Revised 10/07/13

DEPARTMENT OF TRANSPORTATION STATE OF GEORGIA

SPECIAL PROVISION

PROJECT NO. 00000-0000-00(000), County P.I. NO. 000000

SECTION 524 – DRILLED CAISSON FOUNDATIONS

524.1 General Description

This Work consists of furnishing all labor, materials, equipment, tools and services necessary for construction of drilled caisson foundations and includes all incidentals and additional work in conjunction therewith. Adhere to the Department's Plans, Special Provisions and Standard and Supplemental Specifications for all Work.

524.2 Materials

Use materials that meet the requirements of the Standard Specifications with the following exceptions:

- Follow Special Provision 500 Concrete Structures (Mass Concrete), for shafts with diameters greater than 6 feet (1.83 meters).
- Use non-air-entrained Class AA concrete with a coarse aggregate size of No. 67 stone and a slump at time of placement of between 7 and 9 inches (178 mm and 229 mm). Use 10 percent additional cement and a retarder or water reducing agent in all concrete.
- Use Grade 60 (Grade 420) reinforcing bars that conform to ASTM 615 (ASTM A 615M). If wire spirals are used, use spirals that conform to ASTM A 82.
- Use Grade 2 steel casing that conforms to ASTM A 252.

524.3 Construction Requirements

524.3.01 Personnel

Construct drilled caissons and supervise the work with personnel who are experienced in this type work. Visit and examine the work site and all conditions, and take into consideration all such conditions that may affect the work. At least 30 days prior to beginning drilled caisson work, submit to the Engineer for review and approval the following proof of the ability of the personnel to construct drilled caisson foundations:

- 1. Evidence of the successful completion of at least five projects similar in concept and scope to the proposed foundation. Include names, addresses and telephone numbers of the owners' representatives for verification.
- 2. Résumés of foreman and drilling operators to be employed on this project. Provide evidence showing that the drill operator has experience and knowledge of the drill rig to be used on the project. The Department will be sole judge of the qualifications of the foreman and drill rig operator.
- 3. A detailed sequence of construction for drilled caisson work that describes all materials, methods and equipment to be used, including, but not limited to the following:
 - casing sizes with proposed top and tip elevations
 - drilling equipment including the manufacturer's specifications on the drill rig
 - methods and equipment for stabilizing and cleaning shaft excavations
 - methods of materials handling and disposal
 - methods and equipment for placing concrete
 - details of tremie and sealing methods, if required
 - details of reinforcement placement, including support and centralization methods

Do not begin drilled caisson construction until the qualifications, construction plan and methods have been approved in writing by the Engineer.

524.3.02 Equipment

Use excavation and drilling equipment with a rated capacity (including power, torque and downward thrust) to excavate a caisson of the maximum specified diameter to a depth of 40 feet (12.2 meters) or 25 percent deeper than the deepest caisson indicated on the Plans, as measured from the ground or water surface elevation, whichever is higher.

524.3.03 Casing

Use casing that is a metal shell of a thickness to withstand handling, internal and external pressures, and that is watertight, smooth and clean. If the elevation of the top of the caisson is below ground level or water level at the time of concrete placement, use an oversize casing from ground elevation to a point below the top of the caisson to prevent caving into the fresh concrete. Do not allow the top of the permanent casing, if required, to extend above the top of the drilled caisson. Use casing in all materials that do not have sufficient strength to safely remain open and stable during and after excavation.

When casing is used, do not use casing with an outside diameter less than the specified diameter of the caisson. That portion of the caisson below the casing may be slightly smaller than the normal outside diameter of the caisson. However, use drilling tools to excavate the caisson below the casing that are no smaller than the outside diameter of the casing minus 2 inches (51 mm). Do not leave casing in place unless permitted by the Engineer, and cut off any permanent casing as shown on the Plans.

Provide adequate equipment during concrete placement to prevent pulling up the reinforcing cage during casing extraction. The casing may be pulled in partial stages. Maintain a sufficient head of concrete above the bottom of the casing to overcome hydrostatic pressure. Extract the casing at a slow uniform rate with pull in line with the center of the casison.

524.3.04 Protection of Existing Structures

Monitor structures for settlement that are within a distance of ten shaft diameters or the estimated shaft depth, whichever is greater, in a manner approved by the Engineer. Record elevations to an accuracy of 0.01 foot (3 mm). Record elevations before construction begins, during the driving of any required casings, during excavation or blasting, or as directed by the Engineer.

Document thoroughly the condition of the structures with descriptions and photographs made both before and after drilled caissons are constructed. Document all existing cracks, and provide copies of all documentation to the Engineer.

At any time settlement of 0.05 foot (15 mm) or damage to the structure is detected, immediately stop the source of vibrations, backfill any open drilled shaft excavations and contact the Engineer for instructions.

524.3.05 Excavation

Prior to excavation of each caisson, core rock at two (#) locations per shaft, within the shaft location, to be determined by the Engineer, until a sequential ______ foot (_____m) core is obtained with a core recovery of rock having a minimum of ___% recovery and a minimum RQD of ______ is obtained. Obtain cores with a minimum diameter of 2.5 inches (63.5 mm). These cores will be inspected in order to determine the integrity of the rock at and below the planned shaft tip elevation. The Engineer will inspect the rock cores and based on the quality of the rock, additional coring may be required. At this time a determination of the soundness and quality of the rock will be made by the Engineer and the shaft tip elevation of the caissons may be adjusted by the Engineer as needed based on this information.

Test coring will be measured and paid for separately from drilled caissons.

Drill and excavate all caissons through whatever substances and to the elevations required. Excavate near the tip elevation in the presence of the Engineer. The Engineer may adjust the tip elevations depending on the quality of the bearing material found. Embed the caisson tips _____ feet (______ meters) into and on top of sound rock in accordance with Plan requirements and as determined by the Engineer. Sound rock is indicated by material that cannot be drilled with a conventional earth auger, and requires the use of special rock augers, core barrels, air tools, blasting and/or other methods of hand excavation. Sound rock is defined as material on which the rock auger penetration is equal to or less than 2 inches (51 mm) per five minutes of drilling with the auger subjected to a torque of 600,000 inch-pounds (67,791 kN-m) with a down thrust of 37,000 pounds (165 kN). There will be no additional compensation for removal of rock.

Remove sediment and debris from the bottom of the caissons. Do not place the reinforcing steel or concrete until the Engineer has approved the bottom of each caisson.

Where drilled caissons are located in other than open water areas, use casings or other methods approved by the Engineer to stabilize the excavation and control the hole size. When casing is not specifically required on the plans, fill in any over-excavations with Class AA concrete at no additional cost to the Department. Dispose of excess concrete, grout, displaced water and materials removed from the caisson excavation in areas approved by the Engineer, and in accordance with any Federal, State, or local code or ordinance. Verify the accuracy and existence of all applicable codes, ordinances or other regulations prior to disposing materials.

524.3.06 Reinforcing Steel

Assemble a cage of reinforcing steel and place it as a unit immediately prior to concrete placement. Assemble the cage so that the clearance between the cage and side of the caisson will be at least 5 inches (125 mm), and the clearance between the cage and bottom of the caisson will be 3 inches (76 mm).

If the caisson is lengthened, extend all reinforcement to within 3 inches (76 mm) of the bottom. If a splice is required, place it in the lower one-third of the caisson, or as shown on the Plans. Tie hoops or spirals to the caisson and column steel (vertical bars) at 100% of the junctions with double wire figure-eight ties. Do not weld the reinforcing steel. Support the cage from the top in a concentric manner to minimize its slumping downward during concrete placement and/or extracting the casing.

Check the elevation of the top of the steel cage before and after casing extraction. Any upward movement of the steel not exceeding 2 inches (51 mm) or any downward movement thereof not exceeding 6 inches (152 mm) will be acceptable. Any upward movement of the concrete or displacement of the steel beyond the above limits will be cause for rejection. Tie and support the reinforcing steel in the caisson so that the reinforcing steel will remain within allowable tolerances. In uncased caissons, use only heavy-duty plastic rollers (wheels). In cased caissons, use heavy-duty non-corrosive plastic rollers (wheels) or steel chairs. Place rollers at maximum intervals of 8 feet (2.4 meters) along the cage to ensure concentric spacing for the entire cage length. Use one roller for each one foot (305 mm) of diameter of the cage, with a minimum of four rollers at each interval. Do not use concrete spacer blocks. Use rollers that are constructed of a material approved by the Engineer and that have sufficient bearing surface to provide lateral support to the reinforcing cage.

Use rollers of adequate dimension to provide the annular spacing between the outside of the reinforcing cage and the side of the excavated hole or casing as shown on the Plans. If an oversize casing is used, use rollers that will provide concentric spacing. Use pre-cast concrete or heavy-duty plastic bottom supports (feet/boots) to provide a spacing of 3 inches (76 mm) between the cage and caisson bottom.

524.3.07 Concrete

Mix and place all concrete in accordance with Section 500 of the Specifications where applicable or in accordance with Special Provision 500 – Concrete Structures (Mass Concrete) if shaft diameters are greater than 6 feet (1.83 meters), and the requirements herein stated.

Place concrete as soon as possible after all excavation is completed and reinforcing placed and supported. Place concrete continuously in the caisson to the top elevation of the caisson. The Engineer may allow free falling of concrete to a maximum of 60 feet (18.3 meters), if satisfactory methods are demonstrated.

If ground water is encountered and the hole can not be pumped dry, or if the Engineer does not approve free fall of concrete, place concrete using a gravity feed watertight tremie. Use a tremie pipe of at least 8 inches (203 mm) in diameter with a concrete hopper at the top. The Engineer may allow concrete to be placed by pumping through a supply line if satisfactory methods are demonstrated. If this method is allowed, use pump supply lines with watertight couplings. Seal the end of the pump

line with a foam plug or other device approved by the Engineer to prevent concrete within the tremie or pump supply line from mixing with fluid in the excavation.

If a tremie is used, place it on the bottom of the excavation at the beginning of concrete placement, and keep it there until the tremie pipe and hopper are filled with concrete. Then raise the tremie only enough to induce concrete flow and do not lift the tremie further until the discharge end is immersed at least 10 feet (3.1 meters) into the deposited concrete. If concrete placement by pumping is used, secure the supply line in place so that the discharge end will not lift off the bottom of the excavation more than 6 inches (152 mm) until at least 10 feet (3.1 meters) of concrete has been placed. Embed the discharge end of the tremie or pump supply line a minimum of 10 feet (3.1 meters) in the concrete throughout the remainder of the concrete pour.

Complete the placement of all concrete in the caisson in twelve hours. Adjusted the retarder or water reducing agent as approved by the Engineer for the conditions encountered on the job so the concrete remains in a workable plastic state throughout the pour.

Prepare and cure the top surface of the construction joint in accordance with the requirements of Section 500. Locate construction joints as indicated on the Plans.

Do not place concrete under water in the caisson excavation without the permission of the Engineer. When permission is granted, place the concrete in accordance with the requirements of Section 500. Provide a sump to channel displaced water away from the caisson. Contain all displaced water to prevent water from entering into any body of water.

During the twenty-four hour period immediately following the completion of the placement of concrete in the caisson, do not install or extract casing within 50 feet (15.2 meters) of the completed caisson, and do not excavate any caissons within 15 feet (4.6 meters) of the completed caisson. If the Engineer determines that any construction adversely affects the recently constructed caisson, cease such activities immediately.

Protect any portion of drilled caissons exposed to a body of water from the action of water by leaving the forms in place for a minimum of seven days after pouring the concrete. Remove the forms prior to 7 days only if the concrete strength has reached 3000 psi (20.7 Mpa) or greater as tested by cylinder breaks.

524.3.08 Inspection and Safety

1. Check the dimensions and alignment of the caisson excavation under the observation of the Engineer.

524.3.08 Tolerances

Adhere to the following construction tolerances for drilled caissons:

- 1. Construct the drilled caisson to within 3 inches (76 mm) of the plan position plane, at the top-ofcaisson elevation. Adhere to a vertical alignment tolerance of ¹/₄-inch per 12 inches (6 mm per 305 mm) of depth.
- 2. Place reinforcement in accordance with the requirements of Section 511 of the Standard Specifications and Sub-section 524.3.06. Tie column steel (vertical bars) to hoops and spirals at 100% of the junctions with double wire figure-eight ties.

- 3. Placed vertical caisson reinforcing bars, including bars extending into columns or footings to within ¹/₂-inch (13 mm) of plan location. Place hoops or spirals to within 1 inch (25 mm) of their specified location. Adhere to a side form clearance of within ¹/₄-inch (6 mm) of plan requirements.
- 4. Place the construction joint of the top of caissons used as caisson/column intermediate bents to within a tolerance of plus or minus 3 inches (76 mm) of the plan elevation.

524.4 Acceptability

In the event that significant voids are suspected in the concrete that were created during placement, verify the integrity of the caisson using a method that has been approved by the Engineer. If the caisson in question is found to be structurally deficient or out of tolerance in any way, the caisson will not be accepted unless corrective measures as approved by the Engineer are accomplished. Furnish additional materials and work necessary to effect corrections at no cost to the Department and with no increase in contract time.

524.5 Measurement

The length of accepted caisson foundation is measured in linear feet (meters) of caisson in place in the completed work. The length is measured from the final approved bottom elevation to 1 foot (305 mm) above the bottom of the footing cap where caissons are used in a footing or to the top of the caisson elevation detailed in the plans.

Test coring, where required, is measured in linear foot (meters) of rock coring from the top of the hard rock to the required depth below the drilled caisson tip elevation. No separate measurement is made for test coring through soil, concrete, water, or void spaces.

524.6 Payment

Drilled in place caisson foundations is paid for at the unit price bid per linear feet (meters) complete and in place as specified. The payment is full compensation for all excavation, furnishing and placement of reinforcing steel and concrete in the caisson, all temporary and permanent casing, disposal of excavated materials, and the cost of furnishing all tools, safety devices, labor, equipment and all other necessary items to complete the work.

Test coring is paid for at the unit price for test coring as specified. No separate payment is made for test coring through soil, water, concrete, or void spaces. The payment is full compensation for coring through all materials, setting casing, disposal of excavated materials, providing rock core boxes, boring logs, and the cost of furnishing all tools, labor, equipment, supplies, and all other items necessary to complete the work.

Payment will be made under:

Item No. 524-0010 DRILLED CAISSON	_INCHES (mm) DIA	PER LINEAR FOOT
(METER)		

Item No. 524-0350 TEST CORING......PER LINEAR FOOT (METER)

Office of Materials and Testing