>
<td>Plates, Self-Lubricating Bronze</td>
<td>431, 447, 466</td>
</tr>
<tr>
<td>Pneumatic Ejector Lift Station</td>
<td>930, 931</td>
</tr>
<tr>
<td>Pneumatically Applied Concrete</td>
<td>676</td>
</tr>
<tr>
<td>Pole, Flag</td>
<td>933</td>
</tr>
<tr>
<td>Poles, Strain</td>
<td>733, 735, 737, 738, 750, 767, 768, 775, 776, 1223, 1231</td>
</tr>
<tr>
<td>Poles, Timber</td>
<td>734, 736, 737, 738, 769, 776, 1070, 1222</td>
</tr>
<tr>
<td>Polymer Concrete</td>
<td>1018</td>
</tr>
<tr>
<td>Porous Material</td>
<td>901, 902, 1132</td>
</tr>
<tr>
<td>Portland Cement Concrete End Dams and Patches</td>
<td>359</td>
</tr>
<tr>
<td>Portland Cement Concrete Subbase</td>
<td>212</td>
</tr>
<tr>
<td>Portland Cement Concrete Whitetopping</td>
<td>380</td>
</tr>
<tr>
<td>Post Tensioning</td>
<td>471</td>
</tr>
<tr>
<td>Posts, Aluminum Structural Shape</td>
<td>1145</td>
</tr>
<tr>
<td>Posts, Delineator</td>
<td>715, 716, 1145</td>
</tr>
<tr>
<td>Posts, Galvanized Steel Structural Shape</td>
<td>715, 1144</td>
</tr>
<tr>
<td>Posts, Sign</td>
<td>68, 714, 719, 1139, 1141</td>
</tr>
<tr>
<td>Posts, Steel Sign</td>
<td>715, 750</td>
</tr>
<tr>
<td>Posts, Wood Fence</td>
<td>744, 1071</td>
</tr>
<tr>
<td>Posts, Wood Sign</td>
<td>1071, 1147</td>
</tr>
<tr>
<td>Pot Bearings</td>
<td>619</td>
</tr>
<tr>
<td>Powder, Aluminum</td>
<td>462, 463, 1015, 1016, 1075</td>
</tr>
<tr>
<td>Precast Concrete</td>
<td>327, 328, 499, 632, 674, 699, 825, 1086</td>
</tr>
<tr>
<td>Prefomed Joint Filler</td>
<td>676, 1002</td>
</tr>
<tr>
<td>Prefomed Plastic Gaskets</td>
<td>505, 593, 1038</td>
</tr>
<tr>
<td>Prefomed Plastic Pavement Markings</td>
<td>803, 804, 806, 813, 815</td>
</tr>
<tr>
<td>Premolded Asphalt Plank</td>
<td>470, 988</td>
</tr>
<tr>
<td>Prepared Plant Topsoil</td>
<td>892, 1133</td>
</tr>
<tr>
<td>Prequalification of Bidders</td>
<td>8</td>
</tr>
<tr>
<td>Preservative Treatment of Timber Products</td>
<td>1061, 1064, 1067, 1070, 1072, 1142</td>
</tr>
<tr>
<td>Pressure Grouting Portland Cement Concrete Pavement</td>
<td>367</td>
</tr>
<tr>
<td>Prestressed Concrete Bridge Members</td>
<td>388, 417, 464, 465, 466, 500, 518, 628, 680,</td>
</tr>
<tr>
<td>Prestressed Concrete Bridge Members</td>
<td>691, 696, 701, 734, 734, 1074, 1075, 1084, 1169</td>
</tr>
<tr>
<td>Prestressed Concrete Piling</td>
<td>468, 519, 521, 522, 524, 529, 532, 536, 538</td>
</tr>
<tr>
<td>Pretensioning Steel Wire Strand</td>
<td>1050, 1075, 1076</td>
</tr>
<tr>
<td>Prime, Bituminous</td>
<td>127, 154, 155, 163, 164, 166, 174, 183, 188, 191, 194, 197, 199, 200, 203, 204, 210, 267, 286, 554</td>
</tr>
<tr>
<td>Progress</td>
<td>8, 19, 44, 150</td>
</tr>
<tr>
<td>Property, Protection and Restoration of</td>
<td>34, 95</td>
</tr>
<tr>
<td>Prosecution and Progress</td>
<td>42, 44, 863, 868, 891</td>
</tr>
<tr>
<td>Protective Concrete Collar for Existing Columns</td>
<td>517</td>
</tr>
<tr>
<td>Protective Platforms</td>
<td>487, 488</td>
</tr>
<tr>
<td>Public</td>
<td>12, 32, 36, 38, 39, 42, 50, 51, 836, 869, 873</td>
</tr>
<tr>
<td>Pumps, Well</td>
<td>931, 933</td>
</tr>
<tr>
<td>Putty</td>
<td>1108</td>
</tr>
</tbody>
</table>

Q

| Quality Control | 27, 166, 172, 177, 220, 231, 430, 450, 1078 |

R

Radiographic	570
Railroad	15, 33, 43, 163, 405, 416, 565, 566, 574, 738
Railroad Construction	163, 565, 566
Raise Existing Bridge	517
Raised Pavement Markers	799, 800, 802, 1162
ALPHABETIC INDEX (Continued)

Raised Traffic Bars ... 785
Random Clearing and Grubbing .. 106, 109, 114, 131, 188, 647
Rapid Setting Cement Concrete End Dams and Patches .. 320
Rapid Setting Patching Materials for Portland Cement Concrete 320, 373, 1228
Raw Linseed Oil .. 1093, 1095, 1097, 1108
Ready Mix Concrete ... 36, 388, 390, 392
Reclamation of Material Pits .. 35, 80, 102, 114, 166, 876
Reclamation of Material Pits and Waste Areas ... 80, 102, 114, 166, 876
Reconstructed Base Course ... 163, 164, 204
Red Primer ... 447, 1093, 1094
Reflective and Nonreflective Characters ... 714, 1139
Refl ectorizing Materials ... 68, 713, 714, 750, 803, 1139, 1142, 1151, 1160
Reinforced Concrete Approach Slabs .. 315, 672
Reinforcement and Tensioning Steel ... 294, 316, 328, 329, 347, 376, 388, 489, 509, 628, 659, 367, 676, 750, 825, 844, 863, 1049, 1074, 1086
Reinforcement Steel ... 512, 584, 659, 691, 701, 727, 863, 869, 1074, 1076, 1084
Rejection of Proposal ... 11
Release Form, Standard ... 57
Removal of Miscellaneous Roadway Items .. 109, 647, 650
Removal of Pavement Markings .. 787, 804
Removal of Portland Cement Concrete Roadway Slabs ... 367, 376, 645
Removal of Unacceptable and Unauthorized Work .. 22
Repair of Galvanized Coatings .. 452, 512, 545, 586, 592, 599, 603, 617, 691, 701, 727, 740, 744, 748, 750, 1169
Resident Engineer ... 21
Responsibility .. 38, 39, 49, 1010, 1013
Rest Room Building ... 930, 931
Restoration or Alteration of Lakes and Ponds ... 95
Retaining Walls .. 407, 408, 425, 428, 690, 953
Right of Way .. 80, 90, 101, 1138
Rip Rap .. 88, 89, 326, 617, 637, 638, 639, 948, 949
Rivets ... 779, 1038
Roads ... 104, 123, 163
Rock ... 111, 112, 121, 124, 126, 127, 600, 666, 667, 668, 959, 960, 961
Root Protection ... 900
Rubber Gasket Joints .. 1024
Rubber Impregnated Cotton Duck .. 465
Rubber Seal Treatment ... 272
Rubble .. 640, 642, 825, 827, 842, 901, 902
Rumble Strips .. 293, 381

S

Sample Holes .. 29
Sand Bituminous Stabilized Base Course ... 187
Sanitary Sewers .. 816, 817
Sawed Joints in Existing Pavements ... 353, 831
Scales ... 49, 167, 221, 297, 332, 394, 395, 864
Scope of Payment .. 52
Seal, Asphalt-Rubber Joint and Crack .. 262
Seal, Emulsified Asphalt Slurry ... 270, 280, 282
Seamless Steel Pipe ... 519, 1057
Seasonal Limitations .. 284, 894
Seed and Sod .. 80, 88, 853, 856, 876, 887, 1126
Seeding ... 85, 878, 881, 882, 887, 888, 889
Selected Material Surface Course ... 207, 208, 209
Selective Clearing .. 104
Sewage Pumping Station ... 932, 935
Sewer, Sanitary .. 816, 817, 821, 827
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear Connectors</td>
<td>429, 431, 501, 502, 503, 504</td>
</tr>
<tr>
<td>Sheet and Plate, Aluminum Alloy</td>
<td>515, 519, 1039</td>
</tr>
<tr>
<td>Shell Pile, Steel</td>
<td>519, 532, 1057</td>
</tr>
<tr>
<td>Shelter, Check Point</td>
<td>931, 934</td>
</tr>
<tr>
<td>Shims, Aluminum Alloy</td>
<td>515, 1040</td>
</tr>
<tr>
<td>Shop and Working Drawings</td>
<td>546</td>
</tr>
<tr>
<td>Shoulder</td>
<td>6, 120, 128, 129, 130, 142, 143, 144, 181, 182, 192, 975</td>
</tr>
<tr>
<td>Sidewalks, Concrete</td>
<td>349, 350</td>
</tr>
<tr>
<td>Signs, Highway</td>
<td>518, 649, 714, 7117, 719, 727, 729, 730, 734, 749, 852, 1142, 1144, 1147, 1148, 1169, 1171, 1173</td>
</tr>
<tr>
<td>Signs, Modification of Existing</td>
<td>711</td>
</tr>
<tr>
<td>Signs, Reflective Sheeting</td>
<td>1140</td>
</tr>
<tr>
<td>Silt Control Gates</td>
<td>89, 92, 93</td>
</tr>
<tr>
<td>Silt Fence, Temporary</td>
<td>88, 97</td>
</tr>
<tr>
<td>Silt Filter Bag</td>
<td>925</td>
</tr>
<tr>
<td>Silt Retention Barrier</td>
<td>96</td>
</tr>
<tr>
<td>Siltation Control</td>
<td>35, 111</td>
</tr>
<tr>
<td>Slag Cement</td>
<td>997</td>
</tr>
<tr>
<td>Slope Drains, Concrete</td>
<td>351</td>
</tr>
<tr>
<td>Slope Paving, Concrete</td>
<td>349, 350</td>
</tr>
<tr>
<td>Slopes, Blanket for Fill</td>
<td>148</td>
</tr>
<tr>
<td>Smooth Lined Corrugated Polyethylene (PE) Culvert Pipe</td>
<td>592, 605, 615, 1030</td>
</tr>
<tr>
<td>Sod</td>
<td>876, 878, 884, 885, 886, 887, 1128, 1129</td>
</tr>
<tr>
<td>Soil Aggregate Bases</td>
<td>194, 973</td>
</tr>
<tr>
<td>Soil Aggregate Construction</td>
<td>193, 197</td>
</tr>
<tr>
<td>Soil Base Materials</td>
<td>154, 174, 183, 188, 207, 965, 1130</td>
</tr>
<tr>
<td>Soil Pipe, Cast Iron</td>
<td>1023, 1024</td>
</tr>
<tr>
<td>Soil-Cement Construction</td>
<td>154, 166, 173, 210, 965</td>
</tr>
<tr>
<td>Soil-Lime Construction</td>
<td>154, 156</td>
</tr>
<tr>
<td>Solar Application</td>
<td>934</td>
</tr>
<tr>
<td>Sound Barriers</td>
<td>679</td>
</tr>
<tr>
<td>Spar Varnish</td>
<td>1108</td>
</tr>
<tr>
<td>Special Subgrade Compaction</td>
<td>149</td>
</tr>
<tr>
<td>Special Subgrade Compaction and Test Rolling</td>
<td>149</td>
</tr>
<tr>
<td>Special Surface Coating for Concrete</td>
<td>388, 1016, 1020</td>
</tr>
<tr>
<td>Specialty Items</td>
<td>42, 43</td>
</tr>
<tr>
<td>Spillways, Concrete</td>
<td>351</td>
</tr>
<tr>
<td>Splicing</td>
<td>537, 723, 1232, 1248, 1249, 1251</td>
</tr>
<tr>
<td>Spring Box</td>
<td>829</td>
</tr>
<tr>
<td>Stabilization, Subgrade</td>
<td>129, 130</td>
</tr>
<tr>
<td>Stabilized Base Material for Patching</td>
<td>210</td>
</tr>
<tr>
<td>Stabilizer Aggregate</td>
<td>127, 128, 129, 164, 188, 189, 192, 193, 207, 208, 209, 945, 946</td>
</tr>
<tr>
<td>Stakes, Construction</td>
<td>21</td>
</tr>
<tr>
<td>Standard Release Form</td>
<td>57</td>
</tr>
<tr>
<td>Standards and Towers, Lighting</td>
<td>844, 845, 854, 855, 857, 860, 1168, 1169</td>
</tr>
<tr>
<td>Static Scale System</td>
<td>863, 867, 931</td>
</tr>
<tr>
<td>Steel Pile</td>
<td>518, 519, 714, 1056</td>
</tr>
<tr>
<td>Storage of Materials</td>
<td>29</td>
</tr>
<tr>
<td>Storage Tanks, Water</td>
<td>931, 933</td>
</tr>
<tr>
<td>Strain Poles</td>
<td>733, 735, 737, 738, 750, 767, 768, 775, 776, 1223, 1231</td>
</tr>
<tr>
<td>Stripping Excavation</td>
<td>30, 192, 193</td>
</tr>
<tr>
<td>Strips, Rumble</td>
<td>293, 381</td>
</tr>
<tr>
<td>Structural Supports for Overhead Signs</td>
<td>719, 726</td>
</tr>
<tr>
<td>Studs</td>
<td>445</td>
</tr>
<tr>
<td>Substitution of Sources of Materials</td>
<td>30</td>
</tr>
<tr>
<td>Supplemental Agreement</td>
<td>3, 4, 7, 14, 17, 18, 19, 22, 53, 128, 276, 891</td>
</tr>
<tr>
<td>Surcharge Removal</td>
<td>112</td>
</tr>
<tr>
<td>Surety</td>
<td>3, 8, 14, 32, 39, 46, 47, 48, 57, 59</td>
</tr>
</tbody>
</table>
ALPHABETIC INDEX (Continued)

Surface Course, Selected Material	207, 208, 209
Surface Treatment, Bituminous	163, 164, 218, 258, 267, 270, 272, 277, 278, 286, 935, 938
Survey Aids	74
Swaybracing	445, 531, 534, 566, 572, 573, 574, 693

T

Tack Coat, Bituminous	52, 163, 164, 218, 220, 225, 254, 258, 270, 281, 288, 293, 324, 357, 554
Tackifiers	877
Temporary Silt Fence	88, 97
Temporary Suspension of Work	45
Test Piles	538
Thermoplastic Traffic Stripe	791, 802
Tie Bars	347
Timber Structures	452
Timber, Lumber and	88, 89, 453, 456, 457, 713, 1064
Timber, Merchantable	104
Time, Contract	3, 5, 38, 39, 40, 44, 45, 46, 47, 550, 725
Topsoil, Plant	148, 876, 892, 903, 906, 907, 908, 1130
Towers, Lighting	1170
Traffic Control	15, 19, 63, 166, 291, 354, 356, 710, 719, 750, 774, 804, 861, 870, 872, 1212, 1231, 1247
Traffic Signal Installation	558, 749, 775, 776, 931, 1185, 1231
Traffic Stripe	787, 788, 789, 790, 799, 812, 813, 815
Traffic Stripe, Painting	787, 791, 802
Traffic Control, Thermoplastic	791, 802
Training Program	77, 78
Travel Trailer Sanitary Disposal Station	933
Treatment Plant, Waste Water	930, 931
Treatment, Preservative	88, 89, 453, 519, 545, 654, 713, 719, 734, 744, 1061, 1063, 1064, 1067, 1069, 1070, 1071, 1072, 1142
Trees	104, 892, 897, 903, 904, 1131
Trench, Imperfect	117, 118, 963
Triangular Silt Barrier	926
Truck Weigh Station Communication System	931
Truck Weigh Station Height Checking Device	931, 934
Truck Weigh Station Length Estimating Device	931, 934
Truck Weigh Station Traffic Control Signs	934
Truck Weighing Station Building	931, 933
Tubing	515, 832, 850, 1032, 1040
Tunnel Liner	599, 831
Turf Establishment	905
Turpentine	1067, 1108
Twenty-Four-Hour Accelerated Strength Concrete	460

U

Unbalanced Bids	11
Unclassified Excavation	151, 689
Underdrains	610, 628
Unpaved Shoulders	121, 141
Unsuitable Material Excavation	112
Use of Explosives	33, 112

V

<p>| Valves, Gate | 831, 836, 839, 840, 1037 |
| Varnish, Spar | 1108 |
| Vehicle Maintenance Building | 932, 935 |
| Video Detection System | 750, 1253 |</p>
<table>
<thead>
<tr>
<th>ALPHABETIC INDEX (Continued)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Waiver</td>
<td>14, 39, 48</td>
</tr>
<tr>
<td>Washers, Aluminum Alloy</td>
<td>515, 1040</td>
</tr>
<tr>
<td>Waste Water Treatment Plant</td>
<td>930, 931</td>
</tr>
<tr>
<td>Waterproof Paper</td>
<td>414</td>
</tr>
<tr>
<td>Weather Limitations</td>
<td>175, 215, 228, 268, 274, 283, 290, 322, 364, 369, 644</td>
</tr>
<tr>
<td>Weed Control</td>
<td>929</td>
</tr>
<tr>
<td>Welcome Station Building</td>
<td>931, 933</td>
</tr>
<tr>
<td>Welded Steel Wire Fabric for Concrete Reinforcement</td>
<td>296, 330, 1052</td>
</tr>
<tr>
<td>Welding</td>
<td>1, 430, 444, 462, 513, 657, 731, 819</td>
</tr>
<tr>
<td>Wells, Drilled</td>
<td>933</td>
</tr>
<tr>
<td>Wildflower Seeding</td>
<td>887, 888, 890</td>
</tr>
<tr>
<td>Wire, Barbed</td>
<td>744, 1137, 1138</td>
</tr>
<tr>
<td>Wire, Electrical</td>
<td>546, 750, 776, 844, 858, 931, 1179, 1185, 1231</td>
</tr>
<tr>
<td>Wire, Post-Tensioning Steel</td>
<td>1075</td>
</tr>
<tr>
<td>Wood Posts and Bracing</td>
<td>98, 99, 713, 744, 1135, 1142</td>
</tr>
<tr>
<td>Work, Alteration of Plans or Character of</td>
<td>14</td>
</tr>
<tr>
<td>Work, Electrical</td>
<td>931</td>
</tr>
<tr>
<td>Work, Force Account</td>
<td>54, 58</td>
</tr>
<tr>
<td>Work, Special</td>
<td>14</td>
</tr>
<tr>
<td>Working Drawings</td>
<td>8, 360</td>
</tr>
<tr>
<td>Woven Wire Fence</td>
<td>744, 1136</td>
</tr>
</tbody>
</table>

Y	
Yard, Cubic	303, 337, 342, 351, 407, 408, 425, 1254
Yard, Square	243, 813, 815, 1254

| **Z** | |
| Zinc | 490, 568, 569, 1093, 1094, 1095, 1096, 1098, 1099, 1106, 1135 |
References:

Click here to enter Policy references, if any.

History:

annual review: 03/03/22;
copied to GDOT Publications v.02.00.00: 03/26/12
Reviewed: 3/3/2022